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Chapter 1

Introduction

We start this dissertation with the abstracts in English and German and a list of the affiliated
articles. Then we provide a pictorial introduction to quantum gravity via the dice of physics and
discuss the history and context of (generalized) quantum gauge theories, with a particular focus
on quantum gravity. This includes a discussion on different approaches to quantum gravity as
well as (generalized) Slavnov–Taylor identities. Finally, we provide a list with all original results
of this dissertation.

1.1 Abstract

1.1.1 English version

We study the perturbative quantization of gauge theories and gravity. Our investigations start
with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange den-
sities of (effective) Quantum General Relativity coupled to the Standard Model. In addition,
we study the corresponding BRST double complex of diffeomorphisms and gauge transforma-
tions. Next we apply Connes–Kreimer renormalization theory to the perturbative Feynman
graph expansion: In this framework, subdivergences are organized via the coproduct of a Hopf
algebra and the renormalization operation is described as an algebraic Birkhoff decomposition.
To this end, we generalize and improve known coproduct identities and a theorem of van Sui-
jlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our
generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results
are applicable to theories with multiple vertex residues, coupling constants and such with a
transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf
ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating
the corresponding gravity-matter Feynman rules for any valence and with a general gauge pa-
rameter. Then we display all propagator and three-valent vertex Feynman rules and calculate
the respective cancellation identities. Finally, we propose planned follow-up projects: This in-
cludes a generalization of Wigner’s classification of elementary particles to linearized gravity, the
representation of cancellation identities via Feynman graph cohomology and an investigation on
the equivalence of different definitions for the graviton field. In particular, we argue that the
appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra:
More precisely, we suggest a modified version of the Feynman graph cohomology of Kreimer et
al. (2013) and consider its action on the renormalization Hopf algebra. We then argue that
the compatibility of cancellation identities with the renormalization operation is reflected in the
well-definedness of the differential-graded renormalization Hopf algebra.
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1. Introduction

1.1.2 German version

Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Unter-
suchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren
wir die verschiedenen Lagrangedichten in der Kopplung der (effektiven) Quanten-Allgemeinen-
Relativitätstheorie zum Standardmodell. Desweiteren studieren wir den zugehörigen BRST-
Doppelkomplex von Diffeomorphismen und Eichtransformationen. Danach wenden wir Connes–
Kreimer-Renormierungstheorie auf die perturbative Feynmangraph-Entwicklung an: In dieser
Formulierung werden Subdivergenzen mittels des Koprodukts einer Hopfalgebra strukturiert
und die Renormierungsoperation mittels einer algebraischen Birkhoff-Zerlegung beschrieben.
Dafür verallgemeinern und verbessern wir bekannte Koprodukt-Identitäten und ein Theorem
von van Suijlekom (2007), das (verallgemeinerte) Eichsymmetrien mit Hopfidealen verbindet.
Insbesondere lässt sich unsere Verallgemeinerung auf Gravitation anwenden, wie von Kreimer
(2008) vorgeschlagen. Darüberhinaus sind unsere Resultate anwendbar auf Theorien mit meh-
reren Vertexresuiden, Kopplungskonstanten und ebensolchen mit einer transversalen Struktur.
Zusätzlich zeigen wir Kriterien für die Kompatibilität dieser Hopfideale mit Feynmanregeln und
dem gewählten Renormierungsschema. Als nächsten Schritt berechnen wir die entsprechenden
Gravitations-Materie Feynmanregeln für alle Vertexvalenzen und mit einem allgemeinen Eich-
parameter. Danach listen wir alle Propagator- und dreivalenten Vertex-Feynmanregeln auf und
berechnen die entsprechenden Kürzungsidentitäten. Abschließend stellen wir geplante Folgepro-
jekte vor: Diese schließen eine Verallgemeinerung von Wigners Klassifikation von Elementarteil-
chen für linearisierte Gravitation ein, ebenso wie die Darstellung von Kürzungsidentitäten mittels
Feynmangraph-Kohomologie und eine Untersuchung der Äquivalenz verschiedener Definitionen
des Gravitonfeldes. Insbesondere argumentieren wir, dass das richtige Setup um perturbative
BRST-Kohomologie zu studieren eine differentialgraduierte Hopfalgebra ist: Konkret schlagen
wir eine modifizierte Version der Feynmangraph-Kohomologie von Kreimer et al. (2013) vor
und betrachten dessen Wirkung auf der Renormierungs-Hopfalgebra. Wir argumentieren dann,
dass sich die Kompatibilität der Kürzungsidentitäten mit der Renormierungsoperation in der
Wohldefiniertheit der differentialgraduierten Hopfalgebra widerspiegelt.

1.2 Corresponding articles

This dissertation is based on the published journal articles [1, 2, 3] and the preprints in prepa-
ration [4, 5]. We also remark the planned follow-up projects that build directly on the results
of this dissertation [6, 7, 8], which are outlined in Section 5.2. Concretely, these manuscripts
contribute to this dissertation as follows:

[1]: This article is based on the author’s second master thesis [9]. We have studied several
geometric and renormalization related aspects of (effective) Quantum General Relativity
coupled to spinor Quantum Electrodynamics. As such, it provides the foundation for
(effective) Quantum General Relativity coupled to general Quantum Gauge Theories. In
particular, in this dissertation we consider (effective) Quantum General Relativity coupled
to the Standard Model. We remark that the material taken from [1] concerns only some
introductory parts in Chapter 2 and the heavily reworked Section 3.2. Thus, the text
overlap of this dissertation with the author’s second master thesis [9] is neglectable. In
particular, all main results of this dissertation are entirely new.

[2]: In this article, we have studied renormalization related aspects of Quantum Gauge The-
ories. The main result is an essential generalization of a theorem of van Suijlekom which
relates (generalized) quantum gauge symmetries to Hopf ideals. This theorem — formerly
proven for renormalizable Quantum Gauge Theories — has been generalized to super- and
non-renormalizable Quantum Field Theories, theories with multiple coupling constants and
such with longitudinal and transversal degrees of freedom. These results are presented in
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1.3. The dice of physics

Chapter 3.

[3]: In this article, we have derived the Feynman rules for (effective) Quantum General Relativ-
ity coupled to the Standard Model. More precisely, our analysis applies to 4 dimensional
spacetimes, the metric decomposition gµν = ηµν+κhµν and the linearized de Donder gauge
fixing. In particular, our results generalize earlier works in that we present the Feynman
rules for arbitrary vertex valence and the graviton propagator with general gauge param-
eter ζ. These results are presented in Chapters 2 and 4.

[4]: In this preprint, we study the BRST double complex for (effective) Quantum General
Relativity coupled to the Standard Model. This double complex arises from the invariance
of the theory under infinitesimal diffeomorphisms and infinitesimal gauge transformations.
To this end, we recall the setup for (effective) Quantum General Relativity and Quantum
Yang–Mills theory. In particular, we study the corresponding gauge fixing and ghost
Lagrange densities via gauge fixing fermions. Then, the main results are as follows: First,
we find that the two BRST operators anticommute and thus produce a double complex.
Furthermore, this gives rise to the total BRST operator and we find that we can obtain
the complete gauge fixing and ghost Lagrange densities via a total gauge fixing fermion.
Moreover, we find that the graviton-ghosts decouple from matter of the Standard Model
if and only if the gauge fixing fermion for the gauge theory is a tensor density of weight
w = 1. Finally, we also present the corresponding anti-BRST operators and show that all
BRST and anti-BRST operators mutually anticommute. These results are presented in
Section 2.4.

[5]: In this preprint, we study the transversal structure of (effective) Quantum General Rela-
tivity coupled to the Standard Model. This includes several identities and decompositions
of the respective longitudinal, identical and transversal projection operators. In particu-
lar, we recall known identities of Quantum Yang–Mills theory with a Lorenz gauge fixing
and introduce their counterparts in (effective) Quantum General Relativity. Then we pro-
vide the corresponding symmetric (hermitian) ghost Lagrange densities together with their
gauge fixing Lagrange densities. Finally, we compute the longitudinal projections of all
three-valent gluon, gluon-matter, graviton and graviton-matter vertex Feynman rules and
show that they vanish on-shell. These results are presented in Sections 4.3 and 4.4.

Finally, we also remark the two side projects, joined with Prof. Dr. Alexander Schmeding, that
additionally emerged during the time of the author’s doctoral studies [10, 11].

1.3 The dice of physics

The dice of physics is a vivid graphical representation of physical theories in different regimes.
The axes are identified with three of the four fundamental physical coupling constants with
mass dimension 1:1 The inverse of the speed of light c−1, Newton’s gravitation constant G and
Planck’s constant ℏ. Furthermore, we choose Planck units, i.e. c−1 = G = ℏ = 1, and thus its
linear span

Span[0,1]

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝c−1

0
0

⎞⎟⎠ ,

⎛⎜⎝0
G
0

⎞⎟⎠ ,

⎛⎜⎝0
0
ℏ

⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ ∼= [0, 1]3 (1.1)

represents a cube, where each vertex represents a particular limit of the ‘theory of everything’:

1The fourth being Boltzmann’s constant k, which is not relevant for the motivation of Quantum Gravity.
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1. Introduction

(0, c−1, 0): SR (G, c−1, 0): GR

1: QG(0, c−1, ℏ): QFT

0: CM (G, 0, 0): NG

(G, 0, ℏ): nrQG(0, 0, ℏ): QM

c
−1

G

ℏ

Here, CM stands for Classical Mechanics, SR for Special Relativity, NG for Newton Gravitation,
QM for Quantum Mechanics, GR for General Relativity, QFT for Quantum Field Theory, nrQG
for non-relativistic Quantum Gravitation and finally QG for Quantum Gravity. Up to now,
we have a pretty good understanding of the theories on the bottom and left faces and lack
any substantial understanding of the theories on the upper right edge. Thus, the aim of this
dissertation is to shed some further light on this unknown region, in particular on the corner 1 ≡
(G, c−1, ℏ) that represents Quantum Gravity, which we approach via a perturbative quantization
of General Relativity.

1.4 History and context

General Relativity and Quantum Theory are both fundamental theories in modern physics.
While some of their predictions agree with outstanding precision with the corresponding ex-
perimental data, there are still regimes where both theories break down conceptually. Notably,
this is the case with models of the big bang or in the inside of black holes. In these situa-
tions, both theories are needed simultaneously to capture the entire physical reality: General
Relativity is needed in order to describe the huge masses and energies that are involved and
Quantum Theory is needed in order to describe the interactions of the respective particles in
these very small spatial dimensions. Unfortunately, a combined theory of Quantum Gravita-
tion has not been found yet: While, given the success of the Standard Model, a perturbative
quantization seems to be the canonical choice, it comes with several problems, most notably
its non-renormalizability. This fact has lead to various, more radical approaches to Quantum
Gravity, such as Supergravity, String Theory or Loop Quantum Gravity. While any of these
theories fixes conceptual problems of the perturbative approach, they create additional prob-
lems elsewhere due to further assumptions. Therefore, in this dissertation, we go back to the
foundation of Quantum General Relativity via its (effective) perturbative approach using Feyn-
man rules. Feynman rules are calculated from the Lagrangian by extracting the potentials for
all classically allowed interactions. Then, scattering amplitudes are calculated by applying the
fundamental principle of Quantum Theory, namely that the sum over all unobserved interme-
diate states needs to be considered. This leads to the Feynman diagram expansion, where each
non-tree Feynman diagram corresponds to a Feynman integral over the unobserved momenta of
the virtual particles. We refer to [12, 13, 14] for a more detailed treatment on Feynman rules
and to [15] for the corresponding treatment of supersymmetric theories. Proceeding with this
approach and again the fundamental principle of Quantum Theory to sum over all unobserved
intermediate states, we find that each loop in a Feynman diagram comes with an unobserved
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1.4. History and context

momenta for the involved virtual particles. Thus, we need to additionally integrate over these
unobserved momenta, which are called Feynman integrals. However, both the sum over the
Feynman diagram expansion as well as the Feynman integrals over unobserved momenta lead to
serious problems: Typically both these operations do not converge and are thus ill-defined. The
first problem can be solved via resummation techniques, such as Borel resummation, whereas
the second problem can be solved via renormalization theory, which we study in the Framework
of Connes and Kreimer [16, 17, 18, 19]. In this dissertation, we want to apply this renormaliza-
tion framework to a perturbative expansion of (effective) Quantum General Relativity. We find,
that it is in principle indeed possible to render the corresponding Feynman integrals finite, if
the diffeomorphism invariance is properly incorporated into the renormalization scheme, as was
originally suggested in [20, 21]. However, the obstacle is now to show that the actual Feynman
rules are compatible with this procedure to all orders, in the sense of cancellation identities
[22, 23, 24, 25, 26, 27], which will be the subject for future work.

