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Abstract

Pancreatic Neuroendocrine Neoplasm (PanNEN) is a rare form of cancer with a diverse
and highly debated tumor classification. PanNENs comprise a heterogeneous set of high-
grade PanNECs and NETG3 PanNETs, in addition to the more commonly diagnosed low-
grade NETG1 and intermediate grade NETG2 PanNETs. High-grade PanNENs display
poor prognosis among patients and, despite maintaining some morphological distinctions,
PanNEC and NETG3 remain challenging to diagnose histologically. This study presents a
methylation-based classification, which precisely distinguishes PanNETs and PanNECs, ex-
posing the underlying complexity evident in molecular and tumor cell-of-origin features of
PanNENs. DNA methylation analysis, in addition to mutation and copy number profiling
was performed on a PanNEN cohort, comprised of NETG1, NETG2, NETG3 and PanNEC
samples, to define and characterize PanNEN subgroups. My work establishes distinct Pan-
NEN subgroups based on methylation profiles, whereby the PanNETs and PanNECs were
separated into two groups: Group A and Group B, respectively. While Group B tumors
are enriched for recurring alterations in KRAS, TP53 and SMAD4, the mutational spectrum
of Group A tumors encompasses alterations in classical PanNEN genes including MEN1,
DAXX, ATRX and VHL. Recurring whole chromosomal aberrations are evident in Group A
tumors, in contrast to Group B tumors, which reveal a significant focal deletion of the RB1
locus. Using methylation profiles of alpha-, beta-, ductal and acinar pancreatic cell types, in
addition to expression patterns of normal cell type marker genes within tumors, the study
concluded that the PanNET tumors are alpha-like, beta-like, and intermediate-like tumors
of endocrine origin, while PanNECs of Group B are acinar-like tumors with a potential ex-
ocrine origin. The proportion of acinar-cell methylation profile and expression of SOX9
protein in Group B tumors are comparable to Pancreatic Ductal adenocarcinoma (PDAC), a
tumor entity with an established exocrine cell-of-origin. Together, the novel findings of this
thesis establish a comprehensive profile distinctly characterizing PanNET and PanNEC tu-
mors at the genetic and epigenetic molecular level. Importantly, this work provides strong
evidence for the emerging yet unproven theory of an exocrine origin of PanNECs, offering
a new approach for treating patients with this rare but often fatal disease.
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Zusammenfassung

Neuroendokrine Neoplasmen der Bauchspeicheldrüse (PanNEN) sind eine seltene Form
von Krebs mit einer vielfältigen und stark umstrittenen Tumorklassifikation. PanNENs um-
fassen eine heterogene Gruppe von hochgradigen PanNECs und NETG3 PanNETs, sowie
die häufiger diagnostizierten niedriggradigen NETG1 und mittelgradigen NETG2 PanNETs.
Hochgradige PanNENs weisen eine schlechte Prognose auf, und trotz einiger morpholo-
gischer Unterscheidungsmerkmale sind PanNECs und NETG3s histologisch schwierig zu
diagnostizieren. In dieser Studie wird eine auf Methylierung basierende Klassifizierung
vorgestellt, die PanNETs von PanNECs unterscheidet und die zugrunde liegende Kom-
plexität aufzeigt, die in den molekularen Merkmalen und den Ursprungszellen der Pan-
NENs zum Ausdruck kommt. An einer PanNEN-Kohorte, die sich aus NETG1-, NETG2-,
NETG3- und PanNEC-Proben zusammensetzt, wurde neben Mutations- und Kopienzahl-
profilen auch eine DNA-Methylierungsanalyse durchgeführt, um PanNEN-Untergruppen
zu definieren und zu charakterisieren. In meiner Arbeit wurden PanNENs auf Grund-
lage ihrer Methylierungsprofile gruppiert, wodurch die PanNETs und PanNECs in die zwei
Gruppen A und B aufgeteilt wurden. Während Tumore der Gruppe B häufig wiederkehren-
den Veränderungen in KRAS, TP53 und SMAD4 aufweisen, umfasst das Mutationsspek-
trum von Tumoren der Gruppe A Veränderungen in klassischen PanNEN-Genen wie MEN1,
DAXX, ATRX und VHL. Darüberhinaus sind Gruppe A Tumore durch wiederkehrende
chromosomale Aberrationen gekennzeichnet, wohingegen Tumore der Gruppe B eine sig-
nifikante fokale Deletion des RB1-Lokus aufweisen. Anhand von Methylierungsprofilen
von alpha-, beta-, duktalen und azinären Pankreaszelltypen sowie von Expressionsmustern
normaler Zelltyp-Markergene innerhalb der Tumore kam diese Studie zu dem Schluss, dass
die PanNET-Tumore alpha-, beta- und intermediär-ähnliche Tumore endokrinen Ursprungs
sind, während die PanNECs azinäre Tumore mit einem potenziellen exokrinen Ursprung
sind. Letzteres basiert auf der Beobachtung, dass die Ausprägung des Azinuszellenpro-
fils und die Expression des SOX9-Proteins in den Tumoren der Gruppe B vergleichbar
mit denen des duktalen Adenokarzinoms des Pankreas (PDAC) ist, einer Tumorentität
mit nachgewiesenem exokrinen Zellursprung. Zusammengenommen ergeben die neuen
Erkenntnisse dieser Arbeit ein umfassendes Profil, das PanNET- und PanNEC-Tumore auf
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genetischer und epigenetischer Ebene eindeutig charakterisiert. Wichtig ist, dass diese Ar-
beit starke Beweise für die aufkommende, aber unbewiesene Theorie eines exokrinen Ur-
sprungs von PanNECs liefert und somit einen neuen Ansatz für die Behandlung von Pa-
tienten mit dieser seltenen, aber oft tödlichen Krankheit bietet.
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Preface

Cancer at its core is a population of cells that arose from a mutated cell, while thriving at
the expense of their neighbors, and ultimately causing the entire cellular system to per-
ish. Given the explosion of technological innovation and strong advancement of cancer
research, the concept that cancer comes from a “mutated cell”expanded to “aberrated cell”,
encompassing the various genetic, epigenetic, and expression changes that can occur within
a genome. This process of progression is unique to the organ from which a tumor manifests,
as well as to the specific cell type within that organ. Further variables including cellular
morphology, proliferation rate, and/or molecular aberrations characterize the underlying
heterogeneity within a given tumor-type of a distinct cell-of-origin.

Pancreatic cancers exemplify the aforementioned variables vividly. Pancreatic cancers
can arise from three different cells of the pancreas: Pancreatic Ductal Adenocarcinomas
(PDAC) stem from ductal cells or acinar cells, and Pancreatic Neuroendocrine Neoplasms
(PanNENs) are thought to originate from the endocrine cells of the pancreas. The specific
endocrine cell type of the pancreas from which PanNENs arise, however, has not yet been
discovered. Though the tumors are of pancreatic origin, the distinct molecular, morpho-
logical diversity and potentially even the different normal precursor to these tumors drive
different paths of progression. PDAC is the most aggressive tumor of the pancreas with
a 5-year survival rate of 7%, while PanNENs are rare tumors that have a general 5-year
survival rate of 54%. Time and time again, the overall good prognosis has mistakenly sym-
bolized PanNEN tumors to have an indolent nature. The heterogeneity within this tumor
type, which is defined by diverse histopathological features and genetic characteristics, can
be attributed to differences in differentiation stage and tumor grade. It can dramatically
decline the 5-year survival rate to <1%.

The pancreatic cancer cell-of-origin, particularly in the case of PanNEN, has been a
highly debated and hitherto unresolved issue in the field of Gastroenteropancreatic Neu-
roendocrine Tumors (GEP-NETs). The predominant factor at the core of this debate is the
two fundamentally different groups of PanNENs: the well-differentiated, low, intermediate
and high grade Pancreatic Neuroendocrine Tumors (PanNETs), and the poorly differenti-
ated highly aggressive tumors, Pancreatic Neuroendocrine Carcinomas (PanNECs). The
differences in genetics, morphology and grade collectively presume diverse cellular origins
and could potentially rationalize the differences in prognosis evident in PanNEN tumors.

Investigation of tumor heterogeneity, complemented with in-vitro analysis, is critical
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for the advancement in therapeutic approaches. As such, having representative in-vitro
models is an indispensable criterion to continue down this path. Two well-recognized in-
vitro models used widely among researchers in PanNEN studies are the BON1 and QGP1
cell lines. However, in-vitro models come with the caveat of misrepresenting the underlying
tumor heterogeneity. Hence, it becomes imperative to thoroughly characterize the tumor in-
vitro model to pursue a meaningful investigation of potential targets vulnerable to tumor
progression.

Here I present my accomplishment in pursuit of advancing the current knowledge of
various aspects involved in PanNEN tumorigenesis during my 4-year thesis project. I uti-
lize computational approaches to characterize and establish the multi-omic heterogeneity,
fundamentally distinguishing the well-differentiated low, intermediate, and high grade tu-
mors, PanNETs and the poorly differentiated highly aggressive tumors, PanNECs. I pro-
vide deep insight into divergent normal precursors that give rise to PanNEN subtypes and
underscore the genetic and epigenetic aberrations characterizing these subtypes. Finally,
I characterize the cell line models of PanNENs using multi-omics data as well as mathe-
matical modeling of signaling networks, laying the foundational work required to identify
novel therapeutic targets for PanNEN treatment. Collectively, my work has progressed the
principal knowledge of tumor heterogeneity present in PanNENs and commenced the cru-
cial steps vital to expand existing therapeutic approaches in accordance with the identified
heterogeneity.

“Always walk through life as if you have something new to learn, and you will.”

Vernon Howard
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Chapter 1

Introduction

Cancer is frequently described as a disease with one of the highest mortality rates in hu-
mans. Besides the most frequently occurring cancers such as lung, breast or colorectal
cancer, there is also a not insignificant number of so called "rare cancers". Even so, the
general population unintentionally disregards the rare cancers and subsumes them as in-
dolent in nature. The rare cancer types, which carry in general good prognosis, neverthe-
less, comprise a heterogeneous set of tumors with hidden aggressive nature. Pancreatic
Neuroendocrine Neoplasms (PanNENs) are among such rare tumors with an incidence of
approximately 0.5 in 100,000 cases, encompassing <3% of all pancreatic neoplasms (Yadav,
Sharma, and Zakalik, 2018). The mean age of diagnosis of PanNENs is 58 years, equally rep-
resented in both genders (Brooks, Shavelle, and Vavra-Musser, 2019). The rich complexity
of PanNEN tumors, directly influencing the prognosis and overall survival of patients, are
concealed within the histopathological, molecular and tumor cell-of-origin heterogeneity.

On the following pages, I will present the state-of-the-art knowledge in each of these
different categories that built the current model of the PanNEN heterogeneity, while accen-
tuating what is lacking or requires substantial improvement. I will begin by elaborating on
the histopathological diversity seen within PanNEN tumors and further characterize these
differences by associating the various levels of molecular heterogeneity observed in Pan-
NENs. Subsequently, as a major topic explored in my thesis, I will introduce what is known
in regard to tumor cell-of-origin of PanNENs and highlight what is still lacking pertain-
ing to the poorly differentiated subset of PanNEN tumors. Ultimately, precise therapeutic
intervention, built on the established heterogeneity, paves the future for treatment of Pan-
NENs. Along these lines, I will present the current therapeutic approaches for PanNEN
treatment and touch on the bona fide in-vitro models of PanNENs employed for advancing
the currently limited treatment options, while drawing attention to what needs to be further
investigated before utilizing them to study novel therapeutic strategies.



2 Chapter 1. Introduction

1.1 Histopathological heterogeneity in PanNENs

Histopathological differences of tissue composition and tumor behavior within PanNENs
were among the first characteristics employed for sub-classification of the tumors. Tumor
grade classification, as well as hormonal production status of tumors, profoundly domi-
nate the histopathological diversity, allowing us to discern certain aspects of the tumors
impacting the path to tumorigenesis.

1.1.1 Tumor grade classification

Tumor grade histological classification of PanNENs has endured a long road of re-
evaluation in the past two decades due to its rich complexity. The very first tumor classi-
fication came about in 1995, wherein neuron-specific markers such as synaptophysin were
used to establish the neuroendocrine nature of the tumor, while site, size, morphological
difference (well-differentiated vs. poorly differentiated), hormonal status, angioinvasion
and metastatic spread were further applied to determine sub-categories with prognostic
implications (Capella et al., 1995). This became the foundation for the future WHO clas-
sifications, with higher emphasis on the size of the tumor as well as the proliferation in-
dex determined either via the mitotic count or Ki67 index (DeLellis RA., Lloyd RV., Heitz
PU., 2004). Each of the successive classification schemes showed dramatic improvement.
Nevertheless, the lack of precise stratification in addition to vague grade terminology hin-
dered a clear prognostic assessment. To overcome these limitations, the 2010 WHO clas-
sification was introduced. PanNENs were now classified into three morphologically dis-
tinct subtypes: the well-differentiated Pancreatic Neuroendocrine Tumors (PanNETs), the
poorly differentiated Pancreatic Neuroendocrine Carcinomas (PanNECs) and mixed adeno-
neuroendocrine carcinomas (MANNECs) (Bosman et al., 2010). Based on Ki67 and mitotic
index, PanNETs were further divided into NETG1 and NETG2 and all PanNECs were G3
grade of small or large cell type (SCNEC and LCNEC, respectively). The WHO 2010 classifi-
cation was well predictive of prognosis and survival (McCall et al., 2013; Rindi et al., 2012).
In addition, the new classification underlined the incidence of metastasis, wherein 50% of
the PanNET tumors showed metastasis while close to 100% of PanNECs showed metasta-
sis of liver and/or lymph nodes (Basturk et al., 2014; Brooks, Shavelle, and Vavra-Musser,
2019). The grading scheme of 2010 substantially improved the classification system; how-
ever, it lacked the incorporation of subtle differences evident in regard to morphology as
well as tumor responsiveness to therapy.
The updated and current standard system of histological grading of PanNENs is the WHO
2017 classification. The new scheme refined the classification system of 2010, accommodat-
ing for the subtle details observed within each grading classes. The initial change in the 2017
scheme separated PanNENs with a Ki67 index >20% into NETG3 and NEC tumors based
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on various factors. The most significant difference was seen at the morphological level
wherein, G3 tumors harboring highly proliferative features, now termed NETG3, main-
tained morphological features similar to well-differentiated tumors (Basturk et al., 2015;
Milione et al., 2016) (Table 1.1.1). Furthermore, NETG3 maintained functional and genetic
features consistent with a PanNET tumors and distinct from PanNEC tumors (Basturk et al.,
2015; Jiao et al., 2011; Konukiewitz et al., 2017; Yachida et al., 2012). Most notably, NETG3
showed better prognosis than NEC and was also unambiguously responsive towards con-
ventional therapy often used for NETG1/G2 tumors (Basturk et al., 2015; Heetfeld et al.,
2015; Milione et al., 2016; Vélayoudom-Céphise et al., 2013). In addition to PanNEC classi-
fication changes, the Ki67 index that characterized a NETG1 tumor was modified to <3%.
The final adaptation to the grading system involved replacing MANNEC with MiNEN, or
mixed neuroendocrine and non-neuroendocrine neoplasm, to include the observation that
not all mixed components were of glandular origin and that the neuroendocrine component
can in fact be well-differentiated (La Rosa, Sessa, and Uccella, 2016). The major subclasses,
PanNET and PanNEC as asserted above, have clear morphological features distinguishing
one another. One can observe distinctive architectures defining the overall appearance of
the tissue within each subgroup that further add to their individual complexities. NETG1
and NETG2 maintain islet-like small cells with salt-and-pepper chromatin appearance, but
can also aggregate into solid, trabecular, glandular or tubulo-acinar patterns within the tu-
mor region (Fukushima, 2017) (Figure 1.1). These features of low grade PanNETs are also
often present in NETG3 tumors, while PanNEC tumors show a highly different morphol-
ogy (Tang et al., 2016; Basturk et al., 2014). SCNEC have small atypical neoplastic cells
with a high nucleus-to-cytoplasm ratio and are characterized by hyperchromatic nuclei and
nuclear molding. LCNEC, on the other hand, can have round to polygonal cells and their
nuclei have either vesicular chromatin or prominent nucleoli (Basturk et al., 2014) (Fig-
ure 1.1). Although cell morphology has demonstrated to be a strong means of classification,
it has remained significantly challenging to establish a consistent and accurate diagnosis
of NETG3 and NEC due to the presence of overlapping histopathological features. Pathol-
ogists have experimented on combining molecular and cell morphological features in ad-
dition to prior clinical knowledge, including the presence and strength of neuroendocrine
markers to eliminate this uncertainty (Tang et al., 2016). The accuracy of correct diagnosis
indeed increased significantly as indicated by the stark difference in prognosis (75 vs 11
months for well-differentiated PanNET and Poorly differentiated PanNEC, respectively);
nevertheless, the additional features improving the diagnostics are not recurring events
and therefore fail to differentiate 5% of ambiguous cases or lead to misclassification (Tang
et al., 2016). Taken together, the current grade classification system of PanNENs has dra-
matically improved to define the morphologically diverse tumor subgroups, yet fails to
consistently classify NETG3 and NECs, which is indispensable for accurate therapeutic and
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prognostic approaches. Further studies are prompted to characterize the molecular features
distinguishing the PanNET and PanNEC subcategories.

W
ell differentiated 

PanN
EN

Poorly differentiated 
PanN

EN
s 

NETG3 NETG2NETG1

SCNEC LCNEC

FIGURE 1.1: Histological diversity in PanNEN. Representative histological sections of well-
differentiated NETG1, NETG2 and NETG3 tumors (top panel) as well as poorly differentiated
PanNEC tumors (bottom panel). Small cell NEC (SCNEC) and large-cell NEC (LCNEC) are fur-
ther denoted in the images. Images are obtained from an in-house PanNEN cohort. Scale bar
represent 100 µm.

1.1.2 Functionality of PanNENs

The term “functionality” in the context of PanNEN tumors signifies their potential to ex-
hibit hormone associated symptoms. Consequently, PanNEN tumors can be phenotypi-
cally characterized as hormone producing functional PanNEN or non-functional PanNEN
that maintains largely asymptomatic behavior and often remains undetected until symp-
toms arise due to tumor mass (Halfdanarson et al., 2008).

Functional PanNETs

Functional PanNETs are extremely rare in the populations and can manifest as sporadic
tumors or as a result of a hereditary syndrome. They are often presented as NETG1 and
NETG2 tumors and never occur as PanNEC tumors. Insulinomas represent 30-45% of all
identified functional PanNETs and are often harboring solitary, benign small tumors with



1.1. Histopathological heterogeneity in PanNENs 5

WHO 2010 Classification

Tumor Grade Ki67
Mitotic Index:

High-Power Field (HPF)

PanNET
NETG1 <= 2% <2/10
NETG2 3-20% 2/20/10

PanNEC NEC >20% >20/10
WHO 2017 Classification

Tumor Grade Ki67
Mitotic Index:

High-Power Field (HPF)

PanNET
NETG1 <3% <2/10
NETG2 3-20% 2/20/10
NETG3 >20% >20/10

PanNEC NEC >20% >20/10

TABLE 1.1.1: WHO Classification of PanNENs. PanNEN tumor grade classification difference
between WHO 2010 and WHO 2017 system. The table is adapted from (Klöppel et al., 2017)

<10% malignancy rate (Halfdanarson et al., 2008; Crippa et al., 2012; Keutgen, Nilubol, and
Kebebew, 2016). The majority of the insulinomas are sporadic tumors, with the exception
of 10% of cases associated with hereditary Multiple endocrine Neoplasia type 1 (MEN1)
syndrome (Krampitz and Norton, 2013). Surgical intervention is often the curative care
for insulinoma with a success rate of 98%, frequently dependent on the grade of the tu-
mor at the time of presentation and on whether complete resection was achieved during
surgery (Tucker, Crotty, and Conlon, 2006). Glucagonomas constitute about 1/3 of all diag-
nosed functional PanNETs, and the remaining infrequent functional PanNETs include vaso
active peptide (VIP)-omas and somatostatinomas. Although comparatively rarer than in-
sulinomas, these functional PanNETs are often large (>5 cm) lesions exhibiting aggressive
malignant behavior in 60-80% of the cases and manifest when the disease has locally ad-
vanced and/or metastasized (Jensen et al., 2012; Frankton and Bloom, 1996). Similar to
insulinoma, MEN1 syndrome associated glucagonomas and somatostatinomas are also fre-
quent in these functional tumor types. Patients suffer largely from the obstruction caused
by excessive hormonal production. As such, the treatment approach therefore entails con-
trolling the symptoms associated with the excessive hormone production and, if possible,
resection of the tumor. The major treatment action against glucagonoma symptoms is pro-
viding a somatostatin analog (Metz and Jensen, 2008), while VIPoma and somatostatinoma
patients are treated with octreotide or lanreotide to improve the hormone associated symp-
toms (Jensen et al., 2012). Albeit the fact that functional PanNETs are considerably few
among the diagnosed cases of PanNENs and can be managed by regulating hormonal as-
sociated symptoms, it is vividly apparent that these tumors manifest, more often than not,
in a most aggressive and malignant manner.
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Non-functional PanNETs

Ninety percent of the diagnosed PanNENs are non-functional neoplasms (Brooks, Shavelle,
and Vavra-Musser, 2019; Halfdanarson et al., 2008; Krampitz and Norton, 2013). Granted
they are considered “non-functional”, the tumors can in fact be hormone producing, how-
ever, they do not exhibit any clinical symptoms associated with excessive production analo-
gous to functional PanNETs (Krampitz and Norton, 2013). These tumors are often detected
from the sheer tumor mass or complications that arise pertaining to the mass. Therefore, pa-
tients are frequently presented with a liver metastasis, or after their disease had advanced
regionally (Brooks, Shavelle, and Vavra-Musser, 2019; Franko et al., 2010; Halfdanarson
et al., 2008). Prognosis of non-functional PanNETs is significantly dependent on multiple
factors including age, the grade and stage of the tumor, localization as well as treatment
approach. In fact, tumor grade and localization significantly impinge on the possibility of
surgical intervention as advanced metastasized tumors that are higher in grade are usually
not resectable (Brooks, Shavelle, and Vavra-Musser, 2019; Franko et al., 2010; Halfdanar-
son et al., 2008). In such a case, median survival time dramatically decreases from 16 years
to <1 year (Brooks, Shavelle, and Vavra-Musser, 2019). Additionally, low and intermediate
grade PanNETs metastasize in only about 34% of the cases, while this proportion drastically
increases to 80% in the case of NETG3. In the case of PanNEC tumors, the tumors almost al-
ways occur as metastases (Basturk et al., 2014; Fang and Shi, 2019). Due to the vast majority
of PanNENs being non-functional tumors and exhibiting such a diverse prognostic nature,
significant efforts have been made to further understand the molecular characteristics un-
derscoring these heterogeneous attributes.

1.2 Molecular heterogeneity in PanNENs

Initial knowledge of the molecular characterization of PanNETs came from the data gath-
ered on hereditary syndromes linked to PanNENs. In the past decade, however, an upsurge
in multi-omics data furthered our understanding of the underlying genetic and epigenetic
heterogeneity promoting PanNEN tumorigenesis.

1.2.1 Germline mutations in PanNETs

The majority of the PanNEN tumors occurs sporadically, yet 10% can manifest due to a
hereditary syndrome associated with germline alterations.
MEN1 hereditary syndrome, also known as Wermer syndrome, is an autosomal dominantly
inherited disease and is characterized by microadenomas of parathyroid, pancreatic and
pituitary endocrine glands (Anlauf et al., 2006; Chandrasekharappa et al., 1997; Marx and
Simonds, 2005). While the majority of the MEN1 associated PanNETs are non-functional
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tumors, a considerable number of functional PanNETs also arise from this particular syn-
drome (Jensen et al., 2008). Although MEN1 syndrome causes lesions in multiple tissues of
endocrine origin, MEN1 associated PanNETs are often malignant metastases causing mor-
tality in more than 50% of these patients (Conemans et al., 2017; Dean et al., 2000; Goudet
et al., 2010). Alterations in the Multiple Endocrine Neoplasia type 1 (MEN1) gene is the
direct causative factor of MEN1 hereditary syndrome. The gene is located in the long arm
of chromosome 11 and codes for the 601 amino acid long nuclear protein Menin, which
is expressed in various endocrine tissues (Chandrasekharappa et al., 1997). Menin protein
interacts with a multitude of transcription factors in order to influence several signaling
pathways involved in proliferation, differentiation and survival (Agarwal et al., 1999; Jin et
al., 2003; Razmara, Monazzam, and Skogseid, 2018; Sowa et al., 2003; Sowa et al., 2004). In
addition, Menin interacts with chromatin remodeling complexes to further influence tran-
scriptional regulations (Huang et al., 2012; Hughes et al., 2004; Murai et al., 2011). MEN1
syndrome patients often carry mutations in the MEN1 locus and more than 80% of these
cases have loss of heterozygosity (LOH) of the chromosomal (11q13) region (Lemos and
Thakker, 2008; Perren et al., 2007). Interestingly, 30% of MEN1 patients have no germline
alteration in the MEN1 locus, nevertheless germline alterations of Cyclin Dependent Ki-
nase Inhibitor 1b CDKN1B), a downstream target of Menin, have been reported in MEN1
mutation-null cases (Belar et al., 2012; Georgitsi et al., 2007).
VHL disease is the second most common autosomal dominant hereditary syndrome, which
also manifests in PanNET tumors in more than 20% of the cases. Distant metastases are
exhibited in 10-20% of these cases (Blansfield et al., 2007; Yamasaki et al., 2006). VHL asso-
ciated PanNETs are exclusively non-functional, with 80% of the cases harboring germline
alteration in the Von Hippel-Lindau (VHL) gene (Blansfield et al., 2007; Hammel et al., 2000).
LOH of the VHL locus is also evident in VHL disease associated PanNETs (Lott et al., 2002).
The gene is localized to the short arm of chromosome 3 and codes for the 213 amino acid
long VHL protein (Latif et al., 1993). It has a critical role in the Hypoxia inducible factor
(HIF) pathway. Under normoxic condition, VHL is part of the VBC-Cul2 complex along
with Elongin B, Elongin C, Cullin-2 and Rbx1 proteins in order to ubiquitinate the HIF
transcription factor for its subsequent degradation (Kamura et al., 1999; Pause et al., 1997).
Loss of function of VHL prompts the accumulation of HIF, resulting in the transcription of
several important genes, including angiogenesis associated Vascular Endothelial Growth
Factor (VEGF), Platelet-derived Growth Factor (PDGF) and Transforming Growth Factor
Alpha (TGF-α) (Kaelin and Maher, 1998; Maxwell et al., 1999). Interestingly, VHL gene mu-
tational events never appear in sporadic PanNETs, despite their involvement in hereditary
diseases (Schmitt et al., 2009; Moore et al., 2001; Scarpa et al., 2017).
PanNETs associated with Neurofibromatosis (NF-1) hereditary disease are uncommon and
occur in <10% of the cases (Fujisawa et al., 2002). In addition, functional or nonfunctional
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PanNETs arising from Tuberous Sclerosis Complex 2 (TSC2) associated syndrome are only
found in rare occasions (≈1%) (Francalanci et al., 2003; Kim, Kerr, and Morehouse, 1995;
Merritt et al., 2006; Schwarzkopf and Pfisterer, 1994).
Recent whole genome analysis of 100 tumors revealed that non-syndrome associated rare
germline events act as clear drivers of tumorigenesis in PanNETs (Scarpa et al., 2017). Dele-
terious mutation in the DNA-repair gene MutY DNA Gycosylase (MUTYH), leading to a
mutational signature harboring G:C>T:A transversions, Breast Cancer 2 (BRCA2) mutation,
resulting in the BRCA deficiency mutational signature, as well as alterations in CDKN1B
and Checkpoint Kinase 2 (CHEK2) were among the detected germline events (Al-Tassan et
al., 2002; Shinmura et al., 2000; Scarpa et al., 2017).
Undoubtedly, germline alterations as single events or in concert with an associated heredi-
tary syndrome create an additional layer of genetic heterogeneity and can have a significant
impact on multiple cellular processes in order to promote tumor progression.

1.2.2 Somatic mutations in PanNETs

Somatic mutational heterogeneity in PanNETs is extensive in that putative recurrent genes
are quite scarce and rare variants are identified in many protein coding genes.
The most frequent alterations in the mutational landscape of non-functional PanNETs, iden-
tified as somatic driver alterations, are missense variants and large base-pair deletions de-
tected within the MEN1 gene (37%) (Corbo et al., 2010; Jiao et al., 2011; Scarpa et al., 2017).
The alterations identified spanned the entire Menin protein domain and no hotspot regions
were evident (Corbo et al., 2010; Scarpa et al., 2017). Truncating mutations within MEN1
translated to the lack of nuclear staining within these tumors, while remaining alterations
display a strong presence of Menin protein in the cytoplasm (Corbo et al., 2010). MEN1 al-
terations were significantly associated with alternative lengthening of telomeres (ALT) pos-
itivity, granted it is a transcription factor of the Telomerase Reverse Transcriptase (TERT)
gene, and thereby influences the telomerase machinery (Lin and Elledge, 2003; Scarpa et al.,
2017). Consequently, the role of deregulation in chromatin remodeling processes was spec-
ulated. Additional recurring PanNEN mutations detected were also chromatin remodeling
associated genes: alterations in Death Domain-Associated Protein 6 (DAXX) and Alpha-
Thalassemia/Mental Retardation X-linked (ATRX) (22% and 11%, respectively) taking place
in a mutually exclusive manner (Jiao et al., 2011; Scarpa et al., 2017). The majority of the
DAXX mutations and a subset of ATRX mutations resulted in loss of its protein expression
in their respective tumors (Pea et al., 2018). DAXX encodes a multifunctional protein that is
primarily found in the nucleus as part of the promyelocytic leukemia protein nuclear bodies
(PML-NBs). An important role of this complex involves enhancing Fas-mediated apoptosis
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by regulating transcription of genes associated with the process (Torii et al., 1999). Never-
theless, in the context of chromatin remodeling processes, PML bound DAXX in coopera-
tion with ATRX modulates chromatin remodeling activity by depositing the H3.3 histone
variant in heterochromatin region such as centromeres and telomeres (Drané et al., 2010;
Goldberg et al., 2010; Wong et al., 2010). As such, ALT has been reported in the majority of
the cases carrying an ATRX or DAXX mutation, while emphasizing its significant associa-
tion with metastasis of low grade PanNETs (Pea et al., 2018; Scarpa et al., 2017). In addition,
mutations in the DAXX gene alone were significantly associated with metastasis among
low grade PanNETs (Cives et al., 2019; Scarpa et al., 2017). MEN1, DAXX, ATRX mutations
together constitute the most frequently mutated genes. In fact, their mutational status is
thus far the sole genetic marker associated with prognosis of PanNET tumors; cases harbor-
ing alterations in any of the three genes or in combination showed an overall reduction in
disease-free survival in low grade PanNETs compared to the wild type group (Chan et al.,
2018; Marinoni et al., 2014; Yuan et al., 2014).
Rare mutational variants have also been identified in other chromatin remodeling associ-
ated genes such as AT-Rich Interactive Domain-containing protein 1A (ARID1A), SET Do-
main containing 2 (SETD2), Chromodomain Helicase DNA binding protein 8 (CHD8) and
DNA (cytosine-5)-Methyltransferase 1 (DNMT1), as well as in pro-apoptotic gene Cytoplas-
mic FMR1 Interacting Protein 2 (CYFIP2) (Vandamme et al., 2019; Roy et al., 2018). A recent
study that specifically investigated well-differentiated distant metastasis revealed that ma-
jor molecular features characterizing the distant metastases included loss of DAXX, ATRX,
ARID1A, p16 proteins and/or H3K36me3 mark deficiency due to disruption of SETD2 func-
tion. These aberrations significantly decreased disease-free survival time; 98% of the patient
cohort void of these alterations had a disease-free survival of 5 years, while it reduced to
39% in cohorts harboring at least one of these alterations (Roy et al., 2018).
Genes involved in the Mammalian Target of Rapamycin (mTOR)/Phosphoinositide-3-
Kinases (PI3K)/Protein Kinase B(AKT) signaling axis are also mutated in 14% of Pan-
NETs (Jiao et al., 2011; Scarpa et al., 2017). Commonly altered genes among these were
Phosphatase and Tensin Homolog (PTEN), TSC2, Phosphatidylinositol-4,5-bisphosphate 3-
Kinase Catalytic Subunit Alpha (PIK3CA) and DEP Domain Containing 5, GATOR1 Sub-
complex Subunit (DEPDC5). Although mutational occurrence was low, TSC2 and PTEN ex-
pressions were significantly downregulated in the majority of PanNET tumors (Missiaglia
et al., 2010); low cytoplasmic expression of TSC2 and PTEN protein expression showed sig-
nificant correlation with aggressiveness of the tumor (based on WHO 2004 classification
and metastasis status). In addition, their expression status correlated with shorter disease-
free survival (Missiaglia et al., 2010).
Gene fusion events have also been detected as potential genetic aberrations driving the
tumorigenesis in PanNETs. Recent studies identified novel TSC1-TMEM71 fusions which



10 Chapter 1. Introduction

disrupt the mTOR regulatory activity of TSC Complex Subunit 1 (TSC1) and thereby hyper-
activate the mTOR signaling. Furthermore, two different fusions with BEN Domain Con-
taining 2 (BEND2) gene (CHD7-BEND2 and ESWR1-BEND2) transactivated BEND2 and
promoted oncogenic activity (Scarpa et al., 2017; Williamson et al., 2019). Interestingly, a
single TSC1-CHD7 fusion was specifically identified in NETG3 tumors.
In summary, the mutational landscape of PanNETs evidently lacks a significant number of
recurring genes and highlights strong inter-patient heterogeneity, yet clear convergence of
alterations to a few molecular pathways is convincingly apparent in PanNETs.

