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1. Introduction

Statistics on the space of unlabeled networks can be allocated to object-oriented data analysis as
in Marron & Dryden (2021) and to statistics for objects with geometric structure summarized
hereafter from Feragen et al. (2019). On the one hand, this active research area is appealing
by its interdisciplinarity in geometry, topology, stochastics, statistics and computer science. On
the other hand, its practical importance increases with the rapid raise in available complex data
such as networks, trees and shapes. One approach to analyse such geometric, complex objects
treats them as points in their non-Euclidean spaces. To develop novel statistical methodologies
on these spaces, one idea is to exploit their geometric structure and derive generalizations of least
squares objectives. Afterwards, the objectives can be optimised for instance by taking advantage
of appropriate mappings to related Euclidean spaces.

Less generally, there exist recent geometrical and topological results on the spaces of graph-
valued objects facilitating the derivation of statistics treating the networks as points in these
spaces, which is also called second generation approach. In first attempts, the generalization of
least squares objectives for unlabeled networks is enabled utilizing a mapping between labeled
and unlabeled networks and applying a Procrustean analysis framework. In this spirit, a sample
Fréchet mean, a geodesic principal component analysis and a linear regression model for unlabeled
networks as output are already developed together with estimation methods called align all
and compute algorithms in Calissano et al. (2020, 2022). This master thesis investigates the
possibility to extend the linear regression framework to an additive and a generalized additive
framework. Both extensions aim for more flexible regression models while the latter would
additionally allow for an appropriate treatment of the support in the graph space. Aside from
that, the goal is to evolve first ideas for a deeper understanding of the regression functions as
well as possibilities for interpretation and validation. Along the way, topological and geometrical
results are utilized, probabilistic relationships exposed and questioned, challenges insinuated and
if possible, exemplified.

Alongside the theoretical, interdisciplinary allures of statistics on the space of unlabeled
networks, researchers can be motivated by applying the models to varieties of complex data. As
described in Kolaczyk et al. (2020), networks are increasingly observed in larger sets. For example,
social networks can be collected over time and users might be interested in patterns of groups
of these networks as outlined in Kolaczyk & Csardi (2020); Kolaczyk et al. (2020). In another
example, brain arterial networks are collected for people of different age as presented in Guo
et al. (2021). Furthermore, biological networks as well as epidemiological networks might offer
an interesting collection for the application of the derived novel statistical methods. Moreover,
transportation and mobility networks can be of interest as for example in Calissano et al. (2022).
The latter motivated the application of the extension of generalized additive models to the air

transportation network of parts of Europe in this thesis. The aim was to extend the current



1. Introduction

implementation of the linear regression framework to the derived generalized additive framework,
speed up computation time and apply it to real world data.

Before we start, we point out important terminology that is used throughout the thesis. The
terms graph and network are used interchangeably. We refer to node labeled networks as labeled
networks and networks without node labels as unlabeled networks. The space of labeled networks
is named total space and the space of unlabeled networks graph space. When we refer to node
attributes this is equal to the attribute of the loop of a node, that is the attribute of the edge
between the node and itself. We call node and edge attributes together also graph attributes.
Instead of 'the graph attribute with index a’ we usually write ’the graph attribute a’. We do not
discriminate between linear and smooth function on graph attribute level and on graph level.
This means, we write for example sometimes a linear function in the total space although this
refers usually to elementwise linear functions for the graph attributes. For the most part, we do
not differentiate between permuting nodes or permuting node labels although the latter is more
precise. Furthermore, we write usually passengers instead of air passengers as well as passengers
instead of number of passengers.

Finally, the thesis is structured as follows: In section 2, we present an overview of the existing
literature. Section 3 is the central part of the thesis. Therein, we introduce the graph space, the
existing linear regression framework in the graph space and give a brief review on regression models
for one-dimensional responses. Afterwards, the linear regression framework in the graph space is
extended to additive and generalized additive models. Section 4 is essential to understand the
model on a deeper level and discusses important general considerations. Later, section 5 describes
the application of the generalized additive framework to the air transportation network of parts
of Europe on country level during the Covid-19 pandemic. Ultimately, section 6 summarizes the

results and discusses possible further research questions.



2. Literature review

The proposed regression framework expands the existing methodology-oriented literature by: 1.
extending the linear regression framework in the graph space to additive models 2. presenting
insights into the possibility for an extension to generalized additive models (GAMs) 3. outlining
the motivation for graph space modeling as well as investigating ideas to interpret and validate
the regression frameworks. Moreover, the application extends the existing implementation and
application-oriented literature by: 1. an implementation of the developed GAM framework 2. an
approximation for daily and weekly air passenger networks 3. an unlabeled network analysis of
parts of the European air transportation system during the Covid-19 pandemic.

We review literature related to unlabeled networks, to labeled networks, references to extend the
single target models in the regression framework and finally, literature related to air transportation
networks and their development during the Covid-19 pandemic. During the review, we mention
existing applications to give the reader a first idea of the possible practical relevance of the
models. To the best of our knowledge, there exists the following related work.

Most related to this thesis is the work Calissano et al. (2022). Therein, the authors introduced
the linear regression model in the graph space and its computation by the align all and compute
(AAC) algorithm, which are both extended in this thesis. In addition, the authors apply the
model to networks of crypto currency exchange rates, passing networks in football and bus
transportation networks from Copenhagen. The application on the bus transportation networks
is conceptually similar to our application on air transportation networks.

Moreover, the geometry of the graph space and similar AAC algorithms for the computation
of the mean and principal components in the graph space are analysed in Calissano et al. (2020).
Therein, the methods are applied to simulated and mobility datasets. Overall, the investigations
in Calissano et al. (2020, 2022) focus mainly on real valued, possibly multi-dimensional graph
attributes. Therefore, the authors base their work on geometrical results on the space from Jain
(2016a). Aside from that, the same author published first results for the statistical analysis in the
graph space with Euclidean graph attributes in Jain (2016b). Therein, an early iterative align
all and compute algorithm for the mean can be found. The approach is formulated in a similar
manner as the AAC algorithms in Calissano et al. (2020, 2022), namely as a majorize-minimize
mean algorithm. Additionally, the author investigates existence and uniqueness criteria for the
Fréchet mean in the graph space. Besides these works on graph space with Euclidean graph
attributes, more general geometrical results on a larger class of spaces were already obtained in
Jain & Obermayer (2009).

Similar geometrical and topological considerations as above can be found in Kolaczyk et
al. (2020). However, the authors restrict their analysis to the special case of one-dimensional
graph attributes on the positive real line, this is (id est, i.e.) to positive, continuously weighted

networks. Then, they define the theoretical and empirical Fréchet mean to analyse averages of
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networks. Moreover, asymptotic and uniqueness results on the Fréchet mean are given. Besides,
the examples for so called fundamental domains (FDs) given by the authors allow for a better
understanding of the space. Furthermore, this graph space is shown to be a stratified space.
We refer the reader to Feragen & Nye (2020) for a general description of statistics on stratified
spaces with focus on trees.

In contrast to the restriction to positive, real valued graph attributes, the works Guo et al.
(2022); Guo & Srivastava (2020); Guo et al. (2021) extend the attribute space to Riemannian
manifolds. In particular, the authors investigate shapes as edge attributes and call the corre-
sponding space graph shape space. In this space, the authors define the concept of geodesics
and means. Then, they introduce algorithms for the computation of the mean and principal
components. Furthermore, they apply their framework to a database encoding letters as graphs,
to molecular graphs, wikipedia graphs, brain arterial networks and neurons.

So far, the references utilize the possibility of mathematically representing labeled graphs
by their adjacency matrices to derive statistical methods. An alternative way of mathematical
representing labeled graphs are Laplacian matrices. With Laplacian matrices, labeled graphs can
be treated as manifold-valued data and one can fall back on statistical methods for manifolds.
This is done for example in Ginestet et al. (2017) where the geometry of the space of labeled
networks represented by their Laplacian matrices is investigated and asymptotic results on
network means as well as testing schemes are derived. In Severn et al. (2022), the authors
derive a mean, a principal component analysis, a central limit theorem and hypothesis testing for
labeled graphs represented by Laplacian matrices. Moreover, possible metrics are investigated.
The authors apply their methods to the text of two novels where words are nodes and edges are
weights for their pairwise cooccurrence. Similarly, the authors in Severn et al. (2021) introduce
an extension of the Nadaraya-Watson estimator for regression with labeled graphs as output. The
regression framework is applied to networks from an email dataset to discover anomalies over time
and to networks of word occurrences of two authors over time. In contrast to this and to avoid
the extrinsic methods in the former two papers, the authors in Zhou & Miiller (2021) derived an
intrinsic regression method by adapting the general Fréchet regression framework from Petersen
& Miiller (2019). The intrinsic approach and the adaption of the general Fréchet regression
made it possible to derive theoretic results such as rates of convergence for the estimators. The
framework is applied to neuroimaging data and taxi networks. Finally, we emphasize that the
methods developed so far for Laplacian matrices correspond to the case of labeled networks. The
connection between the labeled graph representation via adjacency matrix and via Laplacian
matrix is derived for example (exempli gratia, e.g.) in Guo et al. (2021, section 2.2) and the
authors proved that the developed methods are not equivalent since e.g. geodesics do not translate
in general and adjacency matrices are not necessarily elements of the space of Laplacian matrices.

Up to now, we described parts of the existing literature corresponding to unlabeled and labeled
graph modeling, respectively. Beyond, we extend separately each of the single target models of
the multi output regression model in the total space to extend the linear regression model in
the graph space to more general regression models. In particular, the single target models that
are considered in this thesis are additive models and GAMs. Therefore, early work on additive
models can be found in Friedman & Stuetzle (1981). Furthermore, GAMs include additive models
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as special case and were first introduced in Hastie & Tibshirani (1986) as an flexible extension of
generalized linear models which were developed in Nelder & Wedderburn (1972). We refer the
reader to the textbook Fahrmeir et al. (2013) for a stepwise extension of regression models as it is
done briefly in this thesis in subsection 3.3 and to the textbook Wood (2017) for an application-
and computation-oriented reference.

As an alternative to the extension of the single target regression models and to account for the
dependency between the graph attributes, we could replace the single target models by a more
sophisticated multi output model. A survey on multi output regression models can be found e.g.
in Borchani et al. (2015).

Ultimately, we apply the extended regression model to the air passenger network of parts
of the European Union (EU) during the Covid-19 pandemic. Multiple articles investigate the
impact of the Covid-19 pandemic on air transportation systems. A survey can be found in Sun et
al. (2021). The idea to aggregate multiple airports on country level was introduced in Wandelt &
Sun (2015) where the air transportation network is modeled with countries as nodes. Moreover,
we approximate the number of passengers between countries. A similar approximation for the
passengers is given in Suzumura et al. (2020). Finally, the accessible analysis of the Covid-19
pandemic on air transportation is also enabled by Strohmeier et al. (2021) with the processing of
freely available flight data which is described in Schéfer et al. (2014).



3. Regression framework

The aim of this section is to extend the linear regression framework in the graph space to an
additive and generalized additive regression framework. First, we introduce the graph space and
summarize important geometrical results on this space which were derived in Calissano et al.
(2020); Guo et al. (2021); Jain (2016a,b); Kolaczyk et al. (2020) and are summarized under a
common notation here. Afterwards, the linear regression framework from Calissano et al. (2022)
is introduced together with the align all and compute (AAC) algorithm to minimize an empirical
error in the graph space. Next, we review regression frameworks for one-dimensional responses,
covering linear models up to GAMs. Finally, we derive the extension of the linear regression
framework to additive and generalized additive models in the graph space, combining the three
previous subsections. Examples with visualisations, numeric algorithms and an idea for the proof

of algorithm 2 for additive models can be found in the appendix 6.

3.1. Graph space

To be able to work with unlabeled networks as data objects, we introduce the space in which
they live. This means, we start by defining labeled graphs and the set of all node permutations
to define unlabeled graphs as equivalence classes. We observe, that the space of these unlabeled
graphs together with an appropriate metric is a metric geodesic space but no manifold. The
geometric introduction of the space is helpful since, although the space is no manifold, the
derivation of statistical methods can be build on geodesics using metric geometry e.g. from
Bridson & Haefliger (2013). Then, uniqueness of the metric in the graph space is considered
briefly by the introduction of FDs, before the subsection closes with discussions on general
attribute spaces for the graph attributes and the addition of null nodes for graphs of different
sizes.

The introduction of unlabeled graphs by their labeled representations and the set of label
permutations has the advantage of a straightforward definition of the graph space as a quotient
space. A possible disadvantage can be its potential counter intuitiveness with respect to (w.r.t.)
its implications on the results since we analyse unlabeled instead of labeled graphs. Thus, this
derivation of unlabeled graphs has to be treated carefully especially when we translate it to the
interpretation of the results. We discuss this in more detail in section 4. Moreover, another, more
general introduction of the space of unlabeled graphs can be found in Jain (2016a). Therein, the
mathematical representation of graphs is not fixed to the matrix representation with adjacency
matrices and thus, more flexible. Moreover, alignment of graphs is defined more generally with
injective partial maps and a metric is induced from so called optimal alignment kernels. In
the end, the corresponding metric space obtained in this way is shown to be isometric to the
quotient space derived in here, compare (cp.) Jain (2016a, theorem 4.4), at least for an Euclidean

attribute space. Due to the additional flexibility for the alignment of graphs, this and even more
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general spaces as in Jain & Obermayer (2009) might be helpful if the model derived in this thesis
is translated for example to bipartite or hypergraphs. Nevertheless, since the introduction of
unlabeled graphs as set of permuted labeled graphs is more straightforward w.r.t. the obtained
quotient space and thus, more practical to work with and the introduction by optimal alignment
kernels was proven to be isometric with the quotient space, we will focus solely on the former.

First, let G = (V, E,a) be a graph, where V is the set of nodes and E' C V' x V the set of edges.
We assume that the graph has at most |V| = k,k € N nodes and |E| = k? edges. Moreover, the
attribute mapping a : V x V — A assigns node and edge attributes to the graph. The attribute
space A, which we call total space, is assumed to be the Euclidean space RF*? for some d € N
where d corresponds to the dimension of the graph attributes. In the case of d = 1, a labeled
graph is mathematically represented by its adjacency matrix Y e Aagj = RF*F or its flattened
adjacency matrix Y € A = R’ In the case d > 1, a labeled graph can be represented by a
tensor in the space R¥*#*4 We use Y for the rather rare instances of graphs in adjacency matrix
or tensor representation. If there is no edge between two nodes ¢ and j, the edge is assigned zero
edge weight, i.e. a;; = 04 where 0y denotes the d-dimensional vector of zeros. Thereby, all graphs
are treated implicitly as complete graphs to obtain adjacency matrices for labeled graphs which
can be used for computations. The graphs defined in this way can include loops, be weighted or
unweighted and directed or undirected. In the following, all graphs are assumed to have the same
number of nodes |V| = k. At the end of this subsection, this assumption and the assumption
that the total space A is an Euclidean space are relaxed and discussed.

Next, we want to obtain mathematical representations of unlabeled graphs as all possible
permutations of the adjacency matrices of their labeled graphs. Therefore, we define first
permutations of adjacency matrices and permutations of flattened adjacency matrices. Following
Guo et al. (2021), permutation of adjacency matrices Y € Aqqj can be achieved by permutation
matrices P of size k X k which permute the order of the columns of the adjacency matrix and
thus, the order of the nodes. In particular, a permutation matrix has exactly one entry that
equals one in each column and each row. Then, we define the set of permutation matrices as P.
A group on this set can be obtained by defining the neutral element as the k x k identity matrix,
the group operation as the matrix multiplication and then, the inverse of P € P is P'. Thus, in

the case of d = 1 the following defines a group action on the set of labeled graphs A,q = RFxE.
,PXAadjﬁAadj, (P,Y)*—}PYPT

The group and its group action for general Euclidean spaces (d > 1) can be found in Jain (2016a).

We want to define an analogous group action on the set of flattened adjacency matrices A,
i.e. permutation of flattened adjacency matrices. We define the set of all permutations on
the flattened adjacency matrices as 7 where each element T € T is implicitly defined by the
corresponding permutation matrix on the adjacency matrices. Then, the group operation is
defined implicitly w.r.t. the matrix multiplication of the corresponding elements from P. In

summary, the group action of the permutation on the flattened adjacency matrix is implicitly
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defined by
T xA— A (1,Y)—TY,

where TY is the flattened adjacency matrix of PYPT when T € T is the corresponding
permutation to P € P. Hence, for any labeled graph Y € A we obtain the corresponding orbit

Y| ={TY |T €T}
The orbits are disjoint and define an equivalence relation ~ by:
Yi~Yy = dT T :TY; =Y5.

The equivalence classes defined by these equivalence relations have as representative a labeled
graph and consist of all labeled graphs that can be obtained through node permutations of the
representative. Thus, an unlabeled graph can be mathematically represented with the set of
all permuted (flattened) adjacency matrices of one of its labeled representatives. This means, an
unlabeled graph consists of all labeled graphs with the same attribute structure.

We call the resulting quotient space graph space and define it as
& =A{[Y]|Y € A}.

Following (Jain 2016a), this space is an orbit space and multiplication and addition between
elements of it are not well defined. A more detailed topological and geometrical treatment of the
quotient space for A = ngo is covered in Kolaczyk et al. (2020).

To end the transition from labeled to unlabeled graphs, we define the projection of a represen-

tative onto its equivalence class as
T: A= &Y —[Y]

The projection assigns labeled graphs their unlabeled counterparts and can be used to obtain
approximate computations by projecting from the total space A into the graph space &. Thus,
the total space satisfies a similar role for the graph space as tangent spaces for manifolds as
discussed in Calissano et al. (2022).

In a next step, we want to define a metric on & to compute averages which is fundamental for
the development of further statistical methods. Let d 4 be any metric on A. Then, the quotient

pseudo-metric
de([Y1], [Ya]) = mind 4 (TY7, Ys 3.1
6([ 1]7[ 2]) TGI'T A( 1 2) ( )

defines a metric on the graph space & which was shown in Calissano et al. (2020). The metric
can be understood as follows: we choose representatives Y7, Y5 of the unlabeled graphs [Y7], [Y2],
reorder the flattened adjacency matrix of the first representative to the second through a

permutation 7™ such that it minimizes the metric d4 in the total space and then, the metric d4
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of the aligned graphs T*Y7, Y5 equals the metric dg in the graph space. We note that it does not
matter if we reorder the first to the second flattened adjacency matrix or vice versa since the
group action of 7 acts by isometry under d 4 and 7T is a group. In particular, this follows from

the equivalent results on P in Guo et al. (2021) and
. . S 5T 1 . Y ST .
IIIIGI%l_dA(Tyl,YQ) = min da,y (PYIP ,Y2) = min d s,y (PY2P ' Y1) = ,ZIpEl%l_dA(TY'Q,Yl) (3.2)

where Y1,Ys € Aqqj are the adjacency matrices corresponding to the flattened adjacency matrices
Y1,Y; € A

This metric implies the important terms optimal position or optimal alignment as described in
Huckemann et al. (2010) for manifolds or in Calissano et al. (2020) for the graph space. We say
a labeled graph TY; € A is in optimally aligned w.r.t. a labeled graph Y5 € A if

da(TY1,Ys) = ;pggdA(TTm, V) = dg([Y1], [Y2])
where the last equality follows directly from the definition of the metric of &.

Furthermore, we can define (generalized) geodesics in the graph space. We give two definitions
for geodesics, the former is used solely to be able to summarize the geodesic regression model in
& from Calissano et al. (2022) while the latter is used otherwise and defines geodesics between
two elements of the graph space. We do not distinguish between the definitions in notation
since it is clear from the context which definition is used. For the first definition and following
Calissano et al. (2022), assume that v : R? — A is a line (p = 1), plane or hyperplane (p > 1)
and denote by I'(A) the set of lines, planes or hyperplanes in A. Then, the set of generalized
geodesics I'(®) in & is defined as ['(&) = {[y] =m0y | v € ['(A)} where 7 is the projection of
an element v from I'(A) on its equivalence class. In contrast to this, the second definition of a
geodesic is obtained by aligning the representatives of two elements of the graph space first and
then taking the shortest distance between the two aligned representatives as in Guo et al. (2022).
In particular, let [Y1], [Y2] € ® and T* the optimal alignment of Y7 to Y5. A geodesic between
[Y1] and [Y3] is [y] : [0,1] — & where v : [0,1] — A is the shortest path between T*Y; and Ya.
This means, a geodesic in the graph space is the equivalence class of the shortest path between
optimally aligned labeled graphs in the total space. We note that the main difference between
the definitions can be understood using FDs which are described in the next subsection. Then,
we can observe that v € I'(A) in the first definition does not necessarily stay in one FD and
contrary to this, v as shortest path in A in the second definition stays in one FD. Furthermore,
a related discussion can be found in appendix B and apart from this, the discussion is out of
the scope of this thesis. Besides this, the authors in Calissano et al. (2020) were able to show
that the graph space is a metric geodesic space. This ensures that for every two graphs in & the

geodesic exists.

3.1.1. Fundamental domains and uniqueness

Next, we want to introduce briefly the concept of ordinary graphs and their FDs. In this

subsection, we follow closely Jain (2016a, section 4.4) and translate some of the results to the
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graph space and the notation of the thesis. Ordinary graphs and FDs can be used to analyse the
geometry of the graph space from a generic perspective in the topological sense as was done in
Jain (2016a) or to obtain results with probability one in a measure theoretic sense. The latter
helps us in subsection 3.4 to obtain insights into the convergence results of AAC algorithms.

First, we define the isotropy or stabilizer group of a labeled graph Y € A as
Ty ={TeT|TY =Y}.

Then, we define a labeled graph Y € A as ordinary graph if Ty = {Id} where Id corresponds to
the neutral element of T, i.e. the isotropy group is given by the identity permutation. In this
case, we call the isotropy group also trivial stabilizer. This means, there exists no permutation
except the identity such that the labeled graph can be represented mathematically with the
same adjacency matrix after the permutation. Furthermore, we define a labeled graph Y € A as
singular graph if the graph is not ordinary.

Following Jain (2016a, proposition 4.17), we define the FD for an ordinary graph Y € A as

Dy ={Z € Ald4(Z,Y) <d%(TZ,Y) for all T € T} (3.3)

where dz‘ is assumed in the following to be the squared Fuclidean distance. Furthermore, we
denote by D5 the interior of the FD and by 0Dy the boundary of the FD. Then, it was proven
in Ratcliffe et al. (1994, theorem 6.6.13) and translated to the graph space in Jain (2016a, cp.
proposition 4.17) that the FD Dy C A is a closed set and:

1. & = UTG’TTDY where TDy = {TZ S .A|Z S Dy}
2. TDS N DY =0 forall T € T\Id where TDS ={TZ € A|Z € DS }.

Ratcliffe et al. (1994, 6.6.11) showed that there exists a set F' C A (called fundamental set)
with the property that there is precisely one labeled representative Y € A of each unlabeled
graph [Y] € & in F and DY C F' C Dy. Moreover, all labeled graphs in the interior of a FD
are ordinary graphs and all singular graphs are on the boundaries of FDs, as was shown in
Jain (2016a, Proposition 4.18 4)) and by definition of singular graphs. We note that there
might be ordinary graphs on the boundaries of the FDs for graphs with graph attributes in R.
A corresponding example can be found in appendix A. Additionally, we note that all labeled
graphs in the interior of the FD Dy of an ordinary graph Y are closer to Y than to any other
representative of [Y] and, all labeled graphs on the boundary of the FD Dy are closest to Y and
at least one other representative Y = T'Y of [Y].