The attempt to perturbatively quantize General Relativity (GR) is rather old: In fact, the
approach to define the graviton field hµν with gravitational coupling constant κ as the fluctuation
around a fixed background metric bµν , i.e.

hµν :=
1

κ
(︁
gµν − bµν

)︁
⇐⇒ gµν ≡ bµν + κhµν , (1.2)

— oftentimes, and in particular in this thesis, chosen as the Minkowski metric bµν := ηµν —
goes back to M. Fierz, W. Pauli and L. Rosenfeld in the 1930s [28]. Then, R. Feynman [29] and
B. DeWitt [30, 31, 32, 33] started to calculate the corresponding Feynman rules in the 1960s.
However, D. Boulware, S. Deser and P. van Nieuwenhuizen [34], G. ’t Hooft [35] and M. Veltman
[36] discovered serious problems in the perturbative expansion due to the non-renormalizability
of Quantum General Relativity (QGR) in the 1970s. We refer to [28] for a historical treatment.

Despite its age, it is still very hard to find references properly deriving and displaying Feynman
rules for QGR, given via the Lagrange density

LQGR := LGR + LGF + LGhost (1.3a)

with

LGR := − 1

2κ2
R dVg , (1.3b)

LGF := − 1

4κ2ζ
ηµνdD(1)

µ dD(1)
ν dVη (1.3c)

and

LGhost := − 1

2ζ
ηρσC

µ (︁
∂ρ∂σCµ

)︁
dVη −

1

2
ηρσC

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂
dVη , (1.3d)

where R := gνσRµσµν is the Ricci scalar and dD
(1)
µ := ηρσΓρσµ is the linearized de Donder gauge

fixing functional. Additionally, C ∈ Γ
(︁
M,T ∗[1, 0]

)︁
and C ∈ Γ

(︁
M,T [−1, 0]M

)︁
are the graviton-

ghost and graviton-antighost, respectively. Finally, dVg :=
√︁

−Det (g) dt ∧ dx ∧ dy ∧ dz and
dVη := dt ∧ dx ∧ dy ∧ dz are the Riemannian and Minkowskian volume forms, respectively. We
refer to Chapter 2 of this dissertation and [1, 3] for detailed introductions to the perturbative
expansion. The existing literature known to the author [36, 37, 38, 39, 40, 41, 42, 43, 44] limits
the vertex Feynman rules to valence five, directly sets the de Donder gauge fixing parameter
to ζ := 1 and omits the ghost vertex Feynman rules completely. This dissertation together
with the corresponding article [3] aim to fix this gap in the literature by properly deriving
the Feynman rules for gravitons, their ghosts and for their interactions with matter from the
Standard Model: The analysis is carried out for the metric decomposition gµν = ηµν + κhµν ,
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1. Introduction

arbitrary vertex valence, a linearized de Donder gauge fixing with general gauge parameter ζ
and in four dimensions of spacetime. Moreover, the gravitational interactions with matter from
the Standard Model are then classified into 10 different types and their vertex Feynman rules
are also properly derived and presented for any valence.

This research is intended as the starting point for several related approaches to the perturbative
renormalization of (effective) Quantum General Relativity: It is generally possible to render
any Feynman integral finite by applying an appropriate subtraction for each divergent (sub-)
integral. This treatment of (sub-)divergences has been studied extensively in the Hopf algebra
approach of Connes and Kreimer: Here, the subdivergences are treated via the corresponding
coproduct [45] and the renormalized Feynman rules are then obtained via an algebraic Birkhoff
decomposition [16]. Then, this reasoning was soon applied to gauge theories [46], which lead
to the identification of Ward–Takahashi and Slavnov–Taylor identities with Hopf ideals in the
corresponding Connes–Kreimer renormalization Hopf algebra [47, 48, 49, 2]. Following this
route, it was then suggested by Kreimer to apply this duality to General Relativity [20], which
was motivated via a scalar toy model [50] and then studied in detail by the author [1, 2]. In
this approach, the non-renormalizability of General Relativity manifests itself by the necessity
to introduce infinitely many counterterms. The aim is now to relate these counterterms by
generalized Slavnov–Taylor identities, which correspond to the diffeomorphism invariance of the
theory. A first step in this direction is the construction of tree-level cancellation identities,
which requires the longitudinal and transversal decomposition of the graviton propagator via
the general gauge parameter ζ as variable. This approach was supported by recent calculations
for the metric density decomposition of Goldberg and Capper et al. ([51, 52, 53, 54]) up to
valence six [27]. With the present work, we provide a foundation for a purely combinatorial
argument, which will be valid for all vertex valences. This will be studied in future work via the
diffeomorphism-gauge BRST double complex [4] and the longitudinal and transversal structure
of the gravitational Feynman rules [5], cf. Sections 2.4 and 4.4. Additionally, we remark that this
reasoning is implicit in the construction of Kreimer’s Corolla polynomial [55, 56, 57]. This graph
polynomial, which is based on half-edges, relates the amplitudes of Quantum Yang–Mills theories
to the amplitudes of the scalar ϕ34-theory, by means of the parametric representation of Feynman
integrals [24, 58]. More precisely, in this approach the cancellation identities are encoded into
amplitudes by means of Feynman graph cohomology [59]. In particular, this approach has been
successfully generalized to spontaneously broken gauge theories and thus to the complete bosonic
part of the Standard Model [60]. The possibility to apply this construction also to (effective)
Quantum General Relativity will be checked in future work. Finally, we believe that the results
of this dissertation are also of intellectual interest, as Feynman rules are an essential ingredient
to perturbative Quantum Field Theories.

We remark the development of more concise formulations, aimed in particular for practical
calculations: There are the KLT relations [61, 62, 63, 64], which relate on-shell gravitational
amplitudes with the amplitudes of the ‘double-copy’ of a gauge theory, and are applied e.g. in [65].
Furthermore, it is also possible to simplify the gravitational Feynman rules by a reformulation
with different (possibly auxiliary) fields [66, 67], even on a de Sitter background [68]. Moreover,
we remark the use of computer algebra programs, such as ‘XACT’ [69] and ‘QGRAF’ [70].
For the projects mentioned in the previous paragraph, however, the original Feynman rules are
needed to arbitrary vertex valence and with general gauge parameter ζ: This is because the
KLT relations are only valid on-shell and thus rely on Cutkosky’s Theorem [71], cf. [72, 73].
Also, we want to study the direct relationship between combinatorial Green’s functions and
their counterterms, which becomes more complicated in the aforementioned reformulations with
auxiliary fields. And finally, we are interested in a combinatorial proof that is valid to all vertex
valences and thus excludes the use of computer algebra programs.

Going back to the aforementioned approach for a perturbative renormalization of (effective)
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1.4. History and context

Quantum General Relativity, we now discuss the renormalization-related aspects: In classical
physics, Noether’s Theorem relates symmetries to conserved quantities [74]. In the context
of classical gauge theories it states that gauge symmetries correspond to charge conservation.
Thus, gauge symmetries are a fundamental ingredient in physical theories, such as the Standard
Model and General Relativity. When considering their quantizations, identities related to their
gauge invariance ensure that the gauge fields are indeed transversal: More precisely, the Ward–
Takahashi and Slavnov–Taylor identities ensure that photons and gluons do only possess their
two experimentally verified transversal degrees of freedom [75, 76, 77, 78].2 As we will see
in the upcoming examples, these identities relate the prefactors of different monomials in the
Lagrange density that are linked via gauge transformations. In the corresponding Quantum
Field Theories, however, each of these monomials might obtain a different energy dependence
through its Z-factor, which could spoil this symmetry. Additionally, in order to calculate the
propagator of the gauge field, a gauge fixing needs to be chosen. This gauge fixing then needs
to be accompanied by its corresponding ghost and antighost fields, which have Grassmannian
parity, i.e. obey Fermi–Dirac statistics. More precisely, the ghost fields are designed to satisfy the
residual gauge transformations as equations of motion, whereas the antighost fields are designed
to be constant and thus act as Lagrange multipliers.3 This then ensures transversality of the
gauge bosons, if the Z-factors fulfill certain identities. These identities, in turn, depend on the
Feynman rules and the chosen renormalization scheme.

As a first example, consider Quantum Yang–Mills theory with a Lorenz gauge fixing, given via
the Lagrange density

LQYM := LYM + LGF + LGhost

= ηµνηρσδab

(︃
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where F aµν := g
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a
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a
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)︁
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c
ν is the local curvature form of the gauge boson Aaµ.

Furthermore, dVη := dt ∧ dx ∧ dy ∧ dz denotes the Minkowskian volume form. Additionally,
ηµν∂µA

a
ν ≡ 0 is the Lorenz gauge fixing functional and ξ the gauge fixing parameter. Finally, ca

and ca are the gauge ghost and gauge antighost, respectively. Then, the decomposition into its
monomials is given via
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(1.5)

each of which contributing to a different Feynman rule. To absorb the upcoming divergences in
a multiplicative manner, we multiply each monomial with an individual function Zr(ε) in the

2Actually, Slavnov–Taylor identities were first discovered diagrammatically by Gerard ’t Hooft in [79].
3We remark that this is the case for the Faddeev–Popov ghost construction. It is possible to construct a more

general setup, which mixes or even reverses their roles [80].
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regulator ε ∈ R:

LR
QYM (ε) := −1
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(1.6)

where the regulator ε is related to the energy scale through the choice of a regularization scheme.
Then, the invariance of LR

QYM (ε) under (residual) gauge transformations away from the reference
point (where all Z-factors fulfill Zr(ε0) = 1) depends on the following identities:(︁

ZA
3
(ε)
)︁2

ZA2(ε)
≡ ZA

4
(ε) (1.7a)

and

ZA
3
(ε)

ZA2/ξ(ε)
≡ ZccA(ε)

Zcc/ξ(ε)
(1.7b)

for all ε in the domain of the regularization scheme and with ZA
2/ξ(ε) := ZA

2
(ε)Z1/ξ(ε). This

example is continued, using the terminology introduced throughout this dissertation, in Exam-
ple 3.6.2, where we will reencounter these identities in a different language. We remark that these
identities are essential for the Faddeev–Popov ghost construction to work, such that physical
gluons are indeed transversal.