The PanNEC mutational spectrum is not as widely explored as with PanNETs, potentially
owing to the fact that the vast majority of PanNENs are PanNETs (92.5%) and only about
10% are PanNECs. In contrast to PanNETs, PanNECs are characterized by recurring mu-
tations in Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene (KRAS) (48.7%), Tumor Protein 53
(TP53) (66%) and Retinoblastoma (RB1) genes (16%) (Hijioka et al., 2017; Hijioka et al.,
2015; Konukiewitz et al., 2018; Yachida et al., 2012). Mutations in SMAD Family Mem-
ber 4 (SMAD4) gene, although not as frequent, were also identified in PanNECs (Bartsch
et al., 1999). RB1 mutations in PanNECs are often seen in combination with its loss of ex-
pression (50-70%), and PanNECs void of RB1 mutations showed a loss of expression of p16
protein, suggesting the convergence of the alterations in disrupting cell cycle control (Hi-
jioka et al., 2017; Yachida et al., 2012). Loss of p16 expression was seen in 75% of distant
metastases and further associated with poor survival among patients harboring the alter-
ations (Roy et al., 2018). TP53 alterations also resulted in abnormal immunohistochemistry
(IHC) staining, highlighting the direct effect of TP53 mutation on protein expression. Non-
recurring mutations in various genes were also associated with PanNEC, and they seldom
overlapped with NETG3 tumors. However, comparison of recurrently and non-recurrently
altered genes in regard to biological processes revealed, both shared and exclusively altered
signaling axes between the high grade tumors (Konukiewitz et al., 2018); gene mutations
converging in cell cycle/DNA repair/transcriptional control, epigenetic regulators, ErbB-,
WNT- and mitogen-activated protein kinase (MAPK) signaling pathways were shared be-
tween NETG3 and NEC tumors. On the other hand, rare alterations in PI3K/AKT path-
way were present in PanNEC tumors while the mTOR pathway was consistently altered
in NETG3 when compared to NEC tumors.(Konukiewitz et al., 2018). Yet again, we are
confronted by the clear distinction between PanNETs and PanNECs: The histologically dif-
ferent tumors also overtly differ at the genetic level.

1.2.3 Copy Number Aberrations (CNA) in PanNENs

Analogous to mutational profiling, initial copy number changes observed in PanNENs be-
came evident through the analysis of hereditary syndromes, wherein all the altered tumor
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suppressors were accompanied by the LOH feature (Perren et al., 2007; Lemos and Thakker,
2008; Lott et al., 2002). Subsequent genetic analysis expanded this list to determine other
loci- and/or, region-specific copy number alterations that are associated with sporadic func-
tional and non-functional PanNETs.
The vast majority of PanNETs being sporadic non-functional tumors essentially lead to the
identification of unique Copy Number Aberrations (CNA) of this subset of tumors. Stud-
ies on non-functional PanNETs revealed that >68% of non-functional PanNETs harbored
LOH of 11q in combination with 6q; additional frequent losses in chromosomes 1,3, and
22 were also evident in sporadic non-functional PanNETs (Nagano et al., 2007; Rigaud et
al., 2001). With respect to gains, chromosomes 5,7,12,14,17 and 20 were frequently aber-
rated in PanNETs (Nagano et al., 2007). Remarkably, the aforementioned aberrations were
significantly associated with one another, suggesting that they are co-occurring events in
PanNETs. The current advancement in next-generation sequencing reaffirmed this theory
and demonstrated that CNA identified as localized events were in fact part of global wide
changes present in PanNET tumors (Hong et al., 2020; Lawrence et al., 2018; Pea et al., 2018;
Scarpa et al., 2017). CNA heterogeneity classifying PanNET tumors can therefore be col-
lapsed into four distinct signatures based on chromosome arm length CNA patterns : I) re-
curring copy number losses of specific chromosomes, II) limited copy number events with
mostly loss of chromosome 11, III) polyploidy tumors and IV) aneuploidy tumors (Scarpa
et al., 2017). In addition, recurring mutations were also associated with the CNA signa-
tures; the first two groups were further characterized by MEN1 mutations in combination
with loss of chromosome 11, resulting in a bi-allelic inactivation of this tumor suppressor
gene (Lawrence et al., 2018). The aneuploid tumors in non-functional PanNETs also show
frequent DAXX/ATRX loss of expression along with an alternative telomerase lengthening
phenotype (Pea et al., 2018). An alternative succinct stratification of the above CNA pat-
terns was achieved in recent work while accommodating for aberrations seen in functional
PanNETs (Hong et al., 2020). NF-PanNET copy number signatures were redefined as I)
CNA deletion groups with high LOH of various tumor suppressor genes, II) CNA ampli-
fication groups and III) CNA neutral groups. Identified Insulinomas carried CNA neutral
subtype and also CNA amplification groups enriched for Ying Yang 1 (YY1) T372R hotspot
mutations (Cao et al., 2013; Hong et al., 2020).
Evidently, PanNET copy number signatures are very well established. In contrast, region-
specific and/or global changes in chromosomes have yet to be investigated in the context
of PanNECs.
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1.2.4 Epigenetic changes in PanNENs

Epigenetic analyses performed on PanNEN tumors were primarily focused on DNA methy-
lation status on few candidate genes. Therefore, a clear global signature identifying Pan-
NEN heterogeneity at the epigenetic level is lacking. In a comparatively small study, a
33 gene-based classification of well-differentiated low/intermediate grade PanNET iden-
tified three clusters: cluster 1 comprising tumors highly hypomethylated and resembling
normal pancreas, cluster 2 harboring tumors with recurring hypermethylation of Caspase-
8 (CASP8), Glutathione S-transferase P (GSTP1) and Ras association domain family 1
(RASSF1), and cluster 3 consisting of higher frequency of hypermethylation in a subset of
genes compared to cluster 1 and 2 (Stefanoli et al., 2014). Based on candidate chromosomal
region analysis, cluster 3 also harbored high CNA and tumors were associated with poor
prognosis.
Some of the initial studies further evaluated gene promoter hypermethylation in candidate
genes that play critical roles in cancer formation and progression. The most recurrently hy-
permethylated promoters included those of RASSF1A(75%), Cyclin Dependent Kinase In-
hibitor 2A (CDKN2A)(40%), O-6-Methylguanine-DNA Methyltransferase (O-MGMT)(40%),
Retinoic Acid Receptor Beta (RAR-β)(25%) and MutL Homolog 1 (hMLH1) (23%) (Arnold
et al., 2007; Dammann et al., 2003; House et al., 2003; Liu et al., 2005). Hypermethylation
in multiple genes among the aforementioned genes associated significantly with reduced
disease-free survival among PanNET patients (House et al., 2003). The most recurring hy-
permethylation of RASSF1A located in 3p21.3 locus, is often found accompanying an LOH,
resulting in downregulation of its protein expression. Hypermethylation of RASSF1A was,
in fact, significantly associated with metastasis (Liu et al., 2005). This multi-functional pro-
tein has been extensively studied for its involvement as a tumor suppressor in regulating
apoptosis via direct interaction with activated KRAS and by indirectly regulating p53 stabil-
ity via MDM2 (Dubois et al., 2019). Similar to RASSF1A, TIMP Metallopeptidase Inhibitor 3
(TIMP-3) is an additional tumor suppressor gene that is frequently hypermethylated (62%).
Hypermethylation and subsequent loss of its expression is significantly associated with
metastasis in PanNETs. Additional tumor suppressor genes were also identified in lower
frequency to be involved in PanNENs via promoter hypermethylation, suggesting a unique
mechanism promoting tumorigenesis. Methylation change involving the α-internexin
(INA) promoter is one of the best characterized clinicopathological aberrations, wherein hy-
permethylation and reduced expression was significantly associated with advanced stage,
metastasis, recurrence and shorter overall survival among PanNET patients (Liu et al.,
2014). In addition to these recurring individual methylation changes, few publications have
also explored how genomic alterations can work complementary to or in combination with
the frequently observed MEN1 mutations. Pleckstrin Homology Like Domain Family A
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Member 3 (PHLDA3) hypermethylation and LOH were often seen among patients harbor-
ing MEN1 mutations (Ohki et al., 2014). Furthermore, in the absence of Menin, changes
in Histone 3 Lysine 27 tri-methylation (H3K27me3) at the promoters of Menin target genes
and subsequent loss of expression of a key target gene, IGF2BP2, were observed in pancre-
atic islet MEN1 null cells (Lin et al., 2015). Eventhough, candidate aberrations recurring or
otherwise have been identified in PanNEN, a clear global signature identifying PanNEN
heterogeneity at the epigenetic level is indeed lacking.

Various studies have highlighted the stark difference in methylation status within multi-
ple genes between histopathological subgroups (Dejeux et al., 2009; How-Kit et al., 2015).
Sporadic insulinomas often carry promoter hypermethylation and subsequent loss of ex-
pression in MLH1 gene, which has been significantly attributed to malignancy in these
functional PanNETs (Mei et al., 2009). Variation in methylation status was also attributed
to grades, whereby gene methylation was more prominent among NETG1 compared to
NETG3 well-differentiated PanNETs (How-Kit et al., 2015). Specific to NETG3 tumors were
hypermethylation and subsequent lack of protein expression of Homeobox Only Protein
homeobox (HOPX) gene, emphasizing its potential as a prognostic biomarker for NETG3
tumors (Ushiku et al., 2016). Taken together, epigenetic changes, particularly DNA methyla-
tion aberrations, further affirm the histopathological heterogeneity within PanNEN tumors.

1.3 Tumor cell-of-origin heterogeneity in PanNENs

Cell-of-origin is a difficult and seldom investigated area in PanNENs. These tumors are
presumed to have an origin from the islet of Langerhans, a cluster of 4 major cell types,
aggregated into small islands and dispersed throughout the pancreas. The organogen-
esis and subsequent differentiation and establishment of different pancreatic cell types
have been extensively studied in mouse models (Cano et al., 2014). The final adult pan-
creas encompasses the exocrine compartment harboring the ductal cells as well as the aci-
nar cells (30% and 70%, respectively), and the endocrine compartment enclosing approxi-
mately 70% insulin-producing beta (β) cells, 20% glucagon-producing alpha (α) cells, <10%
somatostatin-containing delta (δ) cells and <5% the pancreatic polypeptide producing (PP)
cells (Bouwens and Pipeleers, 1998; Stefan et al., 1982; Rahier, Goebbels, and Henquin,
1983; Clark et al., 1988). These islet cells are organized along the blood vessels and main-
tain unique paracrine interactions between one another (Cabrera et al., 2006). Therefore,
PanNEN can potentially arise from any or a combination of these cell types.
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1.3.1 Current understanding of tumor cell-of-origin in PanNENs

The first publications exploring tumor cell-of-origin appeared only within the time frame
of the past two years, shedding light on potential normal cell identity of well-differentiated
PanNETs. Chan et. al. performed a study of PanNET G1 and G2 samples, investigating the
association of gene expression in samples carrying classical PanNET mutations and gene
expression profiles of normal pancreatic cell types. Within the cohort, 58% of the cases har-
bored MEN1, DAXX, and/or ATRX (A-D-M) mutations (Chan et al., 2018). Unsupervised
hierarchical clustering of 3000 most variable genes expressed identified two distinct sub-
types and showed enrichment for A-D-M alterations in one subtype. The A-D-M signature
exhibited high similarity to the normal α-cell signature, suggesting a singular cell-of-origin
for these tumors. The A-D-M expression signature included upregulation of Hepatocyte
Nuclear Factor 1 Homeobox A (HNF1A) and was enriched for genes with HNF1A transcrip-
tion factor motifs. They also showed hypermethylation and downregulation of Pancreatic
and Duodenal Homeobox 1 (PDX1). Both of these features are consistent with an α-cell ori-
gin, suggesting a subgroup of well-differentiated PanNETs harboring an A-D-M mutational
signature arising from an α-cell of the pancreas.
Stratification of PanNETs using epigenetic changes in combination with expression has been
undertaken as a means to establish biological classification pertaining to normal cell lin-
eages and to further guide treatment. The approach from Cejas et al. is in fact a break-
through work, highly contributing to the cell-of-origin study in PanNETs while at the same
time readily applicable in clinical settings. However, gene expression profiles can change
depending on tumor condition, and therefore lack the stability to decipher the true normal
cell type features. In light of this, epigenetic features have been explored to further validate
and advance the cell-of-origin identity.
Utilizing Histone 3 Lysine 27 acetylation (H3K27ac) super enhancer mark, PanNETs can be
sub-divided into 3 main groups (Cejas et al., 2019). Group A and B PanNET-restricted en-
hancer marks enriched for areas of open chromatin in normal α- and β-cells, respectively. In
addition, significantly higher H3K27ac marks were present in α-specific gene loci, Arista-
less Related Homeobox (ARX) and Iroquois Homeobox 2 (IRX2) within group A compared
to group B, while higher H3K27ac marks specific to group B was observed in β-specific
gene loci, PDX1. Expression profiling, in comparison to normal α- and β-islet cells showed
significant enrichment of α- and β-specific transcripts in group A and group B, respectively,
establishing that group A and group B resemble mature α- and β-cells at multiple molec-
ular levels and could very well be the origin of each subtype. IHC further corroborated
these finding and therefore, the groups were henceforth identified as ARX+ and PDX1+
subtypes. As for group C, H3K27ac marks at these established loci of Group A and B varied
and expression profiling and IHC showed coexpression of PDX1 and ARX protein. There-
fore, Group C, thereafter known as the double positive (DP) group, could have either dual
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lineage or a lineage indicative of α- β- progenitor cells1. Further, mutational, clinical and
biomarker characterization of each subtypes revealed that ARX+ and DN cases showed
significantly higher ALT, compared to PDX1+ and DP+ tumors, and relapse was signifi-
cantly associated with ARX+ALT+ tumors. A methylation-based approach has also been
employed and came to a similar conclusion as Cejas et al (Domenico et al., 2020).
Utilizing differentially methylated sites of α- and β-cells as references, Domenico et. al.
identified three groups of PanNETs: α-like resembling ARX+ subtype, β-like similar to
PDX1+ subtype and intermediate-like tumors representing DP subtype. Based on their
analysis, disease-free survival was strongly reduced in the intermediate-like subgroup, how-
ever, α-like tumors with loss of DAXX or ATRX had significantly shorter survival compared
to patients with β-like or intermediate-like tumors. Undoubtedly, both publications arrived
at the same conclusion that PanNETs indeed have an endocrine cell of origin and that they
could originate from an α-, β- or a progenitor of both lineages.

It is immediately apparent that each of these studies lack the classification of PanNEC and
NETG3 tumors with respect to tumor cell-of-origin. In fact, studies analyzing the normal
cell identity of NETG3 and PanNEC tumors boil down to one publication, where the au-
thors claim that KRAS-mutant NEC tumors are of ductal lineage due to the expression of
MUC1 and carcinoembryonic antigen (CEA) (Konukiewitz et al., 2018). Intriguingly, this
statement sets in motion a bold new theory: PanNEN tumors, specifically the poorly differ-
entiated PanNECs, could have an origin beyond the known endocrine lineage.
This theory, however, comes with its own controversies since tumors originating from the
exocrine lineage are considered to be pancreatic adenocarcinomas (PDAC). PDACs are char-
acterized by ductal glandular morphology and therefore conventionally recognized to have
ductal cell-of-origin. Interestingly, these tumors are characterized by highly frequent KRAS
and TP53 mutations comparable to PanNEC tumors. Recent evidence from mouse model
studies, however, suggests that PDACs can in fact be derived from both ductal and acinar
cells depending on the type of genetic aberration, the precursor lesions and the timing of the
event in the precursor lesions. Pancreatic Intraepithelial Neoplasms (PanINs) are precursor
lesions derived from acinar cells, while aberrations in ductal cells often form Intraductal
Papillary Mucinous Neoplasms (IPMNs) (De La O et al., 2008; Habbe et al., 2008). Embry-
onic acinar cells or those having a progenitor-like phenotype are more susceptible to KRAS
mutation and readily form PDACs via PanIN lesions while ductal cells are seemingly re-
sistant to KRAS mutation and require additional aberrations such as TP53 to induce PDAC
progression from IPMNs (Guerra et al., 2007; Kopp et al., 2012; Ray et al., 2011). Mouse

1IHC analysis also showed occurrence of double negative (DN) tumors that the authors did not characterize
with respect to normal-cell identity or recognize potential similarity to any of the groups
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models harboring KRAS G12V mutations in targeted precursors cells of acinar lineage read-
ily developed PanINs and progressed to PDAC, further demonstrating acinar cells as an-
other cell-of-origin of PDACs (Guerra et al., 2007). Interestingly, adult acinar cells can also
develop PDAC tumors by first undergoing acinar-to-ductal metaplasia (ADM) to revert the
adult cells to a more progenitor-like cells, thereby sensitizing the cells to KRAS mutations
and subsequent PDAC formation (Liou et al., 2013; Kopp et al., 2012).
SRY-BOX Transcription Factor 9 (SOX9) protein expression induced by SMARCA4 tran-
scription activator is at the forefront of this transition of acinar cells to ductal-like cells
(Kopp et al., 2012; Tsuda et al., 2018) (Figure 1.2). SOX9 is normally expressed in ductal
cells, while adult acinar cells do not show the presence of SOX9 (Shroff et al., 2014). Para-
doxically, SOX9 expression in KRAS mutation-induced ductal cells resulted in substantial
reductions of IPMNs formation (Von Figura et al., 2014; Roy et al., 2015). Furthermore, the
progenitor niche within the pancreatic ductal epithelium, under KRAS mutations, and in
conjunction with additional aberrations can also drive PDAC precursor lesion formation,
adding yet another layer of possible cell-of-origin of PDACs (Yamaguchi et al., 2016).
Recently, methylation analysis in combination with RNA sequencing (RNAseq) expression
profiling identified two subgroups of PDACs, Methylationlow/IFNsign(Interferon signature)high

and Methylationhigh/IFNsignlow harboring lineage specific traits of acinar and ductal cells,
respectively, further corroborating the aforementioned studies that PDAC in fact have two
or more distinct cell-of-origin (Espinet et al., 2020).

Ductal
cells

centeroacinar
cells

Multipotent 
progenitor cells

Ductal-like 
cells 

PDAC tumors
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KRAS/TP53 mut 
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FIGURE 1.2: Progression model of PDAC formation from acinar cell. Acinar cells upregulate
SOX9 to transition towards a ductal state, thereby, sensitizing them for KRAS mutation. Subse-
quent aberrations in addition to KRAS mutation, including TP53 mutations are then required to
form the PDAC tumor. Adapted from (Kopp et al., 2012)



1.4. Therapy and PanNEN tumors 17

1.4 Therapy and PanNEN tumors

1.4.1 Current therapeutic approaches for PanNEN tumors

The first line of medical intervention for PanNENs for a given patient is highly dependent
on the extent of the tumor progression and hinges on multiple criteria. Patients harboring
localized well-differentiated tumors undergo surgery and are reported to have a median
survival of 16 years, which dramatically declines to <1 year if the tumor is metastatic and
of high grade without a possibility of surgical intervention (Brooks, Shavelle, and Vavra-
Musser, 2019). If the tumor has reached the stage of widespread liver metastasis, and there-
fore cannot be surgically removed, the patient receives radio/chemo-based systemic ther-
apy, which of course carries in itself many side effects (Kulke et al., 2011; Metz and Jensen,
2008). Specifically, the first line of chemotherapy for PanNECs involves a combination of
Cisplatin and Etoposide, which have shown marginal anti-tumor activity with major side
effects including myelosuppression and gastrointestinal toxicities (Iwasa et al., 2010). The
overall response rate of this combination is only 14% with a median progression-free sur-
vival of 1.8 months and median overall survival of 5.8 months. In terms of chemotherapy
for PanNETs, the patient is given a combination of 5-Flurouracil, with or without Doxoru-
bicin (Pavel et al., 2012). Similar to the poorly differentiated metastasis treatment response,
median response is only 6-20 month and for cases with extensive liver involvement, the
progression-free survival was further reduced (Kouvaraki et al., 2004). In spite of these
treatment interventions, many patients remain unresponsive and require additional novel
approaches.
Aggressive and invasive treatments are currently being replaced by targeted therapy ap-
proaches in many cancer entities. Limited targeted therapies are in fact available and ad-
ministered to PanNEN patients on the identification of adequate targets. Yet, the current
standing of available targeted therapy in general for PanNEN treatment requires substan-
tial improvement. Sunitinib, a multi-tyrosine kinase receptor inhibitor, was one of the first
FDA approved targeted therapy drugs in treating PanNENs. Upregulation of these recep-
tors and its potential towards invasive nature of malignant PanNENs has been established
by multiple studies (Casanovas et al., 2005; Fjällskog et al., 2003; Hansel et al., 2003). The
second major targeted therapy that is much more prominent in the clinic is Everolimus,
which is utilized to inhibit the aberrant mTOR pathway (Kulke et al., 2011; Metz and Jensen,
2008). Deregulation of the pathway has been identified at the genetic and expression level
in PanNENs (Jiao et al., 2011; Missiaglia et al., 2010). Multiple clinical trials have established
the overall benefit of Everolimus in treating low/intermediate grade tumors that were un-
resectable, metastasized or were unresponsive to other therapies (Pavel et al., 2011; Yao et
al., 2010; Yao et al., 2008; Yao et al., 2011). The treatment indeed increased progression-free
survival, resulting in stabilization of the disease with reduced proliferation. Nevertheless,
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resistance and relapse were clearly evident in patients and the established therapies have
yet to increase the overall survival or result in complete remission, highlighting the impor-
tance of advancing the currently limited treatment options.

1.4.2 In-vtiro Models for the identification of novel therapeutic approaches for
PanNEN tumors

In clinical translational research, many of the insights from tumor cohorts are advanced
further in in-vitro studies to determine potential targetable anomalies and to identify how
they affect tumor progression. It is imperative that we envision this line of approach in
PanNENs due to the clear lack of targeted therapy. Although very limited, two in-vitro cell
line models, BON1 and QGP1, specific for PanNEN tumors have been established to do
so. BON1 is a cell line derived from a lymph node metastasis of a PanNET patient with
an initial doubling time of 13 days, which has shown a drastic reduction to 2.5 to 1.5 days
after years in culture (Evers et al., 1991; Evers et al., 1994; Parekh et al., 1994; Benten et
al., 2018). BON1, being not a clonal cell line, displays different morphological cell types,
wherein, there are large, rounded cells as well as small cells with dendrite-like extensions,
each histological feature being similar to the original tumor (Parekh et al., 1994). The cell
line harbors somatostatin and gastrin receptors and also stains for many neuroendocrine
markers including serotonin, pancreastatin, bombesin, synaptophysin and Chromogranin
A (CgA), further affirming their neuroendocrine origin (Parekh et al., 1994; Hofving et al.,
2018). BON1 cells also produce Transforming Growth Factor Beta (TGF-β) 1-3 and Fibrob-
last Growth Factor (FGF), which can impact the production of serotonin in an autocrine
manner (Daniel Beauchamp and Coffey, 1991; Townsend, Ishizuka, and Thompson, 1993).
QGP1, with a doubling time of 1.5 days, was generated from a primary PanNEC tumor ex-
pressing CarcinoEmbryonic Antigen (CEA) and somatostatin (Drewinko et al., 1976; Kuroki
et al., 1984; Benten et al., 2018; Iguchi, Hayashi, and Kono, 1990). However, recent work re-
ported the absence of somatostatin receptor in QGP1, further questioning the integrity of
the current line that has undergone more than 20 decades of in-vitro culturing. QGP1 does
not express CgA but shows the presence of synaptophysin neuroendocrine marker (Benten
et al., 2018). In spite of the questionable features, BON1 and QGP1 have a high prolifer-
ative index (80.6%+/- 3.3% and 82.6% +/- 1.0%, respectively), suggesting they could be
representative of NETG3 and NEC tumors (Benten et al., 2018). However, one needs to take
precaution when utilizing them as models to study PanNENs as their genetic representation
has been widely debated in the field.

Genetic representation of cell line models

Over the years, the molecular representation of cell lines to PanNEN tumors have come un-
der serious scrutiny based on two publications that performed exome sequencing of these
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cell lines. Mutational profiling in fact showed BON1 and QGP1 are void of mutations in
recurrently altered genes of PanNET tumors such as MEN1, DAXX, and ATRX (Hofving
et al., 2018; Boora et al., 2015; Vandamme et al., 2015). Nevertheless, BON1 and QGP1 both
harbor alterations pertaining to NEC tumors including alterations in TP53 present in both
cell lines and KRAS as well as Neuroblastoma RAS Viral Oncogene Homolog (NRAS) muta-
tions in QGP1 and BON1, respectively. Mutations in mTOR gene combined with LOH have
been identified in QGP1, suggesting potential deregulation of the mTOR pathway in this
particular cell line (Hofving et al., 2018). Additional alterations identified included genes
associated with chromatin remodeling and DNA damage, which are pathways known to be
altered in PanNETs. However, from a sequencing point of view, the alterations identified in
these cell lines need to be taken with a grain of salt; in fact, re-sequencing of the key vari-
ants in each batch must be considered before performing any experiments as many of the
variants reported as “mutations”in aforementioned studies were benign Single Nucelotide
Polymorphisms (SNPs).

CNA analysis across multiple studies, however, were in agreement that BON1 and QGP1
harbor triploid and tetraploid genomes, respectively (Hofving et al., 2018; Lopez et al.,
2010; Vandamme et al., 2015). The specific copy number changes varied slightly depend-
ing on how sensitive the methodology was in each of the studies. BON1 showed whole
chromosomal gains (copy of 3) in chromosomes 2,5,7,10,12 and regional amplifications of
chromosomes (>3 copies) 5,10,14,16, and 20, while long stretches of LOH were present in
chromosomes 1,3,4,6,11,17,18,22 and X (Hofving et al., 2018; Vandamme et al., 2015). The
region harboring CDKN2A/B locus in chromosome 9 was completely lost in BON1 (Lopez
et al., 2010; Hofving et al., 2018; Vandamme et al., 2015). With respect to QGP1, regional
amplifications were evident in almost all chromosomes, while LOH of nearly the entire
chromosome was present in chromosomes 7,8,9,13,17,21,22 and X. CNA of BON1 are con-
sistent with copy number changes identified in PanNET tumors, further affirming integrity
of BON1 as a representative model for PanNET tumor studies (Scarpa et al., 2017; Lawrence
et al., 2018). Since QGP1 is a PanNEC derived cell line and studies have yet to identify copy
number aberrations specific to PanNECs, we lack the knowledge to establish QGP1 as a
PanNEC representative model from the copy number changes.

Signaling networks in cell line models

Many of the approved drugs available for targeted therapy are directed towards the three
main signaling networks significantly altered in cancer: MAPK and mTOR/PI3K signal-
ing pathways. Various studies in multiple cancer entities have also shown that all three
signaling axes are intertwined with one another. As such, both BON1 and QGP1 have
been analyzed to determine how targeting some of the proteins involved would impact
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their viability. This has been heavily investigated in the context of Everolimus treatment to
determine how the drug affects, both directly and indirectly, the functions of these signal-
ing pathways. Everolimus resistance has been evident in PanNEN patients and therefore
serves as a means to identify potential mechanism. Multiple studies generated both BON1
and QGP1 Everolimus resistant daughter cell lines and further showed that the resistance
can be overturned by a combination of Everolimus and PI3K or dual PI3K-mTOR inhibitors
(Prada et al., 2018; Passacantilli et al., 2014). These findings were reaffirmed using different
PI3K-AKT-mTOR inhibitors (Vandamme et al., 2016; Zitzmann et al., 2010). Mechanism of
resistance in these cell lines have been attributed to various nodes including GSK3 expres-
sion and crosstalk to MAPK signaling via PI3K hyperactivity upon mTOR inhibition (Prada
et al., 2018; Valentino et al., 2014; Zitzmann et al., 2010). However, evident from this handful
of studies is that although we are aware of potential drugs that can hamper the proliferative
activity of these cell lines, we clearly lack a comprehensive knowledge of how these signal-
ing pathways interact with one another and what are the different crosstalks, activated from
feedback/feedforward loops that one must consider when looking into therapeutical inter-
ventions suitable for PanNENs.
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Chapter 2

Scope of this study

It is certainly worth appreciating the extensive research that has been undertaken to ac-
knowledge and even comprehend the sheer extent of heterogeneity encompassing Pan-
NEN tumors. In particular, PanNET tumors have been intensively investigated to identify
the diverse molecular features characterizing the histopathological heterogeneity, subse-
quently demonstrating its association towards a distinctive prognosis among patients. Re-
cent findings have also shed light on the potential diverse cell-of-origin of PanNET tumors.
On the other hand, we are far from attaining a consensus characterization of PanNEN re-
capitulating the multi-layer heterogeneity. Specifically, the lack of our understanding in
regard to the PanNEC tumor subgroup is evidently emphasized in chapter 1. Genetic and
epigenetic aberrations unique to PanNEC tumors have rarely been explored. In addition,
there has yet to be a study that identifies or even speculates on the cell-of-origin of the most
aggressive fraction of PanNEN tumors. As such, it is imperative that these gaps are filled to
advance our perception of the mechanisms driving a particular normal cell to a tumor state
of PanNEN tumors. As part of my thesis, I provide a multi-genomic and epigenomic char-
acterization of PanNENs, distinguishing the well-differentiated PanNETs from the poorly
differentiated PanNECs. I further characterize the bona fide in-vitro models of PanNENs,
BON1 and QGP1, at the multi-genomic and signaling axes, priming for future work in de-
termining potential novel therapeutic approaches.

The first part constitutes DNA methylome-based characterization of PanNENs. As
a first step, DNA methylation based PanNEN subgroups are classified and the broader
methylation features distinguishing the major subgroups are explored.

The second part involves characterization of PanNEN subgroups at the genomic level.
Targeted sequencing using commercially available in addition to an in-house PanNET gene
specific panel (PanNEN panel) is performed in order to identify recurrent aberrations defin-
ing the PanNEN subgroups. The genetic profile is further expanded by identifying CNA of
PanNEN subgroups and pioneer in identifying significantly aberrated focal somatic CNA
(SCNA) unique to PanNEC specific subgroup.

The third part is comprised of the identification of the tumor cell-of-origin distinctive of
the PanNEN subgroups. DNA methylation analysis is emerging as an important platform



22 Chapter 2. Scope of this study

that can be exploited to trace back the potential cell-of-origin in cancer. Although tumor and
normal total methylomes can differ significantly, several studies have revealed the presence
of the remnant footprint of the normal precursors in various types of cancer (Kulis et al.,
2012; Oakes et al., 2016; Bormann et al., 2018; Rodríguez-Paredes et al., 2018). As such,
three different approaches are employed using tumor and normal DNA methylomes to
arrive at a consensus on the potential normal cell precursors of each subgroup. Firstly,
utilizing established pancreatic cell type markers, the hypo- and hypermethylation status
of marker genes are determined to deduce the representative pattern of each subgroup. The
cell marker profile is further expanded by examining the protein expression of normal cell
markers in representative sets of tumors from each subgroup. Additionally, DMP based
phylo-epigenetic reconstruction is employed to decipher the similarity of the subgroups to
the well-known normal pancreatic cell types. Finally, using an algorithm implementing
non-negative least squares, normal cell type signatures are deconvoluted in each sample to
precisely define the cell of origin for each of the PanNEN subgroups.

The last section deviates from the tumor cohort and rather examines the in-vitro models
BON1 and QGP1 as potential representatives of PanNEN tumors. The cell line models are
investigated for their genomic and methylome based resemblance to the subgroups, as well
as the normal pancreatic cell type. Utilizing a mathematical modelling approach, termed
modular response analysis (MRA), three cancer associated signaling pathways within BON1
and QGP1 are modeled and evaluated to determine the major differences contributing to
their unique behavior as in-vitro models.
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Chapter 3

Results

3.1 DNA methylation classification identifies a distinct PanNEC
subgroup from PanNEN samples

Methylation based tumor classification has demonstrated its potential superior role in iden-
tifying tumors of similar origin in some cancer entities compared to conventional histopatho-
logical diagnosis. This had been critically evaluated and established in the case of central
nervous system (CNS) tumors that carry highly diverse tumor entities and in general lack
a standard diagnostic process. Using a comprehensive machine-learning approach, recent
work has shown that the CNS tumors, in addition to other non-CNS tumors, can be distin-
guished and classified into subclasses, further underlining the role of the DNA methylome
as an objective and concise diagnostic tool compared to or in addition to traditional pathol-
ogy (Capper et al., 2018). The strength of methylation marks in precisely classifying tumors
and identifying its origin has sparked the experimentation of this approach in identifying
clinically relevant subclasses within a tumor entity. This has been demonstrated in colorec-
tal cancer wherein DNA methylation subtypes consistently revealed distinct cell-of-origin
features in addition to their prognostic differences (Bormann et al., 2018). Furthermore, as
detailed in chapter 1, such measures have been undertaken for well-differentiated PanNETs
to identify not only cell-of-origin, but also its association with varying survival rate between
the subgroups. The lack of general methylome studies of PanNECs, especially investigating
their similarity or dissimilarity to PanNETs, urged us to take an approach analogous to the
aforementioned studies.

In order to determine whether histopathological distinction of PanNETs and PanNECs are
reflected in the methylation profiles, we initially approached the problem by identifying
methylation subgroups within our cohort. We utilized an unsupervised class discovery
methodology implemented in a consensus clustering (CC) algorithm. The approach allows
for the identification of subgroups within a given dataset based on quantitative evidence
and visual stability of the groups upon repeated subsampling and clustering (Wilkerson
and Hayes, 2010). The subsampling occurs at the item (samples) and feature (methylation
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probes) level. True clusters with a real structure would therefore be robust to sampling vari-
ability. The process essentially iterates on the most informative probes. We first determined
the 10,000 most variable probes (10K) based on standard deviation across the sample set of
57 tumors and then computed the distinct groups. Based on the consensus values, which
correspond to the probability that the sample being assigned to a particular group indeed
belongs to that group, and subsequent hierarchical clustering, we identified that 3 sub-
groups (k=3) stably represented the cohort: Group A, Group B and Group C (Figure 3.1a).
The empirical cumulative distribution function (CDF) of the consensus matrix depicted in
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FIGURE 3.1: PanNEN subgroup discovery. (a) Unsupervised class discovery using 10000 (10K)
most variable methylation probes. Heatmap displays pairwise consensus values of the samples.
(b) Cumulative distribution function (CDF) curve of the resulting ‘k-mer’ count for 12-k’s. Cluster
count of ‘three’ resulted in the most stable number of subgroups. (c) mean pairwise consensus
values for each group in a given k-cluster (k: 1-12). Spaces with no bars within a given k-cluster
represents a mean value of 0.