These definitions allow for a detailed investigation of the uniqueness of the permutation that
minimizes the metric (3.1) in the graph space and thus, the uniqueness of the metric. The
following enhances the discussion in Guo et al. (2021, section 2.1). The permutation 7" € T that
minimizes the metric (3.1) between two unlabeled graphs [Y1], [Y2] € & is unique if, fixing the
representative Y7 of [Y7] and assuming that Y7 is an ordinary graph, the aligned representative
of Y5 € Dy, is not on the boundary of the FD of Y1, i.e. Y2 € Dy, . Clearly, if one of the graphs

is a singular graph, then there exist multiple permutations that minimize the metric. In general,

10
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if Y5 € 0Dy, , there exist at least one permutation for which the distance between Y7 and Y2 and
TY>, respectively, are the same (assuming that Y3 is already aligned to Y7). An analogous result
can be obtained if Y5 is an ordinary graph and Y; € 0Dy, due to the equality in (3.2). If ¥}
and Y5 are both singular graphs, there does not exist a FD for them by our definition. Then,
the metric (3.1) is not unique by definition of singular graphs. Nevertheless, it can be helpful
to choose an arbitrary ordinary graph Z € A and assume that Y7, Y € Dz. Although this is a
drawback, we can still achieve uniqueness with probability one under additional assumptions by
a more detailed investigation of the boundaries of FDs.

Therefore, we introduce FDs and in particular their boundaries geometrically. As was shown
for example in Jain (2016a, Proposition 4.18 1)), the FD of an ordinary graph Z is a convex

polyhedral cone and can be written as

Dy = ﬂ Hr z
TeT
where
Hrz ={Y € Alda(Z,Y) <da(TZ,Y)} (3.4)

are half spaces and their boundaries are hyperplanes in A. Thus, the boundary of Dy is defined

by the finite union over all permutations of the hyperplanes intersected with Dy, i.e.

OHrz = | J{Y € Alda(Z,Y) =da(TZ,Y)} N Dg.
TeT

Next, to obtain uniqueness with probability one of the metric (3.1), we define in general a push
forward measure P on the graph space as P(B) = m(n~!(B)) for all B in the o-algebra of &
where 7 is again the projection from the total space into the graph space. The consecutive proof
idea is stated more formally in appendix D to obtain an idea of a proof of the convergence of
the AAC algorithm for additive models. First, we assume that the graphs [Y7], [Y2] are sampled
from a probability measure Py that is absolutely continuous w.r.t. the push forward measure
p of the Lebesgue measure m on A. We are interested in the probability to sample unlabeled
graphs [Y], [Y2] that have representatives on the boundary of the FDs of each other or that
both have representatives that are singular graphs. The probability to sample labeled graphs
Y1,Y5 on the boundary of the FDs of each other or that both are singular graphs is zero. This
is due to the definition of FDs as union of finitely many hyperplanes in equation (3.4). In
particular, the boundary of the FD 0Dy, corresponding to Y7 is given by the union of finitely
many hyperplanes and we have probability zero to sample Y5 from these hyperplanes using
o-additivity on the finite union and the absolute continuity w.r.t. the Lebesgue measure of m on
the lower dimensional hyperplanes (lower dimensional w.r.t. 4). Then, since there exist only
finitely many FDs corresponding to the representatives of [Y]], the probability of all of these FDs
in m is zero and therefore, the push forward measure is also zero. This follows analogously, if we
consider the case that Y7, Y, are singular graphs and Z is an arbitrary ordinary graph. Thus, the

probability to sample graphs with representatives on the boundary of FDs is zero in the case
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3. Regression framework

A = R* and for the defined probability measures. This leads to almost sure uniqueness of the
metric (3.1) in this case.

Now, we illustrate what happens if we weaken the assumptions. A typical assumption would
be to assume graph attributes in R>( as investigated in Kolaczyk et al. (2020). There, one has
to decide if the coordinate hyperplanes should be included in the boundaries of FDs. Then, also
ordinary graphs on the coordinate hyperplanes could be on these types of boundaries. If we do
not include the coordinate hyperplanes as boundaries of the FDs but instead in the interior of
the FDs, Kolaczyk et al. (2020, Proposition 4.2) proves that only singular graphs are on the
boundaries of arbitrary FDs for graphs in the restricted graph attribute space R>q. As long
as we assume again that the probability measures are absolute continuous w.r.t. the Lebesgue
measure, this still leads to almost sure uniqueness. In contrast to this, we could allow for discrete
graph attributes and a corresponding probability measure assigning positive probability to single
numbers. Accordingly, we obtain a positive probability for singular graphs. Then, the minimizer
in (3.1) is not unique with probability larger than zero. This happens also if we assume positive
probability on just one number such as zero, i.e. if the probability measure on A is not absolutely
continuous w.r.t. the Lebesgue measure anymore. This should be considered when we add null
nodes or even more importantly, when we extend graphs to complete graphs by adding edges
with null attribute. In summary, we see that the assumption of absolute continuity w.r.t. to the
Lebesgue measure in the total space is critical for almost sure uniqueness of the metric (3.1).

Finally, we give some more examples for the usefulness of the definition of ordinary graphs and
FDs. In Calissano et al. (2022, theorem 1), the concept is used indirectly to prove almost sure
convergence of the AAC algorithm given in algorithm 1. Similarly, this is done in Calissano et al.
(2020) for the AAC algorithms for mean and principal components in the graph space. Besides,
the concept is used in Jain (2016b, section 4.3) to derive sufficient conditions for uniqueness of
the population and sample mean. Therein, the automorphism group corresponds to our isotropy
group and asymmetric graphs relate to ordinary graphs while symmetric graphs correspond to
singular graphs. In a similar spirit, in Kolaczyk et al. (2020) ordinary graphs are called distinct
graphs and FDs are utilized to understand the quotient space structure of the graph space. Then,
FDs are used to show almost sure consistency of the sample Fréchet mean to a corresponding
population Fréchet mean. Moreover, uniqueness of the Fréchet mean is investigated inside a
subset of FDs. In contrast to this, Guo et al. (2021, section 2.1) discusses the uniqueness of the
metric in the graph space informally w.r.t. a total space with continuous and discrete elements,
respectively, while referring indirectly to ordinary graphs. This is slightly comparable to the our
discussion above. Lastly, we use FDs in subsection 3.4 and appendix D in a discussion on the
developed regression frameworks and to investigate the convergence of algorithm 2. Additionally,

we examine in appendix B the regression functions in the graph space utilizing FDs.

3.1.2. Attribute space and null nodes

Ultimately, we want to discuss the assumption that the total space is an Euclidean space and
the assumption of equal size of all graphs, i.e. |V| = k.

Although we chose an Euclidean space R’ a5 total space A, one can define A more generally.
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More general formulations can be found e.g. in Guo et al. (2021) where the attribute space is
allowed to be any Riemannian manifold on which distances, covariances and averages can be
defined. This generalization allows for example for modeling shapes as edges. An application
on brain arterial networks can be found in Guo et al. (2022); Guo & Srivastava (2020). There,
arteries in the networks are modeled as shapes which are again modeled as equivalence classes in
a similar fashion as unlabeled networks and labeled networks in the current framework, where
the set of permutations is replaced by a set of rotations. The joint group action of permutation
and rotation leads again to a quotient space. If there exists no edge between two nodes, the
edge is assigned the null attribute of the total space A. Geodesics between two points can be
defined by geodesics between two points in the total space A and their respective projections.
The authors call the resulting quotient space elastic graph shape space.

The assumption of equal size of the graphs can be relatively easily weakened by adding null
nodes to the graphs. Null nodes are nodes with null attribute as node attribute and null attribute
as edge weights to all other nodes, i.e. isolated nodes with node attributes equal to the null
attribute of the graph attributes. To illustrate this, let Y7, Ys € A, the number of nodes of Y7 be
k1, the number of nodes of Y5 be ks and ky < k1. We could add null nodes in two ways: i) add
k1 — k2 null nodes to Y3 as e.g. in Calissano et al. (2022); Jain & Obermayer (2012); Jain (2016a)
or ii) add k2 null nodes to Y7 and kj null nodes to Y3 such that both graphs have k; + ko nodes
as e.g. in Guo et al. (2021). In general, the former would be less precise if we have nodes that do
not correspond structurally to other nodes in Y; and Ys. The latter is more computationally
expensive. To be more precise, we can choose the relevant option problem specific in the following
way: If there exists at least one observation [Y;] € & with all possible nodes, it is enough to add
null nodes as described in i). Contrary, let |Y}| = kmax be the observation with the most nodes.
If there might exist another graph [Y;] with |Y}| < kmax but there are nodes in [Y;] that do not
correspond to existing nodes in [Y;] but instead correspond to null nodes not yet added to [Yj],
then one should add null nodes as described in ii).

In summary, this subsection introduced the graph space & as quotient space, a metric on &,
geodesics on & and the concept of optimal alignment. Then, we introduced FDs and analysed
uniqueness of the metric in . Finally, the assumptions of Euclidean graph attributes and the
addition of null nodes were considered. We emphasize again the transition from labeled to
unlabeled graphs, i.e. from A to & by the projection 7. Its motivation and implications on the

investigated objects are discussed in more detail in section 4.

3.2. Linear regression in the graph space

This subsection reviews the linear regression framework introduced in Calissano et al. (2022).
First, we define the Fréchet mean in the graph space and review the least squares minimization
problem for a multi output regression model with J-dimensional real valued output. Next, the
regression model in the graph space is defined and the family of regression functions is described.
For that purpose, we introduce the term optimal alignment w.r.t. regression functions. Finally,
we describe the AAC algorithm and state its convergence result. For the purpose of readability,

we restrict this subsection to one-dimensional graph attributes and the flattened adjacency matrix
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representatives of labeled graphs, i.e. A = R**. For higher dimensional graph attributes, replace
the flattened adjacency matrices by the vectorizations of the tensor representations of the labeled
graphs.

Since addition between arbitrary elements in the graph space is not well defined, we define the
Fréchet mean to obtain a definition of a sample mean in & and a first statistical tool in the graph
space. Following Fréchet (1948), the empirical Fréchet mean of a sample {[y1],..., [yn]} € & can

be defined as minimizer of the function
Fo(ly]) = > dg (il [v)-
i=1

This means, the Fréchet mean is defined as:
n
y| € arg min d% ([ys, .
[9] g[ym; o ([l [w)

Similar to the empirical Fréchet mean as a sample mean in the graph space, we can develop
a linear regression model using the metric (3.1) in the graph space. The idea is to define
the linear regression function f as minimizer of the sum of squared distances in & between
observations [y;] € &,i = 1,...,n and the regression function f(z;) € &,i =1,...,n evaluated
at their corresponding covariate values. As preface and to connect the regression model to known
concepts, we review the multi output regression model with target in the Euclidean space as
minimizer of a least squares problem.

Following Fletcher (2013), the multi output linear model with explanatory variables X € R?
and target variables Y € R’ can be defined as

Y = f(X) +¢ (3.5)

where f : R? — R’ 2+ (1,27)p is an affine function through R’ depending on an unobservable
parameter vector 5 = ((fo1,. .- ,Bp,l)—r, s (Bo,g, - ,ﬁp,J)T) €ERP x...xRP and ¢ € R’ is an
unobservable error vector. For a sample (x;,1;) € R? x R/, i =1,...,n of (3.5), we obtain the

least squares estimate of the regression function f as minimizer of

n

> d(yis f(x1)

i=1
where dé ; is the squared Euclidean distance in R and f depends implicitly on 3. This model
was extended to a regression model with target in manifolds using exponential maps in Fletcher
(2013). In the following, we extend this model and the corresponding least squares estimation to
responses living in the graph space.

In particular, we want to derive a similar minimization problem in & using the projection

from the total space onto the graph space in a similar way as exponential maps. Since & is not
a manifold, we cannot use the results from Fletcher (2013) and related literature on geodesic

regression on manifolds. In our setting, we observe unlabeled graphs together with covariates,
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3. Regression framework

this means we observe a sample {(x1, [y1]),- .., (Tn, [Un])} € RP x &. Following Calissano et al.
(2022), the goal is to find a function

f: R &

which minimizes
> dg [y, f (1) (3.6)
i=1

This means, we minimize the sum of squared distances between the observed unlabeled graph
and the fitted unlabeled graphs at their corresponding covariate. In other words, we minimize
the sum of squared prediction errors in the graph space.

So far, we did not define the family of functions over which we minimize. In the following, we
define the family of functions as generalized geodesics first and extend it to a larger family by
allowing for possibly non-linear, continuous basis functions for the graph attributes in total space
afterwards. Thereby, we follow closely Calissano et al. (2022) and all results are summarized
from there. In subsection 3.4, we allow for smooth functions as regression functions for the graph
attributes in the total space and optimize similar objectives as in (3.6). The extensions allow
step wise for more flexible regression models in the graph attribute, hence in the total space A
and thus, more flexible regression functions in the graph space &.

We start by introducing the geodesic regression model in &. Therefore, let J =
{1,...,J},J = k? be the set of node and edge attribute indices w.r.t. the flattened adjacency

matrix of labeled graphs. We define the regression model as
fRP =&, x+— f(z)

where f(z) = mo h(z) and 7 is defined as the projection from the total space to the graph space
as in subsection 3.1. We model h : R — A as a multi output regression model where we regress
linearly all outputs separately on the same covariates. This means we obtain in the total space

the regression model

h(z) = hg(z) = (hg,(2))acs € A
hs,(z) = (1,27)B, € R

where 8, = (boa, - - - ,ﬁp,a)—r, a € J are unknown parameter vectors for each graph attribute a.
We usually omit the dependence of h on [ in the notation, such that we write from now on
f=moh=mo(hg)ecy. Wenote that h and 3;.,5 =0,...,p take values in A and f takes values
in &. Furthermore, since h is defined as a line (p = 1), plane or hyperplane (p > 1) in A, fisa
generalized geodesic and we write f € I'(®). Thus, the family of functions over which we aim to
minimize the empirical error (3.6) is I'(®).

Next, we want to allow for a more flexible regression model and enlarge the family of functions

that we minimize (3.6) over. Therefore, we extend the functions that are allowed for hy,a € J.
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Let h: RP — A,z — h(z) = (ha(x))aes where hy : RP — R can be any function of the form

P
ha(®) =Y ¢i(2)Bja (3.7)
j=0
where f3j, are unknown parameters corresponding to basis function j = 0,...,p and graph

attribute a € J, ¢o(z) = 1 is the basis function for the intercept and ¢; : RP - R,j=1,...,p
can be basis functions that are non-linear and continuous. For a sample (z;, [y;]) € RP x &, z; =
(i1, - - - ,:cip)—r,i =1,...,n, the regression model in the total space can be written with intercept

in matrix formulation as

Y1 oo Y L ¢1(z1) ... @p(x1)| [Boa -+ PBoy €11 .- E1J
yml e ynJ 1 (Z)l (xn) .o gzﬁp(xn) ﬁp71 N ﬁp,J En,l e €n,J
where y; = (yi1,---,%i.7),4 = 1,...,n are representatives of [y;],i = 1,...,n and (e1,4,...,6na)

are independent and identically, normally distributed error terms with conditional mean zero
and constant variance, independent of each other for each graph attribute a € J. The error
terms and the regression models on graph attribute level of the total space are more specifically
defined in the classical linear model in the next subsection 3.3.

Finally, the multi output regression model can be projected into the graph space as before. In

particular, we define
f:RP = &, x— f(r)=moh(x)

where h is allowed to be functions as defined above in (3.7). We write f € F(®). We observe
that I'(®) C F(®) These models were first described in Calissano et al. (2022), are called
here linear regression in & and the function f defined in this way minimizing (3.6) is called
linear regression function in &. Following Borchani et al. (2015), we refer to separate regression
models on each graph attribute as in (3.7) as single target (regression) models in a multi output

regression model.

Align all and compute algorithm

To be able to estimate the regression function f, we define first the concept of optimal alignment
w.r.t. a regression function similar to optimal alignment w.r.t. a graph. For this, the graphs
are optimal aligned w.r.t. the regression function evaluated at their corresponding covariate
values. Thus, for one observation and a regression function, we are again in the case of optimally
aligning two graphs. To be precise, a representative of an unlabeled graph is optimally aligned
w.r.t. a regression function if the representative has minimal distance in the total space to the
function evaluated at the corresponding covariate value. Following Calissano et al. (2022), let
(z,[y]) € RP x &, f € F(B) be a regression function in the graph space with corresponding

regression function h in the total space and T' € T a permutation of the representative of [y].
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Then, we call a representative Ty € A optimally aligned w.r.t. f or equivalently h in A if

d4(Ty, h(z)) = dg([y], f(x))-

Now we can describe the AAC algorithm to obtain the regression function f. The algorithm
was first described in Calissano et al. (2022) after similar algorithms for the computation of
the sample Fréchet mean and geodesic principal components were developed in Calissano et al.
(2020) which were inspired by the generalized procrustes analysis developed in Gower (1975).

The idea of the algorithm is as follows: in an initialization step, all observations are aligned
w.r.t. a randomly chosen representative of one observation in the sample, yielding an aligned
sample (z1,T1y1), .-, (Tn, Thyn) € RP x A. Then, the regression function h in the total space is

computed by minimizing
> (T, h(i)). (3.9)
i=1

We allow for regression functions as defined in (3.7) for each graph attribute and thus, this

corresponds to separate minimization of J single target regression least-square objectives
n
Z d]%{ (tiyi,a; hq (.’IZ,))
i=1

where t;y; o is the a-th graph attribute of observation T;y;,% = 1,...,n. The obtained linear
regression function h is projected into the graph space and a regression function f = wo h is
obtained. Afterwards, all observations are aligned w.r.t. the regression function f. The steps of
alignment and regression are repeated till the algorithm converges. We say that the algorithm has
converged if the distance of the sum of squared prediction errors between the regression function
of the last step f and the regression function in the current step f falls below a threshold. The
algorithm is given in algorithm 1 and described in the following in more detail.

Overall, the algorithm can be split into two parts, one for initialization and one that repeats the
alignment and regression until convergence. The initialization part executes an initial alignment of
the representatives of the unlabeled graphs and a regression on these representatives. Afterwards,
the representatives are aligned w.r.t. the regression function. This is done to obtain an initial
prediction error which is needed in the first step of the second part of the algorithm. Afterwards,
the algorithm repeats regressing the aligned representatives on the covariates and the alignment
of the representatives w.r.t. the current regression function. The problem of aligning graphs
w.r.t. the regression function is analogous to the problem of aligning two graphs with each other
multiple times.

The problem of alignment of graphs is known as NP-complete graph matching problem, see e.g.
Calissano et al. (2020). There exist multiple algorithms which solve this problem approximately
(Jain 2016b), e.g. the graduate assignment algorithm (Gold & Rangarajan 1996) or the generalized
Bron Kerbosch algorithm (Jain & Obermayer 2011) which are both implemented in the graph
space package in python. Since the algorithm relies on inexact graph matching this means that

the alignment might be incorrect and the convergence of algorithm 1 only holds approximately.
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Nevertheless, similar algorithms also rely on this inexact graph matching as stated in (Calissano
et al. 2020).

Algorithm 1: AAC algorithm to compute the linear regression function f € & from
Calissano et al. (2022)
Data: (z1,[y1]),- .., (n, [yn]) € RP x &, thresholds «, J
Result: fe &
Randomly pick one graph [y;] € ® and its representative Tjy; € A;
Align the representatives T}y;, j € {1,...,n}\l of all other graphs to Tjy;;
Obtain A from a regression of (x1,T191), ..., (Zn, Tnyn) in A minimizing (3.9);
Set f =moh;
Align all representatives w.r.t. h obtaining T1y1, ..., Tpyn:
while 6 > « do
Obtain h by minimizing (3.9) for (X1, Tiy1), ..., (Xn, Thyn) and f = 7o h;
Align all representatives w.r.t. f obtaining T1y1, ..., Tnyn;

Compute the distance of the sum of squared prediction errors § = A( f.f )

Set f = f;
end
Return f = f.

One major argument in favor of the AAC algorithm given in algorithm 1 is that the authors in
Calissano et al. (2022) showed that it terminates in finite time and that it converges to a local
minimum of the empirical error (3.6) viewed as a function of the regression parameters § with
probability one under additional assumptions. In particular, following Calissano et al. (2022,
theorem 1), let Py} be a probability measure on & and Px be a probability measure on RP.
Furthermore, let Px be absolutely continuous w.r.t. the Lebesgue measure on R? and let Py be
absolutely continuous w.r.t. the push forward measure p of the Lebesgue measure m on A. We
assume that (21, [y1]), ..., (Tn, [yn]) € RP x & is sampled from the distribution Px x Ppy.

Additionally, we assume algorithm 1 fits the linear regression in &, where we allow for regression
functions as defined in (3.7) in A and their corresponding projections f = o h in &. For the
basis functions in (3.7) we assume the following: they include an intercept; if we sample x from
Py and we have two different parameter vectors 8 and 3, the resulting hg, and hBa are unequal
with probability one; the matrix in (3.8) has full rank. Then, algorithm 1 stops in finite time
and the estimated regression function is a local minimum of the least squares objective (3.6) as a
function of 5 with probability one. A proof of the result can be found in Calissano et al. (2022).
The proof, the introduced probability measures and the reasonability of the assumptions can
become more clear from the idea of an extension of the proof to additive models in appendix D,
the discussions on FDs in subsection 3.1.1 and 3.4 and the discussion in section 4. Moreover, we
note that the convergence holds up to numerical imprecision through inexact graph matching
algorithms.

In summary, this subsection reviewed the linear regression model in & and the corresponding
AAC algorithm to fit the model. The aim of the next subsection will be to introduce generalized
additive models for one-dimensional responses. Afterwards, the single target regression models of

the current subsection can be extended to generalized additive models and we obtain an additive
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and an idea of a generalized additive regression framework by projecting the corresponding multi
output models into the graph space. While the extensions correspond to a similar extension of
the family of function as was done above from I'(&) to F (&), the objectives which are optimized
differ from (3.6).

3.3. Univariate response regression models

This subsection reviews additive and generalized additive models (GAMs) for one-dimensional
responses, which were first introduced in Friedman & Stuetzle (1981) and Hastie & Tibshirani
(1986), respectively. The aim is to present concisely the transition from the linear regression
model to GAMs while introducing least squares and likelihood based estimation procedures to fit
additive models and GAMs. Therefore, we describe briefly the classical linear regression model
and its extensions to generalized linear models, linear mixed models, generalized linear mixed
models and smoothers. On the way, we integrate the penalized iterative (re-)weighted least
squares algorithm to estimate model parameters and the restricted maximum likelihood (REML)
estimator to be able to estimate smoothing parameters. Finally, we arrive at the optimization
objectives and their estimation procedures for additive models and GAMs. In the next subsection,
the models are used as single target regression models of the graph attributes and the objectives
are translated to a multi output setting in the total space to obtain afterwards an additive and a
generalized additive regression framework in &. For a more detailed description, we refer the
reader to Fahrmeir et al. (2013); Wood (2017) where all results of this subsection are summarized
from, unless otherwise stated. For clarity, we usually do not cite them throughout the text.
Instead, we note that the classical linear model is summarized from Fahrmeir et al. (2013, chp. 3),
generalized linear models from Fahrmeir et al. (2013, chp. 5.4, 5.8) and Wood (2017, chp. 3.1,
3.2), linear and generalized linear mixed models from Fahrmeir et al. (2013, chp. 7) and especially
Fahrmeir et al. (2013, chp. 7.6) for REML estimation, smoothers from Fahrmeir et al. (2013,
chp. 8) and Wood (2017, chp. 5) and ultimately, additive models and GAMs from Fahrmeir et al.
(2013, chp. 9) and Wood (2017, chp. 5, 6).