As a second example, consider (effective) Quantum General Relativity with the metric decom-
position gµν ≡ ηµν + κhµν , where hµν is the graviton field and κ :=

√
κ the graviton coupling

constant (with κ := 8πG the Einstein gravitational constant), and a linearized de Donder gauge
fixing, given via the Lagrange density

LQGR := LGR + LGF + LGhost
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where R := gνσRµνµσ is the Ricci scalar (with Rρσµν := ∂µΓ
ρ
νσ−∂νΓρµσ+ΓρµλΓ

λ
νσ−ΓρνλΓ

λ
µσ

the Riemann tensor). Again, dVη := dt ∧ dx ∧ dy ∧ dz denotes the Minkowskian volume form,
which is related to the Riemannian volume form dVg via dVg ≡

√︁
−Det (g) dVη. Additionally,

dD
(1)
µ := ηρσΓµρσ ≡ 0 is the linearized de Donder gauge fixing functional and ζ the gauge fixing

parameter. Finally, Cµ and C
µ
are the graviton-ghost and graviton-antighost, respectively. We

refer to [1, 3] for more detailed introductions and further comments on the chosen conventions.
Then, we decompose LQGR with respect to its powers in the gravitational coupling constant κ,
the gauge fixing parameter ζ and the ghost field C as follows4

LQGR ≡
∞∑︂
i=0

0∑︂
j=−1

1∑︂
k=0

Li,j,kQGR , (1.9)

4We omit the term L−1,0,0
QGR as it is given by a total derivative.
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where we have set Li,j,kQGR :=
(︁
LQGR

)︁⃓⃓
O(κiζjCk)

, cf. [3, Section 3]. Again, to absorb the upcoming

divergences in a multiplicative manner, we multiply each monomial with an individual function
Zr(ε) in the regulator ε ∈ R:

LR
QGR (ε) :=

∞∑︂
i=0

0∑︂
j=−1

1∑︂
k=0

Zi,j,k(ε)Li,j,kQGR , (1.10)

where the regulator ε is related to the energy scale through the choice of a regularization scheme.
Then, the invariance of LR

QGR (ε) under (residual) diffeomorphisms away from the reference point
(where all Z-factors fulfill Zr(ε0) = 1) depends on the following identities:

Zi,0,0(ε)Z1,0,0(ε)

Z0,0,0(ε)
≡ Z(i+1),0,0(ε) (1.11a)

and

Zi,0,0(ε)

Z0,−1,0(ε)
≡ Zi,0,1(ε)

Z0,−1,1(ε)
(1.11b)

for all i ∈ N+ and ε in the domain of the regularization scheme. This example is continued,
using the terminology introduced throughout this dissertation, in Example 3.6.3, where we will
reencounter these identities in a different language. Again, we remark that these identities are
essential for the Faddeev–Popov ghost construction to work, such that physical gravitons are
indeed transversal.

Identities for Z-factors, such as Equations (1.7) and (1.11), are known in the literature as Ward–
Takahashi identities in the realm of Quantum Electrodynamics and Slavnov–Taylor identities
in the realm of Quantum Chromodynamics [75, 76, 77, 78, 79]. We will study these identi-
ties on a general level and thus call them ‘quantum gauge symmetries (QGS)’. In particular,
our results are directly applicable to (effective) Quantum General Relativity in the sense of
Equation (1.11), as was first suggested in [20] and then studied for a scalar toy model in [50].
We also refer to [1] for a more detailed introduction to (effective) Quantum General Relativity
coupled to Quantum Electrodynamics and to [3] for the Feynman rules of (effective) Quantum
General Relativity coupled to the Standard Model. In the present dissertation we study the
renormalization-related properties of quantum gauge symmetries, such as Equations (1.7) and
(1.11). This is done in the framework of the Connes–Kreimer renormalization Hopf algebra: In
this setup, the organization of subdivergences of Feynman graphs is encoded into the coproduct
of a Hopf algebra [45] and the renormalization of Feynman rules is described via an algebraic
Birkhoff decomposition [16]. Then, the aforementioned identities induce symmetries inside the
renormalization Hopf algebra, which was first studied via Hochschild cohomology [46] and then
shown to be Hopf ideals [47, 48, 49, 50]. The aim of this dissertation is to generalize these re-
sults in several directions: We first introduce an additional coupling-grading in Definition 3.1.18,
which allows us to study theories with multiple coupling constants, like Quantum General Rel-
ativity coupled to the Standard Model. Furthermore, and more substantially, this allows us to
discuss the transversality of such (generalized) quantum gauge theories, cf. Definition 3.1.4 and
Definition 3.6.1. Moreover, we generalize known coproduct and antipode identities to super-
and non-renormalizable Quantum Field Theories (QFTs) in Proposition 3.4.8 and Section 3.5.
This requires a detailed study of combinatorial properties of the superficial degree of divergence,
as is presented in Section 3.4. The analysis then culminates in Theorem 3.6.6, stating that
quantum gauge symmetries correspond to Hopf ideals also in this generalized context. Finally,
we provide criteria for the validity of quantum gauge symmetries in terms of Feynman rules
and renormalization schemes: Technically speaking, this corresponds to the situation that the
aforementioned Hopf ideals are in the kernel of the counterterm map or even the renormalized
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1. Introduction

Feynman rules. The result is then presented in Theorem 3.7.5. A consequence thereof is that
the Corolla polynomial for Quantum Yang–Mills theory is well-defined without reference to a
particular renormalization scheme if the renormalization scheme is proper, cf. Definition 3.1.41
and Remark 3.7.8. The Corolla polynomial is a graph polynomial in half-edges that relates
amplitudes in Quantum Yang–Mills theory to amplitudes in ϕ34-theory [55, 56, 57]. More pre-
cisely, this graph polynomial is used for the construction of a so-called Corolla differential that
acts on the parametric representation of Feynman integrals [24, 58]. Thereby, the corresponding
cancellation-identities [22, 23, 24, 25, 26, 27] are encoded into a double complex of Feynman
graphs, leading to Feynman graph cohomology [56, 59]. We remark that this construction
has been successfully generalized to Quantum Yang–Mills theories with spontaneous symmetry
breaking [60] and Quantum Electrodynamics with spinors [81, 82, 83]. The application of this
formulation to (effective) Quantum General Relativity is a topic of ongoing research.

1.5 Original results

To the author’s best knowledge, this dissertation provides the following new results:

§1: – Section 1.4: We first recall the multiplicative renormalization of Quantum Yang–
Mills theory starting with Equation (1.4) together with the Slavnov–Taylor identities
in Equation (1.7). Then we discuss the corresponding generalizations to (effective)
Quantum General Relativity around Equations (1.8) and (1.11), respectively.

§2: – Section 2.1: We introduce the notion of a simple spacetime in Definition 2.1.7 inspired
from Penrose’s notion of an asymptotically simple spacetime. This then enables us to
provide a global definition of the graviton field together with a Fourier transformation
for particle fields in Definitions 2.1.10 and 2.2.24, respectively. Additionally, we com-
ment on the diffeomorphism invariance of General Relativity as a generalized gauge
symmetry from the viewpoint of Lie groupoids and Lie algebroids in Remark 2.1.19.

– Section 2.2: We introduce the spacetime-matter bundle in Definition 2.2.6 as the
Z2-graded super vector bundle whose sheaf of sections describe the particle fields
of (effective) Quantum General Relativity coupled to the Standard Model in Defini-
tion 2.2.8.

– Section 2.3: We classify the gravitational couplings to matter from the Standard
Model in Lemma 2.3.4. Then we discuss the respective Lagrange densities in detail.

– Section 2.4: We state the diffeomorphism and gauge BRST operators in Defini-
tions 2.4.1 and 2.4.9 together with the gauge fixing fermions for the de Donder and
Lorenz gauge fixings in Propositions 2.4.4 and 2.4.11, respectively. We have reworked
the conventions such that the propagators of longitudinal gravitons and gauge bosons
as well as their ghosts are scaled by the corresponding gauge fixing parameters. Ad-
ditionally, we have extended the diffeomorphism BRST operator to matter from the
Standard Model. Furthermore, we classify all non-constant Lagrange densities that
are essentially closed with respect to the diffeomorphism BRST operator as scalar
tensor densities of weight w = 1 in Lemma 2.4.3. Moreover, we show that the two
BRST operators anticommute and thus give rise to a double complex and a total
BRST operator in Theorem 2.4.15. In addition, we show that the matter fields de-
couple from the graviton-ghost if the gauge theory gauge fixing fermion is a tensor
density of weight w = 1 in Theorem 2.4.17. Then we show that under said condi-
tions both gauge fixing fermions can be added to construct the complete gauge fixing
and ghost Lagrange densities via the action of the total BRST operator on this total
gauge fixing fermion in Theorem 2.4.18. Additionally, we also recall and improve the
corresponding anti-BRST operators in Definitions 2.4.7 and 2.4.13. Finally, we show
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that all BRST and anti-BRST operators mutually anticommute in Corollaries 2.4.8,
2.4.14 and 2.4.16 together with the aforementioned Theorem 2.4.15.

§3: – Section 3.1: We introduce several notions that allow us to study the perturba-
tive renormalization of quantum gauge theories that are possibly super- or non-
renormalizable, involve multiple coupling constants or longitudinal and transversal
degrees of freedom: First, we introduce the notion of a transversal structure as the
set of all longitudinal, identical and transversal projection operators of a given gauge
theory in Definition 3.1.4. Then we add the coupling-grading as the physically rele-
vant grading to the two so far established gradings for renormalization Hopf algebras,
the loop-grading and vertex-grading, in Definition 3.1.18. Next we introduce a pro-
jector to superficially divergent graphs in Definition 3.1.20. In addition, we introduce
the notion of a superficially compatible grading in Definition 3.1.21. Also, we in-
troduce the algebra of (formal) Feynman integral expressions in Definition 3.1.35 as
the target algebra of Feynman rules, cf. Definition 3.1.37. Finally, we characterize
finite renormalization schemes in Lemma 3.1.40 and introduce the notion of a proper
renormalization scheme in Definition 3.1.41.

– Section 3.2: We discuss obstructions for quantum gauge theories that lead to ill-
defined renormalization Hopf algebras in Problem 3.2.1. Then we present four dif-
ferent possibilities to overcome them in Solutions 3.2.5, 3.2.6, 3.2.7 and 3.2.8 and
discuss their physical difference in Remark 3.2.10. This includes in particular a mod-
ified Feynman graph set in Definition 3.2.3 or modified sets of divergent subgraphs
in Definition 3.2.4.

– Section 3.3: We first recall the established classification of Quantum Field Theories
in super-renormalizable, renormalizable and non-renormalizable in Definition 3.3.1.
Then we provide the connection between the mass-dimension criteria and the grading
criteria in Lemma 3.3.2. Next we introduce the notion of a predictive Quantum Field
Theory in Definition 3.3.3 to address non-renormalizable Quantum Field Theories
that still allow for a well-defined perturbative expansion. Finally, we comment that
super-renormalizable and renormalizable Quantum Field Theories are predictive in
Observation 3.3.4. In addition, we claim that (effective) Quantum General Relativity,
possibly coupled to matter from the Standard Model, is predictive in Conjecture 3.3.5.

– Section 3.4: We study combinatorial properties of the superficial degree of diver-
gence to generalize important identities known for renormalizable Quantum Field
Theories to the super- and non-renormalizable cases: We start with an alternative
definition of the superficial degree of divergence via weights of corollas in Defini-
tion 3.4.1 and Lemma 3.4.2. This allows us to state that the superficial degree of
divergence depends affine-linearly on the vertex-grading (or any coarser superficially-
compatible grading) in Theorem 3.4.3. With that, we obtain a further criterion for
the renormalization-classification of Quantum Field Theories in Corollary 3.4.4. Ad-
ditionally, this allows us to analyze the vertex-grading dependence of the superficial
degree of divergence even further in Corollary 3.4.5. Then we introduce the notion
of a cograph-divergent Quantum Field Theory in Definition 3.4.6, which we show to
satisfy the known simple coproduct and antipode identities, even in the super- and
non-renormalizable cases, in Proposition 3.4.8. Finally, we provide simple criteria for
either cograph-divergenceness and superficial grade compatibility in Lemma 3.4.9 and
Proposition 3.4.13, respectively. Then we conclude that (effective) Quantum General
Relativity coupled to the Standard Model satisfies both notions in Corollaries 3.4.10
and 3.4.15, respectively.