Figure 3.1b further displays a maximum stability at k=3. The CDF represents the distribu-
tion of the consensus matrix within a given k. At k=3, we see the accumulation of consensus
values close to 0 and 1 within the CDF curve. More specifically, the first step of the CDF
curve is around 0, which represents the consensus values between sample pairs clustering
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in different groups, a relatively flat line across the 0-1 range, and the second step occur-
ring at a consensus index close to 1, depicting the consensus values for those sample pairs
that always cluster together. The curve therefore affirms that at k=3 the samples within a
given cluster strongly correlate to one another while maintaining strong dissimilarity to the
samples of a different cluster with very few sample pairs showing ambiguous clustering
(Figure 3.1b). This is further visualized with respect to the mean pair-wise consensus value
for each cluster of k=2 through k=12 (Figure 3.1c). At k=3, all the clusters have relative
similar and mean consensus values close to 1, further suggesting a strong within-cluster
stability, while as k increases, we see that many of the cluster values are close to 0 (space
with no bar), implicating the de-stability of cluster integrity under an additional increase in
k.
As a methylation proxy for the downstream analysis, methylation beta values of the probes
were investigated, which is computed as follows:

beta =
M

M + U
(3.1)

where, M and U corresponds to the methylated and unmethylated signal intensity of a
given probe. The beta values from the 10K most variable probes revealed notable distinc-
tion between the groups (Figure 3.2a). In particular, distinct histological classifications were
enriched in the subgroups. The largest subgroup, Group A, was composed of 39 well-
differentiated PanNETs of all grades including 10 NETG3, while Group B was comprised of
13 from a total of 14 NECs and one NETG2 sample. The methylation classification profile
therefore also denotes a strict separation between the high-grade NETG3 and NEC tumors,
portrayed by the separation of the tumor types into Group A and Group B respectively.
Group C consisted of only four samples: two NETG3s, a primary tumor and metastasis of
the same patient, one NETG2 and one NEC. In general, there was no enrichment of pri-
mary tumor or metastasis status within the subgroup, and they were equally distributed
among Group A and Group B. The consistent segregation of the subgroups was further
recapitulated in a t-distributed stochastic neighbor embedding (tSNE) analysis using our
10K probes, affirming the presence of distinct methylation patterns in the groups identified
(Figure 3.2b).
As evident in Figure 4a, Group B exhibited hypermethylation of the majority of 10K probes
across all samples, which led us to explore whether this was a global scale phenomenon
(Figure 3.2a). Interestingly, the mean methylation of CpG island probes was significantly
higher in Group B and Group C compared to Group A (Two-sample Wilcoxon Test: p-value
= 0.0001911 between Group A and B and p = 0.03496 between Group A and C) (Figure 3.2c).
Gene Ontology (GO) analysis of the genes associated with the 10K probes significantly en-
riched for top terms involved in organ development and specifically neurogenesis associ-
ated biological processes (Figure 3.2d). Recent work evaluating the transition of the
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FIGURE 3.2: Characterization of PanNEN methylome subroups. (a) Heatmap displaying the
methylation status of 10K variable probes in each of the Groups: A, B and C. Methylation beta
value was used to perform hierarchical clustering separately on each subgroup, identifying highly
similar samples. Hierarchical clustering was performed on the probes and within group sam-
ples; color range blue to red represents methylation beta value, columns indicate samples and
rows methylation probes. (b) tSNE representation of PanNEN subgroups using 10K most variable
probes. Subgroup annotation is used as colors for each sample (dot). (c) Mean methylation of
CpG island probes in PanNEN subgroups. Boxplot represents distribution of mean methylation
of CpG island associated probes. Each dot depicts the mean value of CpG island associated probes
in a given sample. (d) GO ontology analysis of the 10K most variable probes, representing the top
12 GO terms based on -Log10P-value. (e) Mean methylation of hESC associated hypermethylated
and hypomethylated probes in PanNEN subgroups. Boxplot represents distribution of hyperme-
thylated (red) and hypomethylated CpG probes of hESC (blue) in all samples (left panel), and only
NETG3/NEC samples from Group A and B respectively (right panel). Each dot depicts the mean
value of probes in each hESC category for a given sample. Statistical analysis was performed on
the difference in distribution between subgroups using a two-sample Wilcoxon test. Box shows
25th and 75th percentiles and sample median as horizontal line, whiskers show maximum and
minimum value that is 1.5 times the interquartile range over the 75th and 25th percentile, respec-
tively. (f) Kaplan Meier survival graph from available patient data. Graph shows cohort according
to methylation groups A, B and C. Significant difference was found between Group A and B (p =
0.0049) and between all groups (p = 0.011).

human primed Embryonic Stem Cells (hESC) to naïve state demonstrated a gradual and
stable acquisition of CpG hypermethylation in genes associated with development which
was mirrored in multiple cancer entities (Patani et al., 2020). Given the enrichment of GO
developmental terms of the 10K probes and the significantly higher level of methylation
of CpG island in Group B tumors, we explored if Group B also showed features reflec-
tive of naïve hESC. We first identified differentially methylated probes between primed
and naïve hESCs from the Patani et. al. dataset and determined hypermethylated and hy-
pomethylated CpGs of naïve hESCs (Patani et al., 2020). We found that the naïve hESC
associated and hypermethylated CpGs were significantly more hypermethylated in Group
B compared to Group A tumors (Figure 3.2e left panel). A closer analysis of NETG3 samples
in Group A compared to NEC samples from Group B further displayed the maintenance of
a similar significant difference in the distribution of hypermethylated CpGs of naïve hESCs
(Figure 3.2e right panel), highlighting the potential difference in developmental state be-
tween these histologically often indistinguishable high-grade PanNEN tumor types. Taken
together, we have identified three methylation groups, reflecting the histopathologically
distinct PanNETs and PanNECs, and further showed that PanNECs harbor features of sig-
nificantly more hypermethylation and mirror the epigenetic signature associated with naïve
hESCs.
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3.2 Distinct recurrent mutations separate PanNENs in Groups A
and B

As described in chapter 1, the mutational profiling of PanNET and PanNEC tumors is in-
deed the most well-investigated molecular aberration. As such, the characterization of Pan-
NEN methylome subgroups was expanded by exploring known and unknown mutational
differences that exist between the tumor groups.
Targeted panel sequencing is a highly demanded platform for disease-specific mutation
analysis. In fact, over the years, the technology has shown significant impact for discov-
ery as well as validation of mutational aberrations in clinical translational genetics (Rehm,
2013). Multi-gene disease-targeted panel sequencing dominates over both whole genome
and whole-exome sequencing with regard to cost, coverage, as well as the time and labor
constraints associated with mutational analysis (Bewicke-Copley et al., 2019). Most impor-
tantly, panel sequencing remains the single high-throughput platform that can screen for
mutations in highly degraded tissues sections of FFPE material. On these grounds, as part
of my masters thesis, a novel gene panel, termed PanNEN panel, was designed in collabora-
tion with the Department of Knowledge Management in Bioinformatics at Humboldt Uni-
versity, targeting well-known PanNET associated genes as well as additional genes relevant
for therapeutic approaches (Figure 3.3; Table 6.1.1). This in-house PanNEN panel was uti-
lized to identify mutations in 34 PanNEN samples, comprising all NETG1 and NETG2 sam-
ples, as well as 2 NETG3 and 1 NEC samples. The mutational screening of the remaining 10
NETG3 and 13 NEC was expanded by including a commercially available Comprehensive
Cancer Panel (CCP) in order to screen for genes altered in these high-grade tumor classes
that might be distinct from the conventional alterations of PanNET tumors and therefore,
not covered by the in-house panel.

The mutation spectrum of the subgroups was limited to few recurrently aberrated genes,
while single events within additional genes were evident in Group A and Group B. In
total, 41 samples harbored 84 aberrations in 50 genes targeted by the PanNEN and CCP
panels (Figure 3.4). These mutations comprised non-synonymous alterations of missense,
deletion or indel variant types (Table 6.2.1). Additional sanger sequencing was performed
on selected variants to further assert the reliability of our PanNEN in-house panel (Fig-
ure 3.5). Three aberrations were detected below 10% allelic frequency among which only
a single SETD2 mutation in PNET8 maintained an allelic frequency of < 6% (Figure 3.5).
MEN1 was the most recurrently mutated gene found within our cohort (25%) with high
allelic frequency variants and confined to frameshift truncation, stop-gain and missense
variants (Figure 3.4). Two of these MEN1 mutations in MEN1 syndrome patients (PNET33
and PNET85) were obtained from clinical reports (Table 6.2.1). Mutations in DAXX and
ATRX, genes identified as frequently altered in PanNEN, were also present in 11% and 7%
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diagram displays comparison of genes of the PanNEN gene panel to the commercially available
CCP panel, which was used for mutational screening of NETG3 and NEC.

of the cohort, respectively. As previously shown, DAXX, ATRX alterations within the co-
hort were confirmed to be mutually exclusive (Figure 3.4). Mutations in MEN1 and DAXX
(PNET107, PNET79, PNET85) or MEN1 and ATRX genes (PNET50, PNET11, PNET33) co-
occurred in six samples and these classical PanNET aberrations were largely enriched in
Group A tumors (Figure 3.4). In addition, other recurrent variants identified in Group
A samples included aberrations in tumor suppressor gene VHL in four samples (PNET5,
PNET14, PNET62 and PNET70) and mutations in PTEN, a PI3K pathway negative regula-
tor, in two samples (PNET9, PNET108), both of which were COSMIC variants (Table 6.2.1).
VHL mutations have yet to be identified in sporadic tumors as elaborated in chapter 1 and
aberrations of this gene always occurred as part of the VHL hereditary syndrome. How-
ever, contrary to the current literature, the VHL variant associated with PNET14 was absent
in the normal control and showed an allelic frequency of 74% (Figure 3.5; Table 6.2.1). The
aberration was in fact a COSMIC variant, further asserting the existence of VHL mutations
in sporadic PanNET tumors and their potential as driver alterations. The remaining three
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VHL alterations in PNET5, PNET62 and PNET70 were also established COSMIC variants
but, due to the lack of normal controls for these patients, whether their occurrences were
sporadic or hereditary in nature was undetermined. Mutations in the major negative reg-
ulator of mTOR pathway, TSC2 (n=4), were also enriched in Group A tumors. Although
often associated with TSC2 hereditary syndrome, the variants identified in our cohort were
all somatic mutations.
In contrast to the genes associated with Group A, recurring aberrations in KRAS (5/14),
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SMAD4 (2/14) and TP53 (3/14) established the mutational profile of Group B PanNEC tu-
mors (Figure 3.4). The KRAS alterations identified were all COSMIC variants including
G12D, G12R, G12V and Q61D aberrations (Table 6.2.1). SMAD4 and TP53 mutations were
also COSMIC variants, additionally demonstrating the strong influence these mutations
exert in driving Group B tumor progression. Mutations associated with classical PanNET
genes DAXX and ATRX were absent in Group B; however, one sample each of Group B
cohort was mutated in MEN1 (PNET60) and TSC2 (PNET2) (Figure 3.4; Table 6.2.1). The
TSC2 missense variant identified in PNET2 of Group B was confirmed to have low activity
towards inhibiting mTORC1, thereby signifying the deregulation of mTOR pathway in this
particular tumor sample (Hoogeveen-Westerveld et al., 2013).
Driver mutations in the targeted genes were not detected in 16 samples, and this included
the single non-PanNEC sample in Group B (PNET4), all Group C samples and four Group A
tumors (PNET89, PNET91, PNET92 and PNET95) (Figure 3.4). Additionally, multiple sam-
ples were collected for two patients, PNET77 and PNET56, both of which displayed interest-
ing profiles. Patient PNET77 had tissues of primary tumor and liver metastasis (PNET77P
and PNET77M: NETG3 samples of Group C) surgically removed two years apart. Neither
sample displayed mutations picked up by our panel (Figure 3.4; Table 6.2.1). In contrast,
patient PNET56 with two liver metastasis samples removed one year apart, PNET56P1 and
P2 (both NETG3s in Group A), carried the same alterations in TSC2 and BRD3, suggesting
a single ancestor lineage for both tumors.
In addition to the recurrent genetic differences detected between Group A and Group B
PanNENs, mutations within genes shared between the groups were also identified during
our analysis (Figure 3.4). Single-event alterations, represented in both Group A and Group
B, were found in chromatin-remodeling associated genes well-known to be aberrant in Pan-
NENs, including EP300, BRD3, AFF1, MLLT10, PSIP1, SETD2 and KMT2C. Three alterations
targeting PI3K subunits, PIK3C2B and PIK3CG were found in both groups as well. These
mutations suggest potential common mechanisms driving PanNEN development, irrespec-
tive of the differences between Group A and Group B methylome subgroups.
Collectively, cohort mutational profiles uncovered key molecular distinctions between the
PanNEN methylome groups, which are enriched for aberrations in MEN1, DAXX and
ATRX in Group A and for KRAS, TP53 and SMAD4 in Group B tumors.

3.3 Copy number alterations separate PanNECs from PanNETs

PanNET CNA have been widely established in various studies, as illustrated in chapter 1.
PanNECs, however, have rarely been investigated with respect to their whole chromosomal
or focal aberrations in the genome. The development of genome-wide methylation array
platforms has provided the opportunity to interrogate the CNA, with the same sensitivity
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as a SNP array (Feber et al., 2014; Houseman et al., 2009). Due to high-density coverage of
the genome, one can readily determine the whole genome and small focal aberrations in ad-
dition to the methylation profile within the same sample in a cost-effective manner. Numer-
ous tools have thus far been developed to accurately determine large and small CNA from
the methylation signal intensities (conumeeR; Mermel et al., 2011). We expanded our char-
acterization to identify unique copy number features utilizing the aforementioned methods
in order to discover additional molecular mechanisms distinctively driving the formation
of these subgroups.

To explore CNAs in PanNENs, we first inferred methylation log2 ratios from signal in-
tensities for each genomic segment that carry the same copy number status. For analysis
of whole chromosomal copy number changes within each group, we then computed the
average log2 ratio of CNA segments per chromosome and labeled “gain”as a mean log2

ratio > 0.15 and “loss”as mean log2 ratio < -0.15 based on the correlation estimation be-
tween the log2 ratio and fluorescence in-situ hybridization (FISH) validation (Figure 3.7c).
Subsequently, we performed unsupervised clustering on the mean log2 ratios in order to
determine recurrently aberrated chromosomes as well as subgroup-associated signatures.
The Group A tumors displayed three distinct whole chromosomal CNA profiles:
amplification-rich, deletion-rich and low-CNA signatures (Figure 3.6). The amplification-
rich signature predominantly harbored copy number gains in chromosomes 14, 5, 7, 19, 18,
17, 13, 20, 12, 4 and 9. Many of these chromosomal gains were synchronous events in the
majority of the amplification-rich signature samples, suggesting a concurrent occurrence of
these gains. Similarly, samples in the deletion-rich signature carried recurrent deletions of
chromosomes 6, 1, 22, 8, 1, 2, 16, 10, 3, and 21, which also presented as synchronous events
among many of these chromosomes.
Selective CNA features were further validated in 18 samples using FISH. Specifically, the
corresponding whole chromosomal aberrations of chromosomes 5, 9 and 11 were identified
using FISH probes targeting the individual centromeres as well as RICTOR, TGFBR1 and
MEN1 genes located in the chromosomes, respectively (Figure 3.7 a and b). Upon analyz-
ing 40 cells per sample, it was evident that most of the chromosomal aberrations observed
in chromosome 5 and chromosome 9 involves the gain of an extra copy. Furthermore, copy
number losses observed in chromosomes 11 resulted in a single copy loss. Evidently, pre-
diction of whole chromosomal aberrations using mean CNA segments caused misidentifi-
cation in a few cases (eg: chr5; PNET42 and chr9; PNET91); nevertheless, linear regression
analysis of the mean signal count of the centromere probe per sample from FISH versus
the mean log2 ratio from CNA analysis showed a regression coefficient of R2 =0.6531 and
p=6.243 x 10−7, highlighting that our methodology is indeed robust to precisely classify
whole chromosomal changes with very few false positives (Figure 3.7c).
We further integrated the identified recurrent mutations and the whole chromosomal CNA
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FIGURE 3.6: Whole chromosomal aberrations in PanNEN subgroups. Hierarchical clustering of
mean log2 ratios of chromosomal segments per autosome is displayed in a heatmap; dotted line
represent the cut off used to identify amplification, low-CNA and deletion-rich signatures; column
annotations (bottom) display the tumor grade, tumor type, the recurrently aberrated genes as well
as FISH verified samples. Clustering was performed within-group and the copy number signature
cut-off are determined based on the main branches.

profiles to determine potential co-occurrence of chromosomal aberrations and mutations.
Recurrent mutations of tumor suppressor genes MEN1, DAXX, TSC2, and VHL were en-
riched in the amplification-rich and deletion-rich signatures (Figure 3.6, ‘Mutation’ annota-
tion). The majority of MEN1 mutations (8/13) were enriched in amplification-rich signature
with no notable alteration to the respective chromosome, while 4/5 of the remaining muta-
tions present in deletion-rich and low-CNA signatures were accompanied by chromosomal
loss of chromosome 11. In addition, mutations in DAXX and TSC2 within the deletion-rich
signature and VHL mutations in the low-CNA signature also displayed chromosomal losses
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FIGURE 3.7: FISH verification of whole chromosomal aberrations in the PanNEN cohort. (a)
Quantification of centromere and gene probes. Quantification of chromosomal aberrations for
chromosomes 5, 9 and 11 was performed using their corresponding centromere probes (green)
and probes in RICTOR, TGFBR1 and MEN1 respectively (red) using FISH. Forty cells randomly
selected were counted in each sample; The distribution of signals per sample is depicted; each
point represents the mean count of cells for the respective probe; mean and standard deviation
represented by error bars. (b) Representative images of FISH validation of whole chromosomal
aberrations in PanNEN subgroups. The green dot represents the centromere of chr5 (top panel),
chr9 (middle panel) and chr11 (bottom panel). (c) Correlation of log2 ratio and FISH count. Linear
regression of mean copy number count of centromere derived from FISH (y-axis) and mean log2
ratios of chromosomal segments per autosome (x-axis); diagonal line represents best fit model for
the data.

of chromosome 6, 16 and 3, respectively, together highlighting a consistent two-hit tumor
suppressor inactivation phenotype taking place particularly in low-CNA and deletion-rich
signatures. With respect to the low and intermediate PanNETs, the low-CNA signature was
a predominant feature of NETG1 tumors of Group A and contained relatively few aberra-
tions in most chromosomes with no clear recurrences.
Consistent unique recurrent whole chromosomal signatures were absent in Group B and
Group C tumors; nonetheless, the noteworthy features included recurrent copy number
loss in chromosome 10 (50%) and chromosome 22 (57%), which were both aberrated in at
least half of the samples of Group B (Figure 3.6). This is of course not a distinctive feature
of Group B as loss of chromosomes 10 and 22 were among the features of the deletion-rich
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signature of Group A. Therefore, tumors of Group B and Group C were defined by few re-
current whole chromosomal aberrations yet not distinct to the groups, likely due to the low
number of samples in each of the subgroups.

The approach utilized for the identification of copy number gains and losses would indeed
mask the subtle, yet strong changes of high-copy amplifications and complete deletions ob-
served in specific regions of the genome. These focal changes can reveal critical information
on the processes inevitable for tumor progression, as often, these CNA aberrations target
vital genes instrumental for such mechanisms. Using the log2 ratios of CNA segments as
computed in our initial analysis, we investigated focal CNA using GISTIC (Figure 3.8a).
Chromosome regional amplification of 1q21.2, 8p23.1 and 14q11.2, as well as deletion of
chromosomal region 15q11.2 were significantly associated with both Group A and Group
B (Table 6.3.1; Table 6.4.1; Table 6.5.1; Table 6.6.1). These aberrations were enriched in copy
number variations of genes in multiple gene families including DEFB1, OR, GOLG and the
FAM90 gene family.
Distinct focal aberrations significantly associated with each group were also clearly evident

(Figure 3.8a). Group A had unique significant gains in chromosomal regions 10q11.22 and
16p11.2, which predominantly affected pseudogenes (Table 6.3.1). Nevertheless, an interest-
ing gene relevant for PanNEN within 10q11.22 locus was pancreatic polypeptide receptor
1 (PPYR1) . The coded protein has a high affinity to PP, the hormone produced by PP-cells
and lower affinity to NPY and PYY proteins (Mannon, 2004). Additional genes also affected
by this amplification included the subunits of WASH complex, FAM21B and FAM21C, and
endocytosis associated genes AGAP4 and AGAP9.
Interestingly, Group A had a substantial number of focal deletions associated with it in re-
gions of 1p36.32, 2q37.3, 4q34.3, 6p25.3, 8p23.2, 9p21.3, 10q26.3, 12p11.1, 21q11.2, 22q12.3
and 22q13.32. In total, these deletions affected 73 genes comprised of protein-coding,
miRNA genes as well as pseudogenes (Table 6.4.1). Among these, we identified genes asso-
ciated with multiple signaling pathways that are known to be aberrated in various cancer
types. For instance, deletion of 22q12.3, seen in 12 samples (31%), resulted in loss of DE-
PDC5, a major negative regulator of mTOR signaling (Padi et al., 2019). The deletion also
entailed the loss of the SLC5A1 gene, which codes for a direct glucose-galactose transporter
(Hummel et al., 2011) as well as the SLC5A4 gene encoding a mannose transporter (Tazawa
et al., 2005), all potentially impinging on the deregulation of mTOR signaling. DUSP22, a
major component of JNK pathway often downregulated in colorectal cancer and recently
identified to regulate EGFR signaling in prostate cancer, was lost due to the 6p25.3 loss in
Group A (Yu et al., 2015; Ha et al., 2019; Lin et al., 2019). In addition, the identified loss
of 8p23.2 seen in 10 samples (21%) resulted in the deletion of ARHGEF10, a Rho guanine
nucleotide exchange factor (GEF) (Mohl et al., 2006) known to act as a putative tumor sup-
pressor in breast cancer, urothelial and hepatocellular carcinoma (Xue et al., 2012; Cooke
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FIGURE 3.8: Focal copy number aberrations in the PanNEN cohort. (a)Significant focal copy
number aberrations in the PanNEN subgroup. Focal aberrations in Group A (top panel) and
Group B (bottom panel) are displayed here; focal copy number losses in blue horizontal lines
and gains in red horizontal line. Log2 ratio range is provided at the top and q-value is given at
the bottom. Vertical green line represents the q-value cut off at 0.25 to call significant. The signif-
icantly aberrated focal regions are explicitly written (left and right). (b). Chromosome 12, 13, and
14 copy number status in NETG3 (top panel) and NEC (bottom panel). Intensity values of each
bin are plotted in colored dots; each color indicates ‘methylated’ and ‘unmethylated’ channels of
each CpG; segments are shown as horizontal blue lines.

et al., 2008; Riehn et al., 2011). The region also carries MCPH1 coding for a multifunctional
protein critical for cell cycle regulation and is often mutated or downregulated in cancer en-
tities. Lastly, focal deletion of 9p21.3 in Group A lead to the loss of CDKN1B and CDKN2A,
two key regulators of the cell cycle (Table 6.4.1).
In contrast to the focal aberrations intrinsic to Group A, Group B showed distinct focal gains
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in 4p16.1 and 6q21 as well as focal deletions in 4p15.32 and 13q14.2 (Table 6.5.1; Table 6.6.1).
The focal gain in the 4p16.1 region resulted in amplification of DRD5, a D5 subtype of
dopamine receptor (Sidhu, 1998), homeobox protein HMX1 which has transcriptional an-
tagonistic function (Amendt, Sutherland, and Russo, 1999), and SLC2A9, a urate transporter
(Ruiz et al., 2018). Gain of the 6q21 region showed paradoxically an amplification of HACE1,
a tumor suppressor with ubiquitinate activity (Torrino et al., 2011). Interestingly, the dele-
tion of 13q14.2 affecting 50% of Group B led to the deletion of RB1, an important cell cycle
regulator with similar functional significance as CDKN2A and CDKN2B (Figure 3.8b upper
panel). On closer examination, we found that NETG3s in Group A did not show losses of
the RB1 region (Figure 3.8b lower panel), and rather, the deletion was exclusive to the Pan-
NECs of Group B.
Therefore, while Group A was enriched for recurrent whole chromosomal and many focal
copy number aberrations, particularly deletions, Group B specifically showed few signifi-
cant focal aberrations and exclusively harbored RB1 loss associated with PanNEC tumors.

3.4 Tumor cell-of-origin characterization of PanNEN subgroups

During development, normal cellular hierarchy, and as a consequence the cell-type hetero-
geneity within an organ is often established and maintained through distinct transcriptional
factor expression profiles. This has been extensively investigated and established in pan-
creas using mouse model studies. Among the prominent transcription factors critical for
adult pancreatic cell type maintenance is the transcription factor PDX1 which is vital for β
cell identity and ARX, upstream of IRX2, both of which are well-established α-cell-specific
transcription factors (Yang et al., 2011; Dorrell et al., 2011; Muraro et al., 2016). In addition,
presence of NKX6-1, NKX2-2 and PAX6 further maintains the endocrine lineage for α- and
β-cells (Jennings et al., 2015). On the other hand, SOX9, a downstream target of NOTCH,
is required for the establishment of cell fates of endocrine and exocrine cells (Rovira et al.,
2010; Lynn et al., 2007). However, while SOX9 is absent in the committed endocrine precur-
sors (Seymour et al., 2007), it is an important player in pancreatic ductal and centro-acinar
cell development and maintanance, and is not found in adult acinar cells (Shroff et al., 2014;
Qadir et al., 2020).
Recent advancements in single cell RNA sequencing platforms have generated a plethora of
data that was able to clearly discern and reaffirm the presence of these transcription factors
in the adult pancreatic cell types in order to uphold the tissue complexity. The underlying
mechanisms leading to these differential and consistent expression profiles include DNA
hypomethylation of cell-specific marker genes combined with enrichment for open chro-
matin and active histone marks. Interestingly, it has been demonstrated in multiple tissues
that DNA methylation marks of a normal precursor is retained in the respective tumors and
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can additionally determine profiles associated with tumors developing from different cells
of a single tissue type (Bormann et al., 2018). The distinct characteristics of DNA methyla-
tion capable of being traced back to its normal precursor presents an opportunity to identify
whether our PanNEN methylome subgroups that show genetic disparity are in fact tumors
of distinct cell-of-origin.

We undertook three major approaches to define the normal precursor identity of our sub-
groups. First, we identified differentially methylated pancreatic cell marker genes between
the PanNEN Group A and Group B and further characterized them at the protein level.
In addition, utilizing published 450K array methylation profiles of α, β, ductal and acinar
cells, particularly for the Group B tumors, we further expanded our knowledge on the un-
derlying normal cell profiles defining these PanNEN subgroups and established novel cell
markers that play an active role in how the tumors are formed.

3.4.1 PanNETs in Group A harbor endocrine cell-of-origin signatures

Cell-of-origin studies in PanNENs have been thus far restricted to well-differentiated Pan-
NETs. Due to the unique classification grades enriched within each of the methylome sub-
groups from our analysis, we examined whether the imprinted cell-of-origin pattern per-
sisting in the tumor entity is distinct for each subgroup. The first approach investigated the
DNA methylation features of established cell marker genes known to influence the forma-
tion and maintenance of differentiated cells of the pancreas. We explored the PanglaoDB
database (Franzén, Gan, and Björkegren, 2019), which collects published single cell data,
to determine genes specifically expressed in a given cell type. We utilized DNA methy-
lation as the surrogate for the expression status of each of the genes within our tumor
samples. A total of 174 marker genes expressed in differentiated cell types of the adult
pancreas were curated from PanglaoDB (Table 6.7.1). Upon identification of differentially
methylated probes (DMPs) between Group A and Group B, we determined DMPs asso-
ciated with genes overlapping with the curated list. In total, we detected 122 methylation
probes of genes associated with cell-type specificity within the 770 DMPs from our samples.
The average difference in beta value (|∆beta|) between the groups ranged from 0.15 to 0.30.
To determine the probes and, thereby, the cell marker genes strongly distinguishing the
groups, we restricted the |∆beta| value to |∆beta| > 0.25. Based on the cut-off for the p-value
threshold and fold difference (-log10P > 5 and |∆beta| > 0.25), we uncovered the genes and
their associated probes that demonstrated the most significant differences between Group
A and Group B (Figure 3.9a; Table 6.8.1). These included 85 significantly enriched probes
(red points in Fig. 9a) associated with 23 marker genes of α, β, γ, δ, ductal, acinar and islet
Schwann cells (Figure 3.9b). In general, irrespective of the cell type to which the expression
profile of the marker genes aligned to, the vast majority of these probes maintained a stro-
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FIGURE 3.9: Cell marker associated methylation analysis. (a) Differentially Methylated Probes
(DMPs) from our cohort associated with pancreatic cell markers (n=770). Dots represent the inter-
sect between -Log10P-value and the log2 fold change (FC) for a given probe. Cut off for significant
-Log10P-value is 5 (adjusted p-value is 10e-6); cut off for significant log2FC is > |0.25|. Red dots
denote the probes that pass both cut offs; green dots represent probes that only surpass the log2FC
threshold; blue dots show probes that only have a significant p-value; grey dots represent probes
that did not pass either of the cut offs; significantly associated DMP probes of IRX2 and NKX6-1
are labeled in the plot. (b) Cell marker gene count her cell type. Number of marker genes associ-
ated with each cell type is represented in the bar plot (row bar plot); marker genes associated with
more than one cell type (dots connected with line) or a single cell type are also depicted (column
bar plot); the cell type of the respective associations are linked (bottom annotation). (c) Methyla-
tion beta values of significant DMPs belonging to pancreatic cell markers of PanNEN subgroups.
Heatmap displaying the methylation beta values of DMPs (row) in each sample (column) of the
subgroups. The heatmap color represents the methylation beta value; row annotation identifies
the genomic region associated with the probe (panel on the right) in addition to which cell type
the gene shows specificity in gene expression (according to PangaloDB). Column annotations (bot-
tom) display the tumor grade and tumor type. (d) Methylation beta value of significant DMPs in
normal cell type profiles. Heatmap displaying the methylation beta values of DMPs (row) that
showed an overlap in normal cell type 450K methylation data. The heatmap color represents the
methylation beta value; row annotation identifies the genomic region associated with the probe
(panel on the right) in addition to which cell type the gene shows specificity in gene expression
(according to PangaloDB); column annotates the normal cell type.

ng hypomethylation across samples of Group A, while Group B tumors showed hyperme-
thylation of all DMPs under investigation, with the exception of KRT7 associated probes
(Figure 3.9c). In addition, genes associated with endocrine cell lineage maintenance, such
as PAX6, NKX6-1 and NKX 2-2 were mainly hypomethylated in Group A, except for 6
NETG3 samples (PNET42, PNET57, PNET61, PNET56P1, PNET56P2 and PNET107), and
one NETG2 sample (PNET24), which showed hypermethylation of PAX6, NKX6-1 and
NKX2-2 genes reminiscent of Group B samples.
In order to identify whether the underlying cell marker genes’ methylation marks are an in-
dicative feature of a specific pancreatic cell type, we extracted overlapping DMPs from nor-
mal pancreatic cell types methylation profiles and compared them to the subgroup profiles.
Illumina 450K array methylation profiles of presorted normal pancreatic cell types were ob-
tained: α(n=2), β(n=3), acinar(n=3) and ductal(n=3) cells (Neiman et al., 2017; Espinet et al.,
2021). Among the 85 significant DMPs associated with marker genes within the subgroups,
65 DMPs of 15 marker genes were identified in these normal cell type profiles due to the
fact that the data was processed in the 450K array instead of the larger EPIC array (Fig-
ure 3.9d). Interestingly, neither of the groups accurately embodied any of the normal cell
type marker profiles; the closest representation of methylation features of normal cell types,
however, were evident in Group A. Hierarchical clustering of tumor samples in addition
to the normal cell type using the aforementioned 65 probes, revealed that the cell marker
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methylation in α, β, and ductal cells closely resembled Group A while the only NETG2
sample (PNET4) of Group B showed the closest representation to acinar cell marker methy-
lation status (Figure 3.10a). The majority of the Group B tumors (10/14) formed their own
cluster, distinct from Group A or Group C tumors. Remarkably, Group A NETG3 samples
that showed hypermethylation of PAX6, NKX6-1 and NKX2-2 clustered independently of
the remaining Group A samples, and resided in proximity to Group B samples. In fact, three
Group B PanNECs clustered within this independent branch. Multiple probes associated
with IRX2 showed the most significant difference between Groups A and B (Figure 3.9a,
red dots). Indeed, Group A tumors were consistently hypomethylated in IRX2 promoter
associated probes, while Group B displayed strong hypermethylation (Figure 3.9c). As de-
tailed in chapter 1, previous work has utilized IRX2 and PDX1 acetylation status to char-
acterize cell-of-origin subtypes in well-differentiated PanNETs. Although PDX1 was not
differentially methylated significantly between Group A and Group B, the 10K probes es-
tablishing the groups showed variable methylation patterns of this gene within the groups
(Figure 3.10b). Incidentally, Group A tumors displayed within-group divergence with re-
spect to IRX2 and PDX1 methylation status, whereby one subclass carried hypomethylation
of both IRX2 and PDX1, while the second subclass featured hypomethylation of IRX2 and
hypermethylation PDX1. The latter subclass was enriched for MEN1, DAXX and ATRX
mutations, while recurring VHL mutations were seen in samples carrying hypomethylation
of IRX2 and PDX1. In addition to the methylation signature of these cell marker genes, pres-
ence of ARX protein, together with the PDX1, were previously applied to classify distinct
diagnostic attributes pertaining to the subtypes of well-differentiated PanNETs. As such,
given the significance of IRX2 and PDX1 methylation profiles in classifying our subgroups,
we expanded our analysis to identify whether differences in ARX and PDX1 protein expres-
sion further characterized the subgroups. We investigated ARX and PDX1 protein status in
18 Group A samples and 12 Group B samples. The stained sections were evaluated for the
presence and absence of the respective proteins by Dr. med. Armin Jarosch from the Insti-
tute of Tumor Pathology, at the Charite University of Medicine, Berlin, Germany and Prof.
Dr. med. Aurel Perren from the Institute of Pathology at the Bern University, Bern, Switzer-
land (Table 6.14.1 includes pathologist diagnosis. Stainings of samples from Bern cohort
was evaluated Dr. Perren). In agreement with the data and with previous studies, Group
A tumors were ARX+, which indicated positive nuclear staining and PDX1-, or absence of
PDX1, in 14 cases. It is to be noted that the positive staining was defined even if only a
handful of cells in the tumor region were positive (min. 1%). This distinctive pattern of ex-
pression therefore suggests that at the protein level, Group A tumors portray an α-cell-like
phenotype (Figure 3.11). The ARX-PDX1- pattern was also present in 2 samples of Group
A tumors, while one sample each showed the ARX-PDX1+ (PNET51) and ARX+PDX1+
(PNET62) phenotype. Consistently, Group B tumors showed a negative pattern of PDX1
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FIGURE 3.10: Characterization of tumors using cell marker methylation profiles and α- β-cell
features. (a) Euclidean hierarchical clustering of cell marker methylation profiles that showed
overlap with normal cell type 450K data. Sample names are annotated with grading color; bottom
annotation depicts the methylome group and the normal cell type. Methylation profile of IRX2 and
PDX1 probes. (b) Methylation beta values of probes associated with IRX2 and PDX1 of PanNEN
subgroups. DMP probes of IRX2 and 10K probes associated with PDX1 (rows) for each sample
(column) are presented here; rows are split at each associated gene (left); columns are split at each
subgroup (bottom); row annotation identifies the genomic region associated with the probe (panel
on the right); column annotation (bottom) displays the tumor grade, tumor type as well as the
recurrently aberrated genes in the context of IRX2 and PDX1 methylation state.

protein in addition to either ARX-, displayed in eight samples, or ARX+ phenotype seen in
four samples, respectively (Figure 3.12). Additionally, one sample showed the ARX+PDX1+
pattern (PNET58). Nevertheless, the ARX+PDX1- phenotype was significantly more com-
mon in Group A compared to Group B (p-value=0.02036: Fisher’s exact test) reaffirming the
α-like tumor feature in Group A samples1.