In this subsection, we are in general interested in the relationship of an one-dimensional
response variable Y and a (p+ 1)-dimensional covariate vector X. In contrast to the multi output
model in (3.5), we stress that the response in this subsection is one-dimensional. To model the

relationship, we can decompose the response variable to
V=f(X)+e

where ¢ is a random error term and f is the function of interest. To be able to estimate the
function f, we assume to observe independently (y;, z;), z; = (1, z1, . . . ,:cip)T,i =1,...,n,neN
from the response Y and covariate vector X. All in all, we work with a random response vector
y = (y1,...,yn) ", an random error vector € = (£1,...,&,)' and a random design or model
matrix X = (21,...,2,)' and the corresponding observations for estimation.

The classical linear regression model assumes a linear relationship between Y and X, and,
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consequently, between y and X, i.e.

fori=1,...,n = B+e;
Yy ' (3.10)
or in matrix notation y=XpB+e¢

where § is an unobservable (p + 1)-dimensional parameter vector. Estimation of the function
f corresponds to estimation of the parameter vector 5. The model assumes additivity and
linearity in the covariates. Additionally, we assume that X has full rank p 4+ 1. This implies that
p+1 < n. Furthermore, € = (e1,...,&,) ' is assumed to be a vector of independent and identically
distributed (i.i.d.) random variables with, conditional on X, mean zero and constant variance o.
Moreover, we assume that the errors are normally distributed conditional on X. The assumptions
on the errors can be summarized by €|X ~ N(0,,c>I,) where 0,, is the n-dimensional vector of
zeros and I, is the n X n identity matrix. Thus, we obtain for the conditional distribution of y

given X:
ylX ~ N(XB,0%L).

The estimation of the parameter vector S in the classical linear regression model can be

accomplished using a least squares (LS) approach by minimizing the LS objective

n
LS(B) = (y — XB) (y — XB) =D _(yi — ] B)". (3.11)
i=1
Besides, we could utilize the distributional assumption on the response deriving a maximum

likelihood estimator (MLE). Therein, given o2, we maximize the log-likelihood w.r.t. 3

UB) x — =y — XB) T (y — XB)

202

where o denotes that equality holds up to additive constants. Minimization of the LS objective

and maximization of the log-likelihood w.r.t. 3 yield the same estimator for the parameter vector:
B=(XTX)'XTy.

Finally, we can observe that the function f is modeled by modeling the conditional mean of
y, i.e. we model f(X) = E[y|X] = XB. This holds not only for the classical linear regression
model, but also for its extensions. In general, the type of regression models analysed in this
thesis can be called mean regression models and could be extended to e.g. quantile regression
models described in Fahrmeir et al. (2013, chp. 10). In the following, we will switch between
the model formulations y = f(X) + ¢ and a direct model for E[y|X] to obtain extensions of the
classical linear model. The former makes distributional assumptions on the error term, while the

latter assumes directly distributions on the response.
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3.3.1. Generalized linear models

A first extension of model (3.10) is to allow for non-normal responses and some amount of
non-linearity using distributions of the exponential family (EF) and a link function between
the conditional mean of the response and the linear predictor n; = xz— 8. This leads to so called
generalized linear models (GLMs) which were developed first in Nelder & Wedderburn (1972).

First, we define briefly distributions of the EF to obtain a general class of distributions for
the response. We say a variable y is distributed with an univariate distribution of the EF if its

density can be written in the form

) = e (Lt ety 0.0 (3.12)

where 6 is called natural parameter, ¢ is some dispersion or scale parameter, w is a known value,
b is a function of # such that f(y|f) can be normalized and the first two derivatives t'(6) and b”(6)
exist and finally, ¢ is a function that does not depend on # and can therefore be neglected here.
In the following, we omit the conditioning on the natural parameter and write f(y) = f(y|0)
and y ~ EF(u, ¢) to denote that y is distributed with a distribution of the EF with mean p
and dispersion parameter ¢. The EF contains many different distributions as special cases, for
example the Bernoulli, Poisson, normal and gamma distribution.

Next, we define GLMs. From here on, we write p; = Ely;|x;], ¢ = 1,...,n. Then, we assume
for a GLM that the response variables are conditionally independent and distributed with

yi|lzi ~ EF(ui, @), i =1,...,n and we model the conditional mean as
ui:h(x;rﬂ), i=1,...,n

where h is an one-to-one and twice differentiable function of the linear predictor. For the so

-1

called link function g = h™" we can rewrite this into

g(u) =2l B, i=1,....m. (3.13)

In summary, we determine a particular GLM by a distribution from the EF, a link function and
covariates. When we choose the identity link for g and a normal distribution for the response
variables, we obtain again the classical linear model (3.10).

Finally, the model can be estimated by its MLE. First, we derive the log-likelihood and its
connection to the model parameters /5. From the general form for a density of EFs in (3.12), the
log-likelihood for GLMs is given by

n
0B) o<y vb = 08, (3.14)
i=1 ¢
where we utilized the conditional independence of the y; to obtain the sum. We note that
the dependence of the log-likelihood on f is implicitly given by the dependence of the natural
parameters 6; on 8 due to h(x] 8) = p; = b'(6;). The equality can be proven by taking the

first derivative of the log-likelihood function of the natural parameter w.r.t. # and utilizing the
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result that the expectation of the first derivative of the log-likelihood equals zero as explained in
Wood (2017, chp. 3.1.1). Since h(x; ) models the conditional mean, this results in the desired
equation. The connection h(z, 3) = ¥'(6;) is important since it offers the possibility to link the
model parameters 8 to the canonical parameters of EFs.

However, the MLE of (3.14) for GLMs cannot be derived in general analytically. Instead,
one can use an iterative, numeric procedure for estimation called iterative (re-)weighted least
squares (IRLS) algorithm based on the Newton-Raphson method or similarly, the Fisher scoring
algorithm. A description of the IRLS algorithm can be found in appendix C.

Generalized linear mixed models

A second extension of model (3.10) are linear mixed models (LMMs). The aim of this part is
to introduce generalized linear mixed models (GLMMs) and briefly relate the penalized IRLS
algorithm and REML estimation to them. This is of interest to us since the parameters of smooth
terms in additive models and GAMSs can be treated as random effects and then, estimation of the
smoothing parameters of these models can be based on the estimation of the covariance matrix of
the random effects. Nevertheless, we keep this part as short as possible since it is closer related to
the estimation and especially implementation of the models. For the explicit connection between
the choice of smoothing parameters for additive models and LMMs, we refer the reader e.g. to
Fahrmeir et al. (2013, chp. 8.1.9). For a recent REML estimation of the smoothing parameters,
we refer the reader to Wood (2011).
For LMMs, we rewrite model (3.10) to

y=2Zv+Ub+c¢,

where y is a response vector, Z and U are design matrices, v is a parameter vector of fixed effects,

b one of random effects; additionally, we assume conditional on Z

(= (06 3)

where G and R are covariance matrices.

As before, we can extend LMMs to GLMMSs to account for non-normal responses by
g(ki) = 2z v +ui b (3.15)

where we assume conditional independent responses with y;|z;, b, ~ EF(u;, ¢),i = 1,...,n,
Z,U,v,b are defined as for the LMMs, z; and u; are rows of the model matrices Z and U,

respectively, and we assume again
b|Z ~ N(0,G)

where G is a covariance matrix.

The parameter vectors v and b from the GLMMs (3.15) can be estimated, given the covariance
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matrix G, by maximizing the penalized log-likelihood
1
gpen(r% b) = 6(77 b) - QbTG_lb (316)

where £(v,b) is defined as the log-likelihood for GLMs in (3.14) with n; = 2, v + u; b instead of
n; = xZT 5. The penalty term %bTG_lb in the penalized log-likelihood arises due to the normal
assumption on the vector of random effects. As for GLMs, we cannot derive a general MLE
for v and b from GLMMs analytically. However, the penalized log-likelihood can be maximized
numerically similarly as for GLMs while including the penalty term in each iteration. In particular,
the corresponding penalized IRLS (PIRLS) algorithm maximizing numerically (3.16) given the
covariance matrix G can be found in appendix C. Estimation of the covariance matrix G can
be achieved by maximizing a restricted maximum likelihood. This is also described in more
detail in appendix C. Then, one can e.g. update in each iteration of the PIRLS algorithm the
corresponding variance matrix using the REML. This is presented in more detail e.g. in Breslow
& Clayton (1993).

3.3.2. Smoothers

Another approach to extend model (3.10) is to allow for smooth functions of the covariates,
weakening the linearity assumption. Therefore, it is necessary to introduce so called smoothers
to allow for the smooth terms in additive and generalized additive models. Furthermore, we
explicitly introduce P-splines used in subsection 4.2 to derive an intrinsic penalty term in the
graph space and cubic splines together with tensor product smooths used in the implementation
of the application in section 5.

Initially, we restrict to

yi = f(xi) +&

where f is a smooth function of an one-dimensional covariate and the error terms satisfy the
same assumptions as for the classical linear model in (3.10). This will be extended to possibly
multivariate covariates in the second part of this subsection using tensor product smooths.

In general, we model the smooth function f in two steps. In the first step, we define a basis
representation of the smooth function. This can be achieved using splines of a specific degree
and a number of knots which partition the domain of the function for a corresponding covariate.
Examples for such basis representations are the truncated power series basis or the B-spline basis.
Given such a basis representation, the smoothness of the function is determined by the number
of knots, the position of the knots, and the degree of the splines. In a second step, one defines
a measure of wiggliness. This basis representation would lead w.r.t. estimation e.g. to a LS
objective. Then, one usually allows for overly flexible functions in the basis representations and
adds the wiggliness as penalty term to the LS objective leading to a penalized least squares (PLS)
objective. This can be summarized as approximating a smooth function while penalizing for its
wiggliness. To concretize this, we describe first the procedure for penalized B-splines (P-splines)

which were developed in Eilers & Marx (1996). For step one and two, we define in the following
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a B-spline basis and k—order differences of coefficients of the B-splines as measure of wiggliness.
In the following, we restrict to equidistant knots since they lead to a simple difference penalty.
The idea of B-spline bases is to define piecewise polynomials and glue them together at the
knots under additional smoothness constraints. In the first step, we define a B-spline basis with
[ parameters to parameterize the smooth function f. Following Wood (2017, chp. 5.3.3), define
I+ m+2knots 1 < x2 < ... < Zj4ms2. Then, the (m + 1)-th order spline can be written as

l
flx) =) _Bj'(x)B (3.17)
j=1
where we define the piecewise polynomial B-spline basis functions recursively as:
T — x; _ x; 09— 1 )
BM™(g) = ——— " BMTl(g) 4 M2 2 pm x), i1=1,...,1
i@ Titm+1 — Ti (@) Titmt2 — Tip1 1 (@)

and

1 o <x<ugzg
B Y(z) = e
0 else.

In the second step, we want to define a measure for the wiggliness of the function. We can
measure the wiggliness of a function by its variability and thus, derivatives of the function can

be used. Since the second derivative of the function measures its curvature,

JOECIRE (3.18)

is a common measure for wiggliness of a function. More general, also derivatives of higher or
lower order can be taken as a measure of wiggliness. Since B-splines are piecewise polynomials,
their derivatives are easily obtained. In particular, one can show that the k-th derivative of a
spline can be expressed with k-th order differences of basis coefficients and B-spline basis function
of lower order, as described e.g. in De Boor & De Boor (1978); Fahrmeir et al. (2013). Thus,
we obtain with the estimates of the coefficients of (3.17) also estimates of the derivatives of the
function f. Moreover, Eilers & Marx (1996) could show that second-order differences of B-spline
coefficients used in the penalty term of the PLS objective is closely connected to using (3.18) in
the penalty term of the PLS objective. More general, k-th order difference penalties are good
approximations of the integrated square of k-th derivatives. These results lead to the use of k-th
order differences in the penalty.

The differences of k-th order can be recursively defined by AB; = 8; — -1, A26j =B; -
2B;-1+ Bj—2 and AF3; = A(AF~13,). Utilizing this and omitting the superscript of the B-splines,
we obtain the following PLS objective to estimate the smooth function f:

n I 2 I
PLS(\) =) (y — Z@Bj(xi)) A (ARB))?
j=1

i=1 j=k+1

where )\ is the smoothing parameter that controls the smoothness of the function. For A — 0, the
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3. Regression framework

penalization term tends to zero and the B-splines are fitted without penalization. For A — oo,
the approximated k-th derivatives tend to zero and a function in the (k — 1)-null space of the
penalty, i.e. a polynomial of degree k — 1, is approximated when minimizing the corresponding
PLS objective.

We translate the model into matrix notation. We do this here for a B-spline basis of degree
one, i.e. we choose m = 1 for the B-spline basis functions in (3.17), and second-order differences.
Then, we can write the B-spline basis representation and the matrix of second-order differences

as

Bl(l‘l) e Bl(l'l)
B = : : and P =
Bi(xy) ... Bj(zy)

This results in the penalty matrix S = PT P and we obtain as PLS objective in matrix notation
PLS(\) = (y—BB)' (y — B) + 8" S

where 8 = (B1,...,3)" is the I-dimensional parameter vector that we want to estimate for fixed
smoothing parameter A\. Given a smoothing parameter A, the PLS estimator of the parameters is
obtained by minimizing the PLS objective, i.e. taking the derivative of PLS w.r.t. § and setting

it to zero, and one can show that this results in
3= (BTB+\S)"'BTy.

Another example to model the smooth function f are cubic (regression) splines. Cubic splines
are, given knots, functions f that are twice continuously differentiable at these knots and that
are cubic polynomials on the half open intervals between the knots as described e.g. in Fahrmeir
et al. (2013, chp. 8.1). They could be constructed using e.g. a B-spline basis. Nevertheless,
we will describe in the following another construction from Wood (2017, chp. 5.3.1) since this
construction corresponds to the implementation in the R package mgcv which is also used in the
application in section 5. We do not present the detailed construction but instead, give a brief
summary.

In a first step, we define for [ knots z1,...,z; the cubic spline function f(z) in terms of a

parameter vector 8 by
f(@) = a; (2)B; + aj($)ﬁj+1 +¢; (2) B + cj(x)FjHB, ife; <z <an

where a;, aj, s cj, F; are defined as in Wood (2017, chp. 5.3.1). This can be rewritten to
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In a second step, we define the measure for the wiggliness of the function with such that
Tk
/ f”(l‘)2d$:ﬁTDTB_1DB
@

where the matrices B and D are defined in Wood (2017, table 5.1) and we obtain again a penalty
matrix S = DT B~1D.

In general, we can use various basis representations for the smooth function f and different
penalties. Following Fahrmeir et al. (2013, chp. 8.1.3), the above derivations are translated

straightforward and we obtain

y=Bf+¢
PLS(\) = (y—BB)"(y— BB)+ AB' SB

where y is the response, ¢ the error vector, B the matrix obtained from the basis representation
of f and the covariate x, § is the parameter vector corresponding to the basis representation B,
S is the penalty matrix to measure the wiggliness and A is the smoothing parameter. Finally, we

obtain the general PLS estimator
3= (B"B+\S)"'BTy.

Extension to tensor product smooths

We describe the construction of tensor product smooths to extend smooths of one-dimensional co-
variates to covariate vectors. In particular, tensor product smooths allow for smooths of multiple
one-dimensional covariates and therefore, are able to model interactions of covariates smoothly.
Another advantage of tensor product smooths compared to other multivariate smoothing ap-
proaches is that the covariates can be of different scale since each is modeled with its own penalty
term. Thus, they avoid the necessity to rescale the covariates. In general, there exist different
construction approaches and we summarize the one from Wood (2017, chp. 5.6.1,5.6.2). The
construction allows for various univariate basis representations and penalties. In the following,

we restrict the construction for simplicity to
yi = f (i, zi,wi) + &

where f is a smooth function of three covariates and the error terms satisfy the same assumptions
as for the classical linear model in (3.10). Next, the construction consists again of the two steps
of basis representation and penalty description as for univariate smooths.

In a first step, we have to construct a basis representation analogous as for univariate smooths.

Therefore, we assume that the marginal smooths of the covariates x, z, u are

I L K
fo(x) =) aiai(x),  fo(2) =D adi(2),  fulu) = Brbi(u)
=1 =1 k=1

where a;, d;, by, are basis functions and «;, d;, B; are the corresponding parameters. In particular,
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these marginal smooths imply marginal smooth model matrices B,, B,, B,, as in the last part of
this subsection for univariate smoothers explicitly shown for the B-spline basis. Then, the joint
smooth of x and z can be constructed if we let f, change smoothly with z by modeling «; as a

smooth function of z and we obtain

I I L
foz(z,2) = Zai(z)ai(x) = Zz&-ldl(z)al(a:)
i=1 i=11=1

Analogously, for v and f,,, the smooth for all three covariates is given by

I L K
fxzu €, z, u = Zzzlﬁzlkbk )al(x)

i=1[=1 k=1

If we order the coefficient vector [3;; appropriately, one can show that we obtain a model matrix
B for the smooth f,., by the row-wise Kronecker product of the marginal smooth model matrices
B, B,, B,.

In the second step, we define the penalty for tensor product smooths. As for the basis

representations of the marginal smooths, we assume to have the marginal smooth penalties

J:c(fx) = O[TSxOé, Jz(fz) = 5Tsz(5, Ju(fu) = BTSuﬂ

where «, 6§, 8 are the coefficient vectors from the marginal smooths f., f., f, and S, 5., S, are
penalty matrices analogous as the one in the last part for univariate smooths. Next, we assume
that f,., is the smooth change of f;., in z while holding z, u constant. Then, we could measure
the wiggliness of the smooth f,., by adding the average wiggliness of the smooth in each direction.
For example, the average wiggliness in z is the average wiggliness measured by J,( fx|zu) for
all values of z,u, cp. also the description in Wood (2006, Figure 1). If we allow for separate
smoothing parameters in each direction, a measure for wiggliness of the joint smooth f,., can

be given by
T(for) = A / Jo(Fapou)dzdu + A / T2 (foten)dzdu + My Jj (Fupos )ddz.

Thus, the wiggliness measure can be obtained by the wiggliness measures for the marginal
smooths. Moreover, this wiggliness measure allows for separate smoothing parameters in each
direction and thus, different scaling of the the covariates.

In a last step, we define very briefly penalty matrices S, S., S, approximating the integrals
over the wiggliness measures in each direction. This can be achieved by a reparametrization of the
basis representations of f;, f., fu w.r.t. to evenly spaced covariates which also reparametrizes the
corresponding univariate penalty matrices to S.,, S., S!,. Then, the integrals can be approximated
by

/ To(Fapon)dzdu ~ B3T3,

where S, = S! @ I ® I, the symbol ® denotes the Kronecker product, h is some constant
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computed w.r.t. to the spacing of the covariates and 3 is the coefficient vector obtained from the
joint smooth f,.,,. Thus, we obtain for the penalty term the sum over the three penalty matrices
S“z, SZ, S, and three separate smoothing parameters Az, A,, \y.

Finally, we can obtain a basis representation B and penalty matrix S for the smooth f,., of a
covariate vector as for univariate smooths. Thus, we can minimize again a PLS objective or fall
back to other estimation procedures as described in the next subsection.

In summary, we described how smooth relationships between a response and a covariate (vector)
can be modeled constructing basis representations and wiggliness measures. There exist many
basis representations and penalty terms used as wiggliness measures. For more examples, we
refer the reader e.g. to Fahrmeir et al. (2013, chp. 8) or Wood (2017, chp. 5). Next, we extend
this to model the smooth relationship between a response and multiple possibly multivariate
covariates in additive models. Furthermore, we allow for non-normal responses to obtain GAMs
at the end.

3.3.3. Additive and generalized additive models

As already indicated at the start of subsection 3.3.2, a third approach to gain more flexibility in
model (3.10) is to drop the linearity assumption in the linear predictor to obtain additive models.
In particular, we model in the following for ¢ = 1,...,n covariates z; = (1, zj1,. . ., ziq)—r as in
model (3.10) linearly and covariates x; = (%1, ..., %) with smooth functions fi,..., f,.

T

Then, for (y;, zZ-T, x; ),%=1,...,n the standard additive model can be defined as:

q P
Yi =" + Z VkZik + Z fi(xij) + & (3.19)
k=1 j=1

where v = (70,...,7,) " is an unobservable parameter vector and fi ..., f, are unobservable
smooth functions. Additionally, € = (¢1,...,&,)" is a random error term satisfying the same
assumptions as for the linear regression model (3.10), i.e. the error term consists of conditionally
normally i.i.d. random variables with mean zero and constant variance.

As described in the last subsection 3.3.2, we can parameterize each smooth function f;,j =
1,...,p using a basis representation BU!. Accounting for identifiablility constraints as in Wood
(2017, chp. 6.1), we can reparameterize the basis representations Bl to Bm,j =1,...,p to

obtain one large model matrix for model (3.19)
X=(z:8M:. .. B0

where : denotes that the matrices are bind next to each other. Then, the additive model (3.19)

can be rewritten as
yz:XZB+EZ> t=1,...,n

where X; is a row of the model matrix X and 87 = (y7,b") is the parameter vector consisting
of the coefficient vector + corresponding to linearly modeled covariates and the coefficient vector

b = (b]—, . ,b;—) consisting of coefficient vectors b; corresponding to basis representations Bl
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of covariates modeled via smooth functions.

To penalize for wiggliness of the smooth functions, we choose at least one penalty matrix
Sl for each smooth function fj»3=1...,p. All penalty matrices are enlarged to matrices Sl
where SU is a block diagonal entry at the elements corresponding to b; from 8 and the matrix is

otherwise filled with zeros. Then, we can write the corresponding sum of penalties as
P .
Z A3 Sl B
j=1

where )\; is the smoothing parameter corresponding to the smooth function f; and 3 is the
parameter vector of the parameterized additive model above.

Finally, estimation of the additive model (3.19) can be achieved by minimizing the PLS

objective
p 3
PLS(B) = (y— XB)T(y— XB) + Y_ N8 SVI3 (3.20)
j=1
w.r.t. 8 for given smoothing parameters A\;, 7 = 1,...,p. This can be done using e.g. a backfitting

algorithm as first described in Friedman & Stuetzle (1981) or by directly setting the derivative
of the PLS objective to zero to obtain an analytical solution of the PLS (3.20) as described in
Fahrmeir et al. (2013, chp. 9.6.1). Furthermore, the smoothing parameters can be estimated
using e.g. a REML approach treating the parameters of the smooth functions as random effects
as described for GLMMs.

Generalized additive models

Ultimately, we derive generalized additive models by joining GLMs from (3.13) and additive
models from (3.19). For i = 1,...,n, (y;,2,2), ; and 2 as for additive models in (3.19),
ni = 2] v+ f1(xin)+. .+ fp(wip), we assume y;|z;, z; ~ EF (1, ¢) and that the y;’s are conditionally
independent given 7;. Then, we obtain GAMs as

g(w) =2 v+ fi(wi) (3.21)
j=1

where 7 is an unobservable parameter vector, fi,..., f, are unobservable smooth functions and
g is a link function as defined for GLMs (3.13).

For estimation, we rewrite the GAMs (3.21) analogous as for additive models. First, we use basis

representations B, ... B[P for the smooth functions fi, ..., fp and account for identifiability
constraints to obtain B, ... B} and thus, the model matrix
X=(z:8Y:. . B0,

This results in the rewritten model

9(i) = XiB,  yilwi, zi ~ EF (1, $) (3.22)
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where X; is a row of the model matrix X, 8T = (yT, b]—, e ,b;— ) is the unobservable parameter
vector that contains the coefficient vector «y corresponding to the covariate vector z; at its first k+1
entries and the coefficient vectors b; corresponding to the basis representations BUl j=1,...p
and the rest is defined as in (3.21).