– Section 3.5: We provide an explicit equivalence between coproduct and antipode
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identities in Lemma 3.5.1. Then we generalize known coproduct identities to super-
and non-renormalizable Quantum Field Theories, theories with multiple coupling
constants and such with longitudinal and transversal degrees of freedom in Proposi-
tions 3.5.2, 3.5.3 and 3.5.4.

– Section 3.6: We introduce the notion of quantum gauge symmetries in Definition 3.6.1.
Then we discuss the respective cases in Quantum Yang–Mills theory and (effective)
Quantum General Relativity in Examples 3.6.2 and 3.6.3, respectively. Furthermore,
we define the corresponding quantum gauge symmetry ideal in Definition 3.6.4 and
prove that it is a Hopf ideal in Theorem 3.6.6. This generalizes the earlier result
of van Suijlekom [49, Theorem 15] to super- and non-renormalizable Quantum Field
Theories, theories with multiple coupling constants and such with longitudinal and
transversal degrees of freedom. Finally, we show that the quantum gauge symmetry
ideal is the smallest ideal such that in the quotient Hopf algebra the coupling-grading
and vertex-grading become equivalent in Corollary 3.6.8.

– Section 3.7: We provide an explicit definition of the renormalization Hopf module in
Definition 3.7.1. Then we show that it satisfies the coproduct identities of Proposi-
tions 3.5.2, 3.5.3 and 3.5.4 also with respect to the coupling-grading in Corollary 3.7.2.
Additionally, we provide criteria that ensure the compatibility of the quantum gauge
symmetry ideal with the counterterm in Lemma 3.7.4 and the renormalized Feynman
rules in Theorem 3.7.5 and Corollary 3.7.7. Finally, we discuss the well-definedness
of the Corolla polynomial with respect to the choice of a renormalization scheme as
a consequence of our findings in Remark 3.7.8.

§4: – Section 4.1: We study the expansion of the gravity-matter Lagrange densities with
respect to the graviton coupling constant. To this end, we state the expansions of the
inverse metric in Lemma 4.1.1 and vielbeins and inverse vielbeins in Lemma 4.1.2.
Then we calculate the metric expression of the Ricci scalar with respect to the Levi-
Civita connection in Proposition 4.1.3 and its expansion in Corollary 4.1.4. Next we
calculate the metric expression of the de Donder gauge fixing in Proposition 4.1.5
and its expansion in Corollary 4.1.6. Finally, we calculate the metric expression of
the determinant of the metric in Proposition 4.1.7 and the expansion of the negative
of its square-root in Corollary 4.1.8.

– Section 4.2: We introduce our notation for gravity-matter Feynman rules in Defini-
tion 4.1.9. Then we provide the graviton, graviton-ghost and graviton-matter Feyn-
man rules as nested sums of products. This generalizes previous works in that we
provide the Feynman rules for any valence, with general gauge parameter and the
graviton-ghost vertex Feynman rules at all. Explicitly, we provide the graviton Feyn-
man rules for vertices in Theorem 4.2.1 and for the propagator in Theorem 4.2.3. In
addition, we provide the graviton-ghost Feynman rules for vertices in Theorem 4.2.4
and for the propagator in Theorem 4.2.5. Additionally, we state the graviton and
graviton-ghost vertex Feynman rules up to valence four in Example 4.2.6. Finally, we
provide the gravity-matter Feynman rules for matter from the Standard Model with
respect to the classification in Lemma 2.3.4 in Theorem 4.2.7.

– Section 4.3: We first propose the symmetric (hermitian) ghost Lagrange densities as-
sociated to the de Donder and Lorenz gauge fixing conditions for (effective) Quantum
General Relativity coupled to the Standard Model. Then we display the Feynman
rules for (effective) Quantum General Relativity coupled to the Standard Model ex-
plicitly. This includes all gravity-matter propagators in Subsection 4.3.1 and all
gravity-matter vertex Feynman rules for valence three in Subsection 4.3.2. This gen-
eralizes previous works in that we provide the graviton-gluon vertex Feynman rule
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with general gluon gauge parameter, the graviton-gluon-ghost vertex Feynman rule
at all and the graviton-ghost vertex Feynman rule at all.

– Section 4.4: We introduce the notion of an optimal gauge fixing in Definition 4.4.1 as
a gauge fixing that acts only to the vertical (i.e. gauge) degrees of freedom. In particu-
lar, we then show that the Lorenz gauge fixing for Quantum Yang–Mills theory as well
as the de Donder gauge fixing for (effective) Quantum General Relativity are both
optimal in Theoremata 4.4.9 and 4.4.20, respectively. Then we recall the transver-
sal structure of Quantum Yang–Mills theory in Definition 4.4.2 and introduce the
transversal structure of (effective) Quantum General Relativity in Definition 4.4.13.
This includes the respective longitudinal, identical and transversal projection op-
erators, as well as corresponding metrics to raise and lower the appearing Lorentz
indices. We then recall several immediate identities for the transversal structure of
Quantum Yang–Mills theory and introduce their involved counterparts in (effective)
Quantum General Relativity: In particular, this includes the decomposition of the
longitudinal projection operators in Lemmata 4.4.4 and 4.4.15. Then we show that
the provided longitudinal, identical and transversal projection operators are indeed
projectors in Propositions 4.4.5 and 4.4.16. Next we show that the decomposition
tensors of the longitudinal projection operators are furthermore eigentensors of the
longitudinal, identical and transversal projection operators in Corollaries 4.4.6 and
4.4.17. Thereafter, we study the action of the corresponding metrics on said tensors
in Lemmata 4.4.7 and 4.4.18 and Corollaries 4.4.8 and 4.4.19. This allows us then
finally to simplify the gluon and graviton propagator and relate them to their ghosts
via a gauge fixing projection in Theoremata 4.4.9 and 4.4.20. Additionally, we provide
all cancellation identities for the gluon and graviton vertex Feynman rules of valence
three in Theoremata 4.4.10 and 4.4.22, as well as for the corresponding couplings to
matter from the Standard Model in Theoremata 4.4.12 and 4.4.24. Finally, we com-
ment on the differences of the two most prominent definitions of the graviton field:
The metric decomposition and the metric density decomposition in Remark 4.4.21.

§5: – Section 5.2: We propose three follow-up projects where we have already achieved
first promising results: First we discuss a generalization of Wigner’s classification of
elementary particles to linearized gravity. We discuss this construction for simple
spacetimes with a fixed trivialization map in Definitions 5.2.1 and 5.2.2. With that,
it is then possible to classify gravitons and matter particles via their mass and he-
licity or spin. This is especially useful in the operator-based approach to Quantum
Field Theory, as it allows to construct the corresponding Fock space of particle con-
figurations. In particular, we show that the choice of the trivialization map has no
physical relevance for diffeomorphism-invariant theories in Lemma 5.2.3. However,
we also comment that this is no longer true for the respective quantized theory. As
the second project we discuss how cancellation identities can be implemented via a
novel version of Feynman graph cohomology on the algebra of Feynman graphs. In
addition, we argue that the compatibility of these cancellation identities with renor-
malization is guaranteed if the Feynman graph differential turns the renormalization
Hopf algebra into a differential-graded Hopf algebra, cf. Equations (5.10). In par-
ticular, we introduce the differential-graded renormalization Hopf algebra in Defini-
tion 5.2.4. This also resembles BRST cohomology, where the BRST differential turns
both the spacetime-matter bundle into a differential-graded supermanifold and the
sheaf of particle fields into a differential-graded superalgebra. We then show that the
Feynman graph cohomology of Kreimer et al. does not satisfy the mentioned criteria
out of the box in Lemma 5.2.5. Nevertheless, we propose two solutions to estab-
lish said compatibility. Additionally, we also introduce the quantum gauge symmetry
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differential in Definition 5.2.6 and argue that this differential is the perturbative ver-
sion of the BRST operator. We then claim that the compatibility of the Feynman
rules with the action of this differential on the quantum gauge symmetry ideal is
equivalent to the transversality of the theory in Conjecture 5.2.7. As the third and
last project, we propose a study on the physical difference between the two most
prominent definitions of the graviton field: The metric decomposition and the metric
density decomposition. To this end, we suggest the definition of a graviton density
family as a homotopy in the tensor density weight in Definition 5.2.8. The aim is
then to calculate the corresponding Feynman rules and study the dependence of the
resulting Feynman integrals on said homotopy parameter. First calculations suggest
that the perturbative expansion depends only on the tensor density weight of the
external legs, which we claim in Conjecture 5.2.9. In particular, this continues the
discussion started in Remark 4.4.21. Additionally, we suggest a third definition of
the graviton field as a special case thereof: We propose a graviton field with tensor
density weight w = 1/2. This then leads to symmetric longitudinal and transversal
projection operators for the graviton propagator. Thus, this definition of the graviton
field leads to a symmetric transversal structure, as it is the case in Quantum Yang–
Mills theory, cf. Definitions 4.4.2 and 4.4.13. Finally, we conclude all three projects
with open questions which we aim to address.
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Chapter 2

Gauge theories and gravity

In this chapter, we discuss the geometry of gauge theories and gravity. This includes the geom-
etry of spacetimes and particle fields as well as the Lagrange densities of (effective) Quantum
General Relativity coupled to the Standard Model together with the BRST double complex of
diffeomorphisms and gauge transformations.

2.1 The geometry of spacetimes

In this section, we describe the geometry of spacetimes. To this end, we first introduce our sign
choices and further conventions. Then we recall Penrose’s notion of an asymptotically simple and
empty spacetime together with its properties. Asymptotically simple and empty spacetimes are
also called asymptotically flat spacetimes and are characterized in that their metrics approach the
Minkowski metric ‘at infinity’. Thus, using the correspondence between geometry and energy-
matter distributions due to Einstein’s field equations, asymptotically flat spacetimes describe
universes with a finite matter distribution. We refer to [84, 85] for excellent overview articles on
these matters. In analogy with asymptotically simple spacetimes we then introduce the slightly
stronger notion of a simple spacetime. This then enables us to provide a global definition of
the graviton field and a definition for the Fourier transformation on the sections of particle
fields.1 With that we define the graviton field as the deviation of the metric with respect to
the Minkowski background metric. Finally, we comment on the diffeomorphism invariance of
General Relativity. This includes the Lie group structure of the diffeomorphism group as a
regular Lie group in the sense of Milnor, cf. [86, 87], and infinitesimal transformation properties.
Additionally, we also comment on the viewpoint of General Relativity as a generalized gauge
theory in the framework of Lie groupoids and Lie algebroids. Finally, we comment on the
terminology of ‘Linearized General Relativity’, which we use for the expansion of the Einstein–
Hilbert Lagrange density with respect to the graviton coupling constant.