3.4.2 PanNECs in Group B display an exocrine acinar-like cell signature and
differ from PDACs in ductal-like cell signatures

The analysis approach taken in sub-section 3.4.1 clearly identified an endocrine-like phe-
notype for Group A tumors, Apart from eliminating a potential endocrine origin, a distinct
normal cell associated signature had yet to be identified in Group B. Our analysis was there-
fore extended to explore the global differential methylation profiles of normal pancreatic
cell types. A total of 46,500 DMPs were identified that distinctively differentiate the nor-
mal cell types from one another (adjusted P-value < 0.01, |∆beta| > 0.2). Based on the beta
value of the DMP probes, Pearson distance between the tumor samples and the pancreatic
cell types were computed and a phylo-epigenetic tree was constructed (Figure 3.13). The
tree split into three main branches from the root (Figure 3.13 black dots); the lower branch
consists entirely of Group A tumors, and clustered closely with β- and α-cell profiles. In
fact, the insulinomas grouped together and maintained the closest distance to the normal
endocrine cell type. The second main branch also harbored Group A tumors but exclusively
the NETG3s and 2 NETG2 tumors. The final main branch had multiple splits: the first split
separating PNET16 from the remaining samples and a subsequent split resulted in yet an-
other Group A tumor clad comprising all three PanNET grades. This split also lead to the
main branch harboring Group B tumors. Strikingly, all tumors from Group B, except for
PNET58, clustered with ductal and acinar cells, constructing a separate and compact clad.
PNET58 was ARX+ and PDX1+ (Figure 3.12), clearly different from the ARX-PDX1- profile

1The statistics are computed with only samples carrying all three staining for consistency purposes. In the
coming sections, significant enrichment of SOX9 staining patterns are evaluated in regard to ARX and PDX1.
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of the majority of the Group B tumors. The proximity of Group B tumors to the ductal and
acinar cell profiles suggests a clear resemblance of this tumor subgroup to the exocrine cells
of the pancreas and a rather distant relation to the endocrine cells of the pancreas.

To further corroborate our finding, we utilized an independent method to determine the
normal cell signature composition within the PanNEN samples. As a reference, we utilized
6096 CpG probes defined by Moss et. al., which distinguish ductal, acinar and β-cells (Moss
et al., 2018). For the missing α-cell reference we utilized the 450K profiles mentioned in the
previous sub-section 3.4.1 and determined the methylation values for the CpGs which dif-
ferentiated β-, acinar and ductal cells. Using Euclidean distance analysis, we confirmed that
the reference cell types could be clearly discerned from one another and therefore, did not
require additional probe selection (Figure 3.14a). Given the reference and the tumor sam-
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ples, a deconvolution algorithm was employed which models the profile of the tumors as a
linear combination of the methylation profiles of the cell types. Under this assumption, the
method determines the methylation signature proportion using non-negative least squares
linear regression (NNLS). In addition to the grouped samples from our PanNEN cohort, 167
PDACs were included as an independent pancreatic tumor type (Lomberk et al., 2018).
Group A PanNETs displayed significant enrichment for the α-cell signature composition
compared to Group B and to a lesser extent to Group C (Figure 3.14b and Figure 3.15a). The
mean proportion of the α-cell signature present in Group A was 0.55, with the maximum
proportion present at 0.91. Apart from three cases, all samples carried an α-cell signature
proportion of > 0.25 and the three outliers carried the β-cell signature proportion > 0.70
(0.71, 0.74, 0.90) (Table 6.9.1). Given the presence of α-cell and β-cell signature proportions
in Group A tumors, we further explored the proportions with respect to the IRX2-PDX1
subclasses of Group A identified in sub-section 3.4.1 (Figure 3.14c). Interestingly, tumors
carrying a high α-cell signature proportion were more significantly enriched in samples
with hypermethylation of PDX1, and tumors harboring a high β-cell signature proportion
or an equal representation of both cell type signature proportions displayed an enrichment
for hypomethylation of both PDX1 and ARX. With respect to the remaining normal cell
signature proportion, Group A tumors exhibited a β-, ductal and acinar cell signature pro-
portion of < 0.40.
Group B NECs, on the other hand, showed a significant increase in the acinar cell signature
proportion when compared to Group A and to Group C (Figure 3.14b). The range of the aci-
nar cell signature proportion for Group B tumors fell in between 0.19 to 0.70, with a mean
value of 0.38. The two samples carrying the lowest acinar cell signature proportion, PNET59
and PNET66, harbored equal α-cell and β-cell signature proportions (PNET59: 0.38 AND
0.35; PNET66: 0.41, 0.34) (Table 6.9.1). Interestingly, however, the most striking feature of
Group B tumors was that the acinar cell signature proportion of Group B was comparable
to that found in PDAC tumors (a mean value of 0.37 and range between 0.25 to 0.61) (Fig-
ure 3.14b and Figure 3.15b). However, the ductal signature composition of PDAC tumors
was significantly higher than other groups of PanNENs, distinguishing this pancreatic ex-
ocrine cancer from PanNENs and specifically from exocrine-like Group B (Figure 3.14b).
NETG3 samples from Group A contained similar profiles compared to other PanNET sam-
ples, and showed no resemblance to the acinar cell similarity of PanNECs, implying yet
another characteristic distinguishing high-grade PanNEN tumors (Figure 3.15c).
In light of all three approaches taken for the identification of the cell of origin for the Pan-
NEN methylome groups, the analyses uncovered that Group A tumors carry α-like, β-like
and intermediate-like tumors of endocrine origin, while Group B tumors harbor a signifi-
cantly more exocrine profile and maintain an acinar-like signature similar to PDAC tumors.
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3.4.3 Group B PanNECs display SOX9 patterns of exocrine cells

The striking similarity in acinar cell signature proportions between PDAC tumors and the
Group B subgroup compelled us to identify additional evidence that could implicate an
analogous mechanism of tumor formation. An earlier study linked SOX9 expression and
formation of precursor lesions of PDACs from acinar cells, together with expression of onco-
genic KRAS (Kopp et al., 2012). SOX9 has been identified as a marker for PDACs as well as
for the precursor lesions PanIN and IPMNs (Shroff et al., 2014). Given the clear importance
of SOX9 in PDAC tumors, particularly with respect to the formation of the tumor from aci-
nar cells, we investigated the presence of SOX9 in PanNEN tumors.
To identify whether the PanNECs in Group B display SOX9, we performed IHC for rep-
resentative samples of the cohort. We obtained a subset of the tumor samples from our
cohort, which included 11 Group B samples and 17 Group A (representative images in Fig-
ure 3.14d; full cohort IHC provided in Figure 3.11: Group A and Figure 3.12: Group B,
Table 6.14.1 includes pathologist diagnosis). With the exception of four cases, Group A
samples were negative for SOX9 expression. Among the four cases that were positive for
SOX9 (SOX9+), three NETG3s presented with nuclear staining in a subset of cells within the
tumor tissue (PNET42, PNET56P1 and PNET107) and one NETG2 (PNET52), an insulinoma
and MEN1 syndrome tumor, exhibited nuclear and cytoplasmic staining in a heterogenous
manner. Interestingly, from the 11 PanNEC samples of Group B, 9 samples were positive
for SOX9 staining (Figure 3.12). In contrast to Group A, Group B displayed strong staining
and presented SOX9 homogeneously in 5 out of the 9 positive samples. The two samples
that displayed no SOX9 expression (PNET106 and PNET67) were KRAS mutants. To further
link the endocrine/exocrine feature with respect to SOX9 expression and thereby illustrate
a representative cell marker signature of Group A and Group B, we additionally evaluated
the SOX9 expression in concert with ARX and PDX1 expression of the same samples. Group
A SOX9+ NETG3s were additionally ARX+ (Figure 3.11). This pattern was also present in
three SOX9+ Group B NEC tumors (PNET59, PNET2, PNET67). Nevertheless, the SOX9-
Group B sample were additionally ARX- and PDX1- (Figure 3.12). Collectively, our IHC
analyses identified that α-/β-/intermediate-like tumors in Group A harbored significantly
more ARX+PDX1-SOX9- phenotype, while Group B acinar-like tumors were enriched for
the ARX-PDX1-SOX9+ phenotype (adjusted p-value = 0.001998: Fisher’s Exact Test and
False Discovery Rate (FDR) corrected).

3.5 Characterization of PanNEN in-vitro cell line models

The genetic and epigenetic characterization of PanNEN entities have indeed advanced over
the years. The novel findings in section 3.1 through section 3.4 would certainly make a
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significant impact on further expanding this knowledge and potentially become the foun-
dation for future research in characterizing the formation of PanNEN tumors. Regrettably,
however, the current knowledge is far from being translated into the clinic. Additional in-
vitro and in-vivo analyses in alignment with the current findings is necessary to translate the
insights we gained from high-throughput technology to the bedside.

3.5.1 Genetic and epigenetic features of BON1 and QGP1 represents Group B
PanNEN methylome tumors

The bona fide in-vitro models BON1 and QGP1 have been introduced in chapter 1, includ-
ing their genetic composition at the mutational and copy number level. We decided to
expand our current knowledge by further analyzing the cell lines with respect to the Pan-
NEN methylome groups. Specifically, BON1 and QGP1 cell lines were characterized using
three gene panels, CCP, PanNEN and an in-house colorectal cancer panel (CRC5), to de-
termine the underlying driver mutations. Furthermore, the cell lines were investigated in
terms of copy number aberrations and methylation profiles to additionally identify features
representative of PanNEN methylome groups.

The key driver mutations and chromosomal copy number changes of BON1 and QGP1
have been previously investigated; nonetheless, the current analysis began by first identi-
fying the alterations within our batch of BON1 and QGP1 cell lines to determine whether
additional alterations accumulated under the continued pressure of culturing conditions.
As part of my masters thesis, the cell lines underwent targeted panel sequencing and key
mutations in cancer-associated oncogenes and tumor suppressors were characterized. In
total, BON1 had 10 alterations in cancer-associated genes, while QGP1 harbored 12 muta-
tions (Table 6.10.1). The NRAS mutation p.Q61R and The ASXL1 mutation p.V1349A found
in BON1 were both COSMIC aberrations. In addition, BON1 also harbored a stop gain
mutation in TP53, identified as ‘pathogenic’ in the ClinVar database and a SMAD4 variant
predicted to result in a frameshift truncation. Genes altered in NETG3 tumors including
MYH11 and HNF1A were also mutated in the BON1 cell line.
In contrast, QGP1 harbored COSMIC variants in KRAS (G12V) and two different variants
of TP53 (p.P98L – COSMIC and p.P98Lfs*75 – ‘Pathogenic’ - ClinVar). QGP1 also har-
bored an mTOR mutation and surprisingly also carried two different APC COSMIC variants
(p.R2166Q, p.Y486*), which are unlikely to be expected in PanNEN tumors. Nevertheless,
given the mutational profile, lacking the key drivers of PanNET tumors and harboring al-
terations in the recurrently altered genes of PanNEC tumors, including TP53, KRAS and
SMAD4, it is likely that at the mutational level, BON1 and QGP1 are representative of the
Group B PanNEN methylome group.
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Copy number profiling of BON1 and QGP1 showed aberrations consistent with current lit-
erature knowledge and highlighted some key focal events complementing the mutational
findings (Figure 3.16a). Due to the limitation of the analysis pipeline in detecting ploidy
from the methylation array, the data could not be used to interpret the total chromosome
count of the cell lines. Regional amplification in chromosome 5,10,14,16 and 20 were how-
ever evident in BON1, along with regional deletions in chromosome 1,6,9 and 12. Whole
chromosomal LOH was also evident in chromosomes 4,6,8,9,11,12,13,17,18 and 22.
In contrast, regional gains were present in all chromosomes of QGP1, with higher log2 ra-
tios, referring to a higher copy number state, strongly displayed in chromosomes 1,12 and
20. Interestingly, however, the copy number losses were as much prevalent as the gains in
QGP1 with strong deletions apparent in chromosomes 1,3,4,6,8,9,12,13 and 18. The particu-
lar genome copy number profile of QGP1 with significant focal deletions is consistent with
Group B tumors, while Group A maintained relatively stable genomes with low levels of
strong focal aberrations and high numbers of whole chromosomal gains.
We further investigated the copy number status specifically of CDKN2A and RB1 as the re-
gional loss of these genes was a clear signature mark of Group A and Group B, respectively
(Figure 3.16b). RB1 loss was exclusively present in QGP1 only, while the log2 ratio close to
zero was maintained in BON1 indicative of two copies within the RB1 locus. Interestingly,
BON1 showed a complete loss of the region harboring CDKN2A, while QGP1 seems to also
show deletion of the region harboring the gene. Taken together, the copy number status of
QGP1 is more in line with what is exhibited by Group B tumors.

Given that the genetic aberrations were consistent with Group B tumors, we speculated
whether the methylation features of Group B tumors were also preserved in BON1 and
QGP1. The methylation of cell marker DMPs distinguishing Group A and B were not con-
sistently maintained in BON1 and QGP1 (Figure 3.16c). More specifically, both QGP1 and
BON1 lacked the global hypermethylation feature of Group B. They did, however, show a
global pattern closely resembling NETG3 tumors of Group A, particularly due to the hy-
permethylation of PAX6 and maintenance of the majority of the Group A cell marker genes’
methylation profile in the remaining probes. As it is evident that the cell marker gene signa-
ture of Group A tumors can also be seen in rare cases within Group B tumors, we decided
to identify how the cell lines cluster within the phylo-epigenetic tree along with the tumors
and normal cell type (Figure 3.16d). As previously described, the methylation data of DMP
probes distinguishing the normal cell types were extracted and the tree was reconstructed
by including the beta values of DMP from the tumor samples as well as BON1 and QGP1.
The cell lines clustered farthest from the main branch of Group A and formed a small clad
along with 2 NETG3 (PNET62 and PNET70), 1 NETG2 (PNET9) and 2 NETG1 (PNET11
and PNET5). Nonetheless, the most informative feature determining the cell lines’ repre-
sentation of the groups resulted from the fact that the cell lines clad emerged from the main
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branch that also gave rise to the clad harboring all Group B tumors as well as the exocrine
cells.

One can therefore agree that given the genetic and epigenetic features of the cell lines in
comparison to PanNEN methylome groups, BON1 and particularly QGP1 due to its more
precise consistency of copy number feature are in-vitro models representative of Group B
tumors.

3.5.2 Mathematical modeling of the MAPK, PI3K/AKT and mTOR signaling
networks in BON1 and QGP1

It is imperative that the identification of the cell lines as being representative of PanNEN
methylome groups is accompanied by a comprehensive understanding of the biological
processes associated with the growth and survival of these models. In fact, the intercon-
nected signaling networks within these in-vitro systems are at the core the key factors in-
volved in the overall survival of these cell lines, which makes them the perfect system to
exploit and identify effective therapeutic approaches. Consequently, quantitative mathe-
matical models were generated to determine the behavior of key cancer-associated signal-
ing pathways including MAPK, mTOR and PI3K/AKT networks in BON1 and QGP1, while
emphasizing the crosstalks, feedbacks and feedforward loops facilitating the proliferation
and survival of these cell lines.
The modelling approach we utilized is based on the well-established modular response
analysis (MRA) (Bruggeman et al., 2002; Kholodenko et al., 2002) that has been employed
to model signaling networks in multiple cancer cell lines (Klinger et al., 2013; Dorel et al.,
2018; Hood et al., 2019; Brandt et al., 2019). The method is implemented in the R package
STeady-STate Analysis of Signalling Networks (STASNet) for a more efficient utilization of
the approach. Briefly, the network system is represented by phosphorylation of phospho-
sites of few key kinases within a given signaling pathway. These are termed the nodes of
the model. Given the data, MRA aims to quantitatively deduce the local response coeffi-
cient, ri

j, which is the direct local influence one node j has on the node i, from the global
response coefficient, denoted as Ri

j, which is the overall response of the system on a specific
node i upon a specific perturbation of node j. The global response coefficient is therefore
determined experimentally and measured upon the system reaching steady state. Mathe-
matically, the local response coefficient can be represented as follows:

R = −r−1(s + i) (3.2)

where s and i define the simulation and inhibition matrix, respectively. The matrices con-
tain the stimulation strength or inhibition strength on a node under a given perturbation.
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Additionally, STASNet incorporates a measurement error accommodating for measuring
discrepancies and modifies the equation as follows:

Rm − E = R = −r−1(s + i) (3.3)

wherein Rm is the measured global response and E is the error model.
The approach is implemented in STASNet, such that under a given network topology the
model tries to fit the data and determine the local response and perturbation coefficients
by minimizing the log-likelihood, estimated by the weighted sum of squared differences
between data and the fit. The fit, which corresponds to the likelihood of the model, is
further improved by removal of a link and/or by addition of a new link. Finally, profile
likelihood analysis is implemented to evaluate the identifiability and reliability of the pa-
rameters. Computing the profile likelihood, and thereby identifying the parameter value
confidence interval, allows us to determine how much a parameter can vary in each cell
line without significantly worsening the overall fit of the model.

Evaluation of the data

Given that the cell lines BON1 and QGP1 have substantial resemblance to the Group B
PanNEN methylome group, they are perfect candidates for studying drug sensitivity, and
combinatorial treatment possibilities for therapeutic approaches in patients. As a first step,
we therefore decided to characterize the three main cancer-associated signaling networks,
MAPK, mTOR and PI3K/AKT in BON1 and QGP1. The experimental processes for the
generation of perturbation data was performed by Dr. Pamela Riemer from the Molecular
Tumor Pathology, Group of Prof. Dr. Christine Sers at the Charite University of Berlin and
Dr. Anja Sieber from the group of Prof. Dr. Nils Blüthgen of the Integrative Research Insti-
tute (IRI) for Life Sciences at Humboldt University, Berlin. Briefly, the perturbation data of
the cell lines were generated by first starving them for 24hr after which different inhibitors
were added. After 1hr of inhibition, the cells were additionally stimulated with Epidermal
Growth Factor (EGF) and Insulin-like Growth Factor (IGF) (Figure 3.17a and b). Key phos-
phorylation events within these signaling cascades depicted in Figure 3.17c were measured
upon reaching a steady state after 30 minutes of stimulation. Initial analysis of the analytes
represented as M-A plots revealed a strong agreement among the three replicates. The M-
A plot transforms the data onto M (log ratio) and A (mean average) scales. As expected
for unbiased replicates, they spread narrowly around their respective mean value (0 in M-
axis) (Figure 3.18a). The analytes that deviate from this showed intensity-dependent signal
variation, such as in the case of MEK1 and p70S6K as well as intensity-independent sig-
nal variations, including AKTT308 phospho-sites, and RPS6 readouts. AKTT308 discordance
cannot be associated with one particular replicate as M-A value for replicate comparison of

https://pathologie-ccm.charite.de/en/research/research_groups/research_group_sers_molecular_tumor_pathology
https://www.sys-bio.net
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FIGURE 3.17: Perturbation data generation in BON1 and QGP1. (a) Experimental setup of per-
turbation analysis in BON1 and QGP1. Each step was performed in the sequence shown. Data
quantification was done using two different platforms: WES and Bio-Plex. (b) Inhibitors and their
targets. The table displays the inhibitors that were used for the perturbation of the cell lines (left
column) and their respective perturbed targets (column right). (c) Measured phosphosites and
their respective proteins. The tables are split according to the platform that was used to measure
the phosphosite (WES vs Bio-Plex). the name column depicts the identity of each phosphosite
displayed in the steady state model.

A-C has a slope close to zero while the replicate comparison between A-B and B-C is above
and below the mean value of 0, respectively. Therefore, while modeling the data, it is nec-
essary to cautiously interpret the parameters associated with the analyte. With respect to
RPS6 values, replicate A seems to be an outlier. We decided to nevertheless keep the repli-
cate as the overall M-A plot combining all analytes derived from each method showed that
there were no systematic shifts among replicates across the panel of readouts and there-
fore one can proceed with downstream analysis and modeling (Figure 3.18b). The log2

fold changes of the stimulation and treatment compared to the non-treated cells showed
strong activity among the analytes in BON1 and QGP1 (Figure 3.18c). In general, the fold
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topology of PanNEN cell lines. The figure displays a graphical representation of the initial net-
work topology utilized for the modeling of BON1 and QPG1 signalling networks.
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change range was much higher for QGP1 compared to BON1, with relative maintenance of
strong activity under all conditions. Notwithstanding, we did see clear shifts in activities
in expected players under specific perturbations. For instance, MEK1 inhibition showed
strong MEK1 phosphorylation while ERK1 phosphorylation was significantly hampered
in both cell lines. Additionally, BON1 and QGP1 displayed dephosphorylation of p4EBP1
and p70S6K, the key downstream targets of mTOR under dual mTOR inhibitions, further
confirming the reliability of the experiment as well as the data for generating the models.

Development of steady state model of signaling network

We deduced a general network topology of MAPK, mTOR and PI3K signaling in BON1 and
QGP1 based on literature analysis. Given the scarcity of information regarding the network
configuration in these cell lines, the majority of the topology was inferred from what is
known with respect to GEP-NETs in general, PDAC cell lines as well as other KRAS driven
cancer cell lines (Zanini et al., 2020; Rozengurt, 2014; Lamberti et al., 2018; Mendoza, Er,
and Blenis, 2011; Sarbassov et al., 2005; Zitzmann et al., 2010; Prada et al., 2018; Valentino
et al., 2014; Vandamme et al., 2016). The phosphositePlus database was also explored to
determine any additional known kinases upstream of our target phosphosites (Hornbeck et
al., 2015). We began with the assumption that the topologies are largely similar in BON1 and
QGP1. Utilizing the network topology and the measured global responses, we developed a
steady state network model that quantified the signaling network. In order to improve the
fit of the model, links were either reduced or added iteratively based on the suggestions of
STASNet as well as based on a combination of literature knowledge and the evaluation of
correlation between responses of the readouts.

BON1 The Initial network topology-based, reduced model resulted in 25 coefficients
with a likelihood score of (LS) 326.24. The LS defines the fit of the model given the data,
with the value expected to be around 59 (12 readouts x 7 perturbations - 25 coefficients)
for an appropriate fit. The network reduction step resulted in removal of three links
(Figure 3.19d). The algorithm determined this by iteratively removing the links that do
not significantly deteriorate the LS. Provided the LS was vastly larger than the theoretical
value, it was evident that the network does not contain all the information (links) necessary
to recapitulate the data. This was particularly true in the case of GSK3B (Figure 3.19a;
heatmap). Based on the R2 value, which is the proportion of the variance in the data of
the readout explained by the model, the GSK3B variance is not captured by the model.
This can be viewed in comparison to EGFR phosphorylation, where the model simulated
very well the response of EGFR phosphorylation upon perturbation (Figure 3.19a; barplot).
Hence, the R2 value was close to 1 due to the optimal fit of the model to the data for EGFR
readout. None of the responses of GSK3B were simulated under the current model and
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therefore, as per the suggested extension by STASNet algorithm, we added a link from
RAF to GSK3B, which further improved the fit of the model as well as captured the overall
variations of responses seen in the GSK3B readout. Further down the refinement process,
this link was changed to ERK to GSK3B since regulation of GSK3B via ERK1 rather than via
RAF is highly supported by literature knowledge (Pal et al., 2017) (Figure 3.19a; heatmap
and barplot corresponding to ERK1->GSK3B). Similarly, linking ERK1 to p70S6K further
improved not only the response of p70S6K under MAPK pathway inhibition, but also the
response of its downstream target RPS6 (Iijima et al., 2002).
The perturbation response of IGFR was not identified using the current model, so an addi-
tional link associated with the negative feedback from mTORC2 via p70S6K was added to
ensure a better fit of the global response observed in IGFR (Figure 3.19a; heatmap mTORC2
-> IGFR). Regulation of mTORC2 via p70S6K was added to complement the mTORC2 to
IGFR link, as it explained the experimental output of AKTS473 under mTORC1 inhibition
compared to no inhibition, along with the known negative feedback from p70S6K to PI3K
(Rozengurt, Soares, and Sinnet-Smith, 2014). Interestingly, the p70S6K to mTORC2 and
mTORC2 to IGFR have not been previous identified in literature. Nevertheless, comparing
the experimental data, IGFR depicted the strong change in the phosphorylation upon dual
mTOR, PI3K and AKT inhibitors (Figure 3.19c). Upon the addition of the mTORC2 to IGFR
link, these responses were clearly fitted by the model (R2 ≈ 1)(Figure 3.19a; barplot).
With respect to CREB1, however, the fit did not improve dramatically, and in fact, none
of the CREB1 responses could be modeled under the current topology. The model was
refitted using the regulation via ERK (ERK -> CREB1) and AKT (AKTt -> CREB1), but,
both links were removed during the reduction process, which could point to the overall
CREB1 signal being too noisy for the model interpretation. The final model additionally
included PI3K to RAF crosstalk (Parrales et al., 2013; Bradley et al., 2008; Ebi et al., 2013),
to improve MEK1 and ERK1 readout simulations. This resulted in an LS score of 140.81,
improving the fit considerably and reaching an optimum close to the theoretical score
(Figure 3.19b and c). The Quantile-Quantile (Q-Q) plot represented the model error for
each data point compared to a theoretical distribution, which is the identity between
quantiles of the data and of the standard normal distribution. One can appreciate that with
the exception of a few points in both extremes, deviating away from the normal expected
fit, the overall model error was spread along a normal distribution curve (Figure 3.19d).
Therefore, our steady state model with 30 parameters (Table 6.11.1) quantitatively rep-
resents the signaling connectivity of MAPK/PI3K/AKT/mTOR networks in BON1 cell line.

QGP1 Comparable to the BON1 network, the QGP1 model generated via the initial
network topology captured many of the responses displayed in the experimental data.
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Comparing the experimental fold change to the simulated fold change, its evident that the
model is an appropriate fit of the perturbation data, given the overall trend of the responses
are recapitulated well by the model upon removing one link and with only few refinement
required(Figure 3.20c). An LS of 371.926 with 28 parameters meant one had to improve the
network to fit the data more accurately. Based on the simulation data in comparison to the
experimental data along with the R2 plots of the readout, the main changes not captured
by the model again belonged to the CREB1 responses and IGFR feedbacks (Figure 3.20a)
Therefore, we extended our QGP1 model by adding a link from AKTT308 (Hornbeck et al.,
2015) and p70S6K to CREB1, which was able to capture the strong response upon AKT
inhibition as well as the phosphorylation response under MEK1 and ERK1 inhibition
(Groot, Ballou, and Sassone-Corsi, 1994; Hornbeck et al., 2015). IGFR responses under
dual mTOR inhibiton as well as PI3K and AKT inhibition, also displayed in BON1, was
modeled by addition of the mTORC2 feedback towards IGFR (Figure 3.20a). The links
substantially improved the R2 value. PI3K to RAF crosstalk was also added as part of
the network refinement process, which resulted in an improved simulation of MEK1 and
particularly the ERK1 readouts (Parrales et al., 2013; Bradley et al., 2008; Ebi et al., 2013)
(Figure 3.20c). Additionally, an ERK to p70S6K connection was added to better predict the
p70S6K readout under PI3K and AKT inhibition (Iijima et al., 2002). Together with the
newly extended links, the accurate fit of the model is certainly visible in the Q-Q plot, as
almost all the data points fall along the identity line (Figure 3.20d). One single data point
shifted away from the red line. This datapoint is the AKTT308 readout upon AKT inhibition.
There was a change in the response sign as simulated data shows a positive response, while
experimentally, AKT inhibition resulted in de-phosphorylation of AKTT308. AKT inhibitor
MK2006 not only affects the downstream propagation of AKT signaling, but also prevents
the phosphorylation of AKT itself by upstream kinases (Hirai et al., 2010). However, the
MRA algorithm is not equipped to handle this activity because the approach assumes
that inhibitor effects with respect to phosphorylation is only occurring downstream of
the node and not on the node. Collectively, our final model with an LS of 155.76 with a
total of 35 parameters accurately depicts the signaling network assembly in QGP1 cell line
(Figure 3.20b; Table 6.11.1).

Comparison analysis of BON1 and QGP1 parameters The next step involved determin-
ing the parameter estimation and comparison of our cell lines. Although BON1 and QGP1
are neuroendocrine cell lines and their models share many parameters, we cannot compare
them directly. They are not isogenic lines and therefore show different basal activity in each
cell line. Nevertheless, the feedbacks and inhibitory effects are still comparable between
the cell lines (Figure 3.21a). In addition, we looked at the parameters unique to each of the
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FIGURE 3.20: QGP1 model. (a) Evaluation of the predicted vs experimental output of CREB1,
EGFR, GSK3 and IGFR in QGP1 cell line perturbation data. The heatmap shows log2 fold changes
(the value and its corresponding color) of each measurement under the respective perturbation
(row annotation) (left panel). The bars represent R2 values of each measured node (column anno-
tation). (b) Graphical representation of QGP1 network configuration. The dotted line and solid
green links show connections that were removed and added, respectively, to the initial network
topology. (c) Comparison of log2 fold changes of experimental data with perturbation data. The
heatmap represents the observed log2 fold changes of each measurement under a given pertur-
bation in the experimental data (top panel), in the stimulated data based on the initial network
topology (middle panel) and in the stimulated data based on the optimized final network topol-
ogy (bottom panel) of figure b. (d) Quantile-Quantile plot of the model error compared to a normal
distribution for QGP1. The red line shows the expected line and the dots represent the model error
for each data point.
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cell lines (Figure 3.21a). Thus, we first fixed the inhibitor parameter value such that the
difference in the inhibition response is captured in the link coefficients emanating from the
inhibited node and then determined the product of combined parameter values such that
the effect, not just on the direct node but rather on the entire signaling pathway, is identi-
fied. Finally, the confidence interval was computed using the profile-likelihood approach
implemented in STASNet to determine the range of values that the parameter could take
without significantly altering the fit by the model.
A total of 12 parameter combinations were identified as unique to either BON1 or QGP1
(Figure 3.21a). Among these, the feedback from AKTT308 and ERK1 to PI3K via p70S6K
were both non-identifiable parameters (Figure 3.21b). Non-identifiability is associated with
the presence of a non-finite confidence interval value in one or both directions from the
minimum. This means that the true value cannot be determined for a non-identifiable pa-
rameter as varying the parameter in either direction from its minimum maintained the best
fit LS or if the LS does not increase over a certain threshold (Raue et al., 2009). Such param-
eter ambiguity arises from either insufficient observation in the model itself for example,
from the non-measured nodes of mTORC1, and PI3K or is due to limited amounts and/or
quality of the data. Therefore, estimation of the parameter and subsequent interpretation of
its effect on the model is difficult.
As initially pointed out, regulation of CREB1 via AKTT308 and ERK1, dependent and inde-
pendent of p70S6K, were unique to QGP1 (Figure 3.21b; yellow bar). In fact, we observed a
parameter value of 0.098 with an upper bound at -0.022 and a lower bound at 0.22 for the
direct activation of CREB1 phosphorylation via AKTT308, while a similar parameter range
was also observed for p70S6K dependent CREB1 activation (Table 6.12.1). Interestingly, the
regulation via ERK1 to p70S6K also showed similar parameter values (0.046: -0.002 to 0.16).
However, the direct regulation by ERK1 showed the strongest pathway value with a mini-
mum at 0.43, and lower and upper bound around 0.22 and 0.66, respectively (Figure 3.21b).
Together, one can suggest that the regulation of CREB1 is more prominent via MAPK sig-
naling than the PI3K/mTOR signaling axis in the QGP1 cell line. Additional interesting pa-
rameters involved GSK3B phosphorylation, which showed a negative regulation via ERK1
in BON1 and a positive regulation via AKT in QGP1. Furthermore, our parameter analysis
displayed a unique link from EGFR -> RAF -> MEK1 in QGP1 although not evident from
our model, this is a potential link that is also present in BON1. The model did not identify
this parameter in BON1, since the activity from EGFR to ERK1 upon stimulation was negli-
gible due to the high ERK phosphorylation in ground state. Additionally, the model result
holds that BON1 is less responsive to EGF than QGP1 (path value: BON1 = 0.65 vs QGP1 =
0.88) and implies that BON1 generally has have much less activity compared to QGP1.
Combined analysis of both cell lines showed that in general the stimulation as well as the
negative and positive feedbacks were stronger in BON1 compared to QGP1 (Figure 3.21c).
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FIGURE 3.21: Parameter evaluation of cell line models. (a) Visual representation of shared and
unique links of PanNEN cell lines. The left network represents shared and unique links of the
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The stimulatory response of both IGFR and EGFR was significantly different between the
cell lines, and the response coefficient of the stimulation was higher for QGP1 than BON1.
In addition, parameters associated with MAPK signaling showed significant differences
between the cell lines. Particularly, the coefficient associated with the negative feedbacks
of ERK1 to EGFR and to RAF were higher in BON1 compared to QGP1, with the highest
feedback value close to -1 (-0.98: -1.30 to -0.69) present in the ERK1 to RAF feedback (Fig-
ure 3.21c; Table 6.12.1). Major differences were also observed in the positive feedbacks on
mTORC2 activity originating from AKTT308 and ERK and disseminated via p70S6K (Fig-
ure 3.21c). Both feedbacks were stronger in BON1 in comparison to QGP1, whose optimal
parameter spread was around 0 for both the links. Together, the difference in cell lines
can be attributed to their unique parameters, suggesting additional and distinct regulations
within the respective cell line and to their feedback parameter potential, which can further
define the vulnerability of the cell lines to an overall perturbation.
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Chapter 4

Discussion and outlook

The advent of multi-platform high throughput data has generated the prime opportunity
to study the divergence of cancer entities in an in-depth manner. In fact, an integrative ap-
proach of molecular sequencing data has revealed that one of the major factors influencing
distinct aberrations, leading to diverse oncogenic processes, can very well be attributed
to the differences in the originating cell (Hoadley et al., 2014; Hoadley et al., 2018). This
can be clearly seen in Squamous tumors that clustered together due to their consistent 3p
loss and 3q gain. In addition, clustering based on hypermethylation, despite the exclusion
of tissue-specific loci, resulted in the aggregation of organ-specific tumors (Hoadley et al.,
2014; Hoadley et al., 2018).