Analogous as for additive models, we choose at least one penalty matrix SU! for each smooth
function f;. All penalty matrices are enlarged to matrices S Ul where SU! is a block diagonal
entry at the elements corresponding to b; from 3 and the matrix is otherwise filled with zeros.

Then, we can write the corresponding sum of penalties as

P
Z ABT slilg
j=1
where )\; is the smoothing parameter corresponding to the smooth function f;.

Finally, estimation of model (3.21) can be based on the penalized log-likelihood objective
p .
loen(B) = £(B) = Y X;B8TSVIB (3.23)
j=1

where ¢(8) corresponds to the log-likelihood of model (3.22). Again, there exists no analytical
solution. Nevertheless, given the smoothing parameter vector A = (A1,...,\,), the parameter
vector 3 can be estimated, similar as for GLMMs, using a PIRLS algorithm since the objective is
equivalent to the objective in (3.16) for given A. The estimation of the smoothing parameters can
be based on a REML objective similar as for the estimation of the covariance matrix parameters
of the GLMMs. For more details, we refer the reader e.g. to Wood (2011) for a REML based
approach or to Wood (2017, chp. 6) for a comparison of multiple approaches to estimate the
smoothing parameters.

In summary, the subsection 3.3 reviewed different extensions of the classical linear model
(3.10) under a common notation. First, GLMs were set up to define distributions of the EF and
their connection to the responses. Second, GLMMs were introduced to connect to numerical
procedures such as REML and PIRLS and obtain a base for additive models and GAMs as large
LMMs and GLMDMs in the context of estimation. Then, smoothers were presented to obtain
basis representations and penalties for the wiggliness of smooth functions used in additive models
and GAMs. Finally, the models were connected to derive additive models and GAMs together
with their PLS objective and penalized log-likelihood, respectively. Overall, additive models
offer a flexible extension w.r.t. the linearity assumption in the covariates allowing for non-linear
covariate effects. GAMs extend this further by allowing also for non-normal responses. This is
useful when we model binary, count or categorical data but even so when we want to model
continuous data with a skewed distribution. This flexibility comes with a larger computational
cost. Moreover, the results for GAMs are not exact but instead depend on asymptotic theory as
explained in Wood (2017). In the next subsection, these additive models and GAMs are used as

single target models to derive the corresponding regression frameworks in the graph space.
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3.4. Extended regression models in the graph space

In this subsection we combine the former three subsections 3.1, 3.2 and 3.3 to develop additive and
generalized additive regression frameworks in &. The subsection is structured by differentiating
between two extensions: 1) additive models in & and 2) generalized additive models in &. For
the first extension, we derive a similar objective as the LS objective (3.6) for linear regression
models in &. This is done starting with the PLS objective (3.20) for single target additive models
and deriving the corresponding PLS objective in the graph space. Afterwards, we state a possible
result on the almost sure convergence of the AAC algorithm for additive models (algorithm 2) to
a local minimum of the PLS objective viewed as a function of the model parameters. Finally,
we explicitly describe three cases for which the algorithm does not converge to understand the
regression frameworks in & more thoroughly. For the second extension, we start with the single
target GAMs and their penalized log-likelihoods (3.23) and derive the corresponding objective in
the graph space. Finally, we discuss possible challenges of GAMs in the graph space and analyse
the possibility for a GAM AAC algorithm as given in algorithm 3.

3.4.1. Additive models in the graph space

As in subsection 3.2, we model the multi output regression model in the total space A = R’
by J single target additive models, i.e. we model h : R" — A,z +— h(x) = (ha(2))aes with J

independent additive models for each graph attribute where r = 1+ ¢+ p. In particular, for each

ac J,i=1,...,nand (yiq, (;z'—r xT)) € R x R" where z; = (1, 21, . . . ,ziq)T,xi = (mil,...,xip)T,

AR Rt

the separate single target additive models are defined as

q p
Yia = ha((z 2] )T) ¥ ia =00+ D Whazik + D Fia(@ij) + €ias i=1,...,n  (3.24)

k=1 j=1
where fi4,..., fp.asYa = (Y0,0, - - - ,vq’a)—r and eq = (€14, . - - ,snya)—r are defined as for the additive
models in (3.19).
If we parameterize the smooth functions fi,,..., fp.« using basis functions, we can rewrite for

each a € J the single target additive models analogously to the derivations for additive models
in the last subsection to

ha((z1,2)T) = XiBa (3.25)
where X; is a row of the design matrix X = (Z : B B[p]), B, ... BlPl are basis
representations of the smooths f14,..., fp.« (independent of a € J) accounting for identifiability
constraints and 8] = (v, ,b, ) is the parameter vector consisting of the coefficient vector 7,

T bT)

corresponding to linearly modeled covariates and the coefficient vector b = (bl gs--sbpa

consisting of coefficient vectors bj4,j = 1,...,p corresponding to covariates modeled via smooth
functions. From here on, we write hq(X;) = ha((z;, 2] )T) for clarity.

We can estimate separately for each a € J the model (3.24) by minimizing w.r.t. the parameter
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vector B, given smoothing parameters the objective

n

p
PLSG - PLS(ﬁa) = Z(yi,a - ha(Xi))2 + Z )‘j,aﬁz—zrsmﬂa

i=1 j=1

where SVl is a penalty matrix defined (independent of a € ) as for additive models in the last
subsection for each smooth function f;,,7 = 1,...,p, and ), are the smoothing parameters
corresponding to the smooths fj,,7 = 1,...,p. A similar penalization objective for a multi
output model with separate ridge regressions can be found in Borchani et al. (2015, chp. 2.1.1)
describing the multi output ridge regression developed in Hoerl & Kennard (1970).

In a next step, we derive the corresponding PLS objective in the total space. Let di\ be the
squared Euclidean distance in the total space A. Then, for i =1,...,n,(y;, (¢/,2])) € A xR"
with y; = (yi1,. .., ¥, 7)1, the PLS objectives for the graph attributes imply in the total space A

the following objective which we want to minimize:

J J n »
PLSA = Z PLS, = Z Z(?/i,a _ ha(Xi))2 + Z)\j’aﬁl—sb]ﬁa
. L ;. (3.26)
= Z a4 (yi, h( X)) + Z Z Aj,aﬁaTS[j]ﬁa
i=1 a=1j=1

where h(X;) = (hq(Xi))acs- The objective is minimized separately for each a € J w.r.t.
By = (v, ,b]) while choosing smoothing parameter vectors A\, = (A1,a,---,\pa). Practically,
the objective can be minimized separately for each a € J using e.g. a direct approach or a
backfitting algorithm for the parameter vectors 8, and a REML approach for the smoothing
parameters A\, as described for additive models with one-dimensional responses.

After projecting from the total space into the graph space, we aim to minimize for ([y;], (2, ,2;")) €
B xR", ¢ =1,...,n in the graph space & the PLS objective

n J p
PLSy =y dg [y, f(Xi) + - > AjaBa SVI5 (3.27)

i=1 a=1j=1
where the metric dg is defined as in (3.1) and f(X;) = m o h(X;). Then, we define the
additive regression function in the graph space as the function f : R" - &, f =7woh
where h = (hg)ac7, he is defined as in (3.25), that minimizes the PLS objective (3.27). The
corresponding regression models are called additive models in &. Minimization of the PLS (3.27)
minimizes an intrinsic error in the graph space while penalizing for parameters in the total space.
Moreover, we note that we allow for different degrees of smoothness when modeling each graph
attribute in the total space. We study this objective further in subsection 4.2 while mentioning

preliminary considerations in the following and in subsection 3.4.2.

Align all and compute algorithm for additive models

For estimation of the additive regression function f in the graph space, we extend algorithm 1 to

additive models in & to minimize the PLS objective (3.27). In the following part, we state briefly
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the extended AAC algorithm given in algorithm 2. Then, we give a corresponding convergence
result and a scheme to prove it. In the end, three cases when the algorithm fails to converge are
described.

Algorithm 2: AAC algorithm to compute additive regression functions f € &

Data: ((z,2]),[v1]),---,((z),2)),[ya]) € R" x &, thresholds &, §
Result: f €&
Randomly pick one graph [y;] € & and its representative T}y, € A;
Align the representatives T;y;,j € {1,...,n}\l of all other graphs to Tjy;;
Obtain A from a regression of (X1,T1y1),. .., (Xn, Thyn) in A minimizing (3.26);
Set f = moh;
Align all representatives w.r.t. f obtaining Ty, - Toyn;
while 6 > x do
Obtain h by minimizing (3.26) for (X1, T141), ..., (Xn, Tnyn) and f = 7o h;
Align all representatives w.r.t. f obtaining T1y1, ..., Tnyn;

Compute the distance of the sum of squared prediction errors 6 = A( f.f );

Set f = f;
end
Return f = f.

Following closely the theorem for AAC algorithm for linear regression models from Calissano et
al. (2022), we state the next theorem to obtain a similar result for algorithm 2. In the following
and as before, the functions f and h for additive models in & depend implicitly on 5 where
B=(B1,...,B8s) and B4,a € J is defined as described in model (3.25).

Theorem 1. Let A = R’ be the total space, T the set of permutations and & = A/T the
corresponding graph space. Additionally, we denote with p a push forward measure of the Lebesgue
measure m on A. Moreover, let Py} be a probability measure on & absolutely continuous w.r.1.
p and Px a probability measure on R" absolutely continuous w.r.t. the Lebesgue measure on
R™. Fori=1,...,n, ((z/,2]),[yi]) € R" x & is sampled independently from the distribution
Px x Py

Next, we assume that f = wo h is the regression function obtained by the AAC algorithm
2. Additionally, for the parameterized single target additive models from (3.25) of the graph
attributes, we assume that the design matriz X has full rank and that for (z;r,:c;r) ~ Px and
Ba # /S’a, we have almost surely X;8, # XZ-BQ foralla e J.

Then,

1. The AAC algorithm 2 stops in finite time.

2. The AAC algorithm 2 converges almost surely to a local minimum of

n J P
B Y de(lyil, F(X) + D0 D" NjaBa S9Ba (3.28)
=1

a=1j=1

Proof. The scheme for a proof, which is translated from Calissano et al. (2022) to additive

models, can be found in D. O
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The idea of the proof for 1. is that the PLS objective (3.26) for the graph attributes in the
current iteration cannot increase by refitting the model to realigned observations or by realigning
observations to the current regression function. Then, since the number of permutations is finite,
the algorithm stops in finite time. The idea for 2. is to show that, with probability one, in a small
ball around the parameter vector 8 the alignment of the observations w.r.t. the corresponding
regression function A obtained by algorithm 2 does not change. This means, they would be
still optimally aligned when changing the regression function by a small enough amount. Since
we minimize the PLS objective (3.26) in the total space, this implies that the algorithm stops
at a local minimum of the PLS objective (3.27) in the graph space. Finally, we note that the
convergence holds up to numerical imprecision through inexact graph matching algorithms and
algorithms to compute the parameters of the single target additive models.

Next, we want to analyse which cases are neglected in the almost sure results of the AAC
algorithms. An important part of the proof is to show that the probability of the set of
representatives which would have to be realigned to be optimally aligned w.r.t. the regression
function in a small ball around the obtained regression function from the AAC algorithm 2
is zero. This set consists of observations ((z;,z;), [y;]) which satisfy for some representatives
d% (yi, h(X;)) = d4(Tyi, h(X;)). As discussed for FDs in subsection 3.1.1, there are three non
disjoint cases for which d%(y;,h(X;)) = d%(Ty;, h(X;)) could happen. First, if h(X;) is an
ordinary graph and the optimally aligned representative y; of [y;] is on the boundary of the FD
of h(X;); second, if y; is an ordinary graph and h(X;) is on the boundary of the FD of y;; third,
if h(X;) and y; are both singular graphs. In the following, we describe these cases to obtain a
better understanding for the algorithm, its proof and possible issues.

Case 1: h(X;) is an ordinary graph and the optimally aligned representative y; of [y;] is on
the boundary of the FD of h(X;), i.e. y; € OF Dj,(x,). Since the FD of h(X;) is defined as

Dyx;) = TﬂT{Y € Alda(Y, h(X;)) < da(TY, h(X;)},

we have that y; € OF Dy,(x,) means

yi € JA{Y € Alda(Y, h(X;)) = da(TY, h(X;)} N Dpx,)-
TeT

However,

m ( U {Y € Alda(Y. h(X)) = da(TY, h(X;)} 0 Dh(xl.)>
TeT

< D m{Y € Alda(Y, h(X:)) = da(TY, h(Xi)}) =0
TeT
where the first part follows by o-additivity of the probability measure m, since Dy,(x,) € A and
because we can estimate from above the probability omitting the condition that h(X;) is an
ordinary graph (cp. also case 2 below) and its probability, and the second part follows since 7 is
finite and hyperplanes in A have probability zero w.r.t. m since m is absolute continuous w.r.t.

the Lebesgue measure on A.
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3. Regression framework

Case 2: The optimally aligned y; (w.r.t. h(X;)) is an ordinary graph and h(X;) is on the
boundary of the FD of y;, i.e. h(X;) € FD,,. To consider this case, a first step is to write the
parameter matrix 8 = (f1,..., ) corresponding to the regression function h(X) in the total

space obtained by algorithm 2 to

p -1 Y1,1 » -1 Y1,J
B = (XTX +> Aj,ls[ﬂ> x|, (XTX +> Aj,Js[ﬂ) x| (3.29)
=1 =1
! Yn,1 ! Yn,J
where all terms are defined as in (3.26). Utilizing this notation, the aim would be to show that
the probability of

hX;) =XiB e |J{Y € Alda(Y,y:) = da(TY,y:} N Dy,
TeT
is zero, where D, is the FD of y; and X; is a row of the model matrix of the parameterized
additive models defined as in (3.25). This is similar to Calissano et al. (2022, proof of lemma 1,2)
although we allow additionally for ordinary graphs on the boundary of the FDs while they
account only for singular graphs h(Xj;).

Case 3: The optimally aligned y; (w.r.t. h(X;)) and h(X;) are singular graphs. This case
can be considered by choosing an ordinary graph Z € A which is optimally aligned with y; and
h(X;). Then, this is analogous to case 1 and 2.

Accounting for these three cases, the convergence can be proven using o-additivity on the
union over all n observations and the definition of the push forward measure. Besides that, we
observe that graphs on boundaries of FDs can be a problem for the almost sure convergence of
AAC algorithms.

3.4.2. Generalized additive models in the graph space

This subsection translates the penalized log-likelihood of single target GAMs to the corresponding
objective in the graph space. Afterwards, the derived model and the possibility of an AAC
algorithm is discussed. It could be possibly seen as a first step in the direction of GAMs in
the graph space. Nevertheless, we will see that the inclusion of non-normal responses has to be
treated more carefully.

We start by modeling h : R” — A, x — h(x) = (he(x))acsg, ™ = 14+¢+p as a multi output model
with J single target GAMs. We note that A does not necessarily equal R”. Then, for each a €

Jyi=1,...,n and (Y, (le,a:ZT)) where z; = (1, z;1, . .. ,ziq)T,a:i = (21, .. ,a:ip)T, (zZT,xZT) e
R", the single target GAMs are defined as
p
ha((ziT, xlT)T) = g(fia) = Nia = ziT’ya + Z fia(zij), i=1,...,n (3.30)

J=1

where y; o|%i, 2i ~ EF (i, $a), Yi,a are conditionally independent for i = 1,...,n and g, fja,Va
are defined as for GAMs in (3.21). With basis representations BV}, j =1...,.J (independent of
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a € J) for the smooth functions fiq, ..., fp. and the corresponding design matrix X = (Z :

B ... : BlP)), we can rewrite the model to
ha(Xi) = Xiﬂaa ym]xi, Z; ~ EF(,LJ,Z‘@, (ba), 1= 1, o, n,a e J (331)

where X; is a row of the design matrix X and the same convention as before for h,(X;) =
hal(z al)T).

For each graph attribute a € J, we estimate the GAMs (3.30) separately by maximizing
numerically their penalized log-likelihoods w.r.t. 3, for corresponding smoothing parameters

Aja, i.e. for each a € J

p .
Coen(Ba) = £(Ba) = > NjaBa SV,

=1

where B, = (Bo,a,---» 5T7Q)T is a parameter vector consisting of coefficients for the covariates
z; and covariates modeled via smooths fiq,..., fpa and Ay = (A14,...,Apq) is a vector of
smoothing parameters corresponding to the smooths fi q4,..., fp« of the graph attribute a € J;
additionally, ¢(8,) is the log-likelihood corresponding to model (3.31). In particular, we can
rewrite the penalized log-likelihood with the definition for densities of the EF (3.12) as

n
epen(ﬁa) = Z yi,aei,a — b(0i7a) W; q + C(yi,aa ¢a7 wz‘,a) - zp: Aj,aﬁ;‘g[j]ﬁa
i=1 %a j=1
As we described in subsection 3.3 for GLMs, the dependence of the first sum on f, is implicit
by the connection of the natural parameters and 3, and maximization can be achieved e.g.
by a PIRLS algorithm to estimate 3, together with a REML based approach to estimate the
smoothing parameter vector A,.

Next, we can write the corresponding regression model in the total space A in matrix notation

h(X)=XB (3.32)
where
h1(X1) hy(X1)
h(X) = : : :
hi(Xyn) ... hj(Xp)

is a multi output matrix with (hq(X1),...,ha(Xn))",a € J as the linked mean for the graph
attribute with index a € J; furthermore, X = (Z : BIY : ... : BPP!) is a design matrix defined as
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above for (3.31); moreover, the matrix of coefficient vectors is given by

Box ... Bog
B=B1,-..,B5)=1| "+ = :
/Br,l cee /BT,J

where each column corresponds to the coefficient vector of the single target GAMs for one graph
attribute.
Then, for i =1,...,n, (3}, (z,2])) € A x R" with y; = (y;1,...,v:s)  estimation of model

(3.32) in the total space A is performed by maximizing the objective

J J p
a(B) = loen(Ba) = D [ﬁ(ﬁa) — 3" NjaBa S8,
a=1 a=1 j=1
(3.33)
| = Yiabia — b(0ia) P
- Z Z — = Wi + (Yisas Pa, Wia) — Z AjaBaq SY'Ba
a=1 |i=1 Pa j=1
w.r.t. 5.
Ultimately, for ([yi], (2, ,2])) € & x R", i = 1,...,n we aim to maximize the objective
L =min 4 (T
o(8) = min £4(T’ §)
I P (3.34)
. t; alYi aei a b(ez a) T oli
= Imin : — : Wi,q +c tiyi,w (ba’ Wia) — A ',aﬁa S[J]ﬁa
TeT 1= ; Dq ( ) ; J

in the graph space & w.r.t. 8 while choosing optimal smoothing parameter vectors A,,a € J.
Here, t; , denotes the corresponding permutation of representative T;y; on graph attribute level.
We define the generalized additive regression function in the graph space as the function
f:R" — & that maximizes objective (3.34) with f = 7w o h and h = (hy)aes, ha is defined as in
(3.31). The corresponding models are called GAMs in &.

Discussion and align all and compute algorithm for generalized additive models

Above, we introduced a GAM framework in the graph space to account appropriately for the
space of the graph attributes. The approach taken to develop the framework is to derive objective
(3.34) which corresponds to the single target penalized log-likelihoods from the single target
GAMs in the total space. However, it is not clear or reasoned, if the projection from (3.33)
to (3.34) is correct or why objective (3.34) should be meaningful in the graph space. In this
part, we discuss this GAM framework. Afterwards, the possibility to develop an AAC algorithm
for GAMs is examined based on algorithm 3 and a simple example. In the end, we address
general issues observable during the example while highlighting briefly the difference between
probabilistic and geometric regression approaches. This part expounds difficulties rather than
providing solutions.

First, we want to gain some insights from the introduction of these GAMs. In particular, we

can describe more detailed the difficulty of extending the existing linear and additive regression
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Algorithm 3: AAC algorithm to compute generalized additive functions f € &

Data: ((2,2]),[v1]),---,((z),2)),[ya]) € R" x &, thresholds &, §
Result: f e &
Randomly pick one graph [y;] € ® and its representative Tjy; € A,
Align the representatives Ty;, j € {1,...,n}\l of all other graphs to Tjy;;
Obtain h from a regression of (z1,T1y1),. ., (Tn, Tnyn) in A maximizing (3.33);
Set f =7 oh;
Align all representatives w.r.t. f obtaining Tiy1, ..., Tnyn;
while 0 > x do
Obtain h by maximizing (3.33) for (X1, T191),. .., (Xn, Tnyn) and f = 7o h;
Align all representatives w.r.t. f obtaining T1y1, ..., Thyn;

Compute the distance of the sum of squared prediction errors 6 = A( f.f );

Set f = f;
end
Return f = f.

framework in the graph space to graphs with a total space that is different to A = R7. We observe
that the GAM regression functions f(X7),..., f(X,) € & are obtained projecting combined
means of the graph attributes from the total space to the graph space. A possible issue is that
combining these single target means can lead to labeled points h(X;) ¢ A. Among other things,
we would have to translate the concept of optimal alignment to these points which was not
considered so far in the derivations of the GAMs above during the projection step from (3.33) to
(3.34). One could think about optimal aligning graphs w.r.t. points outside of the total space
or by aligning graphs w.r.t. sampled graphs from the distributions with mean modeled by the
GAMs.

Let us illustrate the former type of optimal alignment at an example of binary graphs. Thus,
let A= {0,1}7, T the set of permutations and & = A/7 the graph space. Then, we could say a
graph TY; € A, T € T is optimally aligned w.r.t. a point Y3 € [0,1]” if

da(TY1,Ys) = gg;cu(m, Y2) = de([Y1], [Y2])
where d 4 could be e.g. the Euclidean metric. This definition would enable the alignment of
graphs w.r.t. their fitted multi output means although we do not examine issues with the fitted
multi output means not lying in the total space.

We concretize this further to investigate what could happen for an AAC algorithm as defined
in algorithm 3. We assume to observe a sample of binary graphs with Bernoulli distributed graph
attributes which are regressed independently solely on the intercept for each graph attribute. This
means, we assume that each graph attribute a € J of each graph i = 1,...,n is independently
Bernoulli distributed, i.e. Y; 4 ~ Ber(p; o) with p; o € [0,1]. Then, our model for each a € J is
given by

ha (xz) = BO,a-
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Moreover, since we do not have any smooth terms and the Bernoulli distribution is a distribution
of the EF as shown e.g. in (Fahrmeir et al. 2013, chp. 5.4), the model corresponds to a GLM

and we define the model even more specific by a logit model

ha(xi) = Q(Pi,a) = BO,a

where g is the logit link function. For logit models, we refer the reader e.g. to Fahrmeir et al.
(2013, chp. 5.1) and we use some of their results for the following calculations.

We restrict further to graphs with two nodes and edges, i.e. J = 4,4 = {0,1}*. Addi-
tionally, we assume to observe a sample of size n = 4 with four unlabeled, directed graphs
(1, [y1])s (1, [y2]), (1, [ys]), (1, [ya]) € N x & with the corresponding flattened representatives
y1 =(1,0,0,0),y2 = (0,0,0,1),y3 = (0,1,1,0) and y4 = (1,1, 1,1) where y; 1, ¥4 correspond to
the two nodes and y; 2, ;3 to the edges with ¢ = 1,...,4 for the different representatives. Then,
in the algorithm 3 in the initialization step, we assume to align all representatives w.r.t. the
third one. Since all graphs are already optimally aligned, there is no realignment. In a regression

step, we maximize for each a € J separately the log-likelihood

£(Ba) = Z Yi,a 108(Pi,a) — Yial0g(l — pia) +10g(1 — pia)
i=1 (3.35)

= yi,aﬁ(],a - IOg(l + eXP(ﬁo,a))-

Setting the corresponding score function to zero, we obtain
Bo,a =0, Dia=0.5,

for all i,a € {1,...,4} and p; , do not differ for different ¢ since we regressed only on the intercept.