Convention 2.1.1 (Sign choices). We use the sign-convention (− + +), as classified by [88],
i.e.:

1. Minkowski metric: ηµν =

⎛⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠
µν

2. Riemann tensor: Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

1We remark that a global definition of the graviton field is possible if and only if the spacetime is parallelizable.
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2. Gauge theories and gravity

3. Einstein field equations: Gµν = κTµν

Additionally we use the plus-signed Clifford relation, i.e. {γm, γn} = 2ηmn IdΣM , cf. the discus-
sion in Remark 2.2.18. ♦

Definition 2.1.2 (Spacetime). Let (M,γ) be a d-dimensional Lorentzian manifold. We call
(M,γ) a spacetime, if it is smooth, connected and time-orientable. ♦

Definition 2.1.3 (Asymptotically simple (and empty) spacetime). Let (M,γ) be an oriented
and causal spacetime. We call (M,γ) an asymptotically simple spacetime, if it admits a con-

formal extension
(︁˜︂M, γ̃

)︁
in the sense of Penrose [89, 90, 91, 92]: That is, if there exists an

embedding ι : M ↪→ ˜︂M and a smooth function ς ∈ C∞(︁˜︂M)︁, such that:

1. ˜︂M is a manifold with interior ι (M) and boundary I , i.e. ˜︂M ∼= ι (M) ⊔ I

2. ς
⃓⃓⃓
ι(M)

> 0, ς
⃓⃓⃓
I

≡ 0 and dς
⃓⃓⃓
I

̸≡ 0; additionally ι∗γ ≡ ς2γ̃

3. Each null geodesic of
(︁˜︂M, γ̃

)︁
has two distinct endpoints on I

We call (M,γ) an asymptotically simple and empty spacetime, if additionally:2

4.
(︁
Rµν

)︁⃓⃓⃓
ι−1( ˜︁O)

≡ 0, where ˜︁O ⊂ ˜︂M is an open neighborhood of I ⊂ ˜︂M
♦

Proposition 2.1.4. Let (M,γ) be an asymptotically simple and empty spacetime. Then (M,γ)
is globally hyperbolic and thus parallelizable in four dimensions of spacetime.

Proof. The first part of the statement, i.e. that (M,γ) is globally hyperbolic, is a classical result
due to Ellis and Hawking [93, Proposition 6.9.2]. We conclude the second part, i.e. that (M,γ) is
parallelizable, by noting that we have additionally assumed spacetimes to be four-dimensional:
Thus, being globally hyperbolic, there is a well-defined three-dimensional space-submanifold,
which therefore is parallelizable as it is orientable by assumption. ■

Corollary 2.1.5. Any asymptotically simple and empty four-dimensional spacetime is spin.

Proof. This follows immediately from Proposition 2.1.4, as parallelizable manifolds are trivially
spin. ■

Proposition 2.1.6 ([94, 95]). A four-dimensional spacetime (M,γ) is spin if and only if it is
globally hyperbolic. Equivalently, (M,γ) is spin if and only if it is parallelizable.

Proof. These are two classical results by Geroch. ■

2This condition can be modified to allow electromagnetic radiation near I . We remark that asymptotically
simple and empty spacetimes are also called asymptotically flat.
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2.1. The geometry of spacetimes

Definition 2.1.7 (Simple spacetime). Let (M,γ) be a spacetime. We call the triple (M,γ, τ)
a simple spacetime, if M is diffeomorphic to the Minkowski spacetime M and τ : M → M is a
fixed such diffeomorphism (not necessarily an isometry), called the trivialization map. Fur-
thermore, we use τ to pushforward the metric γ to the Minkowski spacetime M via g :=
τ∗γ ∈ Γ

(︁
M , Sym2 T ∗M

)︁
to obtain an equivalence between the physical spacetime (M,γ) and

its background Minkowski spacetime (M , g) and to define the graviton field thereon, cf. Defini-
tion 2.1.10. ♦

Assumption 2.1.8. From now on, we assume spacetimes to be simple.

Remark 2.1.9. The rather restrictive setup of Assumption 2.1.8 is motivated by Proposition 2.1.4
and Proposition 2.1.6: It is physically reasonable to consider asymptotically simple and empty
spacetimes, as well as to demand a spin structure for fermionic particles. Thus, the spacetime
(M,γ) has the same asymptotic structure as the Minkowski spacetime (M , η) and is furthermore
parallelizable. This implies that it is diffeomorphic to the Minkowski spacetime of the same
dimension, modulo possible singularities. However, as we need the eigenvalues of the metric g
to be bounded by Assumption 2.1.12 for the following constructions, we exclude singularities
in our setup. This assumption allows us to view particle fields, in particular the graviton field,
as sections over Minkowski spacetime Γ (M , E), where πE : E → M is a suitable vector bundle
for the particle fields under consideration, cf. Definition 2.1.13. In turn, this enables us to use
Wigner’s classification of elementary particles via irreducible representations of the Poincaré
group [96], which will be studied in [6]. Thus we can proceed as usual by constructing the Fock
space to describe the quantum states of our corresponding Quantum Field Theory. Finally, this
setup provides a well-defined Fourier transformation for particle sections, cf. Definition 2.2.24.

Definition 2.1.10 (Metric decomposition and graviton field). Let (M,γ, τ) be a simple space-
time. Then we use the following metric decomposition on the background Minkowski spacetime
(M , η)

hµν :=
1

κ
(︁
gµν − ηµν

)︁
⇐⇒ gµν ≡ ηµν + κhµν , (2.1)

where κ :=
√
κ is the graviton coupling constant (with κ := 8πG the Einstein gravitational

constant). Thus, the graviton field hµν is given as a rescaled, symmetric (0, 2)-tensor field on
the background Minkowski spacetime, i.e. as the section κh ∈ Γ

(︁
M , Sym2 T ∗M

)︁
. ♦

Remark 2.1.11. Given the situation of Definition 2.1.10, the graviton field h depends directly on
the choice of the trivialization map τ . It can be shown, however, that this dependence can be
absorbed, if the theory is diffeomorphism-invariant [6]. Thus, this construction is in particular
well-defined for Linearized General Relativity.

Assumption 2.1.12. Given the metric decomposition from Definition 2.1.10, we assume the
following boundedness condition for the gravitational constant κ and the graviton field hµν :

|κ| ∥h∥max := |κ| max
λ∈EW(h)

|λ| < 1 , (2.2)

where EW (h) denotes the set of eigenvalues of h. This will be relevant for preceding assertions
to assure the convergence of series involving the graviton coupling constant κ and the graviton
field hµν .
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2. Gauge theories and gravity

Definition 2.1.13 (Correspondence to Minkowski spacetime). Let (M,γ, τ) be a simple space-
time and πE : E → M a vector bundle for particle fields. Then we extend the vector bundle
for particle fields via (τ ◦ πE) : E → M to a vector bundle over the background Minkowski
spacetime M , i.e. we have:

E

M M

πE
τ◦πE

τ

(2.3)

♦

Terminology 2.1.14. Given a spacetime (M,γ) and the Lagrange density of General Relativity
LGR together with a metric decomposition γµν ≡ bµν + κθµν , where bµν is a fixed background
metric on M , κ the gravitational coupling constant and θµν the corresponding graviton field on
M . Then we refer to the expansion of LGR in powers of κ as Linearized General Relativity.3

In the realm of this dissertation we assume spacetimes to be simple, and thus push forward
the metric decomposition and the particle fields to the background Minkowski spacetime M , in
order to apply Wigner’s elementary particle classification and define a sensible Fourier transfor-
mation. Furthermore, we choose bµν := τ∗ηµν , so that we expand the graviton field around the
Minkowski metric ηµν on the background Minkowski spacetime (M , η). Thus, in the following we
discuss general constructions on the spacetime (M,γ) and switch to the background Minkowski
spacetime (M , η) whenever we apply the linearization process.

Remark 2.1.15. Given the situation of Assumption 2.1.8, the gravitational path integral then
corresponds to an integral over the space of symmetric (0, 2)-tensor fields over the background
Minkowski spacetime M . As the construction of such integral measures over function spaces is
rather troublesome, we simply consider the ℏ ≪ 0 limit, where the Feynman graph expansion
can be interpreted as a ‘perturbative definition’ of the path integral. We refer to [41] for a more
physical treatment.

Assumption 2.1.16. We assume from now on that diffeomorphisms are homotopic to the
identity, i.e. ϕ ∈ Diff0 (M).

Remark 2.1.17. Assumption 2.1.16 is motivated by the fact that diffeomorphisms homotopic to
the identity are generated via the flows of compactly supported vector fields, X ∈ Xc (M), and
differ from the identity only on compactly supported domains. Thus, diffeomorphisms homotopic
to the identity preserve the asymptotic structure of spacetimes. We remark that, different from
finite dimensional Lie groups, the Lie exponential map

exp : Xc (M) → Diff0 (M) (2.4)

is no longer locally surjective, which leads to the notion of an evolution map

Evol : C∞ (︁[0, 1],Xc (M)
)︁
→ C∞ (︁[0, 1],Diff0 (M)

)︁
(2.5)

that maps smooth curves in the Lie algebra to smooth curves in the corresponding Lie group.
We refer to [87] for further details.

3This slight abuse of terminology is common in the physics literature.
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2.1. The geometry of spacetimes

Definition 2.1.18 (Transformation under (infinitesimal) diffeomorphisms). Given the situ-
ation of Definition 2.1.10 and Assumption 2.1.16, we define the action of diffeomorphisms
ϕ ∈ Diff0 (M) on the graviton field via

(τ ◦ ϕ)∗ (κh) := (τ ◦ ϕ)∗ g , (2.6)

such that the background Minkowski metric can be conveniently defined to be invariant, i.e.

(τ ◦ ϕ)∗ η := 0 , (2.7)

and on the other particle fields φ ∈ Γ (M , E) as usual, i.e. via

(τ ◦ ϕ)∗ φ . (2.8)

In particular, the action of infinitesimal diffeomorphisms is given via the Lie derivative with
respect the generating vector field X ∈ Xc (M), i.e.

δXhµν ≡ 1

κ

(︂
∇(g)
µ Xν +∇(g)

ν Xµ

)︂
, (2.9)

δXηµν ≡ 0 (2.10)

and

δXφ ≡ £Xφ , (2.11)

where ∇(g) denotes the covariant derivative with respect to the connection Γ induced via g on
M , i.e. via

Γρµν :=
1

2
gρσ

(︁
∂µgσν + ∂νgµσ − ∂σgµν

)︁
. (2.12)

The concrete action will be considered further in Definition 2.2.9. ♦

Remark 2.1.19. Using the setup from Assumptions 2.1.8, 2.1.12 and 2.1.16 and Definition 2.1.10,
2.1.13 and 2.1.18, we can view Linearized General Relativity coupled to matter from the Standard
Model as a ‘generalized gauge theory’ on the background Minkowski spacetime: The ‘gauge
group’ is then given via the pushforward of diffeomorphisms homotopic to the identity by the
trivialization map, i.e. ˜︁D := τ∗Diff0 (M) ∼= Diff0 (M). Furthermore, their infinitesimal actions
are given via Lie derivatives with respect to compactly supported vector fields Xc (M). In
particular, the right setting to study the gauge theoretic properties of such a theory is given
via the Lie groupoid

(︁ ˜︁D × B
)︁
⇒ B over the background Minkowski spacetime-matter bundle

B := M × V . Additionally, the action of infinitesimal diffeomorphisms is embedded into this
picture via the corresponding Lie algebroid ((Xc (M) × B) → B, [·, ·], ρ): More precisely, [·, ·] is
the Lie bracket on Xc (M) and ρ : (Xc (M)× B) → TB the anchor map. Then, as in the case of
‘ordinary gauge theories’ — that is gauge theories coming from a principle bundle structure —
the invariance of the theory under diffeomorphisms provides an obstacle for the calculation of the
propagator. We solve this issue by introducing a linearized de Donder gauge fixing together with
the corresponding ghost and antighost fields, C ∈ Γ

(︁
M , T ∗[1, 0]M

)︁
and C ∈ Γ

(︁
M , T [−1, 0]M

)︁
,

respectively. This viewpoint will be elaborated in [6].