Based on the current literature knowledge of molecular aberrations of PanNENs, compris-
ing of minimal features associated with the PanNEC subtype, a clear divergence is seen at
the mutational level between the well-differentiated PanNETs including NETG1, NETG2,
and NETG3, and poorly differentiated PanNECs. However, the lack of alterations associ-
ated with DNA methylation and copy numbers in PanNECs remains a major gap in pro-
viding a comprehensive profile distinguishing these sub-classifications of PanNENs. The
knowledge gap hampers precise clinical diagnosis of either NEC or NETG3 tumors, which
is of high clinical relevance due to their direct influence towards poor prognosis among
PanNENs. They show histopathological differences compared to low- and intermediate
PanNETs yet maintain low morphological distinction from one another.
Leveraging on the idea that the cell-of-origin has a major influence on the diverse molecular
features associated with distinct cancer entities, we explored two major questions: 1) does
the cell-of-origin features distinguish the well-differentiated PanNETs from poorly differ-
entiated PanNECs? 2) Can we subsequently identify unique genetic and methylation char-
acteristics that can impact the precision in diagnostic and therapeutic approaches of these
subtypes?



68 Chapter 4. Discussion and outlook

4.1 PanNEN tumors have three distinct methylation subgroups

DNA methylation at CpG dinucleotides is a mechanism of cell-type specific gene regula-
tion, inherited in a continuous manner throughout development; hence it is a stable marker
of cell identity (Dor and Cedar, 2018). Methylation patterns are now considered as a robust
method to identify the tumor cell-of-origin across tissues types (Espinet et al., 2020), and
in different cancer types (Bormann et al., 2018; Fernandez et al., 2012; Moran et al., 2016;
Holm et al., 2016; Gaiti et al., 2019). In addition, they have been used for characterization
of subgroups within a tumor entity, for example in central nervous system tumors (Capper
et al., 2018), breast cancer (Holm et al., 2016), ovarian cancer (Lo Riso et al., 2020), as well
as in the tissue of origin of cell-free DNA (cfDNA) in disease (Moss et al., 2018). Given the
paramount influence of the DNA methylome on patient subgrouping within a cancer entity
and across cancer entities, we employed an unsupervised class discovery approach to iden-
tify PanNEN tumor subgroups within our cohort and subsequently demonstrated distinct
cell-of-origin features defining the identified subtypes.
Tumor DNA methylation-based classification modeled PanNEN tumors into three methy-
lome subgroups. The largest two groups, Groups A and B, harbored the majority of well-
differentiated PanNETs and poorly differentiated PanNECs, respectively (Figure 3.1a). Our
classification feature included the 10K methylation probes that displayed the strongest
methylation variability between Group A and Group B, thereby outlining an unbiased
methodology that can discern PanNETs, particularly NETG3, from PanNEC tumors. In-
terestingly, our approach additionally captured a “mixed”group, Group C, carrying 4 sam-
ples, comprising of 1 NETG2, 2 NETG3 and 1 NEC tumor. This further defines a set of his-
tologically indistinguishable tumors that shows methylation features unlike the tumors of
similar grade. The survival among patients of distinct groups supported our methylation-
based classification of PanNET tumors of Group A and PanNEC tumors of group B, but
also identified our Group C tumors with a prognosis in-between Group A and Group B
(Figure 3.1f). Nevertheless, given the low number of samples in Group C, the identity of
these tumors is still a major speculation and cannot be reliabily stated. In fact, to establish
the methylation-based classification system for improving diagnosis of PanNENs, a valida-
tion cohort encompassing all 4 grades and an overall larger number is required. Training
our classifier using our current cohort, and subsequently predicting the subgroups of the
validation cohort, is vital to build such methodology as a diagnostic backbone in a clinical
setting.

4.2 Group A and Group C are comprised of endocrine-like tumors

Within chapter 1, the current progress in identifying cell-of-origin of PanNEN tumors was
clearly demonstrated. Three recent studies in fact explored the potential endocrine origin
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of PanNET tumors based on the normal cell epigenetic features retained in the tumor pop-
ulation (Cejas et al., 2019; Domenico et al., 2020; Lakis et al., 2021). Cejas et. al. investigated
the histone acetylation associated with normal cell identify in combination with transcrip-
tomes in a cohort of NETG1 and NETG2 samples. On the other hand, Di Domenico et. al.
and Lakis et. al., utilized the DNA methylation 450K platform and independently deter-
mined the cell-of-origin of PanNET tumors from cohorts of 125 and 84 well-differentiated
PanNET samples, respectively. Although both cohorts were largely comprised of NETG1
and NETG2, Lakis et. al. additionally included 2 NETG3 tumors. All three studies unan-
imously confirmed α- and β-cells as potential normal cell precursors of PanNET tumors.
In fact, they identified α-like, β-like and intermediate-like tumors within their cohort, con-
firming the pancreatic endocrine origin for PanNET tumors.
Evidently lacking from their approach are potential cell-of-origin characteristics defining
the most aggressive subtypes of PanNENs: NETG3 and NEC tumors. The current thesis
aim to close this gap by including not only these tumor subtypes, but also by interrogat-
ing the methylation profile using the 850K EPIC beadchip platform, thereby significantly
increasing the number of CpGs investigated.
The identification of α-like, β-like and intermediate-like PanNET tumors was reaffirmed
by our study. The top DMPs associated with pancreatic cell markers belonged to IRX2 and
NKX6-1, which were strictly hypomethylated in Group A, indicating an endocrine origin
for these tumors (Figure 3.9a). As detailed in chapter 1, and reiterated in section 3.4, IRX2
and PDX1 expression characterized α-like and β-like tumors, respectively (Cejas et al., 2019;
Domenico et al., 2020). In fact, A closer look at their methylation pattern in Group A clearly
separated the samples into an α-like subgroup enriched for PDX1 hypermethylation and
IRX2 hypomethylation, carrying mean proportions of >55% α-cell signature, and β-like
tumors that carried >75% β-cell signature (PDX1 hypomethylation and IRX2 hypomethy-
lation) (Figure 3.10b; Figure 3.14c).
Interestingly, the intermediate subgroup of endocrine-like tumors of Group A showed a
cell marker methylation profile analogous to β-like tumors; they were PDX1 hypomethy-
lated and IRX2 hypomethylated tumors. With respect to the normal cell signature propor-
tion, however, intermediate-like tumors showed equal proportions of α-, β-cell signature,
thereby diverging from the remaining Group A tumors. Given the proportion of α-, β-
cell signatures in intermediate-like tumors, there are two possibilities of origin: during de-
velopment, α- and β-cells diverge from a common ancestor that shows properties of both
cell types. Such a progenitor can indeed be the actual normal precursor of intermediate-
like tumors as they would theoretically carry an equal representation of both α and β cell
methylation signatures. Adult pancreas does not carry an endocrine progenitor in the islet
of Langerhans though, which therefore points to the second possible origin: α-cells them-
selves. The plasticity of α-cells to transdifferentiate and regenerate β-cell populations has
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been extensively studied (Xiao et al., 2018; Lu, 2014). Particularly, their de-differentiation to
a naïve endocrine progenitor state unfolds the possibility of this cell type, with both α- and
β-cell features, giving rise to intermediate-like tumors. These pro-α-cells have the capacity
to switch between the production of glucagon and glucagon-like peptide 1 (GLP-1) tran-
scribed from the same gene Gcg depending on the abundance of prohormone convertase
PC2 or PC1/3. Under certain conditions, including beta-cell deficiency, adult α-cells can
tip the balance towards PC1/3 abundance and result in the production of GLP-1, thereby
maintaining an un-differentiated pro-α-cells state. In fact, the earliest endocrine progenitor
cells are GLP-1 producing pro-α-cells that can give rise to α-cells and β-cells depending
on the relative expression of ARX and PAX4, respectively (Habener and Stanojevic, 2012;
Zhang et al., 2019; Lee et al., 2018). Further, single cell analysis has identified a population
of proliferating α-cells within the adult pancreas (Segerstolpe et al., 2016). This could be the
subpopulation carrying the GLP-1 protein. At the RNA expression level, however, they are
indistinguishable with respect to Glucagon or GLP-1 production.
Group C tumors are also reflective of an endocrine feature (Figure 3.10b). The mixed Group
C tumors included all three cell-of-origin characteristics of endocrine precursors, suggest-
ing both Group A and Group C are tumors of endocrine cell-of-origin.

The cell marker expression associated with the normal cell type was absent in Group A
tumors (Figure 3.11). The α-like tumors showed ARX+ PDX1- expression in 12/13 stained
samples. Although the expression profile resembles that of an α-cell, this was not a unique
feature of α-like tumors. The β-like tumors were diagnosed as insulinomas (samples PNET
25, 52, 91), but on the protein level showed an ARX+ PDX1- profile. In addition, the
intermediate-like tumors included PDX1 and ARX double negative (PNET 50 and 18) tu-
mors, PDX1 positive only (PNET 51) and ARX positive only (PNET 14) further highlight-
ing that methylation is a more consistent marker of lineage, and more likely to expose the
cell of origin than expression of lineage specific markers. The discrepancy of methylation
and protein presence in these tumors can be attributed to the additional regulations taking
place within the genome including cell-type-specific chromatin marks or transcriptional
programs (Hoadley et al., 2018).

4.3 Group B tumors display exocrine-like properties

It is important to emphasize that unlike the aforementioned studies which showed dis-
tinct clusters for α-like, β-like and intermediate-like tumors, our study clustered the en-
docrine tumors together, irrespective of the cell type from which they originated from. This
is highly influenced by the presence of Group B tumors which were lacking endocrine fea-
tures. Phylo-epigenetic analysis exposed the tight clustering of PanNEC samples with ex-
ocrine cells and additionally highlighted their strict separation from endocrine cells and
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endocrine-like PanNET tumors (Figure 3.13). PanNECs have been repeatedly compared to
PDACs in terms of the mutational spectrum (Konukiewitz et al., 2018). Therefore, there
have been speculations in the field as to whether PanNECs are in fact of ductal origin. The
key difference between these two tumor entities became apparent at the cell-type similar-
ity level whereby PDACs carried equal proportions of acinar and ductal-cell signatures,
whereas NEC tumors showed the highest proportion of the acinar cell signature. Given
their lack of strong endocrine features, and enrichment of the acinar cell signature, we hy-
pothesize that NEC tumors of Group B are acinar cell-like tumors of exocrine origin.
A recent study by Kopp et al. (Kopp et al., 2012) showed that SOX9 accelerated the for-
mation of precursor lesions of PDAC when co-expressed with oncogenic KRAS. By lineage
tracing, their study also suggested that upon the expression of SOX9, PanIN lesions and
subsequently pancreatic ductal adenocarcinomas arise from ductal metaplasia of the pan-
creatic acinar cells, a phenomenon known as acinar-to-ductal metaplasia (Kopp et al., 2012).
Apart from its critical role in tumor formation from acinar cells, SOX9 is a crucial factor, ini-
tially maintained in the multipotent progenitor state (Cano et al., 2014) in order to regulate
pancreatic cell development. At more advanced developmental stages, the expression is
subsequently restricted to NKX6.1+ bipotent progenitor cells and later, in adult pancreatic
cell types, SOX9 is constrained to ductal and centro-acinar cells of the pancreas (Seymour
et al., 2007; Arda, Benitez, and Kim, 2013). We detected SOX9 in 81% (9 /11) of PanNECs
available for IHC in Group B and 60% (3/5) of NETG3 samples in Group A (Figure 3.11
and (Figure 3.12). Interestingly, Group B samples carried a SOX9+, ARX- and PDX1- phe-
notype. In line with the aforementioned findings in PDAC, our data led us to hypothesize
that Group B samples are acinar-like tumors, which develop by a mechanism similar to that
of PDAC formation via the expression of SOX9. Although SOX9 expression was largely ab-
sent in the Group A tumors, presence of SOX9 was evident in NETG3 tumors. Regardless,
the distinction between the NETG3 Group A tumors and the Group B tumors is based on
the fact that NETG3 SOX9+ samples are α-like tumors while Group B tumors are acinar-like
tumors. Since SOX9 plays a critical role in the multipotent and bipotent state of pancreatic
development, it is likely that SOX9+ NETG3 tumors may originate from endocrine cells,
given their similarity to α-cells and, in the course of tumor progression, revert to express-
ing SOX9 as a mechanism to move towards a progenitor-like phenotype.

Evidently, the acinar cell signature of NEC tumors is significantly more abundant when
compared to the endocrine-like tumors (mean of 0.38 of acinar-cell proportion vs 0.25 of
α- and β-cell proportion). However, it is also noteworthy that the mean proportion of α-
and β-cell signatures is maintained around 0.25 and not far behind the observed mean pro-
portion of the acinar cell signature (0.38). This certainly indicates the possibility of a po-
tential progenitor resembling an early ancestor of pancreatic development as the source of
the precursor cell. Group B tumors also mirrored the naïve hESC methylation profile, thus
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further establishing the feasibility of the progenitor-like precursor. Recently, novel, mul-
tipotent progenitor-like cells were identified in the major pancreatic ducts (MPDs), which
were PDX1+/ALK3+ cells that maintained their de-differentiated state under the presence
of BMP7 all the while maintaining the expression of the ductal cell marker SOX9 (Qadir
et al., 2018). The single-cell RNAseq analysis of the ALK3+ sorted cells determined sub-
populations within these progenitors that carry lineage differentiation potential including
pro-ductal, pro-acinar and ducto-endocrine axes (Qadir et al., 2020). Evidently, multilineage
potential could also be embedded in the methylation profile of these progenitor-like cells
and could therefore include relatively equal distribution of acinar, α- and β-cell signatures.
Since the ductal component is absent within the tumors included in the cohort studied
here, it is likely that the pro-acinar or ducto-endocrine SOX9+ subpopulations might indeed
be the normal precursors to the exocrine-like NEC tumors. Validation of this hypothesis
would require first obtaining ALK3+ sorted progenitor-like cells and perform single-cell
DNA methylation profiling combined with transcriptome (scNMT-seq) analysis to deter-
mine the methylation signature associated with each of the progenitor axes (Clark et al.,
2018). Subsequently, the profiles could then be deconvoluted to see the proportion of these
progenitor signatures captured within the PanNEN cohort.

4.4 Distinct mutational and copy number profiles characterize
endocrine-like and exocrine-like tumors

The mutational characteristics of α-like tumors identified by Chan et. al. is reproduced
in our results, where most samples with ATRX, DAXX and MEN1 (A-D-M) mutations be-
longed to α-like tumors (Chan et al., 2018). The strict enrichment of the MEN1 mutation
in α-like tumors might be attributed to the specificity of MEN1 alterations in the formation
of tumors from α-cells. Various mouse model studies have identified that MEN1 depletion
from α-cells surprisingly resulted in the trans differentiation to β-cells and subsequent for-
mation insulinomas (Lu et al., 2010; Shen et al., 2010). One of our β-like tumors diagnosed
as insulinoma indeed carries a MEN1 mutation. Therefore, based on the mouse model
studies, it might be possible that this tumor in fact progressed from an α-cell and not from a
β-cell. This also has additional positive implications towards the intermediate-like tumors,
as the methylation profile embodying the final trans-differentiated cell type additionally af-
firms the theory of a pro-α-cell giving rise to intermediate-like tumors. Since the majority
of the MEN1 tumors maintained their α-cell signature, one can speculate that the presence
of additional aberrations prior to MEN1 is in fact forcing the maintenance of α-like profiles
within these tumor entities.
Interestingly, the four VHL mutations identified within our cohort belonged the β-like
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and/or intermediate-like tumor group carrying hypomethylation of IRX2 and PDX1. Al-
though the function of VHL protein in regulating β-cell function and maintainance of the
β-cell mass has been explored, its direct influence on tumor formation from β-cells is yet to
be investigated (Choi et al., 2011; Puri, Cano, and Hebrok, 2009).
Alpha-like tumors showed distinct CNA profiles including an amplification-rich signature,
a low-CNA signature and a deletion-rich signature. The amplification-rich signature and
deletion-rich signature were present largely in NETG2 and NETG3 tumors. Low CNA
profiles, on the other hand, were enriched not only in NETG1 α-like tumors but also in
β-like and the intermediate-like tumors of Group A. With respect to molecular timing of
the events, a recent study has revealed that clonal copy number losses particularly of chro-
mosomes 2, 6, 11 and 16 are among the earliest events followed by late clonal synchronous
events of chromosomal gains in chromosome 5,7 and 19, as well as MEN1 and DAXX muta-
tions (Gerstung et al., 2020). Given the copy number profile as well as recurrent mutations,
it is likely that the deletion-rich signature associated α-like tumors are early in the tumor
progression timeline while the amplification-rich signature tumors of an α-cell of origin,
with enrichment of MEN1 mutations, are later in the molecular clock of cancer formation.

Acinar-like tumors were characterized by recurring mutational aberrations in KRAS,
SMAD4 and TP53. This is in line with the previous findings of the NEC mutation spectrum
detailed in chapter 1. Mutations in DAXX and ATRX were not present in the Group B tu-
mors, however, a single MEN1 aberration was identified within this subgroup. The sample
also carried a SMAD4 mutation; therefore, it is likely that the tumor progression to the NEC
grade is rather influenced by the latter aberration. Using focal DNA copy number analysis,
we found that Rb1 loss, evident in NEC tumors at the protein level (Yachida et al., 2012),
was due to DNA copy number loss of chromosome 13. This recurrent focal aberration was
present in 50% of the PanNECs but not in any NETG3 samples, additionally highlighting
yet another genomic feature distinguishing these high-grade tumors. In contrast, cell cycle
regulators CDKN1B and CDKN2A were lost in Group A PanNET samples. These important
driver events in NETs and NECs indicate a dependency of both tumor entities on cell cycle
regulation pathways.

Group C tumors lacked mutational aberrations associated with the targeted panel genes.
This might suggest that they are not driven by mutations but rather the tumor progres-
sion is influenced by other molecular landscapes that are not explored in the context of this
project. However, one must also rule out a possibility of technicality. That is, the targeted
sequencing only covered a total of 482 genes while the human genome encodes 50,000 pro-
tein coding genes. Since the Group C tumor subgroup showed a strong divergence at the
methylation level in comparison to tumors of similar grade, it is also probable that they
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might carry non-conventional mutations. Additional mutational profiling using whole ex-
ome sequencing of these tumors can indeed provide more clarity. Group C also displayed a
methylation pattern of CpGs associated with cell markers resembling a mixed Group A and
B profile. Although they remain close to Group B samples in the phylo-epigenetic analysis,
their similarity to acinar cell signatures is not comparable to that found in Group B and they
seem to show an increased proportion of endocrine cell signatures. Further identification
of the Group C cell of origin and their genomic characteristics are limited due to the small
number of samples.

4.5 Therapeutic strategies adapted for unique genomic character-
istics are essential for endocrine-like and exocrine-like tumor

The distinct molecular landscapes of the endocrine-like PanNET tumors and exocrine-
like PanNEC tumors is strongly indicative of separate directions of drug treatment (re-
viewed by (Scarpa, 2019)). The current state-of-the art targeted treatment strategy approved
for well-differentiated PanNET tumors includes the FDA approved drugs Sunitinib and
Everolimus, targeting angiogenesis and mTOR signaling, respectively (see chapter 1 for de-
tails). The molecular knowledge informing the use of these drug targets for treating low-
and intermediate-grade PanNETs comprises few genetic aberrations within the components
of these signaling axes. Our cohort harbored 37% mTOR/PI3K axis associated aberrations
including mutations in TSC2, PTEN, and PI3K component genes and copy number aberra-
tion of 22q12.3 resulting in the deletion of DEPDC5 gene. Recurring mutations in VHL and
a single event in HINF1A were also present in our cohort, further promoting the involve-
ment of angiogenesis in PanNET tumors. Due to the relatively low number of aberrations,
the benefits of treatment with Sunitinib are potentially exclusively effective for a handful of
patients and much less than those that could benefit from Everolimus. Therefore, it is im-
perative that the patients are initially screened for these recurrent aberrations prior to use
of Everolimus and/or Sunitinib, which is currently not undertaken.

The recurrent mutational and focal copy number aberrations of Group B tumors suggest
the prospect of different treatment regimens unlike that of the Group A tumor subgroup.
Group B tumors were defined by KRAS mutations, and it was altered in 36% of the sub-
group. Similarly, loss of RB1 and mutations in TP53, alterations that impinge on cell cycle
regulation, were found in 71% of Group B tumors. Given the highly proliferative nature of
this aggressive tumor subgroup, the optimal therapeutic strategy would therefore include
targeting these highly recurring molecular aberrations. Conventional targeted inhibitors
are yet to be developed for TP53 mutations and its associated pathways. However, target-
ing loss of RB1 is certainly being investigated. The canonical pathway of the RB1 protein
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results in the regulation of G1 to S phase transition. The protein acts as a checkpoint of the
transition state and under mitogenic signals, it is repressed by CDK4/6, thereby allowing
for the expression of E2F target genes and subsequently the progression of the cell into the
S phase of the cell cycle (Sherr, 1996). Since RB1 is deleted in Group B tumors, one can indi-
rectly interfere with the process by targeting the CDK4/6 proteins using the highly specific
inhibitor PD0332991, thus forcing the cell to an early cell cycle exit and thereby reducing
the proliferative activity of the tumor cells (Fry et al., 2004; Knudsen et al., 2019).

4.6 Optimal therapy for exocrine-like tumors is deciphered by ex-
ploring signaling dependencies of in-vitro models

A common assumption that vastly flawed in the context of cancer, is being made when
considering such linear approaches: Alteration in gene A results in the aberration of
protein B and thereby deregulate process C. Compensatory mechanisms including proteins
with similar function, or crosstalk to another signaling pathway can in fact counteract the
treatment regimen based on theoretical linear relationships and lead to therapy resistance.
For instance, CDK2 in a normal cell type can compensate for the inhibition of CDK4/6,
thus releasing the Group B tumor cells back to a more proliferative state. This can be
overcome by combinatorial treatment targeting the oncogenic signal propagated through
oncogenic signaling pathways such as MAPK or mTOR signaling (Knudsen et al., 2019).
Such a combinatorial treatment, however, again generates the paradigm that the targeted
pathways are linear and are not interconnected with additional signaling axes.

We therefore explored the potential of a cell line model to study signaling crosstalk and
the cells’ vulnerabilities to combinatorial therapy. Based on the genomic aberrations, the
QGP1 cell line was deemed an appropriate candidate, as it carries the signature aberrations
of Group B tumors including KRAS, and TP53 mutations as well as RB1 loss. BON1 cell
lines also carry mutational profiles indicative of Group B tumors, but lack the copy number
aberrations associated with them. Nevertheless, the DNA methylation profile suggests that
both cell lines can be utilized as genetic models of Group B exocrine-like tumors.
We modeled the signaling axes of MAPK and mTOR/PI3K pathways as the initial step
to identifying crosstalk and vulnerabilities reflective of Group B tumors. Interestingly,
both cell lines displayed a crosstalk between mTOR signaling and MAPK signaling via
PI3K. However, the differences were largely retained in the feedback potential of the cell
lines. The negative feedbacks in the respective pathways were highly diminished and
the positive feedback mechanisms were amplified in the QGP1 cell lines. As a result, we
observed a strong activation of the downstream signaling in QGP1, in contrast to BON1
where the feedback has much more control over the activity of the signaling nodes. In the
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context of inhibitors, combinatorial inhibitor treatment targeting PI3K and ERK signaling
should hamper the overall activity of all three signaling axes. The combination of PI3K
and ERK, however, is not ideal as it might cause toxicity in patients. Therefore, one can
consider MEK1 inhibition in combination with IGFR. In the future, the models need to be
systematically and quantitively assessed to determine best combinatorial treatments with
the strongest impact on the signaling pathways.
In order to translate these novel insights to the clinical setting, it is crucial to validate
the presence of such vulnerabilities in the tumor cohort. The cell lines cultured in a
two-dimensional environment for many years can certainly modify the dependencies of
the signaling pathways. Therefore, RNA sequencing profiles of the Group B tumors in
comparison to Group A need to be generated and differential gene expression, in the
context of pathways needs to be investigated. The well established tools including SPEED2
or Enrichr can be utilized to determine differentially activated pathways (Rydenfelt et al.,
2021; Kuleshov et al., 2016). Additionally, one could also utilize the PROGENy tool to
determine pathway activity from basal expression (Schubert et al., 2018). This can further
validate if the pathway regulations within the in-vitro cell lines are indeed representative
models of the tumors. Further, additional vulnerabilities can be deduced from combinato-
rial treatment simulations as well as by generating additional knockout experiments of key
nodes in the pathway to eventually decipher the optimal targeted approach for therapy.

4.7 Concluding remark

The advancement of next generation sequencing and high-throughput data analysis has cer-
tainly impacted how tumor entities are viewed in clinical translational research. Compre-
hensive profiling and accordingly strategizing the diagnostic and therapeutic interventions
are increasingly becoming the norm. For instance, methylation-based profiling underlined
by cell-of-origin features have dramatically improved diagnosis of CNS tumors (Capper
et al., 2018) and identified diversity in cell of origin for colorectal cancers (Bormann et al.,
2018). The distinction in prognosis among patients along with specificity in genetic and
methylation features have also proposed more stratified therapeutic approaches for these
cancers.
Unfortunately, such comprehensive profiles have been largely confined to the most fre-
quently occurring solid and blood cancer entities. The neglected rare tumor entities, on
the other hand, are lagging several years behind in such genetic profiling. In fact, molecu-
lar characterization of PanNEN tumors have only recently taken a minor step forward and
mainly encompassed the low and intermediate NETG1 and NETG2 tumor grades. This is
of course reflected in the few clinical trials that have investigated the potential of targeted
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therapy wherein, the efficacy and responses of Everolimus and Sunitinib are explored for
NETG1 and NETG2 tumor grades. Even with the current genomic knowledge attained for
these grades, a trial is yet to be performed that takes stratification measures into consider-
ation prior to testing. Recent evidence shows that apart from the recurrence of key genetic
drivers, the differences within and between the low and intermediate grade tumors that
are directly associated with patient prognosis are also attributed to cell-of-origin from the
specific pancreatic endocrine cell type.
Alarmingly, the most aggressive PanNEN tumors with a much higher mortality rate, which
includes NETG3 and PanNECs, are overlooked in these comprehensive studies. The strong
similarity between these tumors additionally often lead to misdiagnosis, highlighting the
importance of bridging this gap and defining the molecular profiles that can then be further
exploited for accurate diagnosis as well as the appropriate treatment regimens entailed to-
wards targeting tumor characteristics.
Our study has moved the field a step forward in expanding the molecular characteriza-
tion of the highly understudied PanNEN subtypes, NETG3 and PanNEC. We have demon-
strated that NETG3 tumors have genetic and methylation features characteristic of the low
and intermediate NETG1 and NETG2 PanNET tumors and additionally, originate from the
endocrine cells of the pancreas. In contrast, PanNEC tumors harbor genetic, and methyla-
tion features highly dissimilar to PanNET tumors and demonstrate exocrine-like cells as a
potential normal precursor. They show significant resemblance with the PDAC, an exocrine
tumor, compared to the PanNET tumors, emphasizing not only the need to treat these Pan-
NEN subtypes as a distinct entity but also consider exploring the treatment strategies more
in line with what is currently available and investigated in PDAC patients.
Ultimately, cancer is a disease state that cannot be looked at in parts but rather as a melting
pot of disrupted molecular hierarchies. Understanding the major changes in these molecu-
lar states is essential to identify how the tumor developed from a normal cell and what led
to its progression, thereby establishing adequate diagnosis and treatment approaches. This
project has shed light on the endocrine and exocrine cell of origin for PanNEN tumors dis-
tinguishing the well-differentiated PanNETs, and particularly the high grade NETG3 from
the poorly differentiated and aggressive PanNEC tumors. The intrinsic composition of the
methylation profiles, in combination with diversity in genomic aberrations, advocates for
treating each of these subgroups as its own entity and tailoring therapeutic approaches to-
wards the distinct molecular profiles which drive tumor progression.
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Chapter 5

Materials and Methods

5.1 Patient cohort representation

The patient cohort associated with section 3.1 through section 3.4 consisted of 57 Pan-
NEN samples collected from 55 patients. Primary tumor and metastasis of a single patient
(PNET77) were obtained and two metastases, arising one year apart, were also obtained for
another patient (PNET56). The Institute of Pathology at Charite University of Berlin pro-
vided 48 samples of all grades and the University of Bern provided 9 NETG3/NEC sam-
ples. Together, these included 41 primary tumors from pancreas and 16 metastases. The
metastases of the cohort comprised of 11 liver metastasis, 2 lymph node metastasis and one
metastasis each in the bladder, papillary and peritoneal regions. The resected primary tu-
mors were located in the head (29.8%), tail (24.6%) and body (3.5%) of the pancreas and two
samples had lesions in multiple sections of the pancreas. Clinical reports on the patients
were collected together with tumor associated reports, which are presented in Table 6.13.1
and Table 6.14.1, respectively. All tumor samples were obtained as Formalin-fixed paraffin-
embedded (FFPE) blocks. With the exception of 10 cases, normal controls for the respective
patients were additionally acquired. Normal tissue sections were either tissue adjacent to
the tumor (as per the pathologist’s examination; normal adjacent n= 15), a separate block
containing only normal tissue (normal distant n = 29) or peripheral blood samples (n = 3).
All patients provided signed consent as part of the clinical documentation protocol of the
Charité University in Berlin. Samples of the University of Bern were provided by the Tissue
Biobank Bern (TBB) according to the relevant ethics approvals.

5.2 PanNEN panel design

The first part of the PanNEN gene panel design was based on a text-mining approach to ex-
tract high-quality information regarding genes associated with PanNENs from GeneView
(Thomas et al., 2012), the Catalogue of Somatic Mutations in Cancer (COSMIC) (Bamford
et al., 2004) and few PanNEN publications (Cao et al., 2013; Jiao et al., 2011; Yuan et al.,
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2014; Banck et al., 2013). This was done in collaboration with the Department of Knowl-
edge Management in Bioinformatics at Humboldt University. From this preliminary list,
47 PanNEN-likely driver genes were then curated with further focus on MAPK and mTOR
signaling pathways. Subsequently, amplicons were designed with GRCh37 genome refer-
ence using the Ion AmpliSeq Designer tool (Life Technologies) for the 47 candidate genes
provided under the criteria “DNA Gene design (multi-pool)”. The panel was designed to
generate primers targeting 125-bp stretches of exon regions of the selected genes. The final
panel design included 1175 amplicons, which were divided into two primer pools.

5.3 DNA isolation

DNA isolation and the subsequent DNA sequencing was performed by Andrea Menne the
Molecular Tumor Pathology, Group of Prof. Dr. Christine Sers at the Charite University
of Berlin. Briefly, FFPE Tissue samples, including embedded biopsies, were sectioned and
stained with Hematoxylin and Eosin (H & E). Pathologists demarcated tumor and healthy
tissue areas in the H &E slides. Depending on the size of the marked area, 12 sections
of 5 µm each from tumor samples and 6 sections of 5 µm for adjacent or distant normal
tissue were used for DNA isolation. The tissues were macro-dissected from the slides
and DNA was prepared using the GeneRead DNA FFPE kit (Qiagen). Quality and quan-
tity of DNA was determined by RNAseP quantification as per manufacturer’s instructions
(Thermo Fisher Scientific).