Thus, we obtain with x; = 1 the fitted regression function
h(l‘z) = (hl (xz), hg(l’i), hg(xz‘), h4(:1,'l)) = (0.5, 0.5, 0.5, 0.5), 1= 1, - ,4.

If we realign the representatives yi, ..., %4 in a next step of algorithm 3 w.r.t. these points
h(z;) using the optimal alignment definition w.r.t. points from above, all are already optimally
aligned and the algorithm stops. Nevertheless, we are not at a local maximum of the from (3.34)

translated objective

J

g@(/@) = quel%l_ K(ﬁa)
a=1

where ((8,) is defined as in (3.35). Instead, this objective would be maximized by permuting
node one and two of the representatives y; or y» but not for both representatives at the same
time. Thus, algorithm 3 does not converge to a local maximum of objective (3.34) viewed as a
function of 8 for the considered Bernoulli distributions on the graph attributes although this
sample would be observed with a positive probability in our example. This can happen since the

probability of representatives on the boundary of FDs is not zero (ys is e.g. a singular graph).
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The example highlights multiple issues for the existing regression frameworks in the graph
space. First, when we extend the existing linear and additive regression frameworks to account
in the single target models properly for the space of the graph attributes, this cannot be done
straightforwardly by extending the single target models to their generalized forms. Theoretically,
this is because the regression functions do not lie in the graph space, optimal alignment has to
be redefined and a reasonable objective in the graph space has to be derived. Moreover, due
to the probabilistic nature of the latter inherent in the likelihood maximization for the single
target models, we lose the advantage of the plausible geometric (penalized) LS objectives in the
linear and additive regression framework. Thus, to derive reasonable objectives for generalized
regression models in the graph space, we require distributions on this graph space which are not
simply investigated due to the quotient space structure of the space. A similar observation can
be made for the practical part of the frameworks. The theorems on the AAC algorithms here
and in Calissano et al. (2020, 2022) combine probabilistic assumptions on the sample with almost
sure convergence results to local minima of (penalized) LS objectives. We saw in the example
that even simple, practical distributional assumptions on the space of graph attributes can lead
to difficulties w.r.t. the convergence of the algorithms. In particular, the absolute continuity
w.r.t. Lebesgue measures of the probability measures in the theorems should be investigated
when applying the AAC algorithms 1 and 2 because they do not necessarily converge to a local
minimum of the corresponding objectives (3.6) and (3.27) viewed as functions of the parameters
if graphs on the boundary of FDs are sampled with positive probability. Additionally, this
combination of probabilistic assumptions on the sample to obtain almost sure convergence results
and geometric regression approaches utilizing ((P)LS) objectives might be also problematic when
we add edges with null attribute to obtain complete graphs because we obtain positive probability
on null attributes leading to graphs such as singular graphs on the boundaries of FDs. These
thoughts can be slightly related to the algebraic, geometric and probabilistic perspective on the
Euclidean mean given e.g. in Fletcher (2020, section 2).

In summary w.r.t. the AAC algorithm, for a reasonable extension to GAMs the assumption
of absolute continuity of Py) w.r.t. the push forward measure of the Lebesgue measure has to
be weakened. Then, major challenges are to develop a reasonable probabilistic objective in the
graph space and that the regression function and/or the observed graphs could contain graphs on
the boundaries of FDs with positive probability. Then, for example almost sure convergence to a
local maximum of the objective (3.33) cannot be proven for the AAC algorithm 3. Furthermore,
the linear and additive regression frameworks combine in their argument in favor of the AAC

algorithm probabilistic and geometric regression perspectives which should be done thoughtfully.
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This section examines the developed regression frameworks in more detail. First, we motivate
modeling in the graph space in general and argue why an extension of the linear regression
framework from Calissano et al. (2022) to additive models and GAMs is reasonable. Subsequently,
possibilities to interpret the results are outlined. Then, we discuss alternative penalty terms of
the extension to additive models. Afterwards, we describe which type of covariates are reasonable
for the regression framework. We discuss computational issues of the AAC algorithms connected
with the graph matching problem and give a recommendation for the maximal number of nodes.

Finally, a description of the implementation of the AAC algorithm 3 is given.

4.1. Motivation and interpretation for graph space regression

First, we motivate models in the graph space reviewing existing applications and their abstractions.
General data analysis in the graph space can be motivated from the perspective of object oriented
data analysis as explained in Marron & Dryden (2021). An application arises e.g. if we
observe unlabeled graphs. Then, we could create node labels by random enumeration to obtain
corresponding representatives in the total space. Next, to work with these representatives of the
unlabeled networks, they have to be aligned to be comparable again which is done in the graph
space setting. In this case, the node labels possess no relevant information for the analysis and
data analysis in the graph space could be reasonable. This motivated the application in Guo et al.
(2021) on a data set of handwritten letters. Each letter is treated as unlabeled graph where nodes
are connected by shapes such that one graph corresponds to one letter. Afterwards, the node
labels are serially numbered to obtain representatives in the form of adjacency matrices. Then,
the aim was to obtain pairwise matches, geodesics and means between the letters. This was
achieved by realigning the representatives again and executing the computations in the total space
between aligned graphs. The outcomes could be interpreted as results for the handwritten letters,
i.e. the unlabeled graphs. In a similar fashion, the authors in Guo et al. (2022) matched the nodes
of brain arterial networks for in general otherwise unknown matches. Other common examples
for unlabeled networks are social networks in which we are interested in the patterns/structure in
groups of related entities. Then, the labels are either not important or not available, cp. e.g. the
discussion in (Kolaczyk et al. 2020). Finally, a similar application can be found in Beiler et al.
(2015). Therein, the nodes are trees and the edges are fungal genets. Thus, the networks arise
naturally as unlabeled networks and one is interested in the topology of the interaction networks.

Closer related to this thesis, we aim to model the relationship between covariates and unlabeled
graphs in the regression setting. Thus, the regression model should account properly for the
space of the graphs which leads to the graph space as space of the responses. An application
arises e.g. for observations of labeled networks with different node labels but the same type of

edge measurements as in Calissano et al. (2022, section 4.3). Therein, the authors regressed
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passing networks of football teams on goals scored in a game. Although the players and thus,
the node labels, differed between the games, unlabeled passing networks w.r.t. goals scored
could be modeled by matching different players across labeled passing networks which have a
similar role (more precisely, by matching players with nodes on their corresponding regression
function evaluation, but for comprehensibility simplified here). Similarly, this might be possible for
multiple logistics networks with various node labels. Different to this, we can analyse observations
of labeled networks with fixed labels by restricting the analysis and observed networks from
the beginning to the graph space as is done e.g. in two examples in Calissano et al. (2022,
section 4.1,4.2) and in this thesis in section 5 for air transportation networks. In this case, we
could model the labeled or the unlabeled networks — treating the observed labeled graphs as
unlabeled graphs — but we have to adjust the interpretation of the results with regard to the
analysed data object.

Given the former examples, an advantage of the unlabeled model might be, that it is easier to
compare the outcome to the same models on data with the same type of edge measurements
but different node labels, e.g. in our case the comparison of the European to the American or
Asian air transportation networks. Then, since the node labels are arbitrary, a comparison might
be more reasonable using models in the graph space because we do not have to match nodes
between different data sets manually. This comparison over multiple data sets is again related
to the football passing model. Furthermore, the treatment of labeled networks as unlabeled
networks and labeled networks again could be related to the handwritten letter example when
we treat e.g. country labels in air transportation networks as random enumeration. In contrast
to this, we have to be careful when we interpret the results again w.r.t. to the node labels of
the observed labeled networks, especially for regression models. This is due to the regression
function is a function into the graph space and observations are not aligned w.r.t. each other but
w.r.t. this regression function. This subtle aspect is also discussed at the end of this subsection
for the interpretation of the model.

Another advantage of graph space modeling could be, that if we are interested in the develop-
ment of e.g. the air transportation network as a whole, the development might be reproduced
smoother in the graph space regression model. For example, if Germany passes severe restrictions
on air transportation and its role in the European air traffic network is temporarily absorbed by
France, the captured transition in the graph space model can be smoother due to the possible
permutation of France and Germany. In summary, the regression frameworks require thoughtful
handling of the object that we want to model compared to the one that we actually observe. If
the object is the structure of the network, the graph space modeling might be appropriate.

Next, we want to review the motivation behind the extensions of the linear regression framework.
First, we extended the linear regression framework to additive models in & by allowing for additive
models in the single target models. The main incentive behind this extension is analogous as
for the Euclidean counterparts. Namely, additive models allow for a more flexible relationship
between the response and the covariates. In our case, this means that we allow for smooth
functions between the covariates and the graph attributes of the unlabeled graphs instead of
solely linear relations.

Second, we discussed the possibility to extend additive models to GAMs in & by extending the
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single target models to GAMs. Again, the motivation to model non-normal responses from the
equivalent extension for Euclidean responses transfers to our case. In particular, this extension is
necessary to model responses with binary, categorical or count data. This means, we need the
extension to GAMs to include graphs with discrete graph attributes. Moreover, this is also the
case when we observe networks with graph attributes in R>g. The linear regression framework
does not account for such graph attributes and we could obtain graph attributes smaller than
zero in our model. Hence, the necessity for GAMs for these types of graphs.

Finally, we want to emphasize that the existing results on the almost sure convergence of
the AAC algorithms 1 and 2 to a local minimum should be treated carefully. The connection
between the geometric approach of the regression model and the probabilistic reasoning for the
AAC algorithms seems not straightforward. As we described for additive models and GAMs in
subsection 3.4, the almost sure convergence does not hold as soon as graphs on boundaries of
FDs are involved with positive probability. However, this could be already the case if we add
edges with null attribute to the graphs since then, these edges are assigned positive probability.
Thus, if we observe non complete graphs but extend them to complete graphs by adding edges
with null attributes for unobserved edges, this could have impacts on the convergence of the
AAC algorithms. Nevertheless, this is done and not discussed in existing applications and its

impact on the convergence of the algorithm should be investigated in detail.

Interpretation of regression frameworks in the graph space

So far, there exist different possibilities to interpret the model in practice which we discuss until
the end of this subsection. The first two, already existing approaches analyse the permutations
of the observed graphs. The first is illustrated in (Calissano et al. 2022, Figure 3) and introduced
by the same authors. It provides an interpretation on graph attribute level in the total space
and is based on permutations of the nodes. The idea is to plot the permutation frequencies
of the labeled nodes w.r.t. other labeled nodes. The approach is e.g. applicable if we observe
labeled networks but model them in the graph space as described above. Then, one could say
that labeled nodes which are permuted often with each other are similar w.r.t. their role in the
labeled network while nodes that are not permuted have unique roles in the labeled network.
Thus, this would aim to obtain a first idea of the roles of the nodes in the total space compared
to each other. Similarly, we can plot the permutation of a node w.r.t. all other nodes against the
covariate, e.g. the permutation of a node against time as in Calissano et al. (2022, Figure 7).
Again, we obtain an interpretation possibility on which nodes have similar roles in the total
space given covariate values. Both interpretations could be problematic since they work with the
roles and labels of the nodes in the total space while modeling the networks in the graph space.
For example, two nodes that are interchanged at specific covariate values do not necessarily
have the same role in the networks w.r.t. each other but instead, one satisfied the role for one
region of the covariate while the other satisfied the role for another region of the covariate, where
the role is understood as the role of the node of the unlabeled regression function in the graph
space. Moreover, both approaches focus on the observed networks instead of on the regression

function itself. However, thoughtful interpretation of both approaches might be helpful especially
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when observing labeled networks and treating the metric in the graph space as minimizer over
permutations for node labels with inherent information.

Besides that, another possibility on graph attribute level might be to assign ’artificial labels’
(ALs) to the nodes of unlabeled networks obtained from the regression function f evaluated
at specific covariate values in the graph space. It is not yet clear, how to develop these ALs.
Nevertheless, this approach aims for a direct interpretation of the regression function f in the
graph space on graph attribute level. The advantage of such an approach is that the functional
assumptions from the single target models in the total space might be captured. This means,
we would enable an interpretation of the regression parameters 8 and the smooths from the
total space in the graph space. We exemplify this in appendix B. Therein, we describe that the
parameters of the total space can be interpreted indeed as piecewise parameters on the graph
attributes in the graph space which are interchanged when the regression function h crosses a
FD. Additionally, we present methods to obtain the crossing points.

A disadvantage of the former approach is that we have k? potential graph attributes to analyse,
where k denotes the number of nodes. In contrast to this, we could interpret the model by
analysing the whole networks from the function f evaluated at different covariate values in the
graph space and their variation w.r.t. the covariates. The advantage would be that we analyse
the unlabeled network on a higher level than the graph attributes. This could be reasonable since
we model the unlabeled network as data object in our regression frameworks. This can be done
e.g. by visualisations of the unlabeled networks along the covariates. Alternatively, we could use
network summary statistics. Depending on the summary statistics, this would lower the potential
functions to analyse, compared to k2 of the former approach. A disadvantage might be that it
seems difficult to preserve interpretability of parameters and smooths of the single target models
from the total space in the interpretation of functions of the network summary statistics. Thus,
we lose a general advantage of regression models, namely their interpretability via parameters
and smooths. Nevertheless, this approach analyses again the regression function f in the graph
space instead of the observed graphs and their permutations. We describe this approach briefly
in section 5 and exemplify it in the respective figures E.12 and E.13 in the appendix.

Finally, we summarize the differences between the interpretations. First, we can separate
approaches on the observed graphs and on the regression function in the graph space. Second,
we can differentiate between interpretations on graph attribute and graph level. Apart from this,
the distinction between interpretations referring to labels from the total space and ones referring

to potential labels from the graph space is nuanced and should be thought through.

4.2. Discussion on the penalty term for additive models

This subsection discusses the penalty term in (3.27). So far, this term aims to penalize, separately
for each graph attribute a € J, the wiggliness of the smooth functions fi 4, ..., fp.q of the additive
model in (3.24). This is done using parameter vectors 3, corresponding to the regression functions
he from (3.25) with optimally aligned representatives v, ..., y,. Thereby, we allow for different
smoothing parameters \;, for each smooth fiq,..., fp.a, Wwe penalize them independently for

each graph attribute a € J and the parameters are penalized on graph attribute level of labeled
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graphs in the total space. In particular, if for fixed a € J, j = 1,...,p it holds \;, — oo, then
the smooth f;, of covariate j tends for graph attribute a to a function in the null space of the
penalty of this smooth. If for fixed j and all a it holds A;, — oo, then the smooth of covariate j
tends to a function in the null space of the smooth for the whole graph.

To obtain another perspective, we rewrite the penalty for a concrete example. We examine
an additive model defined by an univariate smooth without linearly modeled covariates, with
P-splines and B-spline basis and differences of order one. This can be translated from subsection

3.3.2 and we rewrite the penalty term from (3.27) to

J P 4 J
SN NaBa SUB =3 S N .80 SV

a—lj—l j=la=1

p Y Z)\laz Bua 5u 1a :ZZ)\la Bua Bufl,a)2
u=2

u=2a=1

= Z A% (Bus Bur)

where 3, = (Buis- - Pu,g) and di\ is the squared weighted Euclidean distance with weights
M,a,a € J. To clarify that B, differs from 3, in its form (indexing over rows instead of columns),
we write the tilde. The second equality follows from the definition of penalties of order one
for P-splines. Now, we can observe that this rewritten penalty treats the parameter vectors
Bu,u = 1,...,1 for the smooth as labeled graphs, where each labeled parameter graph Bu
corresponds to the covariate evaluated at the basis function B, from subsection 3.3.2. Thus, we
penalize the wiggliness of the function across the parameters treated as labeled graphs while
simultaneously, still allowing for independent smoothing parameter A, for each graph attribute.

Next, we describe alternatives to the penalty in (3.27). The second last sentence provokes a
possible alternative penalty. Instead of different smoothing parameters for each graph attribute

a € J, we could restrict to one smoothing parameter A; for the whole graph by

1J ! J l
Z Z Al,a(ﬁu,a - Bu—l,a)2 = Z >\1 Z(/Bu,a - /Bu—l,a)2 = Z Ald?A(/Bm ﬁu—l)
u=2a=1 u=2 a=1 u=2
where we start from the end of the second line of the calculations above. This would measure the
wiggliness of the smooth by the sum of the squared differences /3, o — Bu—1, in the parameters on
graph attribute level while choosing the smoothing parameter for this wiggliness over the whole
labeled graph in the total space. Analogously, we could penalize for the wiggliness e.g. across
nodes and their incoming edges by
. J B l L
ZZ)\I a(ﬂuu Bu la) = Zdi\(ﬁuaﬁu—l)

u=2a=1 u=2

where dil is the squared weighted Euclidean distance with weights 5\1,@, a € J and we assume for
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)‘La = ()\1,1, ... ,)\LJ) that
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Analogous models with penalties such as the group lasso model for multiple outputs/tasks would
be also possible by translating them to (3.27) and the above considerations straightforwardly.
The considered group lasso can be found e.g. in Hastie et al. (2015, Example 4.2). Moreover,
we could connect multiple penalties as done e.g. in Jacob et al. (2008) for a multi task model
formulation.

Alternatively, we could penalize the parameters more directly in the graph space. Contrary
to all developed regression frameworks in the graph space which only permuted observations,
this would also permute parameter vectors viewed as graphs. To do this, we utilize the metric
formulation of the penalty term derived above. Then, when we project the PLS (3.26) in metric
formulation to the graph space, we minimize the penalty term over all permutations for the first

and second metric to obtain the following PLS in the graph space

n l
PLSg = Zd%([?/i],f(Xi)) + Z dg ([Bu), [Bu-1])-

=1 u=2

where cp@ is the weighted form of the metric (3.1) in the graph space with weights A; 5. This
penalty measures the wiggliness of the smooth by treating the parameters Bu,u=1,...,1 as
unlabeled graphs. If we do this while allowing for different smoothing parameters \; , for each
graph attribute, we penalize for the wiggliness of the smooth for each graph attribute in the
graph space. In particular, for A\; o — oo for all a € J, this forces the smooth to the null space
of the penalty for the whole graph. More generally, the penalty measures the wiggliness in the
graph space. As above, we can restrict the smoothing parameters and those, penalizing e.g. for
the wiggliness of the smooth across the whole unlabeled graph.

This example can be straightforwardly generalized to multiple smooths. Moreover, a generaliza-
tion to other penalties is possible as long as we can obtain a metric formulation of the parameter
vectors treated as graphs in the total space. In general and for future research, it would be
helpful to compare the PLS objective (3.27) e.g. to the Fréchet regression model developed in
Petersen & Miiller (2019) to verify its meaningfulness.

4.3. General remarks on the framework

First, the covariates should be independent of the graph attributes. This means, that the
covariates should not differ for various graph attributes or equivalently, that the model matrix
X is independent of the graph attributes a € J. Otherwise, the prediction of graph attributes
could be not feasible since the covariate values used for prediction are potentially not inside
the support of the covariates for some graph attributes used for fitting the single target models.
Moreover, it would be unclear which covariate values to use for predictions since we used for the
fit of single target models potentially multiple graph attributes in the total space with different

covariate values. This relates again to the discussion on observing labeled or unlabeled graphs in
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subsection 4.1.

Second, it is complex to validate the frameworks. Since the regression models regress each
graph attribute separately on the covariates, we desire distributions on the graph attributes of
the graph space. Due to the permutations, it is difficult to derive theoretical distributions for the
graph attributes in the graph space when starting with distributions on graph attribute level in
the total space. However, a rather simplified approach would be to use just node attributes and
assign to all edges null attributes. Then, we can derive the distributions of the graph attributes
in the graph space as the distributions corresponding to the order statistic of the nodes from
the total space since the permutations order the nodes solely by size in this restricted case. For
example, if we assume that all node attributes in the total space are sampled from a uniform
distribution on the unit interval, the corresponding theoretical distributions of the j-th ordered
graph attribute in the graph space would be the beta distribution with parameters j and j+1—k.
For this result on the order statistic compare e.g. Bickel & Doksum (2015, Appendix B.2.9b).
Nevertheless, it is in general not straightforward to compute these marginal distributions of the
joint distribution on the graph space. This complicates e.g. simulation studies.

Another issue arises for the computational costs of the frameworks. Due to the iterative
application of graph matching and fitting of multiple regression models, the AAC algorithms are
computationally costly. For example in the application in section 5, although we were able to
parallelize the graph matching and the estimation of the GAMs, running the AAC algorithm
3 with the in the graphspace package implemented GAS graph matching algorithm once on a
Humboldt Lab for Empirical and Quantitative Research (LEQR) server with 12 physical cores
at 3.4 GHz still took at least six days for three iterations for a network with 27 nodes that
is observed over 127 weeks (for more details, cp. the next subsection and section 5). Thus,
we recommend to restrict the analysed networks to at most 30 nodes. In our application, the
bottleneck of the computational time was the alignment of the graphs w.r.t. each other and
the regression function. In particular, for example the in the graphspace package implemented
GA graph matching algorithm was not exact enough for our application and we had to switch
to the slower implemented GAS or GAS1 algorithm. In general, using faster graph matching
algorithms and implementing them in the graphspace package might be a worthy improvement.
An alternative way to shorten computational time is to reduce the time to estimate the GAMs for
each graph attribute in the current alignment. This could be done by reusing already estimated
coefficient vectors of previous steps of the AAC algorithm. In the simplest case, if a node is not
permuted from one step to the next for all observations, we can reuse the estimated GAM for
this node attribute. Moreover, if two nodes are not permuted from one step to the next for all
observations, we can reuse the estimated GAM for the edge attribute between these two nodes.
Additionally, the search for smoothing parameters could be adjusted depending on smoothing
parameters of the last iteration.

We note that although the regression framework might seem restrictive with a maximum of 30
nodes per graph, it can be helpful to aggregate nodes in larger networks to obtain smaller networks.
This is for example done for the air transportation networks in section 5 by investigating them
on country instead of airport level. After the model is fitted, we might want to decompose the

estimated graph attributes back to their non aggregated form. Practically, this could e.g. be
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done using multinomial models on the graph attributes.

As a final remark on the existing regression frameworks, we indicate that they should be
investigated in more depth w.r.t. the projection of the regression function into the graph space
and its implication on the frameworks. In particular, we assume currently reasonable regression
functions in the total space for the multi output regression function s while we aim to minimize
e.g. in the linear regression framework in & an intrinsic LS objective in the graph space. However,
it is unclear if the regression function f in & corresponding to reasonable regression functions h
in A is still sensible. This is related to the discussion on the penalty term in subsection 4.2 on
whether to penalize wiggliness in the total or in the graph space. Furthermore, it is related to the
discussions on geometric and probabilistic approaches above and at the end of subsection 3.4. If
we review for example the linear regression model in the total space in matrix notation in (3.8),
the error terms corresponding to the probabilistic regression perspective live in the total space
instead of the graph space. This became even more apparent in the development of the additive
and generalized additive regression frameworks since we started with the single target models
and their objectives on graph attribute level in the total space. Additionally, it is discussed in

appendix B.