Terminology 2.1.20 (Linearized General Relativity). Given General Relativity modeled on
a simple spacetime (M,γ, τ) together with a metric decomposition gµν ≡ hµν + κβµν on M .
Then we use the term Linearized General Relativity by slight abuse of terminology not only
for linear monomials, but for the complete expansion of the Lagrange density in powers of κ.
This is common usage in the physics literature. Additionally, we will not distinguish in the
following between the spacetime M , the Minkowski background spacetime M as well as the
corresponding (metric) tensors γ, θ, b ∈ Γ

(︁
M, Sym2 (T ∗M)

)︁
and their respective pushforwards

g, h, β ∈ Γ
(︁
M , Sym2 (T ∗M)

)︁
via τ . We refer to Section 4.1 for a detailed derivation thereof.
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2. Gauge theories and gravity

2.2 The geometry of particle fields

In this section, we discuss the geometry of particle fields. To this end, we first define graded
supermanifolds together with a supercommutator that turns the module of super vector fields
into a Lie superalgebra. Then we discuss homological and cohomological vector fields as odd
supercommuting vector fields of degree 1 or −1, respectively. With that, we define the spacetime-
matter vector bundle as the globally trivial Z2-graded super vector bundle that describes the
particle fields of (effective) Quantum General Relativity coupled to the Standard Model as its
sheaf of sections. Then we discuss again the diffeomorphism group as well as the group of gauge
transformations together with their actions. Furthermore, we discuss metrics, (inverse) vielbein
fields, connections, the Clifford multiplication and relation, the (twisted) Dirac operator, cur-
vature tensors, the Riemannian and Minkowskian volume forms and the Fourier transformation
for particle fields.

Definition 2.2.1 (Z2-graded supermanifold). Let M be a topological manifold. We call M a
Z2-graded supermanifold, if it is isomorphic to a vector bundle π : M → M that splits into a
direct sum bundle such that the following diagram commutes

M
⨁︂

(i,j)∈Z2

M(i,j)

M

π

∼

π̃

, (2.13)

where (i, j) ∈ Z2 denotes the degree of the subbundles and M(0,0)
∼= {0}, i.e. the degree (0, 0)

is concentrated in the so-called body M . We call the first integer i the graviton-ghost degree,
the second integer j the gauge ghost degree and their sum k := i + j the total ghost degree.
Additionally, we assume that the grading is compatible with the super structure of M, which
means that the parity of a subbundle is given via

p ≡ i+ j Mod 2 , (2.14)

where 0 ∈ Z2 denotes even coordinates and 1 ∈ Z2 denotes odd coordinates. Concretely, on the
level of graded super functions C (U) for U ⊆ M this means that

C
(︁
U(i,j)

)︁ ∼=
⎧⎪⎪⎨⎪⎪⎩
C∞(︁U(0,0)

)︁
if (i, j) = (0, 0)

S
(︁
U(i,j)

)︁
if p = 0

A
(︁
U(i,j)

)︁
if p = 1

, (2.15)

where U(i,j) ⊆ M(i,j) is an open subset, C∞(︁U(0,0)

)︁
denotes real smooth functions on U ⊆ M ,

S
(︁
U(i,j)

)︁
denotes symmetric formal power series and A

(︁
U(i,j)

)︁
denotes antisymmetric formal

power series. Finally, we define the grade shift via

M(i,j)[m,n] := M(i+m,j+n) , (2.16)

which additionally implies a potential shift in parity according to Equation (2.14). We refer to
[97] for more details in this direction. ♦

Definition 2.2.2 (Supercommutator). Let M be a supermanifold and X1,X2 ∈ X (M) be two
super vector fields of distinct parity p1, p2 ∈ Z2. Then we introduce the supercommutator as
follows: [︁

X1,X2

]︁
:= X1 (X2)− (−1)p1p2 X2 (X1) (2.17)
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2.2. The geometry of particle fields

This turns the module (X (M) , [·, ·]) into a Lie superalgebra. ♦

Assumption 2.2.3. In the following, we assume that the grading is compatible with the super
structure in the sense of Equation (2.14).

Definition 2.2.4 (Homological and cohomological vector fields). Let M be a Z-graded super-
manifold with compatible super structure. Then we denote the subspace of pure super vector
fields Xµ with degree z ∈ Z by X(z) (M). Then an odd vector field Ξ ∈ X (M) with the property[︁

Ξ,Ξ
]︁
≡ 2Ξ2 ≡ 0 (2.18)

is called homological if Ξ ∈ X(−1) (M) and cohomological if Ξ ∈ X(1) (M). This turns (C• (M) ,Ξ)
into a chain complex and the pair (M,Ξ) is called a differential-graded manifold. ♦

Example 2.2.5. Let M be a manifold with Ω• (M) its sheaf of differential forms. Let further-
more M := T [1]M denote its degree shifted tangent bundle. Then we can identify M ∼= Ω• (M)
and obtain a cohomological vector field via the de Rham differential d ∈ X(1) (M) and a homo-
logical vector field via the de Rham codifferential δ ∈ X(−1) (M).

Definition 2.2.6 (Spacetime-matter bundle). Let (M,γ) be a simple spacetime. Then we define
the spacetime-matter bundle of (effective) Quantum General Relativity coupled to the Standard
Model as the globally trivial Z2-graded super bundle βQ : BQ → M , where BQ := M ×M VQ is
the fiber product over M with

VQ := LorMet (M)×
(︁
T ∗M ⊗R E

)︁
×
(︃
G×ρ

(︂
H(i) ⊕ ΣM⊕j

)︂)︃
× Conn (M, g)×

(︂
T ∗[1, 0]M ⊕ T [−1, 0]M ⊕ TM

)︂
×
(︂
g[0, 1]⊕ g∗[0,−1]⊕ g∗

)︂
,

(2.19)

where LorMet (M) ⊂ Sym2
R (T ∗M) is the vector bundle of Lorentzian metrics with signature

(1, d − 1) and T ∗M ⊗R E is the vector bundle of vielbein fields with E a real d-dimensional
vector bundle. Furthermore, G ×ρ

(︁
H(i) ⊕ ΣM⊕j)︁ is the fiber product with respect to the

action ρ of the gauge group G on the Higgs bundle H(i) := Ci and the vector of spinor bundles
ΣM⊕j ∼= C4j . Moreover, Conn (M, g) ⊂ Ω1 (M, g) denotes the vector bundle of local connection
forms. Finally, T ∗[1, 0]M ⊕ T [−1, 0]M and g[0, 1] ⊕ g∗[0,−1] denote the degree-shifted vector
bundles for graviton-ghosts and gauge ghosts, respectively, and the additional bundles TM and
g∗ are for the Lautrup–Nakanishi auxiliary fields. We equip the spacetime-matter bundle with
metrics in Definition 2.2.10 which, in turn, naturally include the corresponding dual bundles.4

Additionally, we also equip it with connections in Definition 2.2.13 such that we have a notion
of curvature, cf. Definition 2.2.20. ♦

Remark 2.2.7. The global triviality of the spacetime-matter bundle in Definition 2.2.6 is moti-
vated by the following facts: The tangent bundle TM and the spinor bundle ΣM are globally
trivial since simple spacetimes are defined to be diffeomorphic to the Minkowski spacetime and
are thus in particular parallelizable, cf. Definition 2.1.7. Furthermore, the vector bundle E is cho-
sen to be globally trivial for the definition of vielbeins and inverse vielbeins, cf. Definition 2.2.11.
Moreover, the G-principle bundle is chosen to be globally trivial to allow for global sections and
avoid instanton solutions. Finally, the degree shifted Lie algebra and dual Lie algebra bundles

4We denote the dual bundles via the asterisk, ∗, except for the spinor bundle, twisted spinor bundle and the
parity shifted Lie algebra and dual Lie algebra bundles of the gauge groups for which we use the overline, .
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2. Gauge theories and gravity

of the gauge groups T [1, 0]M ⊕ T ∗[−1, 0]M and g[0, 1]⊕ g[0,−1] are globally trivial because of
the global triviality of the bundles TM and G.

Definition 2.2.8 (Sheaf of particle fields). Let (M,γ) be a simple spacetime with topology TM
and βQ : BQ →M the spacetime-matter bundle from Definition 2.2.6. Then we define the sheaf
of particle fields via

FQ : TM → Γ
(︁
M,BQ

)︁
, U ↦→ Γ (U,B) , (2.20)

where B ⊂ BQ is one of the subbundles from Equation (2.19). More precisely, we consider the
following particle fields:

• Lorentzian metrics γ ∈ LorMet (M)

• Graviton fields h ∈ Grav (M)

• Vielbein fields e ∈ Γ
(︁
M,T ∗M ⊗R E

)︁
• Vector of 2i Higgs and Goldstone fields Φ ∈ Γ

(︁
M,H(i)

)︁
• Vector of j fermion fields Ψ ∈ Γ

(︁
M,ΣM⊕j)︁

• Gauge boson fields igA ∈ Conn (M, g)

• Graviton-ghost fields C ∈ Γ
(︁
M,T ∗[1, 0]M

)︁
• Graviton-antighost fields C ∈ Γ

(︁
M,T [−1, 0]M

)︁
• Gauge ghost fields c ∈ Γ

(︁
M, g[0, 1]

)︁
• Gauge antighost fields c ∈ Γ

(︁
M, g∗[0,−1]

)︁
• Graviton-Lautrup–Nakanishi auxiliary fields B ∈ Γ

(︁
M,TM

)︁
• Gauge Lautrup–Nakanishi auxiliary fields b ∈ Γ

(︁
M, g∗

)︁
♦

Definition 2.2.9 (Diffeomorphism group and group of gauge transformations). Given the sit-
uation of Definition 2.1.18, the physical theories that we are studying are invariant under the
action of two groups: The diffeomorphism group homotopic to the identity D := Diff0 (M) and
under the group of gauge transformations G := Γ (M,M ×G), where G ∼= U(1)× ˜︁G is the gauge
group with ˜︁G compact and semisimple, cf. [98, 99, 100, 101] for a discussion on the Standard
Model gauge group. The diffeomorphism group homotopic to the identity acts via

ϱ : D × BQ → BQ (ϕ, φ) ↦→ ϕ∗φ , (2.21a)

where ϱ acts naturally on M and via pushforward on the corresponding particle bundles.5

Furthermore, the group of gauge transformations acts via

ρ : G × BQ → BQ (γ, φ) ↦→ γ · φ , (2.21b)

where ρ acts via the matrix representation on the vectors of Higgs and spinor fields. Additionally,
we also consider the action of infinitesimal diffeomorphisms via

ϱ : D× BQ → BQ (X,φ) ↦→ £Xφ , (2.22a)

5The action on the spinor bundle is more involved, as its construction depends crucially on the metric g. We
refer to [102] for an explicit construction.
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2.2. The geometry of particle fields

where D := diff (M) ∼= Xc (M) is the Lie algebra of compactly supported vector fields and £X

denotes the Lie derivative of the geodesic exponential map. Moreover, we also consider the
action of infinitesimal gauge transformations via

ρ : G× BQ → BQ (Z,φ) ↦→ ℓZφ , (2.22b)

where G := Γ (M,M × g) is the Lie algebra of g-valued vector fields, with g the Lie algebra of
the gauge group G, and ℓZ denotes the Lie derivative of the Lie exponential map. ♦

Definition 2.2.10 (Metrics on the spacetime-matter bundle). We consider the following metrics
on the spacetime-matter bundle BQ: On the tangent bundle TM we consider the Lorentzian
metric g with West coast (“mostly minus”) signature, mapping vector fields X1, X2 ∈ Γ (M,TM)
to the real number