5.4 DNA sequencing

DNA libraries using 20ng of DNA were prepared with Ion Ampliseq Library kit (Thermo
Fisher Scientific). Libraries included regions targeted by the panel primers, distributed into
two amplicon pools per DNA sample for the PanNEN panel and 4 amplicon pools per DNA
sample for CCP. Upon ligation to Ion Xpress Barcode Adapters (Thermo Fisher Scientific)
and purification using Agencourt AMPure beads (Beckman Coulter), two samples were
mixed at equal ratio on a 318v2 sequencing chip. Using the Ion Torrent PGM (Thermo
Fisher Scientific), raw intensity data were generated upon sequencing at an average depth
of 1158 reads using PanNEN panel and an average read depth of 217.03 reads for CCP
panel.

5.5 Sanger sequencing

To validate results from the panel sequencing we performed Sanger sequencing using 5-
10ng/ul DNA, as per the manufacturer’s protocol. The sample preparation was performed

https://pathologie-ccm.charite.de/en/research/research_groups/research_group_sers_molecular_tumor_pathology
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by Kerstin Wanke-Möhr the Molecular Tumor Pathology, Group of Prof. Dr. Christine
Sers at the Charite University of Berlin. Primers were obtained from the panel primer pool
and 10 µM were added to generate the Sanger mix, which was subsequently, sequenced
at Eurofins Scientific facility (Eurofins Scientific). Validation was performed for specific
mutations which showed sub-optimal amplicon performance, were located within long nu-
cleotide repeat areas or harbored low allelic frequency. The resulting signal intensity images
were manually scanned to identify the targeted mutations.

5.6 Fluorescence In-Situ Hybridization (FISH)

Fluorescence in situ hybridization (FISH) was performed by Andrea Menne from the Molec-
ular Tumor Pathology, Group of Prof. Dr. Christine Sers at the Charite University of Berlin.
Three µm tumor sections from 23 samples were obtained. We used commercially available,
standardized centromere and gene probes for detecting chromosome 5 and RICTOR gene,
chromosome 9 and TGFBR1 gene, and chromosome 11 and MEN1 gene (all FISH probes ob-
tained from Empire Genomics). Hybridization was performed according to manufacturer’s
instructions. We scored a maximum of 40 cells per sample using an Olympus microscope
(Olympus) upon manually evaluating cell structure and signal intensities. Analysis was
conducted using BioView solo image analysis (Abbott Molecular).

5.7 DNA methylation

DNA methylation profiling of all PanNEN cohort samples was performed with 200–500ng
of DNA using the Infinium MethylationEPIC BeadChip array (850K; Illumina) according to
the protocols provided by the manufacturer. The data was generated by the Department
of Neuropathology, Group of Prof. Dr. David Capper at the Charite University of Berlin.
Normal cell type HumanMethylation450K data of Pancreatic α, β, acinar and ductal cells
were obtained directly from the published lab or GEO ((Neiman et al., 2017), GSE122126 and
GSE134217). Published 167 PDAC Infinium HumanMethylation450K data and Infinium
MethylationEPIC data of human Embryonic Stem Cells (hESC) were additionally acquired
from GSE49149 and GSE128130, respectively.

5.8 Cell culture and phosphoprotein assay

The phosphoprotein data generation was performed by Dr. Pamela Riemer and Kerstin
Wanke-Möhr from the Molecular Tumor Pathology, Group of Prof. Dr. Christine Sers at
the Charite University of Berlin and Dr. Anja Sieber from the group of Prof. Dr. Nils

https://pathologie-ccm.charite.de/en/research/research_groups/research_group_sers_molecular_tumor_pathology
https://pathologie-ccm.charite.de/en/research/research_groups/research_group_sers_molecular_tumor_pathology
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https://neuropathologie.charite.de/en/research/molecular_neuropathology_and_tumorepigenetics/
https://pathologie-ccm.charite.de/en/research/research_groups/research_group_sers_molecular_tumor_pathology
https://www.sys-bio.net
https://www.sys-bio.net
https://www.sys-bio.net


82 Chapter 5. Materials and Methods

Blüthgen of the Integrative Research Institute (IRI) for Life Sciences at Humboldt Uni-
versity, Berlin. Briefly, the QGP1 cell line was cultured in D10 medium containing Gibco
Dulbecco’s Modified Eagle Medium (DMEM) and 2mM Ultraglutamine, supplemented
with 10U/mg/ml Penicillin and Streptomycin, and 10% Fetal calf serum (FCS). To cul-
ture BON1 cells, 4.5g/l glucose were additionally added to the aforementioned mix. Each
of the cell lines was seeded at 2x106 cells/10cm dish. The following day, the media was
removed, and the cells were washed twice with PBS prior to 24 hr serum starvation us-
ing D10 medium lacking FCS and glucose. The cells were then treated with either an in-
hibitor (PI3K: GDC0941(Axon) 1 µM, AKT: MK2206(LKT Laboratories) 1 µM, Dual mTOR:
AZD8055(Cayman Chemical) 100nM, mTORC1: Everolimus (Cayman Chemical) 100nM,
MEK1: AZD6244(Selleckchem) 5 µM, ERK1: SCH772984(Selleckchem) 1 µM) in the appro-
priate final concentration, or in the case of controls, with 0.1% DMSO. After 1h of treatment,
the cells were stimulated for 30 mins with both 30ng/ml EGF and 100nM IGF. For the non-
stimulated controls, PBS/0.1%BSA was used instead. At least 3 replicates were prepared
per condition/readout (see next paragraph for readouts) in BON1 and QGP1 including 5
inhibitor, control-stimulated and control-non stimulated conditions. The cells were then
harvested, lysed with Bio-Plex Cell Lysis Kit (Bio-Rad) and the protein concentrations were
quantified using a standard BCA assay.
For the Bio-Plex run, 15 µg of protein were obtained and additional preparations were per-
formed according to the manufacturer’s protocol (ProtATonce; custom generated proto-
col based on the phosphoprotein antibody panel). Phosphoprotein levels were assessed
using the magnetic beads coupled antibodies, specific for each target site: IGFRY1131,
EGFRY1068, MEK1S217.221, RPS6S235.236, GSK3BS9.21, p70S6KT389, PRAS40T246, CREB1S133, and
ERK1T202.Y204. The phosphoproteins were quantified with the the latest Bio-Plex system
termed MAGPIX protein assay system (Bio-Rad) as per manufacturer’s instructions.
For the WES capillary western system (ProteinSimple/Biotechne), the majority of the pri-
mary antibodies (pAKTt: Cell Signaling, rabbit - #2965, pAKTs: Cell Signaling, rabbit -
#4060, p4EBP1 S65: Cell Signaling, rabbit - #9451) were diluted in 1:50 concentrations,
while Vinculin (R&D Systems, mouse – MAB68969) was diluted in 1:30 concentrations and
standard concentrations suggested by manufacturer were utilized for secondary antibodies.
1 µg/µL protein was loaded into the capillary and the run was executed using the manufac-
turer’s guidelines (proteinSimple) under the default setting with a single change: primary
antibody incubation time was increased by 90mins. Due to the conflict in the protein size for
each of the AKT phosphosites, two separate runs were performed in parallel, each detect-
ing one of the pAKT site, in addition to Vinculin and p4EBP1 phosphorylation as technical
controls.

https://www.sys-bio.net
https://www.sys-bio.net
https://www.sys-bio.net
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5.9 Immunohistochemistry (IHC)

Representative samples from Group A and B described in chapter 3 were subjected to Im-
munohistochemistry (IHC) for ARX, PDX1 and SOX9 expressions. The IHCs were per-
formed in Institute of Pathology at Charite University of Berlin as well as Institute of Pathol-
ogy at University of Bern, Switzerland. Briefly, 2.5 µm FFPE sections were used for ARX
(1:1500, R&D Systems, sheep - AF7068), PDX1 (1:100, R&D Systems, mouse - MAB2419)
and SOX9 (1:100, Cell Signaling, rabbit - #82630) immunostainings. Antigen retrieval was
performed by heating the Tris30 buffer at 95°C for 30 minutes. The primary antibodies were
incubated for 30 minutes at the specified dilutions and upon secondary antibody incuba-
tion, the staining was visualized utilizing Bond Polymer Refine Detection kit, with DAB
(3,3’-Diaminobenzidine) as chromogen (Leica Biosystems). The immunostainings for each
marker were performed on an automated staining system (Leica Bond RX; Leica Biosys-
tems).
Evaluation of the staining was performed by two pathologists: Dr. med. Armin Jarosch (In-
stitute of Pathology, Charite University, Germany: SOX9 staining) and Prof. Dr. med. Au-
rel Perren (Institute of Pathology, Bern University, Switzerland: PDX1 and ARX staining).
Cases were identified as strong positive when a large section of the tissue was positively
stained, single cell positive if few single cells within the tissue were positively stained or
negative, when the entire tissue was negative for the targeted marker. The assessment for
the analyzed sample is reported in Table 6.14.1.

5.10 Data processing and analysis

5.10.1 Mutational analysis

The raw DNA sequencing reads were first aligned to the GRCh37 reference genome us-
ing the Torrent Mapping and Alignment Program (TMAP; Life Technologies). A cut-off of
quality > 50 nucleotides in aligned reads and a mapping quality of >4 was placed using an
in-house python script. The processed bam files were then utilized for variant calling using
the TS Variant Caller plugin under the “strict” setting per Ion Suite (Ion Torrent platform)
parameter profiles. The generated variant call format (VCF) files of the tumor and normal
samples per patient were merged and, read counts for the reference and alterated allele in
all variants were extracted to determine the representation of the variants in both cases.
The merging process was excluded in the 10 cases that did not have a paired normal tis-
sue. The merged or single VCF files were subsequently annotated using the SoFIA (Childs
et al., 2016) annotation framework and additionally filtered in a semi-automated manner.
Variants that were positive for the following set of parameters were removed using cus-
tom R scripts: intronic and synonymous variants, 1000Genome variants with frequency
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greater than 1% in the population, variants within homopolymer regions of >4 nucleotides
and tumor variant allelic frequency <5%. For the tumor-normal pair samples, representa-
tion of variant allelic frequencies in matched normal tissue were manually assessed and
variants carrying comparable allelic frequencies to that of the corresponding tumor were
subsequently removed.

5.10.2 DNA methylation preprocessing

Raw idat files were preprocessed using a subset-quantile within array normalization
(SWAN) approach provided through the R package minfi (Aryee et al., 2014; Maksimovic,
Gordon, and Oshlack, 2012). Probes performing poorly in the analysis were further filtered
out if they met the following criteria: probes with a detection p-value >0.01 in at least one
sample, probes cross reactive to multiple sites in the genome (Chen et al., 2013), sex chro-
mosome probes and probes containing SNPs with an allele frequency >0.01.
When comparing 450K and EPIC samples, the processing was done by first converting
the EPIC platform to 450K using combineArray() and then performing the aforementioned
steps. When tumor and normal data were analyzed together, normalization was done us-
ing the preprocessFunnorm() function in order to accommodate for the global variation
between normal and tumor data. This also entailed removing cross reactive probes of both
EPIC and 450K array. hESC data normalization was performed as depicted in Patani, et
al (Patani et al., 2020). Briefly, we normalized the data using the preprocessNoob() func-
tion and performed the aforementioned filtering approach to remove ambiguous probes.
Methylation beta values for each dataset were used as surrogates for methylation and for
all downstream analysis including statistics and visualization.

5.10.3 Subgroup identification and associated analysis

Using the 10K most variable probes, determined by row(probe)-wise standard deviation (σ),
DNA methylation-based subgroups of PanNEN were identified with the R package Con-
sensusClusterPlus() under the following parameters: maxK=12, reps=1000, pItem=0.8 and
pFeature=1. The function executed agglomerative hierarchical clustering after performing
1-Pearson correlation distance. A consensus matrix carrying pair-wise consensus values
was finally generated for 12 clusters. The most stable number of clusters was determined
based on the cumulative distribution score curve (CDF) that reached an approximate maxi-
mum (k=3) in combination with the correlation heatmap for each cluster in the 3-k heatmap.
Hierarchical clustering using the R package stats was done by first obtaining a dissimilarity
matrix using euclidean algorithm and subsequently performing complete linkage cluster-
ing. tSNE Dimension reduction analysis was performed using the Rtsne package under
the perplexity=8. Genes associated with the 10K most variable probes were evaluated for
term enrichment of GO pathway biological processes using the enrichGO() function in the

https://github.com/sirselim/illumina450k_filtering
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clusterprofiler R package. The following parameters were defined to identify significantly
enriched terms: pAdjustMethod = “BH” (Benjamini and Hochberg), pvalueCutoff = 0.01,
qvalueCutoff = 0.05. All genes represented in the methylationEPIC array were used as
background. In order to reduce generality of GO terms, the simplify() function was used.
The final set of terms was curated by filtering only those that showed an adjusted p-value
< 0.01 and fold enrichment of greater than 1.5. -Log10P-value and a barplot was generated
for the 12 most significant terms using the ggplot2 package.

5.10.4 Differentially Methylated Probes (DMP) and associated analysis

Upon extracting and assigning the samples to the identified Group A and Group B clus-
ters, differentially methylated probes (DMP) were identified using CHAMP package (Tian
et al., 2017) function champ.DMP() under the following parameters: adjPVal = 0.05, and
adjust.method = “BH“, arraytype= “EPIC“.
Differentiated pancreatic cell markers showing sensitivity_human > 0.05 for α, β, γ, δ, ε,
acinar, ductal or islet Schwann cells were curated from PangaloDB (Franzén, Gan, and
Björkegren, 2019). DMP associated genes that overlapped with curated Islet cell mark-
ers were extracted and significantly enriched DMPs of Islet cell markers were extracted
using the following criteria: |∆beta| > 0.25 and - Log10P > 5 (Figure 3.9a). To determine
closely related samples within each group with respect to the DMPs, hierarchical clustering
with complete linkage was performed using beta values prior to visualization (Figure 3.9c).
Probes overlapping to 450K platform run of α, β, ductal and acinar cell were additionally
extracted and visualized (Figure 3.9d). Hierarchical clustering with complete linkage was
performed to determine closely related cell types based on the DMP probes. Methylation
values of these DMPs were obtained for tumor and normal samples to compute a euclidean
distance matrix and subsequently perform complete linkage hierarchical clustering using
stats R package (Figure 3.10a).
DMP between α, β, ductal and acinar cell types were identified using CHAMP package
function champ.DMP under the following parameters: adjPVal = 0.05, and adjust.method
= “BH“, arraytype= “450K“. Significant probes exhibiting |∆beta| value > 0.2 and adjusted
p-value < 0.01 were obtained. A total of 46,500 unique methylation probes were collected
and defined as DMPs of normal cell types. Upon preprocessing and downstream filter-
ing (see sub-section 5.10.2) of tumor and normal data combined, 38892 DMPs of normal
cell type remained in tumor-normal matrix. Methylation beta values were obtained to cal-
culate pearson distance using the function get_dist() from factoExtra R package. Finally,
neighbor-joining tree estimation was performed using nj() function in the ape package to
generate phylo-epigenetic trees (Figure 3.13).
hESC probe identification was performed using an adaptation of the method in Patani et.
al. (Patani et al., 2020). Briefly, probes carrying a mean beta value < 0.3 across the primed

https://panglaodb.se/
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cells were defined as background matrix. Unmethylated probes of hESC were then de-
fined as those that carry mean beta < 0.3 in both primed and naive hESC. Hypermethy-
lated probes of hESC were determined by first calling DMPs using the background ma-
trix. CHAMP.DMP() ran with the adjPval=0.05, adjust.method = “BH“, arraytype= “EPIC“.
Probes carrying ∆beta < -0.1 in naive state compared to primed state were then extracted.
Accordingly, upon normalization, preprocessing and filtering (see sub-section 5.10.2), the
methylation values of tumor samples for unmethylated probes of hESC and hyperme-
thylated probes of hESC were determined. Mean values of each Probe-type (unmethy-
lated/hypermthylated probes of hESC) in each sample of the PanNEN patient cohort were
computed and the distribution of these computed means in the PanNEN methylome group
was visualized. In addition, mean values for NETG3 and NEC samples of Group A and
Group B were extracted and additionally visualized (Figure 3.2e).

5.10.5 Normal cell signature analysis

In order to determine cell signature proportion in each sample, the methodology provided
by Moss et. al. was utilized (Moss et al., 2018). Briefly, The reference atlas was first filtered
for β, ductal and acinar cell profiles. In order to add an α-cell profile, the normal cell types
were preprocessed and normalized (Neiman et. al., GSE122126 and GSE134217) (see sec-
tion 5.10.2), and subsequently, the alpha cells (n=3) were extracted. The mean value of each
probe was calculated, and the overlap of the probes compared to the featured CpGs of refer-
ence atlas were obtained. The final matrix, defined as the pancreatic normal reference atlas,
contained the methylation values for α, β, ductal and acinar cells of the overlapping probes.
Euclidean distance between each sample, given the pancreatic normal reference atlas, was
computed using get_dist() function from the FactoExtra R package. PanNEN and PDAC
data were normalized separately as mentioned in sub-section 5.10.2, and the methylation
beta value matrix was combined for subsequent analysis. The program developed by Moss
et. al. was then employed to identify the normal cell signature proportion in samples of the
PanNEN and PDAC cohorts.

5.10.6 Copy Number Aberrations (CNA)

Copy Number Aberrations (CNA) were identified from EPIC array data using the R pack-
age conumee (conumeeR). Upon raw preprocessing, mean value of similar CNA segments
per autosomal region was obtained and a mean value per autosome was computed for each
sample to determine the log2 ratio of intensities across each chromosome. A cut-off of x
> 0.15 and x < -0.15 was placed based on linear regression analysis in Figure 3.7c to limit
the number of false positives. To determine the whole chromosomal signature within each
subgroup, euclidean distance-based complete linkage hierarchical clustering was also per-
formed on the data. To determine focal aberrations, log2 values of chromosomal segments,

https://github.com/nloyfer/meth_atlas
https://github.com/nloyfer/meth_atlas/blob/master/deconvolve.py
 https://bioconductor.org/packages/release/bioc/html/conumee.html
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determined by conumee were obtained for the samples and GISTIC software was executed
separately for each group under the following parameters: -genegistic 1, -smallmem 1, -
broad 1, -brlen 0.5, -conf 0.90 -armpeel 1 and -gcm extreme. GISTIC was only performed in
Group A and Group B, and not for Group C, due to the limited number of samples.

5.10.7 Phosphoprotein data analysis

Signals obtained from Bio-Plex manager software (BioRad), acquired as .lxb files, were pro-
cessed with an in-house custom script using lxb R package. The resulting file consisted of
the median Fluorescence Intensity (FI) for each readout under all perturbation/treatment
conditions. Quantification of the phosphoproteins for WES runs was based on the observed
area under the curve at each of the expected sizes: p4EBP1S65 (29kDa), pAKT (60kDa)
and Vinculin (107.5 kDa), which was obtained and evaluated using ProteinSimple Com-
pass Software (ProteinSimple/BioTechne). The resulting file contained the phosphoprotein
quantity for each replicate of the readout for all inhibitory conditions. Quality of the repli-
cates was assessed by transforming the data to M (log2 ratio) and A (mean average) scales
as follows:

Mxy = log2x− log2y (5.1)

Axy =
log2x− log2y

2
(5.2)

Where x and y refer to two replicate pairs. The values were then visualized per readout and
as all readouts combined. The overall response of the perturbations was also evaluated by
log transforming the data upon normalization with non-stimulated control and subsequent
scaling of the data.
To prepare the perturbation data input for MRA modeling, the raw data from both assays
were combined to generate the complete input dataset in MIDAS format as described in
Dorel et. al. (Dorel et al., 2018). Network structure deduced from literature data and from
additional expertise in the field were used as a prior-knowledge based starting network.
This was formatted into .dat file as described in Dorel et. al. (Dorel et al., 2018). The final
basal.dat file required for the model generation enlisted all the nodes that have a basal ac-
tivity, which, in this study included all the nodes with the exception of the Growth Factor
(GF) and GF receptors. The modeling and subsequent evaluations were performed using
STASNet R package. Briefly, the initial models with parameters quantified as local response
coefficients (r) were generated using the createModel() function, which was then evaluated
in comparison to the experimental data using plotModelAccuracy(). The individual good-
ness of fit for each analyte was also determined using plotModelScores()function. Next,
Reduction of the model was performed using selectMinimalModel() function which itera-
tively removed links that do not significantly deteriorate the LS, as tested by a likelihood
ratio test with p<0.05. Once the reduction was complete, the reduced model was again
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evaluated using the aforementioned functions, to compare the simulated model to the ex-
perimental data output and the overall response of each analyte. Finally, potential novel
links were additionally determined by either suggestExtension() function of STASNet or by
evaluating the model error and identifying links that could explain the difference. Each new
link was then iteratively added to the network.dat file and a new model was generated and
evaluated subsequently, until the model had reached a reasonable fit quality, when com-
pared to the theoretical value, and the data points were well explained by the model.
The model parameters/local response coefficients are evaluated, and point-wise confidence
intervals are computed using the profileLikelihood() function. A likelihood profile is com-
puted by setting the value of a parameter constant at various values while allowing the oth-
ers to relax. For those models, the inhibitory parameters were also held constant (but not
varied) and the confidence interval was calculated using a X2 test with 7 degrees of freedom
(1 fixed parameter + 6 inhibition parameters). The difference in parameter values and their
respective confidence interval between the cell lines were then evaluated by first combin-
ing consecutive parameters using aggregatePath() function with few nodes designated as
non_stop_nodes: p70S6K, mTORC1, mTORC2, iAZD (dummy node for dual mTOR inhi-
bition), and AKT. Non_stop_nodes parameter allowed for aggregation such that the paths
did not stop with these nodes and were evaluated with respect to downstream links. Fi-
nally, the parameters and their confidence intervals were visualized using plotParameters()
function.

5.10.8 Data visualization and statistics

All data analysis, statistics and visualization were performed in R (version 4.0.0). Visual-
ization was done using the base R plotting function, ggplot2 package, ComplexHeatmap
package or using specific packages mentioned in each of the subsections. The appropriate
statistics mentioned above were all performed using respective R packages or base R func-
tions. For survival analysis and visualization, the survival and survminer packages were
used.
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Chapter 6

Supplementary Tables

Further data required for assessment of the results was additionally provided as tables in
the respective sections. These tables are displayed below.

6.1 PanNEN panel gene coverage

TABLE 6.1.1: PanNEN panel gene coverage. Number of Amplicons refer to the number of primer
pairs that were utilized to cover the exonic regions of the given gene.

Name Chromosome Number of
Amplicons

Total
Bases

Covered
Bases

Missed
Bases

Overall
Coverage

Number of
Exons

Number of
Exons 100%
Coverage

RASAL2 chr1 50 4067 3938 129 0.968 20 19
MTOR chr1 113 8220 8111 109 0.987 57 52
DDIT4 chr10 8 719 655 64 0.911 2 1
PTEN chr10 18 1302 1223 79 0.939 9 7
MEN1 chr11 23 1938 1710 228 0.882 10 8
POLR2G chr11 10 599 578 21 0.965 8 7
PIK3C2A chr11 75 5381 5286 95 0.982 32 28
EED chr11 25 1450 1450 0 1 13 13
KRAS chr12 10 737 681 56 0.924 5 3
CDKN1B chr12 7 617 595 22 0.964 2 1
LGR5 chr12 39 2904 2864 40 0.986 18 14
FOXO1 chr13 20 1988 1567 421 0.788 2 0
LATS2 chr13 32 3337 2767 570 0.829 7 5
AKT1 chr14 26 1573 1470 103 0.935 13 9
MLST8 chr16 14 1061 922 139 0.869 9 4
PDPK1 chr16 22 1811 1604 207 0.886 15 10
TSC2 chr16 89 5834 5405 429 0.926 42 30
RPTOR chr17 67 4348 4060 288 0.934 34 28
TP53 chr17 22 1383 1351 32 0.977 15 14
NF1 chr17 134 9161 8961 200 0.978 59 55
PIK3R2 chr19 26 2337 1667 670 0.713 15 8
MAP4K1 chr19 52 2884 2670 214 0.926 33 26
AKT2 chr19 27 1576 1536 40 0.975 14 11
GLI2 chr2 46 4891 3716 1175 0.76 13 6
IRS1 chr2 32 3739 3232 507 0.864 1 0
ALK chr2 68 5153 4713 440 0.915 29 26
ZEB2 chr2 45 3735 3735 0 1 9 9
ARFGEF2 chr20 81 5748 5713 35 0.994 39 38
BRD1 chr22 38 3297 3076 221 0.933 12 6
VHL chr3 6 672 491 181 0.731 3 2
PIK3CA chr3 50 3407 3282 125 0.963 20 17
SETD2 chr3 90 7905 7643 262 0.967 21 18
SMAD1 chr4 18 1458 1458 0 1 6 6
RASGEF1C chr5 20 1531 1237 294 0.808 13 8
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Name Chromosome Number of
Amplicons

Total
Bases

Covered
Bases

Missed
Bases

Overall
Coverage

Number of
Exons

Number of
Exons 100%
Coverage

RICTOR chr5 88 5589 5359 230 0.959 41 33
PIK3R1 chr5 34 2467 2429 38 0.985 18 16
FOXO3 chr6 18 2042 1583 459 0.775 2 1
DAXX chr6 29 2356 2207 149 0.937 10 6
POLR2J chr7 7 394 350 44 0.888 4 3
CARD11 chr7 53 3705 3418 287 0.923 24 17
RHEB chr7 11 635 589 46 0.928 8 7
MYC chr8 15 1395 1318 77 0.945 3 1
CDKN2A chr9 8 962 507 455 0.527 7 3
TSC1 chr9 49 3705 3603 102 0.972 22 20
GLUD2 chrX 16 1687 1545 142 0.916 1 0
AR chrX 31 2873 2641 232 0.919 9 8
ATRX chrX 113 7829 7632 197 0.975 35 30

6.2 Mutations of PanNEN cohort

TABLE 6.2.1: Mutations of PanNEN cohort. AA - amino acid change. A/D - Adjacent normal
tissue/Distance normal tissue. Allele % - proportion of alteration in the sample (Healthy, Primary
and/or Metastasis). Quality - Reliability of the variant being an actual variant in the given sample
(Healthy, Primary and/or Metastasis). If no value is indicated, it means that the variant was absent
in that particular sample. Annotation - COSMIC refers to the Catalogue of Somatic Mutations in
Cancer database and LOVD stands for Leiden Open Variation Database. Panel refers to which
panel was used to sequence the sample: CCP - Commercial Cancer Panel and PanNEN - Pancreatic
NeuroEndocrine Neoplasms panel

Patient Gene AA Healthy sample Primary Metastasis Annotation Panel
A/D allele % Quality allele % Quality allele % Quality

PNET2 KRAS p.G12V D 0 0.574 6902.35 COSMIC PanNEN
TSC2 p.A889P 0 0.365 5163.51 LOVD
TP53 p.P278L 0.001 0.541 5220.39 COSMIC

PNET5 VHL p.P86L N/A 0.782 5151.74 COSMIC PanNEN
LATS2 p.D739N 0.325 2372.55

PNET8 SETD2 p.K2385N A 0.015 0.059 51.37 PanNEN

PNET9 RASAL2 p.R769H D 0.002 0.062 70.55 PanNEN
MEN1 p.R360W 0.002 0.448 6774.38
PTEN p.R233* 0.004 0.477 1203.87 COSMIC

PNET11 MEN1 p.H139Y A 0 0.272 772.3 COSMIC PanNEN
ATRX p.1265_1266delND 0 0.233 507.92

PNET14 VHL p.I109S A 0 0.74 6408.54 PanNEN

PNET15 MEN1 p.Q64* 0.561 1908 0.93 3718.04 PanNEN

PNET16 MEN1 p.K427* A 0.006 0.672 15826.9 PanNEN

PNET21 DAXX p.T262I A 0.333 3582.8 0.819 8023.01 PanNEN

PNET24 DAXX p.R291P A 0.001 0.33 3132.51 PanNEN

PNET25 PIK3R2 p.P4S N/A 0.694 11823.8 COSMIC PanNEN

PNET33 ATRX p.N1860S D 0.611 704.91 0.685 COSMIC PanNEN
MEN1(syndrome)

PNET37 ATRX p.ET723DCfs*7 N/A 0.138 153.25 COSMIC PanNEN
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Patient Gene AA Healthy sample Primary Metastasis Annotation Panel
A/D allele % Quality allele % Quality allele % Quality

PNET42 AFF1 p.T399S blood 0 0.583 2329.32 CCP
PSIP1 p.400dupT 0.087 0.15 1570.3
PSIP1 p.TL399N*fs*4 0 0.37 1570.3
PSIP1 p.L400Efs*4 0 0.86 1570.3
RNF213 p.G4337R 0 0.384 584.48
LPHN3 p.C719S 0 0.268 344.02

PNET43 TSC1 p.S905I D 0.078 0.401 921.86 PanNEN

PNET47 MEN1 p.C235Lfs*59 D 0 0.716 5710.04 PanNEN

PNET50 MEN1 p.297_298insRS 0 0.738 13136.4 PanNEN
ATRX p.K2261E 0.001 0.861 24141.8

PNET52 MEN1 p.84delS A 0.171 50 0 COSMIC PanNEN

PNET79 DAXX p.D349A D 0.001 0.517 6449.61 PanNEN
MEN1 p.79_84delPVADLS 0 0.543

PNET83 MEN1 p.84delS D 0 0.878 9831.74 PanNEN

PNET85 DAXX p.S102* D 0 0.514 3702.28 PanNEN
TSC2 p.1254_1257delSVPA 0 0.219 896.16
NF1 p.A1610S 0.004 0.311 1868.4
MEN1 p.Q453X

PNET56P1 BRD3 p.Y348C D 0 0.371 1441.44 CCP
TSC2 p.855_856delHL 0 0.577 50

PNET56P2 BRD3 p.Y348C D 0 0.317 CCP
TSC2 p.855_856delHL 0 0.343

PNET58 KRAS p.G12V N/A 0.33 279.07 CCP
MLLT10 p.I564V 0.509 1441.59
TP53 p.P177R 0.548 641.52 COSMIC
SMAD4 p.R361H 0.454 617.43 COSMIC

PNET59 IDH1 p.G150V N/A 0.265 389.01 CCP
PIK3CG p.R849* 0.315 376.24
SMO p.P641A 0.287 370.21
EP300 p.1626_1629delGRDA 0.476 955.8

PNET60 MSH6 p.V250Hfs*5 D 0 0.259 514.96 CCP
MEN1 p.322delH 0 0.9 2013.4
SMAD4 p.G365D 0.023 0.858 1286.34 COSMIC

PNET61 DAXX p.Q21* A 0 0.579 642.17 CCP
PTCH1 p.V932I 0 0.394 820.33 COSMIC

PNET62 VHL p.R161* N/A 0.317 296.95 COSMIC CCP
KMT2C p.R284Q 0.123 136.58 COSMIC
CYP2C19 p.R124Q 0.276 504.11
IGF2R p.V1456A 0.148 150.18
PLEKHG5 p.M680V 0.079 68.61

PNET63 KRAS p.G12R A 0 0.66 799.01 COSMIC CCP
PIK3C2B p.Q688R 0 0.227 530.63
FANCF p.336_338delDGD 0 0.453 1084.3

PNET66 KEAP1 p.R169H D 0 0.424 886.25 CCP

PNET67 PTPRD p.R141H A 0 0.413 388.55 COSMIC CCP
KRAS p.Q61R 0 0.672 2512.5 COSMIC

PNET70 VHL p.D143E N/A 0.171 142.42 COSMIC CCP
MYH11 p.E1561K 0.47 1296.18 COSMIC
CYP2D6 p.Y355C 0.27 201.75 COSMIC
CYP2D6 p.H352R 0.196 158.09 COSMIC

PNET100 ACVR2A p.L279F D 0 0.664 925.06 CCP
PTPRD p.W1733R 0 0.321 1167.12
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Patient Gene AA Healthy sample Primary Metastasis Annotation Panel
A/D allele % Quality allele % Quality allele % Quality

PER1 p.P309S 0.037 0.377 672.44

PNET101 CDKN2C p.L107F D 0.014 0.583 837.73 CCP

PNET102 MAFB p.HP160QA D 0 0.217 151.24 CCP

PNET103 MDM4 p.P388T N/A 0.514 555.12 CCP
SYNE1 p.A7648G 0.308 714.35

PNET104 LRP1B p.G619C N/A 0.208 132.2 CCP
ERBB4 p.T757A 0.632 2361.61
EPHB1 p.N241H 0.226 224.74
SAMD9 p.R553* 0.572 2578.2
PTPRD p.L1398P 0.321 702.38

PNET105 NUP214 p.V562L D 0 0.242 188.6 CCP

PNET106 KDM6A p.A205Afs*21 D 0 0.618 696.16 CCP
TP53 p.R273C 0 0.589 1340.88 COSMIC
NIN p.Y98C 0 0.254 514.73
KRAS p.G12D 0 0.497 824.58 COSMIC

PNET107 DAXX p.R306* D 0.007 0.709 1577.29 COSMIC CCP
MEN1 p.Y307Pfs*6 0 0.735 1229.33
HIF1A p.Q397E 0 0.411 1289.54

PNET108 PTEN p.Y88* D 0 0.35 1094.64 COSMIC CCP

6.3 Focal copy number amplifications in Group A

TABLE 6.3.1: Focal copy number amplifications in Group A. The rows are as follow: Cytoband -
cytoband of the chromosome to which the significantly amplified region belong to, q-value - the
q-value of the peak region, residual q-value - The q-value of the peak region after removing (“peel-
ing off”) amplifications that overlap other more significant peak regions in the same chromosome,
wide peak boundaries - The actual chromosomal location(range) in which the significant amplifi-
cation reside in, and genes in wide peak - the genes residing within the wide peak boundaries.