4.4. Implementation of the framework

The graph space and the linear regression framework are implemented in python (Van Rossum &
Drake 2009) in the graphspace package available via GitHub at Calissano (2020). The package
is currently moved into the package geomstats described in Miolane et al. (2020), which is a
package for geometry based statistics. The graphspace package allows for the definition and
work with graphs and sets of graphs. For the alignment of pairwise graphs e.g. the generalized
Bron Kerbosch algorithm (Jain & Obermayer 2011) and the graduate assignment algorithm
(Gold & Rangarajan 1996) are available. Moreover, AAC algorithms to compute Fréchet means,
geodesic principal components and the linear regression in the graph space are implemented.
Based on the package, our main contribution was to implement GAMSs as described in subsection
3.4 into the existing framework. In a first step, we used the multiprocessing package included
in the standard library of python to parallelize the alignment of graphs and the estimation of
GAMs. To the best of our knowledge, there did not exist a package in python to fit GAMs
with a REML approach for the estimation of the smoothing parameters. Thus, we switched to
the statistical software R (R Core Team 2022) and used the mgcv package for which a practical
tutorial is available in Wood (2017). As described in AAC algorithm 3, model fitting is just one
step in each iteration. Thus, it was necessary to run the R code during the compilation of the
python code. Therefore, we used the rpy2 package (Gautier et al. 2008). In summary, we fit
the GAMs with the mgcv package in R and align the graphs within the graphspace package in

python. Estimation and alignment are both parallelized.
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This section describes the application of the developed GAM framework to the air transportation
network of parts of the EU aggregated on country level during the Corona Virus Disease 2019
(Covid-19) pandemic. In particular, we approximate for the response the weekly air passenger
networks on country level for the ten countries in the EU with the most passengers between
January 2019 and September 2021, treated as unlabeled networks in the analysis. As covariates,
we consider time, new daily Covid-19 cases in the ten countries averaged by week, and months.
The application aims to implement the GAM framework in the graphspace package in python
and to apply it to real world data.

The application has various merits as well as flaws. First, we work with the total space
A= Réo and the corresponding graph space & = A/7T. This is common since it corresponds
to networks with one-dimensional, positive and continuous graph attributes. Furthermore, we
observe a time series of networks together with Covid-19 cases which is interesting due to its
dynamic structure as well as its epidemiology and mobility related background. However, as
described e.g. in Kolaczyk & Cséardi (2020, chp. 11), dynamic network modeling is not well
developed yet and the time related component of the data is not sophisticatedly modeled by us.
Moreover, since we observe labeled graphs and treat them as unlabeled graphs, the reasoning to
use a model in the graph space instead of the total space might be unclear. Some arguments
in favor of the graph space can be found in subsection 4.1 while we have to keep in mind that
the analysed objects differ in both cases. Another disadvantage is that the covariates are not
necessarily real valued, although we derived all models for real valued covariates. Apart from this,
the developed generalized additive framework is applied to real world data which comes with data
related difficulties such as only approximate passenger numbers between countries. Additionally,
the application is relatively large and complex which makes it more delicate to investigate the
theoretical GAM framework instead of the application related challenges. Moreover, we described
in subsection 3.4 that the GAM framework is not well developed yet and should be not employed
without caveat. However, the application to real world data is an important step to show that
the derived frameworks can be actually useful in practice.

The section is structured as follows: first, we describe the data. Next, we define the regression
model by defining the single target GAMs and its implementation in python and R. Finally, we

summarize the results.

5.1. Data description

This subsection describes the data sources, the extracted raw data and its preprocessing. A
summary of the data sources can be found in table 5.1. Our aim is to analyse weekly air passenger
networks for the ten countries with the most passengers between 2019 and 2021 in the EU. As

explained e.g. in Sun et al. (2021, section 2.2), a common limitation for studies of air passenger
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traffic is that there exists no openly accessible data source with information on the daily number
of air passengers between and within countries. Especially when we analyse the air traffic during
the Covid-19 pandemic, it is important to substitute the air passenger network not solely by the
flight network. There exist different reasons why a substitution of the passenger network by the
flight network is not reasonable. For example, airlines had to fly empty flights to keep their slots
at airports during the Covid-19 pandemic. A demonstration of this problem can be found in the
regulation “Council Regulation (EEC) No 95/93 on common rules for the allocation of slots at
Community airports” (2020-03-31). Another difference between flight and passenger networks
is that the flights are performed with different aircrafts and thus, possibly different passenger
capacities per flight. Furthermore, the occupancy rates can differ between flights. This means,
that different flights do not relate necessarily to the same number of passengers. Additionally,
there exist cargo flights in the flight network and cargo and passenger traffic behaved differently
during the pandemic, cp. e.g. Sun et al. (2021). To address these difficulties partly, we extracted
the daily number of flights and used them as weights on the monthly passengers between two
countries. In addition, this could be improved further using a similar approximation as in
Suzumura et al. (2020). The authors also analysed the OpenSky network data and approximated
the passengers by accounting for aircraft types and their corresponding capacities. However, at
time of submission of this thesis, there was no data freely available to us that connected the type

codes of the aircrafts to their capacities.

Data source Data
Strohmeier et al. (2021) Global, daily flights between 2019 and 2021 of OpenSky
Eurostat (2022a) Monthly flights and passengers between reporting countries
Eurostat (2022b) Glossary for EU country codes
Eurostat (2022c¢) Yearly total air passengers by countries of the EU
Dong et al. (2020) Daily Covid-19 data of John Hopkins University

Table 5.1.: Data sources

In a first step, we profited from the OpenSky network community and its crowdsourced project
for global air traffic data introduced in Schéfer et al. (2014). We summarize in the following briefly
the data description from Strohmeier et al. (2021). The project is based on receiver data capturing
radar signals from aircrafts. In particular, the Automatic Dependent Surveillance-Broadcast
(ADS-B) protocol provides every second identity, position, status and velocity of individual
flights. This information can be captured by receivers and is collected in the OpenSky network
database. Since 2020, ADS-B is required in many airspaces and thus, aircrafts are commonly
equipped with it. So far, the data consisted of encoded ADS-B data, noise of the measurement
process, duplicate measurements of flights due to multiple receivers and other quality obstacles.
Thanks to the work in Strohmeier et al. (2021), this data was preprocessed and made available
freely starting from January 2019. The processed data consists of the flights covered by the
OpenSky database between January 2019 and February 2022 including an identification option
for individual flights, type codes of the aircrafts, origin and destination airports and timestamps.

Next, we restricted the time period to January 2019 until September 2021 since the covariates

were available during this time period. Furthermore, we included only flights with origin and
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destination airports in the ten countries with the most air passengers during 2019 till 2021 which
were obtained summing over yearly passenger data from Eurostat (2022c). Namely, the ten
countries are Belgium, France, Germany, Greece, Italy, Netherlands, Poland, Portugal, Spain and
Sweden. We confined the analysis to ten countries due to the computational costs of the graph
matching algorithm GAS implemented in the graphspace package. Due to the same reason, we
aggregated all airports for each country to obtain origin and destination countries instead of
origin and destination airports. This results in a dataset of daily flights between the ten countries
on country level between January 2019 and September 2021 covered by the OpenSky network.

Afterwards, we collected the monthly total number of passengers between two countries within
the EU from Eurostat (2022a). Then, we propose the following, continuous approximation for

the daily number of passengers between country 4 and j:

fori#j:
d
~d fi,j
4.
d d _ ~d | ~d
Vij = Y5 = Ui+ Uiy (5-1)
fori=7j:
d.
d d t, 2
Vig = Vi =iy
i,k
where k£ = number of countries, i,j € {1,...,k}, yf{j is the edge attribute between country i

and j of day d, pi’ are the international passengers arriving at country j from country ¢ in

nat,m

month m, p,

i are the domestic passengers in country ¢ in month m, fgj and f;; are the flights

from country ¢ to j and the superscripts d and m denote the corresponding day and month,
respectively. For ¢ = j, we obtain the daily domestic passengers of country i and for ¢ # j, the
daily international passengers between i and j. Afterwards, we computed weekly averages for
each graph attribute.

Finally, the preprocessing for the response results in weekly flattened adjacency matrices of
labeled, undirected, weighted networks y; where i € {1,...,143} is the index for each week
between January 2019 and September 2021, i.e. n = 143. To be precise, each labeled graph is

given by the flattened adjacency matrix:

Yi = Yi1s -5 Yid), i=1,...,n.

The networks have k = 10 nodes and thus, J = k*> = 100 graph attributes and we define
J ={1,...,J}. The node labels are the country names and the graph attributes are approximated
domestic and international weekly passengers for the ten countries.

Before we proceed, we evaluate the quality of the flight data from OpenSky network. Therefore,
Eurostat provides monthly data on the total number of commercial flights between countries in
Eurostat (2022a). To obtain an impression how many commercial flights are captured by the
OpenSky network, we compute the ratios of OpenSky network flights and Eurostat commercial

flights for each country and each month between January 2019 and September 2021. A heatmap
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of these ratios can be found in figure 5.1. The countries are plotted on the vertical and the
months with corresponding year on the horizontal axis. We see that for Greece the coverage
of the OpenSky network is relatively low and the ratios vary between 0.1 and 0.5. Similarly,
the ratios for Spain were just around 0.6 till January 2020. In contrast to this, the months
April till June 2020 are clearly the brightest in the heatmap. This means, that the OpenSky
network captured more flights than commercial flights measured by Eurostat. One reason for
this is that the restrictions on the commercial air transportation network were severe during
this time. Thus, on the one hand there were not many commercial flights measured by Eurostat
while, on the other hand, OpenSky network still observed non-commercial flights such as e.g.
cargo flights or empty flights of airlines to keep their airport slots. We try to account for this
in our approximations (5.1) and would like to improve it in the future with the inclusion of
aircraft capacities. Alternative ways to improve the data would be e.g. to account also for
first and last seen locations of flights although their landing was not observed in the OpenSky
network. Additionally, we could use a commercial flight tracker with better coverage such as
https://www.flightradar24.com/. However, we have to keep in mind that our passenger networks
are solely approximations and that weighting with flights can have severe, unclear impacts on

the results.
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Figure 5.1.: Heatmap of the ratios of OpenSky network flights and Eurostat commercial flights for each of the
ten countries with the most passengers between 2019 and 2021 in the EU and the months between
January 2019 and September 2021. The brighter the entry, the larger the corresponding ratio.

In a last step, we assign covariates to the graphs and define a graph set in python with the
graphspace package. Namely, we assign each labeled network the current week, new daily

Covid-19 cases aggregated over all ten countries in this week, and the current month. This results

in

(yia ti? Ci, mi)7 1= 177143 (52)
where t; € {1,...,143} is a vector for the current week encoded from 1 to 143, ¢; is a vector
of mean weekly new Covid-19 cases within the countries and m; € {1,...,12} a vector for the
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current month. Daily new Covid-19 cases for the countries are computed using daily new Covid-19
cases on country level from Dong et al. (2020). We note that the covariates t;,¢;,m;,i =1,...,n
are chosen to be independent of the graph attributes, i.e. independent of a € J, for the reasons
discussed in subsection 4.3.

An interesting extension of the application done in this thesis would be to consider e.g. daily
instead of weekly data. This leads potentially to less smooth functions due to the additional
variability in responses, especially through zero passengers at some days and hundreds of
passengers at other days for some connections. Further, the computational costs of the model
would increase, although just linearly in the graph matching step of the algorithm, which is
currently the bottleneck w.r.t. computational costs. However, we would also obtain daily
predictions of the network which might be more valuable for e.g. airlines to coordinate their
aircraft fleets. Alternatively, the ratio of graph attributes v; ,,a € J and populations of the
countries corresponding to this graph attribute a could be analysed. This would lead possibly
to more similar graph attributes and thus, a larger possibility for permutations. However, the
modeled object would differ to the analysed object in here. Moreover, we could consider the air
transportation network of all member states of the EU. So far, this was not possible since the
in graphspace implemented graph matching algorithm GAS was too slow (at least six days for
three iterations on one of the LEQR servers), GAS1 was not able to match such large networks
and GA was not exact enough such that regression errors from one iteration to the next in the
AAC algorithm 3 could increase largely. The latter is a reason to be careful when applying the

GA graph matching algorithm to a similar analysis.

5.2. Model

This subsection describes the generalized additive framework in & applied to the approximations
of air passenger networks treated as unlabeled networks and its implementation.

We present two ways of analysing the air transportation network similar to the analysis of
the public transportation network in Copenhagen during the Covid-19 pandemic in Calissano
et al. (2022). First, we can analyse the development of the labeled network during the Covid-
19 pandemic. Therefore, the nodes are not permuted and it corresponds to an analysis with
single target GAMs for each graph attribute in the total space A. Alternatively, we model the
development of the unlabeled network in &. Hence, we allow for permutation of the nodes
such that the networks are optimally aligned w.r.t. the regression function. The difference in
the approaches can be understood in terms of the data object that we observe. In the former
approach, the passengers between the ten countries are the target. In the latter, the network
structure is modeled and the country labels are not of interest. In a further analysis, this structure
could be compared for example to the development of the network structure of the air passenger
transportation network within the United States (US), i.e. within and between the states of the
US. The structural comparison of the networks is easier since the networks are made independent
of the countries when they are permuted. We describe in the following the theoretical model in

the graph space.
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For the graph space model, we consider the sample

(i, xi) = ([wil, tiy e, mi), i=1,....n (5.3)

obtained from (5.2), where we treat the labeled networks y; € A = Réo as representatives of
unlabeled networks [y;] € & = A/T to be able to analyse the structure inherent in the networks
and the covariates are also obtained from (5.2). In addition, the last four weeks are removed from
(5.3) for the fit of our model such that n = 139 because we want to predict unseen observations
afterwards, i.e. we split into training and test set. Then, we assume the following generalized

additive model in &
fiR® =&, z— f(z)=moh(z)

where h: R? — A x — h(z) = (ha())acs

In a next step, it is necessary to decide on a distribution of the EF for the graph attributes
yi,© = 1...,n in the total space to model their linked mean by h,,a € J. The distribution
should be flexible enough to model each of the 100 graph attributes separately. For example,
approximated passengers between the Netherlands and Greece vary between zero and 15000
and attain exactly zero, while approximated domestic passengers in Spain vary between 1000
and 165000 passengers. Hence, we can observe that we need a distribution on the positive real
numbers including zero. Additionally, the distribution should be as flexible as possible, since the
developments of the graph attributes w.r.t. the covariates differ strongly. This means, we should
use a flexible distribution with the possibility of positive probability on zero.

The Tweedie distribution (Tweedie 1984) belongs, under certain assumptions on its parameters,
to the EF. In particular, it is uniquely defined by a scale parameter, its mean and an additional
parameter ¢ that determines the mean variance relationship. For detailed descriptions of the
distribution, we refer the reader to Jgrgensen (1987); Gilchrist & Drinkwater (2000) where we
summarize briefly some results from. For an overview of related distributions given ¢ cp. e.g.
Jorgensen (1987, table 1). For values 1 < ¢ < 2, the distribution is a sum of N random variables
that are gamma distributed while N is Poisson distributed, i.e. the distribution can be related
to compound Poisson processes. For ¢ — 1, the distribution tends to a Poisson distribution
while for ¢ — 2, the distribution tends to a gamma distribution. In summary, it can be used
as a continuous distribution on the positive real line with potential positive probability at zero.
Additionally, the Tweedie distribution is implemented in the mgcv package for parameter values
1 < ¢ < 2. Therein, it allows for the estimation of the additional parameter ¢ via a REML
approach as explained in Wood (2017, chp. 6.6) which makes the distribution flexible while still

being computational feasible. Hence, we assume for the graph attributes in the total space
yi7a|tivci7miNTW(Hi,auQsaasOa% GEJ,Y:: 1)"'7”

where Tw denotes the Tweedie distribution.
Although the Tweedie distribution might be a good fit for the data at hand, it can be

computational expensive to estimate the additional parameter ¢ and we should compare the
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model to other approaches. As described in Wood (2017, chp. 3.1.9, 6.6, 7.5), possible alternatives
would be the negative binomial distribution or using a quasi-likelihood approach. Thus, we
implemented in addition to the Tweedie distribution also single target GAMs assuming negative
binomial distributed graph attributes in the total space. It is not straightforward to compare the
results. To obtain a practical approach, we compare pairwise the AIC values of all fitted single
target GAMs for Tweedie and negative binomial distributions in the last iteration of the AAC
algorithm 3.

Finally, for each a € J,i =1,...,n we assume the single target models:

9(fia) = ha(wi) = f1(ti, ci) + f2(mi) (5.4)

where f1, fo are smooth functions of the covariates, the covariates t;, ¢;, m; are defined as in (5.2)
and ¢ is the link function of the mean as in subsection 3.4. In particular, f; is implemented with
mgcv using tensor product smooths te with cubic spline marginal bases and basis dimensions
25 and five for the basis representations of time and Covid-19 cases, respectively. Furthermore,
f2 is implemented as cyclic cubic spline cc with 26 knots, where the knots for January are
matched following Wood (2017, appendix C, exercise 5d)). Cyclic cubic splines are similar to
cubic regression splines presented in subsection 3.3.2 and a more detailed introduction can be
found e.g. in Wood (2017, chp. 5.3.2).

With these single target models, we wanted to analyse the effect of Covid-19 cases on the
air passenger network while allowing for a variation in this effect over time. This led to the
assumptions on f;. Besides, the network varies over the months and thus, we included also
fa. Moreover, we tried to employ the considerations in Wood (2017) for the construction,
especially of chapter 7. In particular, the gam.check function was used during the construction
on different single target models to evaluate if we needed potentially larger basis dimensions
which is recommended for values k£ close to one in the output of the function. Nevertheless, we
note that the data could be modeled differently. One alternative would be to consider e.g. lagged
Covid-19 cases similar to Wood (2017, chp. 7.4). Furthermore, time and Covid-19 cases do not

necessarily have to be modeled using tensor product smooths.

5.3. Results

This subsection describes and interprets the results. The results are rather dissatisfying and
reveal challenges for future research. Furthermore, we note that it is relatively difficult to present
the results due to the complexity of the analysed object. Therefore, we mention first unexpected
outcomes and corresponding potential reasons. Nevertheless, we present afterwards visualisations
of the fitted and predicted whole networks as well as the graph attributes to give ideas for a first,
mainly visual analysis of the results.

First, there was no permutation of nodes when we applied the model corresponding to (5.4)
to the data. Nevertheless, algorithm 3 needed seven iterations till convergence. The regression
errors in each iteration vary only slightly and are all similar to the regression error of the model

without alignment in the total space. We guess that this is due to the inexact graph matching of
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the implemented GAS algorithm and the imprecise mean estimates from the single target GAMs.
However, this could be also arising due to a more severe issue within the algorithm 3. We tried
different graph matching algorithms from the graphspace package to improve on this. However,
the GA algorithm performed even worse and increased the regression errors enormously for the
first few iterations while the GAS1 algorithm performed similarly to the GAS algorithm.

Second, our model in (5.4) is relatively flexible compared to e.g. a simple linear model with
the same covariates. This means that the fit of each single target model is close to the graph
attributes of the representatives in the current alignment. Therefore, two countries are only
interchanged if they are particularly similar w.r.t. the passengers in their connections. Contrary,
for a simple linear model with the same covariates, we aligned ten out of 139 graphs after
five iterations. However, the regression error increased over the iterations for the simple linear
model. This might be again due to the inexact graph matching or a more severe issue in the
implementation of algorithm 1. Apart from this, we exemplify the difference in alignment between
models of various flexibility further in appendix B.

Third, we removed the initial alignment in algorithm 3 of all to one of the observations. This
was done since an alignment of all observations to one increased the regression errors considerably
in all modeling approaches. One explanation for this is that the observed graphs differ strongly
over time. An initial alignment of the graph from the first week with one during the first wave of
Covid-19 differs strongly from an alignment of the graph of the first week w.r.t. the regression
function evaluated at the corresponding covariate vector. Therefore, we recommend to omit the
initial alignment of the graphs w.r.t. one observed graph in similar applications.

Finally, the passengers for the countries differ too much. Therefore, each country has already
such a unique role in the network that it cannot be interchanged with other countries in a
reasonable flexible model. This would possibly change if we include the populations of the
countries in the graph attributes as described at the end of subsection 5.1. Furthermore, when
we analysed the network of the ten countries with the least passengers between 2019 and 2021 in
the EU with the same model, some of the countries were permuted. A possible reason for this
might be that the approximated passengers within and between these ten countries are closer to
zero and more similar. However, the regression error still increased in some iterations and we
proceeded with the analysis of the ten countries with the most passengers. After these preliminary
considerations, we offer in the following possibilities to evaluate the results. Since there occurred
no alignments during the model fit, we can interpret the outcomes also by assigning the nodes
the country labels from the total space. In general, this is not possible.

In a first step, we visualise the fitted and predicted networks of the model in figure 5.2 and
figure 5.3. We obtained the plots as follows: first, to compute the coordinates of the nodes
for each network, we applied the Kamada-Kawai layout implemented in Rudiger et al. (2022)
obtained from the algorithm presented in Kamada & Kawai (1989). Furthermore, we centered
the positions around the coordinates (0,0). In general, the positions of the nodes are arbitrary
and one can employ alternatives such as a circular, spectral or spiral layout. Apart from this,
the nodes and edges are scaled equally for all networks including the four predicted. Moreover,
the dates about each network denote the first day of the week corresponding to the plot.

Twelve fitted networks can be found in figure 5.2. We plotted at least three networks of
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the years 2019, 2020 and 2021. The networks corresponding to the first week in February and
the second week in June are plotted for each year. In the first row, we can observe that the
overall network structure of the nodes with the most domestic passengers in the Kamada-Kawai
layout is visually relatively stable during 2019. In all three plots, there are four large nodes
encompassing the networks. In the total space, these four nodes correspond to Spain, France,
Italy and Germany. Spain has the most approximated fitted domestic passengers and corresponds
to the larges node, for France and Italy a similar amount of domestic passengers can be observed
and the two countries correspond to the two middle sized nodes and Germany has the least of
all four and thus, corresponds to the node with the smallest size out of the four. In the second
row, the network starts similarly to 2019 in February 2020. Afterwards, the network rapidly
shrinks during March w.r.t. node and edge weights. However, the structure of the four nodes
encompassing the network in the given layout remains similar till September 2020. Then, we can
observe in the third row of figure 5.2 that edge and node sizes increase again although now, five
nodes surround the inside. Finally, in the last row we see again a rather unusual plot in June.
Contrary, the network recovered a similar structure as in 2019, given the Kamada-Kawai layout.

Overall, the plots during 2020 indicate that the air transportation network of the ten countries
recovered rather slowly from the initial Covid-19 wave in the ten countries in spring 2020. The
first network potentially similar in edge and node size to the ones in 2019 can be observed in
August 2021. However, this visual analysis should be interpreted carefully since for example the
coordinates for the layout are computed for each network separately.

In a next step, we analyse the predicted networks corresponding to the four covariate vectors
at the end of the time series. The corresponding raw passenger networks of these weeks can be
found on the left in figure 5.3 together with the predicted networks of the model on the right. It
is difficult to interpret the predictions compared to the observed networks like this, although is
seems that the structure is not well predicted. In contrast to this, the sizes of the three largest
nodes seem reasonably predicted for the first and maybe second week. After week two, the
sizes of the three largest nodes in the predictions increase fast compared to the observed graphs.
Nevertheless, such a visual analysis and interpretation seems problematic, especially with the
different positions of the nodes obtained from the layout. A potential solution would be to fix the
nodes at some positions. This could be done e.g. by mapping them to their geographic locations.
However, this is in general not appropriate for an analysis in the graph space, since the nodes
lose their geographic allocation when we permute the labels.

At this point, there exist mainly two different approaches to proceed with the interpretation
as described already at the end of subsection 4.1. On the one hand, network summary statistics
might be helpful to analyse the results in more depth. Depending on the summary statistics,
this enables an interpretation treating the model as a model on the whole network. On the
other hand, we can investigate the networks further on graph attribute level. The advantage is
that, compared to the network summary statistics interpretation, a graph attribute approach
relates closer to the functional assumptions of the single target models (5.4). The disadvantage
is that there are k? graph attributes where k is the number of nodes. In particular, we have in
our application 100 possible connections for each network and thus, 100 potential single target

models to interpret. However, since we did not observe alignments during the model fit, the

o7



5. European air transportation network during the Covid-19 pandemic

single target models can be related directly to the countries in our specific case. In the following,
we present one possibility to visualise the fitted and predicted single target functions, i.e. the
results on graph attribute level in the graph space.