⟨X1, X2⟩TM := gµνX
µ
1X

ν
2 ∈ R . (2.23)

Furthermore, on the real vector bundle E we consider the constant Minkowski metric η with
West coast (“mostly minus”) signature, mapping vector fields Y1, Y2 ∈ Γ (M,E) to the real
number

⟨Y1, Y2⟩E := ηmnY
m
1 Y n

2 ∈ R . (2.24)

Moreover, on the Higgs bundle H(i) we use the Hermitian metric, mapping vectors of scalar
fields Φ1,Φ2 ∈ Γ

(︁
M,H(i)

)︁
to the complex number

⟨Φ1,Φ2⟩H(i) := Φ†
1Φ2 ∈ C , (2.25)

where † denotes Hermitian conjugation. We extend this metric G-invariantly to the twisted
Higgs bundle G×ρ H

(i), i.e. such that⟨︁
ρ (g) Φ1, ρ (g) Φ2

⟩︁
G×ρH(i) ≡ ⟨Φ1,Φ2⟩G×ρH(i) (2.26)

holds for all g ∈ G. Finally, on the vector of spinor bundles ΣM⊕j we use the Hermitian metric
together with the Clifford multiplication by the unit timelike vector field, mapping vectors of
spinor fields Ψ1,Ψ2 ∈ Γ

(︁
M,ΣM⊕j)︁ to the complex number

⟨Ψ1,Ψ2⟩ΣM⊕j := Ψ1Ψ2 ∈ C , (2.27)

where we have set Ψ := em0 ψ
†γm, with the curved unit timelike vector field components of a

vielbein em0 ,6 being introduced in Definition 2.2.11, and the Clifford multiplication γm, being
introduced in Definition 2.2.15. We extend this metric G-invariantly to the twisted spinor bundle
G×ρ ΣM

⊕j , i.e. such that⟨︁
ρ (g)Ψ1, ρ (g)Ψ2

⟩︁
G×ρΣM⊕j ≡ ⟨Ψ1,Ψ2⟩G×ρΣM⊕j (2.28)

holds for all g ∈ G. ♦

Definition 2.2.11 (Vielbeins and inverse vielbeins). Let BQGR-QED be the spacetime-matter
bundle. Then we can define global vector bundle isomorphisms e ∈ Γ (M,T ∗M ⊗R E), called
vielbeins, such that

gµν = ηmne
m
µ e

n
ν . (2.29a)

6We remark that since we consider matter-compatible spacetimes to be diffeomorphic to the Minkowski space-
time and thus in particular diffeomorphic to a globally hyperbolic spacetime, it is also possible to consider charts
in which em0 ≡ δm0 such that in particular em0 γm ≡ γ0, and some references use this implicitly, e.g. [39]. However it
should be noted that then the theory is only invariant under diffeomorphisms which preserve global hyperbolicity.
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Furthermore, we can define global inverse vector bundle isomorphisms e∗ ∈ Γ (M,TM ⊗R E
∗),

called inverse vielbeins, such that7

ηmn = gµνe
µ
me

ν
n . (2.29b)

Greek indices, here µ and ν, belong to the tangent bundle TM and are referred to as curved
indices. Thus, they are raised and lowered using the usual metric gµν and its inverse gµν . Latin
indices, here m and n, belong to the vector bundle E and are referred to as flat indices. Thus,
they are raised and lowered using the Minkowski metric ηmn and its inverse ηmn. Therefore,
inverse vielbeins are related to vielbeins via

eµm = gµνηmne
n
ν . (2.30)

Moreover, notice that Equations (2.29a) and (2.29b) are equivalent to

gµνe
ν
n = ηmne

m
µ = eµn , (2.31)

which states that, when suppressing the Einstein summation convention on the flat indices and
viewing them as numbers, inverse vielbeins

{︁
eµm
}︁
m∈{1,2,3,4} are the set of the 4 eigenvector fields

of the metric gµν with eigenvalues ηmm ∈ {±1}, which are normalized to unit length

∥em∥g :=
√︂⃓⃓

gµνe
µ
meνm

⃓⃓
=
√︁
|ηmm| = 1 . (2.32)

Finally, we remark that the global definition of vielbeins and inverse vielbeins is only possible for
parallelizable manifolds, such as the simple spacetimes of Definition 2.1.7. This is because the
tangent frame bundle FM allows for a global section if and only if the manifold is parallelizable,
i.e. it is then possible to choose a global coordinate system on TM that consists of normalized
eigenvector fields of the metric gµν . ♦

Remark 2.2.12. Given the situation of Definition 2.2.11, notice that the definitions of vielbeins
and inverse vielbeins are not unique, since for any local Lorentz transformation acting on E∗, i.e.
a section of the corresponding orthogonal frame bundle Λ ∈ Γ (U,FOE

∗) acting via the standard
representation on E∗, we have

gµνe
µ
me

ν
n = ηmn

= ηrsΛ
r
mΛ

s
n

= gµνe
µ
r e
ν
sΛ

r
mΛ

s
n

= gµν ẽ
µ
mẽ

ν
n .

(2.33)

Here, we denoted the transformed inverse vielbeins via ẽµm := eµrΛrm. Obviously the same
calculation also holds for vielbeins instead of inverse vielbeins with local Lorentz transformations
acting on E. This ambiguity will lead to the first term in the spin connection, enν

(︁
∂µe

ν
l

)︁
, cf.

Equation (2.37). In fact, the first term in the spin connection can be viewed as the gauge field
associated to local Lorentz transformations.

Definition 2.2.13 (Connections on the spacetime-matter bundle). We use the following con-
nections on the spacetime-matter bundle BQ: For the tangent bundle TM of the manifold M
we use the Levi-Civita connection ∇TM

µ , acting on a vector field X ∈ Γ (M,TM) via

∇TM
µ Xν := ∂µX

ν + ΓνµλX
λ (2.34a)

7We omit the asterisk, ∗, for inverse vielbeins e∗ when the abstract index notation is used because of Equa-
tion (2.30).
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and on the corresponding covector field via

∇TM
µ Xν := ∂µXν − ΓλµνXλ , (2.34b)

with the Christoffel symbol Γνµλ, given in the case of the Levi-Civita connection via

Γνµλ :=
1

2
gντ

(︁
∂µgτλ + ∂λgµτ − ∂τgµλ

)︁
. (2.35)

Furthermore, for the vector bundle E we use the covariant derivative ∇E
µ , induced via the

connection on the tangent bundle using vielbeins and inverse vielbeins and acting on a vector
field Y ∈ Γ (M,E) via

∇E
µ Y

n := ∂µY
n + ωnµlY

l (2.36a)

and on the corresponding covector field via

∇E
µ Yn := ∂µYn − ωlµnYl , (2.36b)

with the spin connection

ωnµl := enν

(︂
∇TM
µ eνl

)︂
≡ enν

(︁
∂µe

ν
l

)︁
+ enνΓ

ν
µλe

λ
l .

(2.37)

We remark that the first term in the spin connection, enν
(︁
∂µe

ν
l

)︁
, is due to the ambiguity in the

definition of vielbeins and inverse vielbeins, as was discussed in Remark 2.2.12. Moreover, on

the twisted Higgs bundle G ×ρ H
(i), we use the covariant derivative ∇G×ρH(i)

µ , acting on the
twisted Higgs and Goldstone fields Φ ∈ Γ

(︁
M,G×ρ H

(i)
)︁
via

∇G×ρH(i)

µ Φk := ∂µΦ
k + igAbµH

k
b lΦ

l (2.38a)

and on the corresponding dual section via

∇G×ρH(i)

µ Φ∗
k := ∂µΦ

∗
k − igAbµH

l
bk Φ

∗
l , (2.38b)

where H ∈ Γ
(︁
M, g∗ ⊗R End

(︁
H(i)

)︁)︁
denotes the representation of g via ρ on the Higgs bundle

H(i). Finally, on the twisted vector of spinor bundles we use the covariant derivative ∇G×ρΣM⊕j

µ ,
acting on a twisted vector of spinor fields Ψ ∈ Γ

(︁
M,G×ρ ΣM

⊕j)︁ via
∇G×ρΣM⊕j

µ Ψk := ∂µΨ
k +ϖµΨ

k + igAbµS
k
b lΨ

l (2.39a)

and on the corresponding dual section via

∇G×ρΣM⊕j

µ Ψk := ∂µΨk −Ψkϖµ − igAbµS
l

bk Ψl , (2.39b)

with the spinor bundle spin connection

ϖµ := − i

4
ωrsµ σrs , (2.40)

where σrs := i
2 [γr,γs] denotes the Clifford representation of spin(1, 3) on ΣM⊕j and S ∈

Γ
(︁
M, g∗ ⊗R End

(︁
ΣM⊕j)︁)︁ denotes the representation of g via ρ on the vector of spinor bundles

ΣM⊕j . We remark that the Levi-Civita connection is metric and torsion-free and the other
connections are metric. ♦
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Remark 2.2.14 (Tetrad postulate). Given the situation of Definition 2.2.11, the tetrad postu-
late states that vielbeins and inverse vielbeins are parallel sections in Γ (U, T ∗M ⊗R E) and
Γ (U, TM ⊗R E

∗), respectively, with respect to the corresponding tensor product bundle con-
nection, cf. Definition 2.2.13, i.e. we have

∇TM⊗RE
µ enν = ∂µe

n
ν − Γλµνe

n
λ + σnµle

l
ν ≡ 0 (2.41a)

and

∇TM⊗RE
µ eνn = ∂µe

ν
n + Γνµλe

λ
n − σlµne

ν
l ≡ 0 . (2.41b)

In particular, this implies that it is irrelevant whether vielbeins and inverse vielbeins are placed
before or after the covariant derivative ∇TM⊗RE

µ on the product bundle TM ⊗R E. Finally, we
remark that despite its name the tetrad postulate is not a postulate but a consequence of the
definition of the connection on E via the connection on TM using vielbeins and inverse vielbeins.

Definition 2.2.15 (Clifford multiplication). Given the spacetime-matter bundle BQ, we define
the Clifford multiplication γ ∈ Γ

(︁
M,E∗ ⊗R End

(︁
ΣM⊕j)︁)︁ for vector fields Y ∈ Γ (M,E) and

vectors of spinor fields Ψ ∈ Γ
(︁
M,ΣM⊕j)︁ via

Y ·Ψ := Y mγmΨ . (2.42)

Furthermore, using vielbeins e ∈ Γ (M,T ∗M ⊗R E), we can define the extended Clifford multi-
plication γ ◦ e ∈ Γ

(︁
M,T ∗M ⊗R End

(︁
ΣM⊕j)︁)︁ for vector fields X ∈ Γ (M,TM) via

X ·Ψ := Xµemµ γmΨ . (2.43)

Additionally, we extend the above definitions naturally to the twisted vector of spinor bundles
G×ρ ΣM

⊕j . ♦

Remark 2.2.16. We remark that the Clifford multiplication γ or γ ◦ e turns the spaces of spinor
fields Γ

(︁
M,ΣM⊕j)︁ and twisted spinor fields Γ

(︁
M,G×ρ ΣM

⊕j)︁ into modules over the space of
vector fields Γ (M,E) or Γ (M,TM), respectively.8 Furthermore, it induces an automorphism if
and only if the corresponding vector field Y ∈ Γ (M,E) orX ∈ Γ (M,TM) has nowhere vanishing
seminorm with respect to the metric ηmn or gµν , respectively, i.e. ∥Y ∥η :=

√︁
|ηmnY mY n| ̸≡ 0 or

∥X∥g :=
√︁

|gµνXµXν | ̸≡ 0.9

Definition 2.2.17 (Clifford relation). We set the Clifford relation for the vector bundle E as

{γm,γn} = 2ηmn IdΣM⊕j , (2.44)

or equivalently, using vielbeins e ∈ Γ (M,T ∗M ⊗R E), for the tangent bundle TM as

emµ e
n
ν {γm,γn} = 2gµν IdΣM⊕j . (2.45)

♦

8This is similar to the fact that all spaces of (super) vector fields are modules over the space of real or complex
functions.