GISTIC: Group A Significant Amplification

cytoband 14q11.2 8p23.1 1q21.2 16p11.2 10q11.22
q-value 3.35E-41 1.36E-12 2.23E-09 0.015495 0.03299
residual q-value 3.35E-41 1.36E-12 2.23E-09 0.015495 0.03299
wide peak boundaries chr14: 1-20599999 chr8: 7050001-7446939 chr1: 148917247-149699999 chr16: 32000001-33924999 chr10: 46175001-48227853
genes in wide peak OR4K5 SPAG11B FAM91A2 TP53TG3 ANXA8L2

OR11H2 DEFB103B PPIAL4A SLC6A10P CTSL1P2
OR4K1 DEFB104A LOC388692 LOC390705 PPYR1
OR4K15 DEFB105A HIST2H2BF HERC2P4 GPRIN2
OR4K14 DEFB106A LOC645166 TP53TG3C PTPN20B
OR4L1 DEFB107A PPIAL4B LOC729264 FAM21B
OR4N2 LOC349196 PPIAL4C TP53TG3B SYT15
OR4K2 DEFB103A LOC728855 AGAP4
OR4K13 FAM90A13 FCGR1C ANTXRL
OR4K17 FAM90A5 FAM21C
POTEG FAM90A7 BMS1P5
OR11H12 DEFB107B FAM35B
OR4Q3 DEFB104B FAM35B2
OR4M1 DEFB106B AGAP9
POTEM DEFB105B LOC642826
LOC642426 DEFB109P1B LOC643650

FAM90A14 FAM25C
FAM90A20 PTPN20A
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GISTIC: Group A Significant Amplification

FAM66B ANXA8
ZNF705G BMS1P1
DEFB4B ANXA8L1

LOC728643
FAM25B
FAM25G

6.4 Focal copy number deletions in Group A

TABLE 6.4.1: Focal copy number deletions in Group A. The rows are as follow: Cytoband - cyto-
band of the chromosome to which the significantly deleted region belong to, q-value - the q-value
of the peak region, residual q-value - The q-value of the peak region after removing (“peeling off”)
deletions that overlap other more significant peak regions in the same chromosome, wide peak
boundaries - The actual chromosomal location(range) in which the significant deletion reside in,
and genes in wide peak - the genes residing within the wide peak boundaries.

GISTIC: Group A Significant Deletion

cytoband 15q11.2 9p21.3 1p36.32 4q34.3 21q11.2 22q12.3 2q37.3 6p25.3 8p23.2 12p11.1 22q13.32 10q26.3
q-value 2.10E-13 0.00083978 0.005574 0.064882 0.21748 0.21258 0.22502 0.22937 0.22502 0.22502 0.22502 0.24045
residual
q-value

2.10E-13 0.00083978 0.005574 0.064882 0.21748 0.21748 0.22502 0.22502 0.22502 0.22502 0.22502 0.24045

wide peak
boundaries

chr15:
1-22824999

chr9:
21555001-
23698648

chr1:
4005001-
4724999

chr4:
182075001-
183246982

chr21:
15345395-
16334999

chr22:
32025018-
32754999

chr2:
242825001-
243199373

chr6:
1-
524999

chr8:
490126-
7224999

chr12:
33585001-
38714994

chr22:
48915001-
49264999

chr10:
131905187-
133609506

genes in
wide peak

hsa-mir-
1268

CDKN2A LOC284661 hsa-
mir-
1305

HSPA13 SLC5A1 LOC728323 IRF4 hsa-
mir-596

ALG10 FAM19A5 hsa-
mir-
378c

hsa-mir-
3118-6

CDKN2B MGC45800 RBM11 SLC5A4 DUSP22 ANGPT2 LOC284933 GLRX3

hsa-mir-
3118-4

MTAP MIR1305 SAMSN1 YWHAH DEFA1 MIR4535 TCERG1L

NBEAP1 C9orf53 LIPI DEPDC5 DEFA3 MIR378C
OR4N4 DMRTA1 ABCC13 RFPL2 DEFA4
HERC2P3 FLJ35282 LOC388813AP1B1P1 DEFA5
GOLGA6L1 CDKN2B-AS1 C22orf24 DEFA6
POTEB C22orf42 DEFB1
LOC348120 PRR14L CLN8
OR4M2 MYOM2
OR4N3P DLGAP2
NF1P2 ARHGEF10
CHEK2P2 KBTBD11
LOC646214 AGPAT5
CXADRP2 CSMD1
REREP3 MCPH1
GOLGA6L6 ERICH1
LOC727924 DEFT1P
GOLGA8C LOC286083
GOLGA8DP LOC349196
MIR4509-1 XKR5
MIR4509-2 FAM90A13
MIR4509-3 FAM90A5

DEFA10P
DEFB109P1B
FAM90A14
MIR596
DEFA1B
FAM90A20
FAM66B
ZNF705G
LOC100287015
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GISTIC: Group A Significant Deletion

DEFT1P2
MIR4659A
MIR4659B
LOC100652791

6.5 Focal copy number amplifications in Group B

TABLE 6.5.1: Focal copy number amplifications in Group B. The rows are as follow: Cytoband - cy-
toband of the chromosome to which the significantly altered region belong to, q-value - the q-value
of the peak region, residual q-value - The q-value of the peak region after removing (“peeling off”)
amplifications that overlap other more significant peak regions in the same chromosome, wide
peak boundaries - The actual chromosomal location(range) in which the significant amplification
reside in, and genes in wide peak - the genes residing within the wide peak boundaries.

GISTIC: Group B Significant Amplification

cytoband 8p23.1 1q21.2 4p16.1 6q21 14q11.2
q-value 0.039216 0.05047 0.05047 0.12643 0.12643
residual q-value 0.039216 0.05047 0.05047 0.12643 0.12643
wide peak boundaries chr8: 7050001-7784999 chr1: 149265113-149799999 chr4: 8714604-9909983 chr6: 105200001-105959999 chr14: 1-20599999
genes in wide peak DEFB4A FCGR1A hsa-mir-548i-2 PREP OR4K5

SPAG11B FAM91A2 DRD5 BVES OR11H2
DEFB103B PPIAL4A HMX1 HACE1 OR4K1
DEFB104A LOC388692 SLC2A9 POPDC3 OR4K15
DEFB105A HIST2H2BF USP17L6P BVES-AS1 OR4K14
DEFB106A PPIAL4B USP17 LIN28B OR4L1
DEFB107A PPIAL4C DEFB131 OR4N2
LOC349196 HIST2H3D LOC650293 OR4K2
DEFB103A LOC728855 LOC728369 OR4K13
FAM90A13 FCGR1C LOC728373 OR4K17
FAM90A5 LOC728379 POTEG
FAM90A7 USP17L5 OR11H12
FAM90A8 LOC728393 OR4Q3
FAM90A18 LOC728400 OR4M1
FAM90A9 LOC728405 POTEM
FAM90A10 MIR548I2 LOC642426
DEFB107B
DEFB104B
DEFB106B
DEFB105B
DEFB109P1B
FAM90A14
SPAG11A
FAM90A20
FAM90A19
FAM66B
ZNF705G
LOC100132396
DEFB4B
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6.6 Focal copy number deletions in Group B

TABLE 6.6.1: Focal copy number deletions in Group B. The rows are as follow: Cytoband - cyto-
band of the chromosome to which the significantly deleted region belong to, q-value - the q-value
of the peak region, residual q-value - The q-value of the peak region after removing (“peeling off”)
deletions that overlap other more significant peak regions in the same chromosome, wide peak
boundaries - The actual chromosomal location(range) in which the significant deletion reside in,
and genes in wide peak - the genes residing within the wide peak boundaries.

GISTIC: Group B Significant Deletion

cytoband 13q14.2 15q11.2 4p15.32
q-value 0.023493 0.023493 0.17855
residual q-value 0.023493 0.023493 0.17855
wide peak boundaries chr13: 48665001-49884999 chr15: 1-22743091 chr4: 16085001-17524999
genes in wide peak RCBTB2 hsa-mir-1268 QDPR

MLNR hsa-mir-3118-6 LDB2
RB1 hsa-mir-3118-4 TAPT1
ITM2B NBEAP1 FLJ39653
LPAR6 OR4N4
FNDC3A HERC2P3
CYSLTR2 POTEB
CDADC1 LOC348120

OR4M2
OR4N3P
NF1P2
CHEK2P2
LOC646214
CXADRP2
REREP3
GOLGA6L6
LOC727924
GOLGA8C
GOLGA8DP
MIR4509-1
MIR4509-2
MIR4509-3
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6.7 Pancreatic cell marker genes curated from PangloDB

TABLE 6.7.1: Pancreatic cell marker genes curated from PangloDB. The Ubiquitousness Index
refers to the expression status of the gene in the cell clusters. The value ranges between 0 and 1.
An ubiquitousness Index close to 0 indicate that the given gene is not expressed in any cell cluster
of that particular cell type, while an index close to 1 suggest that it is expressed in almost all cell
clusters of the given cell type. Gene type can either be protein-coding gene or non-coding RNA
gene. Canonical Marker indicate whether the expression of the particular marker gene defines
the presence of the cell type. Sensitivity Human and Sensitivity Mouse columns refer to how fre-
quently this marker is expressed in cells of the given cell type in humans and mouse, respectively.
Specificity Human and Specificity Mouse refers to how frequently this marker is expressed in cells
not of the given cell type in humans and mouse, respectively. For the sensitivity and specificity
columns, NA means no data was available to compute on.

Official
Gene
Symbol

Cell Type Ubiquitousness
Index

Gene Type Canonical
Marker

Sensitivity
Human

Sensitivity
Mouse

Specificity
Human

Specificity
Mouse

CTRB1 Acinar cells 0.017 protein-coding 1 1 0.957143 0.00062893 0.0159201
KLK1 Acinar cells 0.013 protein-coding 1 0.833333 0.314286 0.00503145 0.0128263
CELA3A Acinar cells 0.001 protein-coding 1 0.833333 0.128571 0 0
PRSS1 Acinar cells 0.002 protein-coding 1 1 0.0285714 0.00597484 0
SPINK1 Acinar cells 0.029 protein-coding 1 1 0 0.0352201 0
CEL Acinar cells 0.002 protein-coding 1 0.166667 0.442857 0 0.0008379
CELA2A Acinar cells 0.005 protein-coding 1 0.333333 0.628571 0 0.00290042
CPB1 Acinar cells 0.005 protein-coding 1 0.833333 0.5 0.00786164 0.00232034
RNASE1 Acinar cells 0.022 protein-coding 1 0.75 0 0.0877358 0
AMY2B Acinar cells 0.003 protein-coding 1 0.0833333 0.528571 0 0.00148244
CPA2 Acinar cells 0.004 protein-coding 1 0.916667 0.457143 0 0.00277151
CPA1 Acinar cells 0.006 protein-coding 1 0.833333 0.585714 0 0.00438286
CELA3B Acinar cells 0.007 protein-coding 1 0.75 0.8 0.00125786 0.00502739
PNLIP Acinar cells 0.005 protein-coding 1 0.833333 0.585714 0.00031447 0.00354496
CTRB2 Acinar cells 0.001 protein-coding 1 0.916667 0 0.00125786 0
PLA2G1B Acinar cells 0.007 protein-coding 1 0.833333 0.228571 0.00157233 0.00638092
PRSS2 Acinar cells 0.01 protein-coding 1 1 0.7 0.0103774 0.00696101
CLPS Acinar cells 0.021 protein-coding 1 0.583333 0.957143 0.00031447 0.0215276
REG1A Acinar cells 0.005 protein-coding 1 1 0 0.0273585 0
SYCN Acinar cells 0.008 protein-coding 1 0.833333 0 0.00157233 0
PNLIPRP1 Acinar cells 0.008 protein-coding 1 0.5 0.628571 0 0.00663874
CTRC Acinar cells 0.003 protein-coding 1 0.833333 0.414286 0 0.00135353
REG3A Acinar cells 0.005 protein-coding 1 0.916667 0 0.0106918 0
PRSS3 Acinar cells 0.006 protein-coding 1 0.833333 0.0285714 0.0289308 0
REG1B Acinar cells 0.002 protein-coding 1 0.916667 0 0.0110063 0
GDF15 Acinar cells 0.014 protein-coding 1 0.833333 0 0.054088 0.00309378
MUC1 Acinar cells 0.016 protein-coding 1 0.916667 0.185714 0.0295597 0.0117306
C15ORF48 Acinar cells 0.018 protein-coding 1 1 0 0.109119 0
AKR1C3 Acinar cells 0.007 protein-coding 1 1 0 0.0389937 0
OLFM4 Acinar cells 0.013 protein-coding 1 0.583333 0 0.0132075 0.0126974
GSTA1 Acinar cells 0.012 protein-coding 1 0.916667 0 0.0267296 0.00837899
LGALS2 Acinar cells 0.032 protein-coding 1 0.916667 0.0142857 0.0345912 0.0308733
PDZK1IP1 Acinar cells 0.025 protein-coding 1 1 0.114286 0.0396226 0.0228166
RARRES2 Acinar cells 0.03 protein-coding 1 1 0 0.0751572 0
CXCL17 Acinar cells 0.007 protein-coding 1 0.75 0 0.0248428 0.00367386
GSTA2 Acinar cells 0.007 protein-coding 1 0.916667 0.0142857 0.00628931 0.00650983
ANPEP Acinar cells 0.015 protein-coding 1 0.75 0.0714286 0.0100629 0.0166291
ANGPTL4 Acinar cells 0.031 protein-coding 1 0.166667 0 0.0295597 0.0329359
ALDOB Acinar cells 0.031 protein-coding 1 0.583333 0.0428571 0.00408805 0.0370609
GCG Alpha cells 0.024 protein-coding 1 0.83871 0.75 0.0439734 0.0180766
TTR Alpha cells 0.055 protein-coding 1 0.83871 0 0.065802 0
ARX Alpha cells 0.019 protein-coding 1 0.129032 0.35 0.00094907 0.0227726
NKX2-2 Alpha cells 0.002 protein-coding NA 0.290323 0.075 0.00759253 0.00045031
PCSK2 Alpha cells 0.032 protein-coding 1 0.83871 0.85 0.0167668 0.0327436
TM4SF4 Alpha cells 0.017 protein-coding 1 0.806452 0 0.0132869 0
CRYBA2 Alpha cells 0.009 protein-coding 1 0.967742 0.975 0.0113888 0.00488903
NKX6-1 Alpha cells 0.006 protein-coding 1 0.0322581 0.3 0.0101234 0.00450306
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Official
Gene
Symbol

Cell Type Ubiquitousness
Index

Gene Type Canonical
Marker

Sensitivity
Human

Sensitivity
Mouse

Specificity
Human

Specificity
Mouse

KCNK16 Alpha cells 0.007 protein-coding NA 0.225806 0.875 0.0056944 0.00443873
PCSK1 Alpha cells 0.008 protein-coding NA 0.0645161 0.225 0.00885796 0.00791251
PRRG2 Alpha cells 0.009 protein-coding NA 0.0645161 0.475 0.00031636 0.0100354
IRX2 Alpha cells 0.012 protein-coding 1 0.0967742 0.275 0.00537805 0.0124799
ALDH1A1 Alpha cells 0.039 protein-coding 1 0.903226 0 0.080038 0.0288196
PEMT Alpha cells 0.013 protein-coding 1 0.709677 0 0.0385954 0.00276616
CHGA Alpha cells 0.057 protein-coding 1 0.967742 1 0.0287884 0.0598263
SMIM24 Alpha cells 0.037 protein-coding 1 0.741935 0 0.0281556 0
F10 Alpha cells 0.011 protein-coding 1 0.645161 0 0.00917431 0.00836282
SCGN Alpha cells 0.014 protein-coding 1 0.83871 0 0.0218285 0
SLC30A8 Alpha cells 0.005 protein-coding 1 0.677419 0 0.00885796 0
SH3GL2 Alpha cells 0.025 protein-coding 1 0.0322581 0 0.00221449 0
SCGB2A1 Alpha cells 0.003 protein-coding 1 0.806452 0 0.00980702 0
MAFB Alpha cells 0.053 protein-coding 1 0.709677 0.7 0.0528314 0.0512062
PAX6 Alpha cells 0.049 protein-coding 1 0.258065 0.85 0.0120215 0.0569315
NEUROD1 Alpha cells 0.038 protein-coding 1 0.806452 1 0.0155014 0.0405275
LOXL4 Alpha cells 0 protein-coding 1 0.129032 0 0 0.00032165
PLCE1 Alpha cells 0.005 protein-coding 1 0.0322581 0 0.00822525 0.00456739
GC Alpha cells 0.009 protein-coding 1 0.774194 0.375 0.00664347 0.00694757
KLHL41 Alpha cells 0.001 protein-coding 1 0.0322581 0 0.00031636 0.00051464
FEV Alpha cells 0.003 protein-coding 1 0.16129 0.475 0.00189813 0.00225153
RFX6 Alpha cells 0.001 protein-coding 1 0.225806 0 0.00126542 0
SMARCA1 Alpha cells 0.015 protein-coding 1 0.0967742 0 0.0408099 0
UCP2 Alpha cells 0.013 protein-coding 1 0.16129 0 0.00347991 0
FXYD5 Alpha cells 0.213 protein-coding 1 0.741935 0 0.374881 0.173882
RGS4 Alpha cells 0.052 protein-coding 1 0.387097 0 0.0056944 0
GLS Alpha cells 0.061 protein-coding 1 0.0967742 0.25 0.0189813 0.0718559
PDX1 Beta cells 0.005 protein-coding 1 0.681818 0.690476 0.00126183 0.00289519
FXYD2 Beta cells 0.025 protein-coding 1 0.363636 0 0.00189274 0.0306891
NPY Beta cells 0.015 protein-coding NA 0.136364 0.238095 0.00473186 0.0164704
INS Beta cells 0.009 protein-coding 1 1 0 0.0470032 0
MAFA Beta cells 0.002 protein-coding 1 0.5 0.666667 0.00031546 0.00019301
NKX2-2 Beta cells 0.002 protein-coding 1 0.727273 0.119048 0.00536278 0.00032169
NKX6-1 Beta cells 0.006 protein-coding 1 0.772727 0.785714 0.00504732 0.00315254
IAPP Beta cells 0.023 protein-coding 1 1 1 0.0353312 0.0179502
PCSK2 Beta cells 0.032 protein-coding 1 0.909091 0.857143 0.018612 0.0326192
G6PC2 Beta cells 0.004 protein-coding 1 0.863636 0.785714 0.00536278 0.00012868
SLC30A8 Beta cells 0.005 protein-coding 1 0.909091 0 0.00914827 0
PCSK1 Beta cells 0.008 protein-coding 1 0.818182 0.785714 0.00378549 0.00636943
GJD2 Beta cells 0.005 protein-coding 1 0.590909 0.452381 0.00189274 0.00379592
SCGN Beta cells 0.014 protein-coding 1 1 0 0.0230284 0
IGF2 Beta cells 0.013 protein-coding 1 0.0454545 0 0.0463722 0.00090073
SYT13 Beta cells 0.029 protein-coding 1 0.590909 0 0.00283912 0
NPTX2 Beta cells 0.008 protein-coding 1 0.818182 0 0.0126183 0.00688413
PFKFB2 Beta cells 0.001 protein-coding 1 0.272727 0.0714286 0.00315457 0.00019301
EDARADD Beta cells 0.001 protein-coding 1 0.0454545 0 0.0022082 0.00090073
HOPX Beta cells 0.033 protein-coding 1 0.863636 0.333333 0.0864353 0.0214244
SH3GL2 Beta cells 0.025 protein-coding 1 0.0454545 0 0.0022082 0
ADCYAP1 Beta cells 0.003 protein-coding 1 0.772727 0 0.00094637 0.00257351
SCGB2A1 Beta cells 0.003 protein-coding 1 0.818182 0 0.0119874 0
CASR Beta cells 0.001 protein-coding 1 0.272727 0.0952381 0.00031546 0.00025735
MAFB Beta cells 0.053 protein-coding 1 0.772727 0.357143 0.0542587 0.0520492
PAX6 Beta cells 0.049 protein-coding 1 0.909091 0.785714 0.00820189 0.0570032
NEUROD1 Beta cells 0.038 protein-coding 1 0.909091 0.785714 0.0170347 0.0409831
ISL1 Beta cells 0.028 protein-coding 1 0.681818 0.738095 0.00883281 0.0294666
SIX3 Beta cells 0.014 protein-coding 1 0.0454545 0 0.00283912 0
BMP5 Beta cells 0.002 protein-coding 1 0.0909091 0 0.00599369 0.00077205
DLK1 Beta cells 0.055 protein-coding 1 0.681818 0.333333 0.0416404 0.0572605
MEG3 Beta cells 0.288 protein-coding 1 0.909091 0.833333 0.109779 0.333591
RGS16 Beta cells 0.01 protein-coding 1 0.136364 0 0.0195584 0
PDX1 Delta cells 0.005 protein-coding 1 0.125 0.7 0.00565327 0.00430177
FFAR4 Delta cells 0.005 protein-coding 1 0.25 0.9 0.00408291 0.00430177
SST Delta cells 0.027 protein-coding 1 1 0 0.0452261 0
RBP4 Delta cells 0.032 protein-coding 1 0.875 0 0.03549 0
HHEX Delta cells 0.037 protein-coding 1 1 1 0.0204146 0.0389727
ISL1 Delta cells 0.028 protein-coding 1 1 1 0.0109925 0.0307544
SCGN Delta cells 0.014 protein-coding 1 0.875 0 0.0276382 0
KCNK16 Delta cells 0.007 protein-coding 1 0.125 1 0.00753769 0.00603531
IAPP Delta cells 0.023 protein-coding 1 0.75 1 0.040201 0.0199679
GPC5-
AS1

Delta cells 0.001 protein-coding 1 0.5 0 0.00282663 0
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Sensitivity
Human

Sensitivity
Mouse

Specificity
Human

Specificity
Mouse

UCP2 Delta cells 0.013 protein-coding 1 0.125 0 0.00471106 0
GABRB3 Delta cells 0.025 protein-coding 1 0.125 0.2 0.00408291 0.0303692
EDN3 Delta cells 0.003 protein-coding 1 0.125 0 0.00219849 0.00378812
FRZB Delta cells 0.012 protein-coding 1 0.125 0.8 0.0301508 0.00744783
PCSK1 Delta cells 0.008 protein-coding 1 0.75 0.4 0.00753769 0.0082183
ETV1 Delta cells 0.037 protein-coding 1 0.125 0.8 0.00785176 0.0445586
CFTR Ductal cells 0.003 protein-coding 1 0.257143 0 0.00380108 0.00288739
MUC1 Ductal cells 0.016 protein-coding 1 0.228571 0 0.0307254 0.012512
AMBP Ductal cells 0.013 protein-coding 1 0.171429 0 0.0120367 0.0121912
ANXA4 Ductal cells 0.06 protein-coding 1 0.342857 0 0.0706367 0.0565287
SPP1 Ductal cells 0.057 protein-coding 1 0.285714 0 0.050681 0
GDF15 Ductal cells 0.014 protein-coding 1 0.628571 0 0.050681 0.00307988
AKR1C3 Ductal cells 0.007 protein-coding 1 0.371429 0 0.038961 0
MMP7 Ductal cells 0.007 protein-coding 1 0.657143 0 0.0180551 0.00365736
DEFB1 Ductal cells 0.009 protein-coding 1 0.4 0 0.0218562 0.00532563
SERPING1 Ductal cells 0.066 protein-coding 1 0.285714 0 0.0972442 0
TSPAN8 Ductal cells 0.047 protein-coding 1 0.485714 0 0.0430789 0
CLDN10 Ductal cells 0.028 protein-coding 1 0.342857 0 0.0202724 0.0302214
SLPI Ductal cells 0.048 protein-coding 1 0.885714 0 0.0861577 0
SERPINA5 Ductal cells 0.005 protein-coding 1 0.257143 0 0.0237567 0
PIGR Ductal cells 0.031 protein-coding 1 0.2 0 0.0424454 0.0291306
CLDN1 Ductal cells 0.01 protein-coding 1 0.228571 0 0.0262908 0.00564646
LGALS4 Ductal cells 0.032 protein-coding 1 0.228571 0 0.036427 0.0307347
PERP Ductal cells 0.077 protein-coding 1 0.971429 0 0.158695 0.0519731
PDLIM3 Ductal cells 0.013 protein-coding 1 0.114286 0 0.0183719 0.0120629
WFDC2 Ductal cells 0.056 protein-coding 1 0.685714 0 0.0877415 0
ALDH1A3 Ductal cells 0.008 protein-coding 1 0.485714 0 0.0297751 0.00327238
KRT19 Ductal cells 0.088 protein-coding 1 0.942857 0 0.162179 0.0654475
TFF1 Ductal cells 0.006 protein-coding 1 0.0571429 0 0.0199557 0
KRT7 Ductal cells 0.056 protein-coding 1 0.914286 0 0.0921761 0.0474174
CLDN4 Ductal cells 0.047 protein-coding 1 1 0 0.118784 0.0286814
LAMB3 Ductal cells 0.017 protein-coding 1 0.4 0 0.0497308 0.00943215
TACSTD2 Ductal cells 0.033 protein-coding 1 0.971429 0 0.0886918 0
CCL2 Ductal cells 0.037 protein-coding 1 0.371429 0 0.0614507 0.0318896
CXCL2 Ductal cells 0.041 protein-coding 1 0.285714 0 0.0541653 0.0381136
CTSH Ductal cells 0.147 protein-coding 1 0.542857 0 0.104213 0.154187
S100A10 Ductal cells 0.374 protein-coding 1 1 0 0.526449 0
PPY Gamma (PP) cells 0.019 protein-coding 1 1 0 0.0386185 0.0153994
SCGN Gamma (PP) cells 0.014 protein-coding 1 1 0 0.0276295 0
FXYD2 Gamma (PP) cells 0.025 protein-coding 1 0.285714 0 0.00376766 0.0306064
SCGB2A1 Gamma (PP) cells 0.003 protein-coding 1 1 0 0.0153846 0
GPC5-
AS1

Gamma (PP) cells 0.001 non-coding RNA 1 0.857143 0 0.0021978 0

CMTM8 Gamma (PP) cells 0.035 protein-coding 1 1 0 0.0241758 0.0371511
ARX Gamma (PP) cells 0.019 protein-coding 1 0.142857 0 0.00188383 0.0236124
NEUROD1 Gamma (PP) cells 0.038 protein-coding 1 1 0 0.0210361 0.0429901
PAX6 Gamma (PP) cells 0.049 protein-coding 1 0.285714 0 0.0138148 0.058967
ISL1 Gamma (PP) cells 0.028 protein-coding 1 0.428571 0 0.0125589 0.0313763
AQP3 Gamma (PP) cells 0.025 protein-coding 1 0.714286 0 0.0697017 0.0159127
MPZ Peri-islet Schwann cells 0.002 protein-coding NA 1 0.6 0.00188029 0.00141252
OLFML2A Peri-islet Schwann cells 0.003 protein-coding NA 1 0.5 0.0050141 0.0023114
GULP1 Peri-islet Schwann cells 0.01 protein-coding NA 1 0.9 0.0294579 0.00404494
GFRA3 Peri-islet Schwann cells 0.005 protein-coding 1 1 1 0.00219367 0.00494382
INSC Peri-islet Schwann cells 0.005 protein-coding NA 1 0.5 0.00125353 0.00603531
SLITRK2 Peri-islet Schwann cells 0.006 protein-coding NA 1 0 0.00125353 0
FIGN Peri-islet Schwann cells 0.007 protein-coding NA 1 1 0.00376058 0.0059069
SEMA3B Peri-islet Schwann cells 0.009 protein-coding NA 1 0 0.0175494 0
NGFR Peri-islet Schwann cells 0.007 protein-coding NA 1 1 0.00188029 0.00680578
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6.8 Significantly enriched cell marker genes’ associated methyla-
tion probes

TABLE 6.8.1: Significantly enriched cell marker genes’ associated methylation probes. logFC refers
to the difference in fold changes between Group A and Group B in log scale. the log10P is the log
transformed estimate of the computed P-value column. ∆Beta indicates the absolute value of
logFC.

Probes Cell Marker logFC P-value log10P ∆Beta

cg17444738 NKX6-1 0.56226048 2.22E-14 13.6537594 0.56226048
cg05903444 IRX2 0.4594854 1.08E-12 11.9669731 0.4594854
cg18371475 IRX2 0.42404587 1.89E-12 11.7236725 0.42404587
cg01735082 FRZB 0.42399681 2.36E-12 11.6272781 0.42399681
cg24275315 NKX6-1 0.51217435 4.40E-12 11.3560733 0.51217435
cg12606400 TTR 0.44866134 1.62E-11 10.7898706 0.44866134
cg04504066 PAX6 0.52008956 2.04E-11 10.6907322 0.52008956
cg09524455 IRX2 0.46463463 2.10E-11 10.6771657 0.46463463
cg08235864 IRX2 0.46734255 2.12E-11 10.6734954 0.46734255
cg15941948 IRX2 0.28283732 5.23E-11 10.2811243 0.28283732
cg15666789 TTR 0.41059132 1.25E-10 9.90157165 0.41059132
cg25830182 NKX6-1 0.58938648 1.92E-10 9.71626844 0.58938648
cg04992127 IRX2 0.4408783 4.00E-10 9.3980383 0.4408783
cg08204280 IRX2 0.40159511 4.90E-10 9.30997379 0.40159511
cg18037921 ALDH1A3 0.31698465 6.12E-10 9.21335488 0.31698465
cg22256677 NKX6-1 0.4621334 7.38E-10 9.13190771 0.4621334
cg08521225 TTR 0.48477969 1.27E-09 8.89773864 0.48477969
cg16865446 PAX6 0.44364988 1.50E-09 8.82269288 0.44364988
cg22557091 PAX6 0.50167476 1.94E-09 8.71259199 0.50167476
cg10457539 NKX6-1 0.47270136 2.46E-09 8.60864117 0.47270136
cg10417567 NKX6-1 0.41629544 2.88E-09 8.54092774 0.41629544
cg06119874 PFKFB2 -0.3212771 3.39E-09 8.47024774 0.3212771
cg07688460 NKX6-1 0.45542433 4.16E-09 8.38123869 0.45542433
cg11552694 IRX2 0.27208043 5.19E-09 8.28511488 0.27208043
cg13891702 PAX6 0.45999145 1.13E-08 7.94666382 0.45999145
cg18297736 NKX6-1 0.29911374 1.17E-08 7.93023805 0.29911374
cg01904582 PAX6 0.39936253 1.28E-08 7.89150928 0.39936253
cg13596833 PAX6 0.26940245 1.43E-08 7.84532599 0.26940245
cg22598426 NKX6-1 0.48164795 1.70E-08 7.76933953 0.48164795
cg15889872 PAX6 0.38423528 1.72E-08 7.76351794 0.38423528
cg21093166 IRX2 0.27261484 2.90E-08 7.53710952 0.27261484
cg08499046 PAX6 0.44453749 3.95E-08 7.40305266 0.44453749
cg08116462 PAX6 0.38646221 4.52E-08 7.34510766 0.38646221
cg26578682 IRX2 0.50641281 5.21E-08 7.28294158 0.50641281
cg02489958 NKX6-1 0.42323707 5.85E-08 7.23247695 0.42323707
cg27011060 PAX6 0.51636973 6.40E-08 7.19401171 0.51636973
cg18082638 PAX6 0.43044918 9.05E-08 7.04335934 0.43044918
cg14439629 PAX6 0.32834294 9.25E-08 7.03399341 0.32834294
cg24470575 NGFR 0.29563142 1.00E-07 6.99884465 0.29563142
cg09537620 PAX6 0.53405544 1.02E-07 6.9900789 0.53405544
cg16616455 GABRB3 0.37580253 1.30E-07 6.88569064 0.37580253
cg12076463 NKX6-1 0.45418853 1.72E-07 6.76466914 0.45418853
cg11469061 PAX6 0.31824485 1.97E-07 6.70525922 0.31824485
cg22651463 GLS 0.2906471 2.16E-07 6.66496132 0.2906471
cg16640855 NEUROD1 0.34607882 2.92E-07 6.53405666 0.34607882
cg15929698 NPY 0.27841676 2.98E-07 6.52644523 0.27841676
cg11128216 PAX6 0.50317899 3.07E-07 6.51221848 0.50317899
cg27406678 NKX6-1 0.34430664 3.78E-07 6.42302948 0.34430664
cg05321361 IRX2 0.47595166 4.22E-07 6.37503389 0.47595166
cg03905867 PAX6 0.4600715 5.29E-07 6.27651308 0.4600715
cg09224689 PAX6 0.47879883 5.77E-07 6.23888859 0.47879883
cg00792849 GJD2 0.27688391 5.88E-07 6.23049751 0.27688391
cg21748401 CASR 0.31292273 7.59E-07 6.11978568 0.31292273
cg13245152 PAX6 0.43237399 1.02E-06 5.99242961 0.43237399
cg25884711 NPY 0.36288164 1.07E-06 5.96995242 0.36288164
cg12305238 ETV1 -0.3225731 1.16E-06 5.93498117 0.32257311
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cg18952796 NPTX2 0.37357208 1.28E-06 5.89422344 0.37357208
cg06482260 KRT7 -0.3500031 1.54E-06 5.81255376 0.35000312
cg04938549 PAX6 0.3381367 1.56E-06 5.80633456 0.3381367
cg13570972 PAX6 0.35653857 1.82E-06 5.73895 0.35653857
cg27652350 ALDH1A3 0.32427075 2.01E-06 5.69622303 0.32427075
cg02770983 PAX6 0.25325547 2.48E-06 5.60475435 0.25325547
cg24852548 HOPX 0.36945 2.85E-06 5.54450154 0.36945
cg21526749 SST 0.29836754 3.04E-06 5.51783227 0.29836754
cg22740492 PAX6 0.38772033 3.67E-06 5.43485552 0.38772033
cg18147181 KRT7 -0.3825187 3.72E-06 5.42965129 0.38251867
cg26862822 NKX2-2 0.34888142 3.82E-06 5.41844283 0.34888142
cg05930013 CLDN10 0.31848072 3.91E-06 5.40735254 0.31848072
cg06714480 NEUROD1 0.30801175 3.96E-06 5.40259481 0.30801175
cg02771142 PAX6 0.40695922 3.97E-06 5.40156323 0.40695922
cg18077866 CASR 0.3337274 4.03E-06 5.39492593 0.3337274
cg21471367 AKR1C3 -0.2904125 4.14E-06 5.38282332 0.29041253
cg01050885 NPY 0.32611203 4.34E-06 5.36217419 0.32611203
cg01380361 PFKFB2 -0.2658821 5.30E-06 5.27582462 0.26588212
cg15215534 PAX6 0.35654741 5.89E-06 5.23019907 0.35654741
cg00355281 NPY 0.2797044 6.20E-06 5.20741813 0.2797044
cg09382096 PAX6 0.35525127 6.35E-06 5.19702231 0.35525127
cg07629454 CASR 0.36863321 6.38E-06 5.19547671 0.36863321
cg22976218 NEUROD1 0.29647646 6.71E-06 5.17338261 0.29647646
cg09853371 HOPX 0.33453146 6.77E-06 5.16930247 0.33453146
cg16964348 NPY 0.2971393 7.22E-06 5.14174689 0.2971393
cg26504021 IRX2 0.37997004 7.67E-06 5.11503733 0.37997004
cg17412258 DLK1 0.2700869 7.88E-06 5.10352612 0.2700869
cg08784129 PAX6 0.40289185 9.00E-06 5.04571854 0.40289185
cg11173941 IRX2 0.44314966 9.21E-06 5.03564956 0.44314966

6.9 Proportion of normal cell signature in PanNEN tumors

TABLE 6.9.1: Proportion of normal cell signature in PanNEN tumors.