We visualise the predictions of specific graph attributes compared to their observed values.
Usually, this has to be done by permuting the observed values such that they correspond to
the graph attributes of the aligned graphs used to fit the model. Contrary, we use solely the
raw passenger approximations from subsection 5.1 for the corresponding connections within and
between the ten countries since there happened no alignment during the model fit. In figure 5.4,
we present exemplarily the graph attributes corresponding to the connections between Germany
and Greece, Germany and Portugal, Portugal and Sweden, Portugal and the Netherlands as well
as the domestic passengers for Germany and Portugal. The title of each subplot denotes the
connection the plot corresponds to. The horizontal axis is shared over all plots and shows the time
while the tick labels are given by their month and year. The vertical axis displays the passengers.
The ticks are printed at the five quantiles 0,0.25,0.5,0.75, 1 of the fitted single target models
evaluated at the covariate values used for fitting. The points display the observed passengers, the
dark lines the fitted regression function and the purple line at the right of each subplot shows
the predicted regression function for the four excluded covariate vectors. Furthermore, analogous
visualisations can be found in the figures E.8, E.9 and E.10 in the appendix to present the variety
in the graph attributes.

We can observe in figure 5.4 three single target models related to connections with Germany
on the left and three related to connections with Portugal on the right. Overall, the fitted
passengers lie between zero for the connection between Portugal and Sweden and 73125 for
the domestic passengers in Germany. Consistently over all connections, the fitted functions
as well as the points show the clear decrease in passengers during February, March and April
2020. Similar although less consistent and fast, such a decrease can be observed starting around
October 2020. This clearly displays the first two Covid-19 waves in Europe. Aside from that,
the connections recover differently from the first wave. For the connections between Germany
and Greece, Germany and Portugal and Portugal and the Netherlands the tourist season in the
summer in 2020 is apparent and the passengers achieve roughly levels half as large as during the
same time in 2019. For Germany and Greece, the passengers recovered in June 2021 even to the
level before the Covid-19 pandemic. A similar trend can be seen for the domestic passengers in
Portugal. Contrary, the domestic passengers in Germany recovered very slowly although this
connection recorded the largest numbers of passengers compared to all six connections. Apart
from this, the fitted regression function seems reasonably smooth for e.g. the connection between
Germany and Portugal. Contrary, the fitted regression function for e.g. the domestic passengers
in Germany seems too wiggly.

We present more visualisations in the appendix E. We can visualise e.g. also the tensor product
smooths of the week together with the respective Covid-19 cases for each single target model.
This is exemplified in figure E.11 for the connections between Germany and Greece and within
Germany on the left as well as between Portugal and the Netherlands and within Portugal on
the right. Besides, examples for network summary statistics can be found in figure E.12 and
figure E.13.
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In summary, this section presented the application of the derived GAM framework. Although

the results are expandable, we could observe many important obstacles and challenges of the

model that could be discussed in future research.
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Figure 5.2.: Fitted networks of model (5.4) for selected covariate vectors. Nodes correspond to domestic passengers
of nodes in the graph space, which is equivalent in our model to domestic passengers of the countries
in the total space. Edges correspond to passengers between the nodes. The node and edge size is
scaled by the passengers, nodes are colored darker and edged brighter. The date in the title denotes
the date of the covariate vector corresponding to the plot.
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Figure 5.3.: Raw (left) and predicted (right) networks of model (5.4) for the four covariate vectors excluded for
the fit (test data). Nodes, edges and titles have the same meaning as in figure 5.2.
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Figure 5.4.: Raw passengers (points), fit (line, dark violet) and predictions (line, purple) of selected single target
models. The horizontal axis shows the time corresponding to the covariate vectors, is labeled by
months and years at the ticks and is shared over all plots. The vertical axis represents the number of
passengers and the ticks are printed at the five quantiles 0,0.25,0.5,0.75, 1 of the fitted regression
function evaluated at the covariate values used for fitting. The titles show the depicted graph attributes.
Since there are no permutations, the titles can refer directly to countries.
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6. Conclusion

The methodology oriented part of this master thesis discussed the possibility to extend the linear
regression framework of Calissano et al. (2022) to additive and generalized additive models. We
started for both extensions from additive and generalized additive models for one-dimensional
graph attributes and attained their corresponding objectives for optimisation in the graph space.
In a first part, the translation to additive models led to a PLS objective in the graph space.
Especially through the penalty term, the perspective on the parameters as graphs in the total as
well as the graph space was apparent and therewith, a debate on the meaning of the parameters
and thus, the functions arises naturally. In contrast, the extension to GAMs revealed difficulties
in the transfer of single target models to the graph space connected to the support of the
graph space as well as to differences between probabilistic and geometric regression approaches.
Although this derivation of GAMs was naive due to the intrinsic probabilistic nature of the
single target models and the absence of related probabilistic terminology in the graph space, the
current exemplary applications of the regression frameworks in section 5 and in Calissano et al.
(2022) demonstrate the necessity for such an extension. In summary, the highlights of this thesis
from the methodology oriented perspective are the subsections 3.1.1, 3.4, 4.1 and 4.2 as well as
appendix B.

The application oriented part applied the generalized additive regression framework to an
air transportation network of parts of the EU during the Covid-19 pandemic. Therefore, we
implemented single target REML based GAMs in the graphspace package utilizing the existing
mgcv package and parallised the graph matching as well as the computation of the GAMs. The
outcomes revealed potential challenges for the derived regression frameworks in future research.

Overall, merely first ideas of the regression functions could be obtained. Although the linear
regression framework minimizes a reasonable LS objective, the family of functions we minimize
over should be investigated more carefully. It is not straightforward to see how linear and, even
more, smooth functions in the total space behave in the graph space. However, a first idea is
developed in appendix B. Alternatively, an opportunity to investigate this further would be to
compare the developed frameworks theoretically and empirically to similar methods such as
Fréchet regression developed in Petersen & Miiller (2019). Moreover, a more solid foundation for
a framework related to GAMs would be obtained by a similar development of distributions on
the graph space as described in Feragen et al. (2019, page 149) for manifolds. One such approach
can be found e.g. in Paton et al. (2022). In this context, a translation of the framework to the
literature on exchangeability in network models as in e.g. Crane (2018); Lauritzen et al. (2019)
might be helpful to develop inferential results.

Apart from this, interpretation and evaluation of the results have to be investigated in more
depth. In particular, the interpretation of the model w.r.t. to the data object that is analysed

should be refined instead of an interpretation w.r.t. the graph in the total space. Therefore, the
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interpretation could be split into interpretations on graph attribute level, conserving the implied
functional assumptions of the single target models in the explanations, and interpretations on
unlabeled graph level utilizing e.g. network summary statistics, emphasizing the viewpoint of
the data object as whole unlabeled graph. Additionally, it is critical to investigate appropriate
real world examples and develop simulation studies.

Ultimately, statistics for the graph space has only taken its first steps. There exist plenty
other interesting future research questions for the regression frameworks alone. For example,
the regression framework could be extended to include time series models accounting more
sophisticated for networks observed over time. Moreover, the single target additive models
could be extended further to functional additive models as introduced in Miller & Yao (2008).
In contrast to this, the multi output model in the total space modeling each single target
model separately could be replaced by a more sophisticated multi output model accounting for
dependencies between the outputs as e.g. reviewed in Borchani et al. (2015). Alternatively, the
framework could be extended w.r.t. to the graph. This could be done utilizing results from e.g.
Crane (2018); Jain & Obermayer (2009); Jain (2016a) to allow for more complicated graphs
such as bipartite, mixed or hypergraph structures. Similarly, the extension to other permutation
invariances such as edge exchangeability are conceivable. Furthermore, the framework could be

extended to graph-on-graph regression.
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https://ec.europa.eu/eurostat/databrowser/view/AVIA_PAOC__custom_3212581/default/table?lang=en
https://github.com/rpy2/rpy2
https://github.com/rpy2/rpy2
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Appendix

This section summarizes additional results. In the first part, we give examples on labeled and
unlabeled graphs and their visualisations. Additionally, we examine a specific example of a FD
and an ordinary graph on the boundary of the FD that is not singular. Afterwards, we study the
functions allowed in the regression frameworks in the graph space. Then, we state three numeric
algorithms that can be used to approximate the parameters of the regression models with one
dimensional response that are described in subsection 3.3. Next, we give a more explicit idea of
the proof of the theorem for the AAC algorithm for additive models. Finally, more visualisations

for the outcomes of the application are presented.

A. lllustrating examples for the graph space

This subsection studies examples to understand the theoretical concepts from subsection 3.1. The
figures of this section, namely A.1, A.2 and A.3, are created with the open source browser-based
application from www.draw.io.

First, we describe a labeled graph with |V| = 3 and thus, |F| = 9. Additionally, let the
attribute space be A = R?. We assume the graph to be undirected and without loops. We
note that the graph could be mathematically represented as lower diagonal matrix (because of
the symmetric structure of the adjacency matrix in case of an undirected graph) with zeros on
the diagonal which can be helpful w.r.t. the implementation due to lower computational costs.
Nevertheless, we still work here with the whole adjacency matrix.

In figure A.1, we present an example of the adjacency

matrix of a labeled graph with three nodes on the right

0 1 3
and its visualisation on the left. The node labels of
the graph determine the order of the adjacency matrix s ! 0 2
(: 57242 : )
and are written inside the nodes in the visualisation. 3 2 0

For example, the labels determine that the undirected

edge between node 1 and node 2 has edge attribute one Figure A.1.: Visualisation and adjacency ma-
trix of an undirected, labeled
graph without loops. The entries
are depicted in row one, column two as well as in row in the nodes denote node labels
while the entries on the edges de-
note edge weights.

and the corresponding entries in the adjacency matrix

two, column one. In general, if the node labels are
no numbers but e.g. countries, each country could be
assigned additionally a number. We note that the positions of the nodes in the visualisation are
arbitrary, at least as long as the node labels do not carry additional spatial information that

we add to the plot as e.g. possible for the countries in section 5 in the total space. Then, a
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permutation matrix P € P that permutes node 2 and 3 is given by

(A1)

_ o O
oS = O

Furthermore, the flattened adjacency matrix of the graph is given by (0,1,3,1,0,2,3,2,0). The
permutation T € T of the flattened adjacency matrix that is equivalent to P interchanges the
entries of node 2 and 3 and elements directed to them which results in (0,3,1,3,0,2,1,2,0).

Next, the corresponding

? ; z g ; O M unlabeled graph is illus-
1 3 1 3

32 0 1 0 @20 G2 trated in figure A.2. On

@ @ , the left, the adjacency ma-

(=]

33
) |

Figure A.2.: Adjacency matrices and visualisations of an undirected, unlabeled ]
graph without loops. The entries in the nodes denote node labels studied above. The set of
while the entries on the edges denote edge weights.

MW o
—
= N
——

ol rod trices of the possible repre-
C—=0 G=0 |e=—e ~° "I T

sentatives of the unlabeled

1®3 1@3 graph are displayed. The

®724® ®724® one in the left upper cor-

ner is the labeled graph

[3%)

—_—
= P o
(IS = R S

(TR S =]
— = pa
[= T
——

these six adjacency matri-
ces could mathematically
represent the unlabeled graph. In the middle, visualisations of these six possible represen-
tatives of the unlabeled graph are shown. Each representative can be obtained from another
representative by permuting the nodes with a permutation matrix. For example, the second
graph in the first row can be obtained from the first graph in the first row with the permutation
matrix given in A.1. The unlabeled graph could be also visualised by removing the node labels
which can be seen on the right in A.2. The left, middle and right part of figure A.2 correspond
all to different representations of the unlabeled graph with three nodes and the depicted edge
structure.
In a next step, we illustrate the metric in the graph space
, ?\1 given in (3.1). Therefore, we depict two unlabeled graphs with
AN 3 \/. three nodes in figure A.3. The positions of the nodes are different
‘—2—' ‘/5 to emphasize that they are arbitrary in the visualisations. We

assume that we use the Euclidean metric in the total space, such

013 013 that larger differences between the entries are more penalized.
1 0 2 1 0 3
2 2 g : 3 0 Then, the entries are matched by size in this example as this

would be e.g. also the case for graphs with node attributes but

Figure A.3.: Two unlabeled graph  without edge attributes. Therefore, the adjacency matrices of the
visualisations with

their optimally optimally aligned representatives of the labeled graphs are the
aligtn?d adjacency  oneg displayed in the bottom row of figure A.3. Finally, the metric
matrices.

de between two unlabeled graphs is computed as the sum of the

pairwise distances of the entries of their aligned adjacency matrices.

71



Appendix

Ordinary graphs and fundamental domains

First, we describe all ordinary graphs with two nodes, with node attributes but without edge
attributes and their respective FDs. Although we assume that the graphs have no edge attributes,
we represent them in the space A = R%. Since we have only two nodes, 7 consists of two
permutations. The non-identity permutation 7' € 7T\{Id} acts by switching the two nodes.
Furthermore, as defined in subsection 3.1.1, an ordinary graph Y = (Y1,Y5,Y3,Y;) € R*is a
graph with trivial stabilizer, i.e. {T'€ T|Y =TY} = {Id}. Thus, all graphs with different node
attributes Y; # Yy are ordinary graphs since Y = (Y1,Ys,Ys,Yy) # (Y4, Y3, Y2, Y1) =TY, T €
T\{Id}, for example Y = (Y1,Y2,Y¥3,Ys) = (3,0,0,1). Contrary, all graphs with equal node
attributes Y7 = Y} are singular graphs since Y = (¥1,0,0,Y7) =TY, T € T\{Id}. Besides this,
the FD of an ordinary graph Y € R* with Y} > Y} is given by

Dy ={Z e RYZ, > Z4}.

This can be shown using the definition for FDs in (3.3) and the result from Jain (2016a,
proposition 4.18.7). To be precise, after the latter we obtain for general FDs:

Dy ={ZcAY"Z>Y'TZ forall TeT} (A.2)

and thus, in our example:

Y'Z=YVZ\+YaZy > V24 +YaZy =Y ' TZ
= Z1(Y1 —Ya) > Zy(Y1 - Yy)
<~ Z1>7Zy for Y| >Y,

Finally, the boundary and the interior are given by
ODy ={Z e RYZ, = Z;}, D ={Z cRYZ, > Z,}.

We note that the FDs become more complicated if we add edge attributes.
Next, we include edge attributes and examine an example for ordinary graphs that is on the
boundary of FDs. This means, we assume that A = R* and give an example of two labeled

graphs Y1,Ys € A that are ordinary graphs but Y; € 0Dy, (and analogously Y € 0Dy, ). Let
Vi =(1,1,-1,-1), Ys=(1,-1,1,—1).

We note that Y7 and Y, are ordinary graphs since the only permutation except the identity

permutation results in
TY: = (—-1,-1,1,1), TY,=(-1,1,—-1,1)

and thus, Y7 # TY7 and Y3 # TYs and hence, Y7 and Y5 have both a trivial stabilizer. Let now

72



Appendix

di be the squared Euclidean norm. Then,
4 (N1, Y2) = 2 = d3(¥1, TY2).

Thus, Yo € 0Dy, (and Y7 € 0Dy,) although Y7 and Y3 are ordinary graphs. As was shown in
Kolaczyk et al. (2020, proposition 4.2), this can e.g. not happen if the graph attribute space is

restricted to Rx>o.

B. Informal analysis of the regression function

This section discusses the admissible regression functions f of the linear, additive and generalized
additive regression models in the graph space described in section 3. Some of the following
thoughts are the result of a brief talk with Lisa Steyer on the type of admissible regression
functions.

As in the last section, we restrict first to the example of networks with two nodes, node
attributes and without edge attributes, i.e. we set the edge attributes to zero. In particular, we
assume A = R* & = A/T and J = 4,7 = {1,2,3,4}. First, we consider the linear regression
model in the graph space corresponding to model (3.8) in the total space, restricted to an intercept
and univariate covariate. This means, we study the functions f : R — &,z — 7o h(z) with
h:R— Az (1,2)"3, 2 € R, B€R?x R and h(z) = (ha(2))acs, ha : R = Rz (1,2) T B,
Ba = (Bo.a»B1.a) - To be more precise, we assume for a sample (z;, [y;]) ER x &,i=1,...,n in

matrix notation in the total space

10 0 0 wia I = E1,1 ... €14
. . | [Poa Poz Bos Poa n
T B Bz Bz Pia

Yn,1 0 0 Yn 4 1 T, €n,l --- End

where all terms are described in detail in subsection 3.2. For this example, we are interested in
B = (51, B2, B3, B4). Due to the restriction to graphs without edge attributes, the parameters fo
and B3, which correspond to the edge attributes, are set to zero.

Next, we set Bp1 = 3,804 = 1 and 11 = 1,81,4 = 2. Then, we obtain e.g. the following

predictions in the total space:

z=0: h(0)=(3,0,0,1)
z=1: h(1)=(4,0,0,3)
r=2: h(2)=(50,05) (B.3)
x=3: h(3)=(6,0,0,7)
r=4: h(4)=(7,0,0,9)

If we view the regression functions h evaluated at the covariate values as flattened adjacency
matrices in the total space with node 1 and node 2, we see that for each unit increase in the
covariate, node 1 increases by one and node 2 by two. This can be analogously derived w.r.t. the

parameters as follows: As in subsection 4.2 and in contrast to the single target model perspective,
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we treat the parameters as graphs. To denote this change in perspective, we use again the symbol

tilde over the parameters, i.e. we are interested in

()

with 8 = 3. Then, our assumptions on the parameters lead to Gy = (3,0,0,1) and 5; = (1,0,0,2).
Therefore, 5y gives the intercept (graph) and 1 the covariate effects of the model on the graph
attributes in the total space.

So far, this was clear due to the separate single target linear regression functions h,(x),a € J
on the graph attributes in the total space. Next, we study how this linearity translates into
the graph space. The function f in the graph space is defined as projection of the function
h in the total space. Although we mentioned in subsection 4.2 to treat the parameters By, 51
as unlabeled graphs [Bg], [1], this is not straightforward beyond the metric formulation in the
penalty since addition in the graph space is not well defined and thus, for example [3o] + [51] is
not well defined. However, we can evaluate the function f e.g. at different covariate values to
obtain unlabeled graphs at these covariate values. Then, we can analyse the change between two
unlabeled graphs which is defined by the corresponding change in the total space. We could do
this analogously as in (B.3) by

z=0: f(0)={(3,0,0,1),(1,0,0,3)}
zr=1: f(1)=1{(4,0,0,3),(3,0,0,4)}
r=2: f(2)={(5,0,0,5),(50,0,5)} (B.4)
r=3: f(3)={(6,0,0,7),(7,0,0,6)}
r=4: f(4)=1{(7,0,0,9),(9,0,0,7)}.

Since unlabeled graphs are mathematically represented as sets of (flattened) adjacency matrices,
this is rather difficult to interpret. Instead, we could look at the visualisations of the unlabeled
graphs obtained from the regression function evaluated at x = 0, 1,2, 3,4. This is done in figure
B.4. Therein, the plots are obtained analogously as in figure A.2 from the sets of flattened
adjacency matrices in (B.4) which define the relative scaling for the size of the nodes. The
network in the middle is encompassed by a red rectangle and we describe in the following the
reason for this.

Figure B.4 shows the increase of the nodes arising due to the linear increase of the single
target models in the covariates. One could be tempted to say that the upper node in the figure
increases linearly by one unit while the lower node increases by two with each unit increase in
the covariate. However, the positions of the nodes are arbitrary. For example, figure B.5 depicts
the same graphs as in figure B.4 although the positions of the nodes of the graphs corresponding
to x = 3 and & = 4 are interchanged. This emphasizes the important fact that in the graph space
exist solely the information inherent in the graph attributes. Although this does not necessarily
correspond e.g. to labels or spatial information on the nodes, the unlabeled graph contains

relative information of the nodes w.r.t. each other which is constant over a set of adjacency
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#=0 %=1 ¥=2 %=3 w=4

Figure B.4.: Linear regression function in the graph space evaluated at different covariate values for a graph with
two nodes, node attributes and without edge attributes. The subtitles of the graphs denote the
corresponding covariate values. The size of the node is scaled by its attribute. The red rectangle
encompasses the singular graph.

matrices. For example, it is valid to say that the covariate effect on the larger node in figure B.4
and analogously in figure B.5 equals one for x < 2 and two for > 2. Contrary, the covariate
effect on the smaller node equals two for x < 2 and one for > 2. In this example, the assignment
of such ’artificial labels’ (ALs) like "larger’ or ’smaller’ on the unlabeled nodes in the graph space
that define them uniquely w.r.t. all other nodes is easy since we can do this solely by the size of
the nodes (because we set edge attributes and thus, permutations order solely by size). These
ALs should define unlabeled nodes uniquely, invariant of the current alignment. Then, these
ALs condense the FDs of one arbitrary ordinary graph and all its possible permutations into
one space of the size of a FD that is never left by the regression function f. Inside of this space
related to the ALs, the type of linearity in the graph attributes can change as we describe next.
In summary, the ALs provide us the possibility to identify uniquely the graph attributes in the

graph space. However, they are difficult to derive in general.

Figure B.5.: Linear regression function in the graph space evaluated at different covariate values for a graph with
two nodes, node attributes and without edge attributes. The subtitles of the graphs denote the
corresponding covariate value. The size of the node is scaled by its attribute. The red rectangle
encompasses the singular graph. The nodes of the graphs corresponding to = 3 and = = 4 are
switched compared to figure B.4.

A bit more straightforward than the derivation of such ALs is the study of the type of change
of the regression function f inside of the space of the ALs and thus, we start with this. First,
we note that the covariate effects on graph attributes in the total space are fixed (fixed over
the whole regression function) and linear due to the parameters B, here 3y and B;. However,
the graph attributes in the graph space to which these fixed covariate effects correspond to can

change. In fact, we can describe precisely when the fixed covariate effects switch between graph
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attributes. This happens exactly when the regression function A in the total space crosses the
boundary of the FD for itself a small step before. To be precise, as we derived in the last section,

the FD of an ordinary graph y € A with y; > y4 is given by
Dy = {Z € .A|Zl > 2’4}.

which is therefore also the FD of Dy, for < 2 in our example. Let us fix now the FD at Dp,(q).
For x = 2, we are on the boundary of the FD since h(2) = (5,0,0,5) is a singular graph, i.e.
h(2) € ODy1). When we increase z further, we are inside the FD Dy, e.g. h(3) € Dry)-
This is visualised by projecting it into a two dimensional coordinate system in the left plot in
figure B.6, which is possible since we set the edge attributes to zero. Therein, the horizontal
axis shows the attribute of node 1 and the vertical axis the attribute of node 2. The dashed
line is the boundary of the FD and the purple line and rose points are the regression function
h as well as h evaluated at z = —1,0,1, 2, 3,4, all projected into two dimensions. We observe
that h(2) € dDy(;) and that h crosses the boundary of the FD at x = 2. The linearity in the
labeled graph stays the same after crossing the boundary, i.e. the covariate effects on the graph
attributes of node 1 and node 2 equal still one and two, respectively. This can be observed
analogously in the left plot of figure B.7. Here, the graph attributes of node 1 and 2 are plotted
against x and the dashed line marks the crossing of the boundary of the FD in the total space.

The linearity in both regression functions stays constant.