Signature Proportion
Sample α-cells Acinar cells β-cells Ductal cells

PNET100 0.827 0.151 0.022 0
PNET101 0.229 0.286 0.226 0.258
PNET102 0.272 0.313 0.258 0.157
PNET103 0.211 0.662 0.081 0.047
PNET104 0.268 0.392 0.254 0.086
PNET105 0.206 0.327 0.433 0.035
PNET106 0.218 0.359 0.319 0.104
PNET107 0.652 0.241 0.025 0.082
PNET108 0.63 0.233 0.054 0.083
PNET11 0.44 0.252 0.094 0.213
PNET14 0.466 0.121 0.292 0.121
PNET15 0.677 0.21 0.057 0.056
PNET16 0.497 0.161 0.235 0.107
PNET18 0.304 0.287 0.22 0.188
PNET2 0.227 0.49 0.224 0.059
PNET20 0.439 0.139 0.198 0.224
PNET21 0.7 0.125 0.175 0
PNET24 0.496 0.213 0.113 0.177
PNET25 0 0.039 0.904 0.057
PNET33 0.611 0.249 0.055 0.084
PNET36 0.557 0.191 0.225 0.028
PNET37 0.727 0.175 0.017 0.081
PNET4 0.232 0.341 0.261 0.165
PNET42 0.557 0.269 0.093 0.081
PNET43 0.883 0.096 0.021 0
PNET46 0.61 0.201 0.077 0.112
PNET47 0.785 0.121 0.033 0.061
PNET5 0.469 0.277 0.208 0.045
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Signature Proportion
Sample α-cells Acinar cells β-cells Ductal cells

PNET50 0.754 0.188 0.017 0.041
PNET51 0.379 0.16 0.375 0.086
PNET52 0.1 0.124 0.744 0.032
PNET53 0.53 0.189 0.185 0.095
PNET56P1 0.704 0.254 0.043 0
PNET56P2 0.73 0.24 0.03 0
PNET57 0.44 0.252 0.308 0
PNET58 0.316 0.333 0.2 0.151
PNET59 0.384 0.193 0.351 0.072
PNET60 0.074 0.709 0.156 0.061
PNET61 0.546 0.241 0.187 0.027
PNET62 0.404 0.312 0.056 0.229
PNET63 0.247 0.395 0.236 0.123
PNET65 0.333 0.144 0.429 0.094
PNET66 0.409 0.204 0.344 0.043
PNET67 0.331 0.325 0.229 0.116
PNET70 0.401 0.249 0.087 0.263
PNET77M 0.36 0.205 0.282 0.153
PNET77P 0.313 0.22 0.263 0.203
PNET79 0.525 0.263 0.066 0.145
PNET8 0.366 0.238 0.268 0.128
PNET81 0.792 0.169 0 0.039
PNET83 0.91 0.09 0 0
PNET85 0.676 0.244 0 0.081
PNET89 0.776 0.132 0 0.092
PNET9 0.5 0.228 0.138 0.133
PNET91 0.097 0.104 0.712 0.087
PNET92 0.574 0.112 0.142 0.172
PNET95 0.716 0.191 0.062 0.031

6.10 Identified driver mutations in PanNEN cell lines

TABLE 6.10.1: Identified driver mutations in PanNEN cell lines. Allelic frequency are computed
as the number of altered reads for a given variant divided by the total reads at that position. Three
different gene panels were used to determine the variants. if the variant was identified in multiple
panels, they are indicated in the Gene Panel column, separated by commas: CCP - Commercial
Cancer Panel, CRC5 - ColoRectal Cancer 5 panel and PanNEN - Pancreatic NeuroEndocrine Neo-
plasms panel

Chromosome Position Gene Amino Acid Variant Effect Allelic Frequency Gene Panel

BON1
chr17 7574003 TP53 p.R342* stop_gained 0.997 CCP,CRC5,PanNEN
chr18 48604787 SMAD4 p.537delD frameshift_truncation 1 CCP,CRC5
chr1 115256529 NRAS p.Q61R missense_variant 0.982 CRC5
chr2 60688270 BCL11A p.E593K missense_variant 0.345 CCP
chr2 140990778 LRP1B p.G4593C missense_variant 0.527 CCP
chr9 133748331 ABL1 p.N350S missense_variant 1 CCP
chr12 121416795 HNF1A p.D75G missense_variant 0.472 CCP
chr16 15835455 MYH11 p.E915D missense_variant 0.317 CCP
chr20 31024561 ASXL1 p.V1349A missense_variant 0.48 CCP
chr20 40713353 PTPRT p.G1388R missense_variant 0.54 CCP

QGP1
chr12 25398284 KRAS p.G12V missense_variant 0.742 CCP,CRC5,PanNEN
chr17 7579393 TP53 p.P98Lfs*75 frameshift_truncation 0.995 CCP,CRC5
chr5 112162854 APC p.Y486* stop_gained 0.982 CRC5
chr1 11190767 MTOR p.R1811H missense_variant 0.683 PanNEN
chr1 186315299 TPR p.K1022Q missense_variant 0.538 CCP
chr2 141946083 LRP1B p.I307N missense_variant 0.165 CCP
chr4 106157435 TET2 p.T800S missense_variant 0.267 CCP
chr4 106196248 TET2 p.Q1550Sfs*49 frameshift_truncation 0.588 CCP
chr5 112177788 APC p.R2166Q missense_variant 0.406 CCP
chr9 36966682 PAX5 p.P215L missense_variant 0.515 CCP
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Chromosome Position Gene Amino Acid Variant Effect Allelic Frequency Gene Panel

chr11 102248276 BIRC2 p.L472F missense_variant 0.443 CCP
chr11 108206666 ATM p.K2749I missense_variant 0.65 CCP

6.11 Response coefficients of the respective parameters of BON1
and QGP1 models

TABLE 6.11.1: Response coefficients of the respective parameters of BON1 and QGP1 models.
The Parameter column refers to the direct link and the Path Value column represents the response
coefficient in log scale.

Parameter Path Value (r)

QGP1
AKT->AKTt -0.1231819
AKTs->AKT -2.6514043
AKTt->CREB1 0.09819726
AKTt->GSK3 0.07441752
AKTt->PRAS40t 0.46862546
AKTt->mTORC1 0.8740396
AKTt->mTORC2/p70S6K->mTORC2 -47.664468
AZD->mTORC1 0.67935377
AZD->mTORC2/p70S6K->mTORC2 -8.0679253
AZD->p4EBP1 0.26933531
EGFR->RAF->MEK1 0.82193823
ERK1->CREB1 0.4258024
ERK1->EGFR -0.2732524
ERK1->RAF->MEK1 -0.4254177
ERK1->RPS6 0.28498783
ERK1->p70S6K 0.31350978
GF->EGFR 0.88314364
GF->IGFR 0.93200283
IGFR->PI3K 4.44934968
MEK1->ERK1 1.82778252
PI3K->AKT -3.4910009
PI3K->RAF->MEK1 0.1750874
PI3K->mTORC2/p70S6K->mTORC2 6.81958436
mTORC1->p4EBP1 0.13568001
mTORC1->p70S6K 0.83144356
p70S6K->mTORC2->AKTs -0.0402448
p70S6K->mTORC2->IGFR 0.00252605
p70S6K->CREB1 0.14649423
p70S6K->RPS6 0.68450306
iAKT -8.560621
iAZD -4.6170035
iERK1 -1.233815
iMEK1 -1.0263373
iPI3K -0.7872372
imTORC1 -1.8214136

BON1
AKT->AKTt 1.09861593
AKTs->AKT 0.53790108
AKTt->PRAS40t 0.66215989
AKTt->mTORC1 1.17904843
AKTt->mTORC2/p70S6K->mTORC2 4.36340928
AZD->mTORC1 0.58836534
AZD->mTORC2/p70S6K->mTORC2 0.28242377
AZD->p4EBP1 0.4904269
ERK1->EGFR -0.6162642
ERK1->GSK3 -0.4245638
ERK1->RAF->MEK1 -0.9847298
ERK1->p70S6K 0.3542028
GF->EGFR 0.64911927
GF->IGFR 0.65195276
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Parameter Path Value (r)

IGFR->PI3K 0.06939884
MEK1->ERK1 0.31650945
PI3K->AKT 0.81012999
PI3K->RAF->MEK1 1.12996237
mTORC1->p4EBP1 0.25318094
mTORC1->p70S6K 0.46922502
p70S6K->mTORC2->AKTs 0.33996021
p70S6K->mTORC2->IGFR -0.0299503
p70S6K->PI3K -0.2585075
p70S6K->RPS6 0.96300903
iAKT -0.9387223
iAZD -4.2934331
iERK1 -0.7956741
iMEK1 -3.525921
iPI3K -0.286181
imTORC1 -3.4195615

6.12 All path comparison of BON1 and QGP1 models

TABLE 6.12.1: All path comparison of BON1 and QGP1 models. The aggregated path - signalling
path being evaluated, value - minimum parameter value for the parameter. upper bound and
lower bound refers to the maximum values in the positive and negative direction, respectively,
between which the parameter lay without diminishing the fit of the model.

aggregated path celline value upper bound lower bound

AKTs->AKT->AKTt BON1 0.59094669 1.06087183 0.30583311
AKTs->AKT->AKTt QGP1 0.3266051 1.00989384 0.00514328
AKTt->CREB1 QGP1 0.09819726 0.21819726 -0.0218027
AKTt->GSK3 QGP1 0.07441752 0.15441752 0.00441752
AKTt->mTORC1->p4EBP1 BON1 0.29851259 0.72937385 0.08817344
AKTt->mTORC1->p4EBP1 QGP1 0.1185897 0.38009123 -0.0292822
AKTt->mTORC1->p70S6K->CREB1 QGP1 0.10645949 0.38063484 -0.0043538
AKTt->mTORC1->p70S6K->mTORC2->AKTs BON1 0.18807925 0.7141351 0.0027874
AKTt->mTORC1->p70S6K->mTORC2->AKTs QGP1 -0.0292465 0 -0.1617509
AKTt->mTORC1->p70S6K->mTORC2->IGFR BON1 -0.0165697 0 -0.1065407
AKTt->mTORC1->p70S6K->mTORC2->IGFR QGP1 0.00183572 0.01555608 -0.0092819
AKTt->mTORC1->p70S6K->PI3K BON1 -0.1430164 -0.02756769 -Inf
AKTt->mTORC1->p70S6K->RPS6 BON1 0.53277417 1.36760628 0.19394113
AKTt->mTORC1->p70S6K->RPS6 QGP1 0.49743836 1.24749123 0.15466568
AKTt->mTORC2->AKTs BON1 1.48338552 1.76545722 1.20265027
AKTt->mTORC2->AKTs QGP1 1.91824844 2.05755847 0
AKTt->mTORC2->IGFR BON1 -0.1306854 0 -0.2532577
AKTt->mTORC2->IGFR QGP1 -0.1204027 0.40530625 -0.2220646
AKTt->PRAS40t BON1 0.66215989 0.95215989 0.46215989
AKTt->PRAS40t QGP1 0.46862546 0.61862546 0.32862546
EGFR->RAF->MEK1 QGP1 0.82193823 1.44193823 0.23193823
ERK1->CREB1 QGP1 0.4258024 0.6558024 0.2158024
ERK1->EGFR BON1 -0.6162642 -0.36626425 -0.9062642
ERK1->EGFR QGP1 -0.2732524 -0.10325235 -0.4532524
ERK1->GSK3 BON1 -0.4245638 -0.22456376 -0.6545638
ERK1->p70S6K->CREB1 QGP1 0.04592737 0.16351767 -0.0018704
ERK1->p70S6K->mTORC2->AKTs BON1 0.12041486 0.48518706 0.00034067
ERK1->p70S6K->mTORC2->AKTs QGP1 -0.0126171 0 -0.0694869
ERK1->p70S6K->mTORC2->IGFR BON1 -0.0106085 0 -0.0723843
ERK1->p70S6K->mTORC2->IGFR QGP1 0.00079194 0.00668277 -0.0039874
ERK1->p70S6K->PI3K BON1 -0.0915641 -0.00336923 -Inf
ERK1->p70S6K->RPS6 BON1 0.34110049 0.92915873 0.02370285
ERK1->p70S6K->RPS6 QGP1 0.2145984 0.53591221 0.04250976
ERK1->RAF->MEK1 BON1 -0.9847298 -0.69472975 -1.3047298
ERK1->RAF->MEK1 QGP1 -0.4254177 -0.12541772 -0.7754177
ERK1->RPS6 QGP1 0.28498783 0.77498783 -0.1950122
GF->EGFR BON1 0.64911927 0.76911927 0.52911927
GF->EGFR QGP1 0.88314364 1.04314364 0.72314364
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aggregated path celline value upper bound lower bound

GF->IGFR BON1 0.65195276 0.90195276 0.40195276
GF->IGFR QGP1 0.93200283 1.24200283 0.63200283
iAKT BON1 -0.9387223 NA 0
iAKT QGP1 -8.560621 0 NA
iAZD->mTORC1->p4EBP1 BON1 -0.6395622 0 -Inf
iAZD->mTORC1->p4EBP1 QGP1 -0.425571 Inf -Inf
iAZD->mTORC1->p70S6K->CREB1 QGP1 -0.3820406 Inf -Inf
iAZD->mTORC1->p70S6K->mTORC2->AKTs BON1 -0.4029592 0 -Inf
iAZD->mTORC1->p70S6K->mTORC2->AKTs QGP1 0.10495402 Inf 0
iAZD->mTORC1->p70S6K->mTORC2->IGFR BON1 0.03550047 Inf 0
iAZD->mTORC1->p70S6K->mTORC2->IGFR QGP1 -0.0065876 Inf -Inf
iAZD->mTORC1->p70S6K->PI3K BON1 0.30641225 Inf 0
iAZD->mTORC1->p70S6K->RPS6 BON1 -1.1414668 0 -Inf
iAZD->mTORC1->p70S6K->RPS6 QGP1 -1.7851074 0 -Inf
iAZD->mTORC2->AKTs BON1 -0.4122247 0 -Inf
iAZD->mTORC2->AKTs QGP1 -1.4991054 0 -Inf
iAZD->mTORC2->IGFR BON1 0.03631676 Inf 0
iAZD->mTORC2->IGFR QGP1 0.09409435 Inf 0
iAZD->p4EBP1 BON1 -2.1056151 0 -Inf
iAZD->p4EBP1 QGP1 -1.2435221 0 -Inf
iERK1 BON1 -0.7956741 -0.21567408 -1.4356741
iERK1 QGP1 -1.233815 -0.81381503 -1.753815
IGFR->PI3K BON1 0.06939884 0.57939884 0.02939884
IGFR->PI3K QGP1 4.44934968 10.9231535 2.71410331
iMEK1 BON1 -3.525921 -1.2622797 NA
iMEK1 QGP1 -1.0263373 -0.85633731 -1.2363373
imTORC1 BON1 -3.4195615 0 NA
imTORC1 QGP1 -1.8214136 NA 0
iPI3K BON1 -0.286181 0 NA
iPI3K QGP1 -0.7872372 0 -1.8072372
MEK1->ERK1 BON1 0.31650945 0.43650945 0.23650945
MEK1->ERK1 QGP1 1.82778252 2.48778252 1.36778252
PI3K->AKT->AKTt BON1 0.89002172 2.8026066 0.05390303
PI3K->AKT->AKTt QGP1 0.43002822 1.32281723 0.0783017
PI3K->mTORC2->AKTs QGP1 -0.274453 0.00166538 -0.274453
PI3K->mTORC2->IGFR QGP1 0.01722659 0.0277745 -0.0001327
PI3K->RAF->MEK1 BON1 1.12996237 2.33996237 0.01996237
PI3K->RAF->MEK1 QGP1 0.1750874 0.4050874 0.0050874

6.13 Clinical characteristics of patient cohort

TABLE 6.13.1: Clinical characteristics of patient cohort. PNETID - ?: samples belong to one
patient. Normal - ND: normal distant, NA: normal adjacent. Sample type - FFPE: Formalde-
hyde Fixed Parafine Embedded. Primary - pancreatic locations are either head, body or tail of
the pancreas. Multiple lesions refer to multiple tumors spread within the pancreas. NEC/NET
grade WHO 2017 - NETG1: well-differentiated low grade, NETG2: well-differentiated inter-
mediate grade, NETG3: well-differentiated high grade, LCNEC: large cell neuroendocrine car-
cinoma (poorly differentiated), SCNEC: small cell neuroendocrine carcinoma (poorly differenti-
ated). Metastasis - LN: lymph node metastasis.

PNETID PanNEN
Group

Gender Normal Sample
type

Primary Metastasis NEC/NET
grade
WHO2017

Ki67 [own analysis
or diagnostic report]

Additional diagnosis

Bern Cohort
PNET100 Group A female ND FFPE Papillary

region
NETG3 40 ALT+, glucagon+

PNET101 Group B female ND FFPE Pancreas NEC 40
PNET102 Group B male ND FFPE tail NEC 50
PNET103 Group B female No normal FFPE head NEC 90 ALT+
PNET104 Group B male No normal FFPE retro

peri-
toneal

NEC 70
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PNETID PanNEN
Group

Gender Normal Sample
type

Primary Metastasis NEC/NET
grade
WHO2017

Ki67 [own analysis
or diagnostic report]

Additional diagnosis

PNET105 Group B Male ND FFPE head NEC 80
PNET106 Group B male ND FFPE head NEC 40

PNET107 Group A male ND FFPE head NETG3
no info table
25% report

PNET108 Group A male ND FFPE tail NETG3
no info table
>20% report

Charite Cohort
*PNET56P1 Group A

female
ND FFPE liver NETG3 40

*PNET56P2 Group A ND FFPE liver NETG3 20
PNET57 Group A male NA biopsy liver NETG3 25
PNET58 Group B female No normal biopsy liver LCNEC 25
PNET59 Group B male No normal FFPE bladder SCNEC 70
PNET60 Group B male ND FFPE Peritoneal LCNEC 40
PNET61 Group A male NA FFPE tail NETG3 25
PNET62 Group A female No normal biopsy liver NETG3 20
PNET63 Group B female No normal FFPE head LCNEC 60
PNET65 Group C male ND FFPE LCNEC 40
PNET66 Group B male ND FFPE LN LCNEC 47
PNET67 Group B female NA FFPE liver LCNEC 30
PNET70 Group A female No normal biopsy liver NETG3 25
PNET2 Group B male ND FFPE head SCNEC 47.8670
PNET4 Group B male NA FFPE head NETG2 4.842
PNET5 Group A female No normal FFPE head NETG1 0.23128
PNET8 Group A female NA FFPE head NETG1 1.52856 MEN1 syndrome
PNET9 Group A female ND FFPE head NETG2 4.1304
PNET11 Group A female NA FFPE LN NETG1
PNET14 Group A female NA FFPE head NETG1 1.98962
PNET15 Group A male NA FFPE multiple

lesion
NETG1 0.51052 MEN1 syndrome

PNET16 Group A female NA FFPE tail NETG1 2.3538
PNET18 Group A male NA FFPE head NETG1 0.12532
PNET20 Group A female NA FFPE head NETG2 6.6778
PNET21 Group A female NA FFPE multiple

lesion
NETG2 3.151

PNET24 Group A female NA FFPE tail NETG2 3.6172
PNET25 Group A male No normal FFPE body NETG1 0.70462 Insulinoma
PNET33 Group A female ND FFPE head NETG2 3.2214 MEN1 syndrome
PNET36 Group C female ND FFPE tail NETG2 4.9006
PNET37 Group A male No normal FFPE head NETG1 0.06298
PNET42 Group A male PB FFPE liver NETG3 52.078
PNET43 Group A female ND FFPE body NETG1 0.39086
PNET46 Group A female ND FFPE liver NETG2 7.6058
PNET47 Group A male ND FFPE tail NETG1 0.59126
PNET50 Group A male ND FFPE liver NETG2 3.4384
PNET51 Group A female ND FFPE head NETG1 0.2888
PNET52 Group A female NA FFPE tail NETG1 0.87594 Insulinoma; MEN1

syndrome
PNET53 Group A female ND FFPE liver NETG2 4.4964
*PNET77P Group C

female
PB FFPE head NETG3 26

*PNET77M2 Group C PB FFPE liver NETG3 25
PNET79 Group A male ND FFPE tail

and
cor-
pus

NETG2 15

PNET81 Group A male ND FFPE tail NETG1 0.76548
PNET83 Group A male ND FFPE tail NETG1 0.50074
PNET85 Group A female ND FFPE tail NETG2 3.3904
PNET89 Group A male ND FFPE tail NETG1 0.74766
PNET91 Group A female ND FFPE tail NETG1 1.922 Insulinoma
PNET92 Group A male ND FFPE head NETG1 1.73
PNET95 Group A male NA FFPE tail NETG2 7.7164

6.14 Molecular characteristics of patient cohort
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TABLE 6.14.1: Molecular characteristics of patient cohort. Tumor cell content - pathologist estima-
tion of the tumor purity. T-stage - pathology classification of the tumor stage for a given samples.

PNETID PanNEN
Group

Tumor cell
content

T-Stage Chromogranin
A [own anal-
ysis or diag.
report]

Synaptophysin
[own analy-
sis or diag.
report]

Staining

PDX1 ARX SOX9

Bern Cohort
PNET100 Group A 70% pT3 positive positive negative postive negative
PNET101 Group B 80% pT3 strong strong negative negative positive
PNET102 Group B 80% pT2 negative negative negative
PNET103 Group B 60% pT3 80% 80% negative negative positive
PNET104 Group B 70% pT3 strong negative negative Positive

PNET105 Group B 80% pT3 strong strong negative
single cells
(negative)

Positive

PNET106 Group B 50% pT3 focal strong negative negative negative
PNET107 Group A 60% pT2 negative positive Positive
PNET108 Group A 60 pT3 positive positive negative positive negative

Charite Cohort
*PNET56P1 Group A 95% strong strong negative positive positive
*PNET56P2 Group A 95% moderate strong
PNET57 Group A 95% strong strong
PNET58 Group B 80% strong strong positive positive
PNET59 Group B 95% strong strong negative positive positive
PNET60 Group B 95% partially partially negative negative positive
PNET61 Group A 90% pT3 positivity positivity
PNET62 Group A 75% positivity no staining positive positive
PNET63 Group B 80% pT1 strong partially and

moderate
negative negative positive

PNET65 Group C 90% pT2 strong strong
PNET66 Group B 98% strong strong negative positive
PNET67 Group B 85% strong strong negative positive negative
PNET70 Group A 80% positivity positivity
PNET2 Group B 90% pT3 3+ 1+ negative positive positive
PNET4 Group B 80% pT3 2+ 1+
PNET5 Group A 85% pT3 1+ 2+
PNET8 Group A 80% 3+ 3+
PNET9 Group A 95% pT3 2+ 3+
PNET11 Group A 70% positivity positivity
PNET14 Group A 98% pT3 1+ 3+ negative positive negative
PNET15 Group A 95% pT2 2+ 3+ negative positive negative
PNET16 Group A 95% pT4 2+ 3+
PNET18 Group A 95% pT1 2+ 2+ negative negative negative
PNET20 Group A 95% pT3 1+ 3+
PNET21 Group A 90% pT3 2+ 3+ negative positive negative
PNET24 Group A 80% pT3 1+ 2+
PNET25 Group A 98% pT1 positivity positivity
PNET33 Group A 75% pT3 1+ 3+ negative positive negative
PNET36 Group C 90% pT3 2+ 1+
PNET37 Group A 95% pT3 1+ 2+
PNET42 Group A 75% 3+ 2+ negative single cell

positive
single cell
positive

PNET43 Group A 90% pT3 2+ 2+
PNET46 Group A 90% 1+ 2+
PNET47 Group A 95% pT1 2+ 3+ negative positive negative
PNET50 Group A 95% 1+ 3+ negative negative negative
PNET51 Group A 90% pT1 3+ 2+ negative negative negative
PNET52 Group A 90% pT3 1+ 3+ negative positive positive
PNET53 Group A 75% 3+ 3+ negative positive negative
*PNET77P Group C 80% pT3 strong strong
*PNET77M2 Group C 90%
PNET79 Group A pT3 strong strong
PNET81 Group A 95% 2+ 3+
PNET83 Group A 95% pT2 2+ 3+ negative positive negative
PNET85 Group A 90% pT2 2+ 3+
PNET89 Group A 90% pT1 3+ 3+
PNET91 Group A 95% pT1 2+ 3+ negative positive negative
PNET92 Group A 90% pT2 1+ 3+
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PNETID PanNEN
Group

Tumor cell
content

T-Stage Chromogranin
A [own anal-
ysis or diag.
report]

Synaptophysin
[own analy-
sis or diag.
report]

Staining

PDX1 ARX SOX9

PNET95 Group A 90% pT3 2+ 3+
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Chapter 7

Key Resources

Here you can find the resources that were utilized for the completion of this project. This
includes external datasets, experimental resources and key programming functions that
were utilized for the appropriate analysis of the data.

7.1 Experimental resources

TABLE 7.1.1: Inhibitors and antibodies

Target Product Manufacturer

Inhibitors
PI3K GDC0941 Axon
AKT MK2206 LKT Laboratories
mTORC1 and mTORC2 AZD8055 Cayman Chemical
mTORC1 Everolimus Cayman Chemical
ERK1 AZD6244 Selleckchem
MEK1 SCH772984 Selleckchem

Antibodies
pAKTT308 #2965 Cell Signaling
pAKTS473 #4060 Cell Signaling
p4EBP1S65 #9451 Cell Signaling
Vinculin MAB68969 R&D System
ARX AF7068 R&D System
PDX1 MAB2419 R&D System
SOX9 #82630 Cell Signaling

7.2 Data analysis resources

TABLE 7.2.1: External dataset

Sample ID New sample annotation if changed Dataset

Alpha rep 1 Alpha A (Neiman et al., 2017)
Alpha rep 2 Alpha B (Neiman et al., 2017)
Beta rep 1 Beta A GSE122126
Beta rep 2 Beta B GSE122126
Beta rep 3 Beta C (Neiman et al., 2017)
Ductal 1 Ductal A GSE134217
Ductal 2 Ductal B GSE134217
Ductal rep 1 Ductal C GSE122126
Acinar 1 Acinar A GSE134217
Acinar 2 Acinar B GSE134217
Acinar rep 1 Acinar C GSE122126
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Sample ID New sample annotation if changed Dataset

PDAC (n=167) GSE49149
hESC GSE128130

TABLE 7.2.2: Main R packages and their respective functions that were utilized for data processing
and analysis. Additional parameter changes deviating from the default setting of the function is
detailed in chapter 5

R package (version) Function Description

Ape (5.4-1) nj() performs the neighbor-joining tree estimation from a distance ma-
trix

biomaRt (2.44.1) getBM() obtaining genomic annotation for a given set of genes
useEnsembl() define the reference genome to utilize for obtaining annotation

CHAMP (2.18.3) champ.DMP() Differential methylation analysis between specific groups or all
groups

ComplexHeatmap (2.4.3) Heatmap() generating heatmaps
HeatmapAnnotation() preparing column-wise annotation data to add to Heatmap()
rowAnnotation() preparing row-wise annotation data to add to Heatmap()
UpSet() visualize intersections of multiple sets

ConcensusClusterPlus (1.52.0) ConsensusClusterPlus() Performs unsupervised class discovery

Conumee CNV.bin() Combine probes within predefined genomic bins
CNV.create_anno() Create annotation object required for CNV analysis using 450k or

EPIC arrays
CNV.detail() Analyze copy number profile from a specific regions

CNV.fit()
Normalize a sample to a set of control samples by multiple linear regression.
Resulting object contains log2-ratio of probe intensities of the query sample
versus the combination of control samples

CNV.genomeplot() Plots copy number profile of complete genome or specific region
CNV.load() Combine intensity values from methylated and unmethylated

channels
CNV.segment() Segment the genome into regions of the same copy-number state

dichromat (2.0-0) colorRampPalette() Generate sequential color scheme

EnhancedVolcano (1.6.0) EnhancedVolcano() Volcano plot visualization

factoextra (1.0.7) get_dist() Computes distance matrix

GenomeInfoDb (1.24.2) seqlevelsStyle() Rename seqlevel in Granges object

ggplot2 (3.3.2) geom_boxplot() Boxplot visualization of data
geom_jitter() Evaluation of point distribution without overlap

Iranges (2.22.2) subsetByOverlaps() Extract overlaping probes

minfi (1.34.0) combineArrays() Combine EPIC and 450K methylation arrays. Only overlapping
probes remain

detectionP() Generate a detection p-value for every CpG per sample
dropLociWithSnps() Remove probes with common SNPs

getAnnotation()
Illumina manifest loaded as an R object.
Contains information on methylation probes in the respective array

getBeta() Calculate and extract beta values for CpG probes

mapToGenome()
Convert intesitiy information into M values and beta values,
together with associated genomic coordinates;
final object generated in a GenomicRatioSet (GRSet)

pData() Extract phenotype data from RGSet
preprocessFunnorm() Data normalization of tumor-normal combined RGSet and gener-

ate MethylSet (Mset)
preprocessSWAN() Data normalization of tumor or normal RGSet and generate

MethylSet (Mset)
read.metharray.exp() Read IDAT raw data and generate RGChannelSet (RGSet)

read.metharray.sheet()
Read annotation file containing intensity data (IDAT) file information and
addition patient features

regioneR (1.20.1) toGRanges() Convert getBM() output into Granges object
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R package (version) Function Description

Rtsne (0.15) Rtsne() Dimension reduction analysis of methylation data

RVAideMemoire (0.9-79) fisher.multcomp() Performs fisher exact test on multiple variables

STASNet (1.0.2) aggregateDirectPath() Aggregated paths from multiple model
createModel() Creates parameterized model
plotModelAccuracy(). Heatmaps of model error and log2 fold changes of experimental

data, and simulation data
plotModelScores() Scores of measured nodes fit
plotParameters() Visualize the aggregatedDirectPath() output
profileLikelihood() Computes the profile likelihood and confidence interval
selectMinimalModel() Iteratively remove model links and reduce the model without sig-

nificantly impacting the fit
suggestExtension() Additional links are suggested that could improve the model fit

stats (base R) dist() Computes distance matrix
hclust() Hierarchical clustering of a matrix
wilcox.test() Performs wilcoxon rank sum statistical testing

survival (3.2-11) survfit() Computes an estimate of a survival curve for censored data

survminer (0.4.9) ggsurvplot() Plot survival curves
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Appendix

8.1 List of Abbreviations

A-D-M ATRX,DAXX and/or MEN1 mutations
AKT AK strain Transforming
ARX Aristaless Related Homeobox
ATRX Alpha-Thalassemia/Mental Retardation Syndrome, X-Linked

CNA Copy Number Aberrations
CCP Comprehensive Cancer Panel
CDKN1B Cyclin Dependent Kinase Inhibitor 1B
CDKN2A Cyclin Dependent Kinase Inhibitor 2A
COSMIC Catalogue Of Somatic Mutations In Cancer

DAB 3,3’-DiAminoBenzidine
DAXX Death Domain Associated Protein 6
DMEM Dulbecco’s Modified Eagle Medium
DMP Differentially Methylated Probes

FCS Fetal Calf Serum
FISH Fluorescence In-Situ Hybridization

hESC human Embryonic Stem Cells

IHC ImmunoHistoChemistry
IRX2 IRoquois HomeoboX 2

KRAS Ki-ras2 Kirsten RAt Sarcoma viral oncogene

LCNEC Large Cell NeuroEndocrine Carcinoma

MAPK Mitogen-Activated Protein Kinase
MEN1 Multiple Endocrine Neoplasia type 1
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MRA Modular Response Analysis
mTOR Mechanistic Target Of Rapamycin

NETG1 NeuroEndocrine Tumor Grade 1
NETG2 NeuroEndocrine Tumor Grade 2
NETG3 NeuroEndocrine Tumor Grade 3

PanNEC Pancreatic NeuroEndocrine Carcinoma
PanNENs Pancreatic NeuroEndocrine Neoplasms
PanNET Pancreatic NeuroEndocrine Tumor
PDAC Pancreatic Ductal AdenoCarcinoma
PDX1 Pancreatic and Duodenal HomeoboX 1
PI3K PhosphoInositide-3-Kinases

RB1 RetinoBlastoma

SCNEC Small Cell NeuroEndocrine Carcinoma
SMAD4 SMAD family Member 4
SOX9 SRY-BOX Transcription Factor 9
STASNet STeady-STate Analysis of Signalling Networks

TP53 Tumor Protein 53
TSC2 Tuberous Sclerosis Complex 2

VHL Von Hippel-Lindau

8.2 List of Symbols

α pancreatic alpha cell
β pancreatic beta cell
γ pancreatic gamma cell
δ pancreatic delta cell
ε pancreatic epsilon cell
∆ beta difference in methylation beta values
r local response coefficient
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