Total space Graph space

Node attribute 2
Small node attribute
| n

Node attribute 1 Large node attribute

Figure B.6.: Regression functions of networks in total (left) and graph (right) space projected into two dimensions.
Points denote the function evaluated at the covariate values x = —1,0, 1,2, 3,4, from left to right.
The dashed line denotes the boundaries of FDs in the total space.

In contrast to this, we can observe what happens to the regression function f in the graph
space in the plots on the right in figure B.6 and B.7. In figure B.7, the purple function is the
regression function for the large node and the rose function the one for the small node. As in the

left plot, the dashed grey line marks the crossing of the boundary of the FD of the regression
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Total space Graph space

Node attribute 1 and 2
Small and large node

g
I\ o o

Figure B.7.: Regression functions of graph attributes in total and graph space. The left plot depicts node attribute
1 (purple, dark) and node attribute 2 (rose, bright) against x. The right plot shows the large node
(purple, dark) and the small node (rose, bright) against x. Points denote the function evaluated at
the covariate values x = —1,0, 1, 2, 3,4, from left to right. The dashed line marks the crossing of the
boundary of the FD of the regression function h in the total space.

function h in the total space. After the crossing, the covariate effects on the unlabeled nodes
interchange. In particular, the covariate effects on the graph attributes in the graph space are
piecewise or locally linear where the pieces (or regions) depend on the regression function h in
the total space and its crossing of boundaries of FDs. After the crossing, the covariate effects
are not allowed to be arbitrary, but rather are interchanged between the graph attributes. This
is visualised in the right plot of figure B.6. Therein, the attribute of the small node is plotted
against the attribute of the large node. Due to the ALs ’small’ and ’large’, we constructed a
space of the size of the FDs in the total space, that is not left by the regression function f,
namely the right, white triangle and its extension outside the plot. However, the covariate effects
on the graph attributes of the small and large node interchange at the dashed grey line. The left
upper, rose triangle is obviously never reached by the function f by definition of small and large.

In summary, in case of the linear regression model, we allow for piecewise linear regression
functions on the graph attributes in the graph space. The pieces depend on the crossing of
boundaries of FDs of the regression function h in the total space. The covariate effects could
be seen e.g. as fixed while interchanging the graph attributes in the graph space at crossings.
Besides, we note that this result is independent of the knowledge of ALs for the graph attributes
in the graph space and could be used thoughtfully e.g. on visualisations of unlabeled graphs
along the regression function f. Furthermore, we emphasize that it allows us to utilize the
interpretability of the parameters and single target models from the total space also in the graph
space in an exactly defined way, as already briefly noted at the end of subsection 4.1 for the
interpretation on graph attribute level in the graph space. This translates the interpretability
obtained by using regression modeling to the graph space. Moreover, if we use at some point

more sophisticated multi output models instead of the separate single target modeling, the
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considerations can be potentially adapted straightforwardly.

These concepts on the form of the regression function f could be extended in various directions.
First, they also hold for the additive models in the graph space derived in subsection 3.4.
Therefore, instead of linear functions on the graph attributes in the total space, we allow for
smooth functions. Still, if the corresponding function h crosses a FD in the total space, the
smooth covariate effects on the graph attributes in the graph space are interchanged. We note
again, that the smooth effects are solely interchanged while being fixed for the whole function A
in the total space.

Second, we could study different types of networks. Therefore, we need to define their FDs.
Afterwards, to apply the concepts discussed above, we have to analyse when the regression
function h crosses a boundary of the FD. As a first example, we could include edge attributes
and more nodes. Then, we use the result from Jain (2016a, proposition 4.18.7) as in the last
subsection to define FDs. Thus, the general FD of an ordinary graph Y € A = R’ can be

rewritten from (3.3) as
Dy ={ZcAY'Z>Y'TZ forall TeT}.

Next, we want to derive a method to obtain the pieces at which we interchange the covariate
effects. Therefore, we want to derive when the regression function h(z) evaluated at x is on the
boundary of the FD of itself a small step before, i.e. h(x) € Dj(y—¢), € > 0. This is the case if for
any permutation 7' € T\{Id}

lim h(z — ) hz) = lim h(z — €) Th(zx)

€E—

J
= 151% Z ho(x — €)(ha(z) — tohe(x)) =0
a=1

J
= Z ha(2)(he(x) — toha(z)) =0
a=1

where t, denotes the elementwise permutation of graph attribute a corresponding to T and the

second equality follows from the continuity of hy,a € J. Thus, we are interested in the functions

J
(r(z) = Z ha(z)(ha(z) = taha(z)), T € T\{Id}

a=1
and in particular, their crossings with zero. This seems difficult to grasp at first due to the large
number of possible permutations, namely k! where k& denotes the number of nodes. However,
we could start with our regression function h at a particular graph, e.g. at the intercept h(0).
We assume that h(0) is an ordinary graph, otherwise we use h(0 + €),e > 0. Then, if we assume
to cross the FD at a surface of the boundary instead of a corner (the FD is a covex polyhedral
cone, cp. e.g. Jain (2016a, proposition 4.18.1)) which means that we allow just for pairwise
permutations, we obtain for h(0) a starting point with Zle(k: — 1) possible permutations to
investigate. For example for £ = 10 as in section 5, we obtain 45 possibility permutations under

the additional assumption. Then, we could e.g. plot each {7 as a function of x for each of the
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45 considered permutations T'. If one of the functions crosses zero, we know that we crossed a
boundary of the FD and thus, we interchanged the covariate effects for the graph attributes in the
graph space. We even know that the covariate effects of the graph attributes that are permuted in
the total space are interchanged in the graph space. However, we neglected the corners of the FD
to obtain a lower number of possible permutations. Including them would mean that we account
also for non pairwise permutations of the nodes. In summary, the crossings of the functions (r
with zero provide us the covariate values, at which the covariate effects from the graph attributes
in the total space interchange for the graph attributes in the graph space. There exist presumably
more elegant possibilities than the computation of all {7, T € T\{Id}. For example, one could in
practice check if h(z — ¢),c € R, is still optimally aligned w.r.t. h(z). If this is not the case, the
covariate effects on the graph attributes in the graph space interchanged between z — ¢ and .
This could be done for different regions of the covariates to obtain approximations of the pieces.

Similar to the example above, we could restrict the graph attributes also to the positive real
line, i.e. A= Réo. Then, we can derive the function {7 using the result on the form of the FDs

in Kolaczyk et al. (2020, appendix B) again as:

J
(r(x) =Y ha(®)(ha(x) — taha(x)), T € T\{Id}.
a=1
In general, this could be also helpful to extend the concepts to the GAMs in the graph space
derived in 3.4 after defining appropriate FDs in graph spaces corresponding to total spaces where
A#RY.

Third, compared to the Fréchet mean in the graph space as derived e.g. in Calissano et al.
(2020), the considerations reveal conceptual differences between Fréchet mean and regression
function in the graph space. The Fréchet mean is defined as the network for which one fixed
labeled representative minimizes the distance to all optimally aligned networks in its FD in the
total space. Therefore, the fixed representative of the Fréchet mean lies in its specific FD in the
total space. Contrary, for the regression function f, if we fix one representative h, this function
is allowed to lie in multiple FDs. This controversy is also related to the distinction between the
two definitions for geodesics given in subsection 3.1. The first definition projects lines, planes
and hyperplanes, which could potentially cross boundaries of FDs in the total space, into the
graph space. Contrary, in the second definition a geodesic between two unlabeled graphs is the
projection of the shortest path between their two optimally aligned representatives. Therefore,
the shortest path stays in the FD of the two graphs (assuming for simplicity that they are
ordinary graphs, otherwise choose an ordinary graph whose boundary of the FD consists also of
one or both of the graphs). Then, the second definition could be related to regression functions
f in one of the two following ways: i) f(x;) and y; lie in a common FD for alli =1,...,n or ii)
f is a piecewise geodesic between the crossings of h in the total space. Apart from this, i) can be
related to interpretations on graph attribute level in the total space as described at the end of
subsection 4.1 and used in Calissano et al. (2022) while ii) corresponds to interpretations in the
graph space, utilizing the underlying regression function h in the total space.

Finally, the concepts help to explain at least intuitively that the results of the application
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in section 5 indicate, that a permutation of the observed graphs in the AAC algorithms might
be less probable for more flexible regression functions. Therefore, we change the perspective
by adding observations to the described concepts, thinking about permuting these observations
(instead of the regression function) and consider a flexible regression model that fits the data
without error. Then, the representative h of the regression function f evaluated at the covariates
cur

of the data equals the representatives y

of the observed unlabeled graphs [y;] in the current
iteration. Therefore, representatives of observed graphs would be just permuted if we allow for
permutations with constant distance and if the representatives are singular graphs. The latter
happens with probability zero, at least if we observe complete graphs. However, this is less clear
if we obtain also some error in the fit of the flexible regression function to the data. Then, it
seems natural that the representatives y{*" lie in the FDs of the flexible regression function h
with a higher probability than in the FDs of the less flexible regression functions since the flexible
single target functions are closer to the graph attributes of the representatives. Nevertheless,
this might not be the case in general, especially e.g. around zero in R” since the FDs are convex
polyhedral cones as described e.g. in Jain (2016a); Kolaczyk et al. (2020) and thus, this could be
investigated further.

In summary, these considerations try to describe explicitly the meaning of the projection of a
linear or smooth regression function h into the graph space as well as the form of the obtained
projected function f. We noticed that the parameters and thus, the covariate effects, are fixed
in the total space. These fixed covariate effects are interchanged on the graph attributes in
the graph space when h(zr) crosses a boundary of its FD Dy, _.. In particular, the covariate
effects corresponding to the labeled nodes, which are permuted when crossing the boundary
of the FD, are interchanged. This means that linear functions for the graph attributes in the
total space imply piecewise linear functions for the graph attributes in the graph space, and
analogously for smooth functions. The pieces depend on the the regression function h and could
be e.g. computed analysing functions such as (p, T € T\{Id} or using more practical approaches.
Furthermore, e.g. the linearity is fixed in the total space and not arbitrary on the pieces, but
instead the fixed linearity from the total space is interchanged between pieces.

Finally, one could question further if such piecewise functions are reasonable as regression
functions in the graph space. For example, would it be more appropriate to assume linearity in
the covariate effects for the graph attributes in the graph space and could this be achieved? Or
would a model with piecewise covariate effects for the graph attributes in the graph space, in
which the covariate effects are allowed to differ arbitrarily, be more reasonable?

Before the discussion on the regression function f, we started with the presentation of ALs
in our simplified example with two nodes. In the future, the aim would be to derive ALs in
a general setting. We can e.g. derive pointwise, pairwise ALs for the regression function f
with the help of the general form of FDs in (A.2). We exemplify this idea for the intercept
h(0) = (3,1,2,1) and its permutation Th(0) = (1,2,1,3) at = 0. Then, we obtain the AL for
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arbitrary y = (y1, Y2,Ys3, 94) € Aas

J
Z ya(ha(o) - taha(o)) = y1<3 - 1) + y2(1 - 2) + y3(2 - 1) + y4(1 - 3)
a=1
=2y1 —y2 +y3 — 2ya,

i.e. the AL would be that one node has a two times larger node attribute and a smaller edge
attribute compared to the other node at x = 0, considering undirected graphs. This approach to
ALs could be developed further in future research. Alternatively, we believed that compositional
data analysis, some network summary statistics or line graphs could be helpful to construct ALs.

However, the derivation of ALs was unfortunately out of the scope of this thesis.

C. Numeric algorithms for single target regression models

This section reviews briefly some numeric algorithms to approximate the parameters of the
regression models of subsection 3.3. This is done solely for completeness from Fahrmeir et al.

(2013) and can be found in related literature more detailed.

(Penalized) iterative (re-)weighted least squares

For GLMs, we can maximize the log-likelihood function (3.14) numerically with the iterative
(re-)weighted least squares (IRLS) algorithm based on the Newton-Raphson method or similarly,
the Fisher scoring algorithm. We describe the latter and denote in the following f]gt) = xiﬁ(t).
Then, following Fahrmeir et al. (2013, chp. 5.8.2), in each iteration the IRLS estimator is

B(t+1) — (XTW(t)X)_lXTW(t)g(t)

where §® = (§1(0), ..., jn(BO)T with (30) = 7 + (B HP) D (s — 4u(AD)). Moreover,
the weight matrix W = (u?%t), . ,u?ff)) is defined with u?z(t) = (h'(ﬁft)))%,,z"#)(ﬁ where b”(6;) is
the second derivative of b(6;) of the EF of y; as well as w; and ¢ are the respective parameters of
the EF of y;. Furthermore, h’ is the derivative of the inverse link function h of the model (3.13).

In the context of GLMMs as in (3.15), we can maximize the penalized log-likelihood (3.16) as
follows: let

X=(ZU) and S= 00 .
0 G!

Based on a Fisher scoring algorithm, we obtain a penalized IRLS (PIRLS) algorithm with the

following estimators in each iteration:

@(tJrl)
(g;(tm) = (XTWOX 4+ 9 xTwhgh

where §, W®) are defined as in the IRLS estimator for GLMs with 7; = zzT v+ u;-rb.
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Restricted maximum likelihood

Next, we describe the REML method from Fahrmeir et al. (2013, chp. 7.6) to estimate 6 where 6
are the unknown coefficients in the covariance matrix G = G(#) for GLMMs (3.15). We denote

fori=1,...,n

T T ,T ey Oh(n;)
Bl =(y ,b"), D—dlag<..., n ,)

¥ = diag(...,0%,...) with 02 = o2(n;) = Var(y;|z;).

i
Then, we obtain for the working weights W® and the working observations §® (without iteration
superscripts)
W=D 'D
j=XB+D 'y—p) < y—p=D(G-Xp).

Moreover, we can approximate for a GLMM the log-likelihood of £ given 6 by a Laplace

approximation as

S =Sy —p)

= (§— XB) "W (G — XP).

(519

Q

For fixed 6, the marginal distribution of the working observations is
91X, 7 ~ N(XB, W)

and we obtain with V(0) = UG(6)UT 4+ W the so called approximate restricted log-likelihood

L) - 2 v @) - 24)

n(6) = — 5108 [V(6)] — 3 log(12T V()" Z]) |

which can be also maximized numerically using a Newton-Raphson or Fisher scoring method.
The corresponding restricted log likelihood in case of LMMs leads, when maximized, to the
REML estimator for the covariance matrix parameters 6.

Finally, 8 and 6 can be numerically approximated by iterative computation of 5 using a PIRLS
step given the current estimate of # and one iteration of a Newton-Raphson or Fisher scoring
algorithm to compute 6 given the current estimate of 3, until convergence. The algorithm is
similarly summarized in Fahrmeir et al. (2013, chp. 7.6). Due to the possibility of a mixed model
formulation of GAMs, this can be used to estimate the parameters including the smoothing
coefficients in GAMs.

D. Proof idea for the AAC algorithm for additive models

First, we prove that algorithm 2 stops in finite time. The proof is analogous to the proof of

convergence in finite time in Calissano et al. (2022). Moreover, we note that the idea and
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structure of the proof is also used e.g. in Calissano et al. (2020) to prove a similar result for a
principal component analysis in the graph space.
We denote by y§*" the current representative of [y;] and by A“"" the current estimate of the

cur—1 ,i=1,...,n in the current iteration of

additive model obtained from the regression on y;
the AAC algorithm 2. Then, the algorithm consists of two parts. First, the additive model is
estimated with the current representatives. If there was at least one representative that was

permuted from cur — 1 to cur, we have

PL Scur Z d.A cur hcur _|_ z Z )\cur bcur T S.peur

J%7,a
a= 1] 1
< id (ycur heur— 1 +ZZ>\CU7" 1 bcur 1)T8]b§1g 1
i=1 a=1j=1

since otherwise the additive model of iteration cur — 1 would be estimated again. Thus, the
estimation of the current additive model does not increase the current PLSG". Second, the
algorithm aligns all representatives to h““" in each iteration. This lowers PLSG" if there is at

least one representative k that was realigned with permutation 7} since then
&y (Tiye, h (X3)) < di(yp, B (X))

while the penalty term stays constant since it is independent of the permutation. Thus, this step
also does not increase PLSG".

Furthermore, if the prediction error stays the same in two iterations, the algorithm stops. Since
the number of permutations for graphs with a bounded number of nodes is finite, we observe
finitely many observations and we saw that each alignment is observed at most once and thus,
the algorithm stops in finite time.

In a second step, we want to prove that the algorithm converges almost surely to a local
minimum of (3.28). This could be done by adapting the proof of Calissano et al. (2022) to (3.28).
However, we will follow only partly Calissano et al. (2020) and utilize for the rest of the proof the
ideas developed for FDs. This leads to the same result but allows for an exact characterization
w.r.t. FDs of the graphs that have probability zero in the proof of Calissano et al. (2022).

To prove the result, we have to show that there exists almost surely a € > 0 such that for

18 =Bl < e

J p
> dy ([l f(X)) + DD Ajab)aSibja

i=1 a=1j=1
n N J p o ~
< D (il F(X)) + D2 > Njab) oSibja
i=1 a=1j=1

The idea is to show that even if we change the parameters of the additive model in A by a small
amount, the representatives of the observations are still optimally aligned w.r.t. the changed
regression function with probability one. Then, since the additive model in A of the unchanged

parameters minimizes (3.26), the proof follows.
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First, let us define

= i A4 (Tiyi, h(X;)) — d% (i, h(X:))} > 0. D.5
v TeT,rfél{I},...,n}{ A(Tiyi, h(X5)) — da(yi, h(X5))} (D.5)

We will prove later, that we can define v almost surely.
Next, we note that the function 8 — h(z) is continuous for fixed x € R". Then, we can find a
¢ > 0 such that for || — 3| < e and for all i = 1,...,7n:

d4(h(X:), h(Xy)) <

NS

Now we assume 3 € B(f3, €) where B(f,€) is a ball in A with radius e around f.
We note that by the definition of v we have for all T € 7T and all i =1,...,n:

d% (yi, h( X)) < d%(Tiys, h(X;)) — v

Then, we obtain for all i =1,...,n:
J p ~ ~
dit(yu h(Xz)) + Z Z )‘j ab;'rasjbj a
a=1j=1

< (X, X)) + D0 Njab o Sibja + d4(yi h(X))
a=1j=1

< (X, h(X0) + D0 Y NjablaSibja + d4(yis Th(X:)) — v
a=1j=1

jaby.aSibja + A (h(X), (X)) + d4(yi, Th(X;))

(VAN
|
NS
+
M~
NE
>

J p
< (i TRX)) + DY XjabjaSibja-
a=1j=1
This shows that for a small enough change of the parameters 3 of the additive model in A, the

representatives of [y1],. .., [yn] are still optimally aligned almost surely. Since h corresponding to

the unchanged parameters minimizes

n J p
PLS4 =Y d%(yi, (X)) + DD Njab) oSibja
i=1 a=1j=1
the algorithm converges to a local minimum of (3.28).
To complete the proof, we have to show that we can define v almost surely as in (D.5), i.e.
v > 0 almost surely. This means, we have to prove that for given representatives {y1,...,yn}

from {[y1],...,[yn]} and a regression function f = 7 o h obtained from algorithm 2 for all T € T
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and 7 =1,...,n, it holds almost surely
A (yis (X)) # d24(Tyi, (X))
This is equivalent to prove that we have with probability zero
& (yi, M(X3)) = d%(Tyi, (X))

since all observations in the last iteration of algorithm 2 are optimally aligned w.r.t. to h. Thus,

we want to show that the probability of the set

& (yi, M(Xi)) = d%y(Tyi, h( X))
X7 =1 (z1,[n1])s- -y (@0, [yn]) ER" x & for at least one representative
yi, t=1,...,n, and T €T

w.r.t. to the probability measure Px x Py is zero.

We would aim to do this similarly as in Calissano et al. (2022). In particular, this could
be potentially done considering the three cases described in subsection 3.4. Therefore, the
parameters in (3.29) and their probability to lie on the boundary of a FD could be studied in
more depth, developing reasonable assumptions e.g. on the smoothing parameters. This would
lead probably to a similar result as in Calissano et al. (2022, lemma 2). However, this was out of

the scope of this thesis.

E. Additional visualisations of application outcomes

This section presents further visualisations of the outcomes of the application from section 5. We
alm to present ideas to analyse the GAMs in the graph space. First, more regression functions
from the single target models can be found in the figures E.8, E.9 and E.10. Afterwards, we
display the tensor product smooths for time and Covid-19 cases in figure E.11. So far, the figures
correspond to interpretations on graph attribute level. Alternatively, there is also the possibility
to evaluate the results using network summary statistics. Therefore, we compute the eigenvector
centrality of the nodes of the fitted and predicted networks of the combined models (5.4) which
are shown in figure E.12. Intuitively, the eigenvector centrality measures the rank of a node by
measuring the importance of the neighbors of the node. The measure was introduced in Bonacich
(1987) and is also described e.g. in Kolaczyk & Cséardi (2020, chp. 4.2.2). This could be an
interesting measure for the graph space since it potentially relates also to the permutation of
two nodes. Similarly, we plot the degree of the nodes of the fitted and predicted networks of the
model in figure E.13. A definition for the degree of nodes can be found in Kolaczyk & Csardi
(2020, chp. 4.2.1).
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Figure E.8.: Raw passengers (points), fit (line, dark violet) and predictions (line, purple) of the single target models.
The horizontal axis shows the time corresponding to the covariate vectors, is labeled by months and
years at the ticks and is shared over all plots. The vertical axis represents the number of passengers
and the ticks are printed at the five quantiles 0,0.25,0.5,0.75,1 of the fitted regression function
evaluated at the covariate values used for fitting. The titles show the depicted graph attributes. Since
there are no permutations, the titles can refer directly to countries.
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Figure E.9.: Raw passengers (points), fit (line, dark violet) and predictions (line, purple) of the single target
models. The horizontal axis shows the time corresponding to the covariate vectors, is labeled by
months and years at the ticks and is shared over all plots. The vertical axis represents the number of
passengers and the ticks are printed at the five quantiles 0,0.25,0.5,0.75,1 of the fitted regression
function evaluated at the covariate values used for fitting. The tick for the 0.25 quantile of the plot
’Greece and Spain’ was removed due to overlap. The titles show the depicted graph attributes. Since
there are no permutations, the titles can refer directly to countries.
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Figure E.10.: Raw passengers (points), fit (line, dark violet) and predictions (line, purple) of the single target
models. The horizontal axis shows the time corresponding to the covariate vectors, is labeled by
months and years at the ticks and is shared over all plots. The vertical axis represents the number
of passengers and the ticks are printed at the five quantiles 0,0.25,0.5,0.75, 1 of the fitted regression
function evaluated at the covariate values used for fitting. The tick for the 0.25 quantile of the plot
"Domestic Netherlands’ was removed due to overlap. The titles show the depicted graph attributes.
Since there are no permutations, the titles can refer directly to countries.
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Germany and Greece Portugal and Netherlands

Domestic Germany Domestic Portugal

Figure E.11.: Tensor product smooths of weeks together with Covid-19 cases obtained from the vis.gam function
from the mgcv package. The titles show the connections the smooth corresponds to. The parameter
‘too.far’ is set to 0.07 for the plots on the left and to 0.15 for the plots on the right to remove the
predictions for covariates that are too far from the ones observed. Furthermore, the passenger limit
for the plots on the left is set to 120000.
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Figure E.12.: Eigenvector centrality of the nodes of the fitted and predicted networks plotted against time. All
plots share the same vertical and horizontal axes. The dark violet line corresponds to the fitted
regression function, the purple line to the predicted regression function.
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Figure E.13.: Degree of the nodes of the fitted and predicted networks plotted against time. All plots share the
same vertical and horizontal axes. The dark violet line corresponds to the fitted regression function,
the purple line to the predicted regression function.
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