9Again, this is similar to the fact that the multiplication of a (super) vector field with a real or complex function
induces an automorphism if and only if the corresponding function has nowhere vanishing absolute value.
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Remark 2.2.18. We remark that the West coast (“mostly minus”) signature for the metrics g
and η together with the “plus signed” Clifford relation induces a quaternionic representation for
the Clifford algebra Cliff (1, 3) as the matrix algebra Mat (2,H). Choosing the Pauli matrices as
a representation for the quaternions, we obtain the usual complex Dirac representation as the
matrix algebra Mat (4,C), whose generators are Hermitian.

Definition 2.2.19 ((Twisted) Dirac operator). Let BQ be the spacetime-matter bundle from

Definition 2.2.6. Then we define the Dirac operator /∇ΣM⊕j

on vectors of spinor fields Ψ ∈
Γ
(︁
M,ΣM⊕j)︁ such that the following diagram commutes:

Γ
(︁
M,ΣM⊕j)︁ Γ

(︁
M,ΣM⊕j)︁

Γ
(︁
M,T ∗M ⊗R ΣM⊕j)︁ Γ

(︁
M,TM ⊗R ΣM⊕j)︁

/∇ΣM⊕j

∇ΣM⊕j
·

g−1⊗RIdΣM⊕j

γ◦e (2.46a)

Here, ∇ΣM⊕j

µ = ∂µ +ϖµ is the covariant derivative on the vector of spinor bundles ΣM⊕j and
enνγn is the local representation of the Clifford-multiplication. Thus, the local description of the
Dirac-operator on the spinor bundle ΣM⊕j is given via10

/∇ΣM⊕j

:= eµmγm∇ΣM⊕j

µ

≡ eµmγm
(︁
∂µ +ϖµ

)︁
.

(2.46b)

Additionally, we extend this definition to the twisted vector of spinor bundles G ×ρ ΣM
⊕j by

using the covariant derivative ∇G×ρΣM⊕j

µ instead of ∇ΣM⊕j

µ : This yields the local description of
the twisted Dirac-operator on the twisted vector of spinor bundles G×ρ ΣM

⊕j

/∇G×ρΣM⊕j

:= eµmγm∇
G×ρΣM⊕j

µ

≡ eµmγm

(︂
∂µ +ϖµ + igAaµSa

)︂
.

(2.46c)

♦

Definition 2.2.20 (Curvatures of the spacetime-matter bundle). Using the connections from
Definition 2.2.13, we can construct the following curvature tensors: We start with the Riemann
tensor of the tangent bundle, which acts on a vector field X ∈ Γ (M,TM) via

RρσµνX
σ :=

[︂
∇TM
µ ,∇TM

ν

]︂
Xρ (2.47a)

and reads

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ . (2.47b)

From this, we can define the Ricci tensor as the following contraction

Rµν := Rρµρν , (2.48)

10Notice that by the tetrad postulate given in Remark 2.2.14 it does not matter whether we place the inverse
vielbeins eµm before or after the covariant derivative ∇ΣM

µ .
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and then the Ricci scalar as the final contraction

R := gµνRµν . (2.49)

Furthermore, we obtain the curvature form on the G-principle bundle via

fabcF
b
µνs

c :=
[︂
∇G
µ ,∇G

ν

]︂
sa , (2.50a)

where f ∈ Γ
(︁
M, g∗ ⊗R End (g)

)︁
denotes the adjoint representation, and reads

F aµν = g
(︂
∂µAν − ∂νAµ − gfabcA

b
µA

c
ν

)︂
, (2.50b)

where the indices a, b and c are with respect to the adjoint representation f of g on itself. ♦

Proposition 2.2.21 (Ricci scalar for the Levi-Civita connection, [1]). Using the Levi-Civita
connection, the Ricci scalar is given via partial derivatives of the metric and its inverse as
follows:

R = gµρgνσ
(︁
∂µ∂νgρσ − ∂µ∂ρgνσ

)︁
+ gµρgνσgκλ

(︄(︁
∂µgκλ

)︁(︃
∂νgρσ −

1

4
∂ρgνσ

)︃
+
(︁
∂νgρκ

)︁(︃3

4
∂σgµλ −

1

2
∂µgσλ

)︃

−
(︁
∂µgρκ

)︁
(∂νgσλ)

)︄ (2.51)

Proof. See Proposition 4.1.3 for the proof of a slightly more general statement. ■

Remark 2.2.22. Assuming the Levi-Civita connection, the Riemann tensor Rρσµν and the Ricci
tensor Rµν are not sensitive to the choice of the signature of the metric gµν , whereas the lowered
Riemann tensor Rρσµν := gρλR

λ
σµν and the Ricci scalar R are. Therefore, the Einstein-Hilbert

Lagrange density is sensitive to this choice as well, which is the reason for the minus sign in
front of the Einstein-Hilbert Lagrange density in Equation (2.56) in our West coast (“mostly
minus”) signature, cf. Convention 2.1.1.

Definition 2.2.23 (Riemannian and Minkowskian volume forms). Given a manifold (M, g), we
define the Riemannian volume form for the metric g via

dVg :=
√︁

−Det (g) dt ∧ dx ∧ dy ∧ dz . (2.52)

Additionally, given the Minkowski metric η, we define the Minkowskian volume form via

dVη = dt ∧ dx ∧ dy ∧ dz . (2.53)

♦

Definition 2.2.24 (Fourier transformation). Let (M,γ, τ) be a simple spacetime with back-
ground Minkowski spacetime (M , η). Using the correspondence from Definition 2.1.13, we define
the Fourier transformation for particle fields, i.e. sections φ ∈ Γ (M,E), as follows:

F : Γ
(︁
M,E

)︁
→ ˆ︁Γ(︁M,E

)︁
, φ (xα) ↦→ ˆ︁φ (pα) (2.54a)

with

ˆ︁φ (pα) :=
1

(2π)2
τ∗
(︃∫︂

M
(τ∗φ)

(︁
yβ
)︁
e−iη(y,p) dVη

)︃
(2.54b)

♦

36



2.3. Lagrange densities

2.3 Lagrange densities

In this section, we discuss the Lagrange densities of (effective) Quantum General Relativity
coupled to the Standard Model. Lagrange densities are local functionals on the sheaf of particle
fields that induce their equations of motion via an Euler–Lagrange variation. More precisely, a
Lagrange functional is a map

LQ : BQ → Ωtop (M) , (2.55a)

where BQ is the spacetime-matter bundle and Ωtop (M) the vector space of top forms on M .
More precisely, the locality of LQ means that it factors uniquely as follows

BQ Ωtop (M)

JkBQ

LQ

Jk jkLQ

, (2.55b)

where JkBQ denotes the k-th jet bundle of BQ for some k ∈ N. In particular, for (effective)
Quantum General Relativity coupled to the Standard Model we can chose k = 2 or even k = 1
after suitable partial integrations if boundary terms can be neglected.

2.3.1 Gravitons and graviton-ghosts

We start in this subsection with the Lagrange density of (effective) Quantum General Relativity,
i.e. gravitons and their ghost.

Convention 2.3.1 (Lagrange density). We choose the following signs and prefactors for the
Lagrange density, where dVg :=

√︁
−Det (g) dt∧dx∧dy∧dz and dVη := dt∧dx∧dy∧dz denote

the Riemannian and Minkowskian volume forms, respectively:

1. Einstein-Hilbert Lagrange density:

LGR := − 1

2κ2
R dVg , (2.56)

with R := gνσRµσµν

2. Linearized de Donder Gauge fixing Lagrange density:

LGF := − 1

4κ2ζ
ηµνdD(1)

µ dD(1)
ν dVη , (2.57)

with dD
(1)
µ := ηρσΓρσµ ≡ κηρσ

(︂
∂ρhµσ − 1

2∂µhρσ

)︂
3. Ghost Lagrange density:

LGhost := − 1

2ζ
ηρσC

µ (︁
∂ρ∂σCµ

)︁
dVη

− 1

2
ηρσC

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂
dVη ,

(2.58)

with C ∈ Γ
(︁
M,T ∗[1, 0]M

)︁
and C ∈ Γ

(︁
M,T [−1, 0]M

)︁
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The Lagrange density of (effective) Quantum General Relativity is then the sum of the three,
i.e.

LQGR := LGR + LGF + LGhost

≡ − 1

2κ2

(︃√︁
−Det (g)R+

1

2ζ
ηµνdD(1)

µ dD(1)
ν

)︃
dVη

− 1

2
ηρσ

(︃
1

ζ
C
µ (︁
∂ρ∂σCµ

)︁
+ C

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂)︃
dVη ,

(2.59)

cf. [1, Section 2.2]. We remark that the ghost Lagrange density is constructed via Faddeev-
Popov’s method [103], cf. [1, Subsection 2.2.3] and [3, 4], which can be embedded into the more
elaborate settings of BRST cohomology and BV formalism. ♦

Remark 2.3.2. The reason for the sign choices from Convention 2.3.1 are as follows: The minus
sign for the Einstein-Hilbert Lagrange density is due to the sign choice for the Minkowski metric,
cf. Convention 2.1.1. Then, the minus sign for the gauge fixing Lagrange density is such that
ζ = 1 corresponds to the de Donder gauge fixing. Finally, the sign for the ghost Lagrange
density is, as usual, an arbitrary choice, and is chosen such that all Lagrange densities have the
same sign.

Remark 2.3.3. Contrary to Yang–Mills Lagrange densities, which are strictly invariant under
gauge transformations, the Einstein-Hilbert Lagrange density is not invariant under general dif-
feomorphisms as it is a tensor density of weight 1. More precisely, the action of an infinitesimal
diffeomorphism adds a total derivative to the Einstein–Hilbert Lagrange density if the corre-
sponding vector field is not Killing (else the Lagrange density would remain unchanged).

2.3.2 Gravitons and matter from the Standard Model

We proceed in this subsection by discussing the couplings of gravitons to matter from the
Standard Model. To this end, we first classify all appearing gravity-matter interactions into 10
Lagrange densities, henceforth referred to as matter-model Lagrange densities. Then we discuss
the Lagrange densities for gravitons with scalar particles, spinor particles, gauge bosons and
gauge ghosts in detail.

Lemma 2.3.4. Consider (effective) Quantum General Relativity coupled to the Standard Model
(QGR-SM). Then the interaction Lagrange densities between gravitons and matter particles are
of the following 10 types:11

L1 QGR-SM := T1 dVg , (2.60)

L2 QGR-SM :=
(︂
gµν T2 µν

)︂
dVg , (2.61)

L3 QGR-SM :=
(︂
gµνgρσ T3 µνρσ

)︂
dVg , (2.62)

L4 QGR-SM :=
(︂
gµνΓτµν T4 τ

)︂
dVg , (2.63)

L5 QGR-SM :=
(︂
gµνgρσΓτµν T5 ρστ

)︂
dVg , (2.64)

L6 QGR-SM :=
(︂
gµνgρσΓκµνΓ

λ
ρσ T6 κλ

)︂
dVg , (2.65)

L7 QGR-SM := (eo0 T7 o ) dVg , (2.66)

11We remark that the tensors Tk are not related to Hilbert stress-energy tensors. More precisely, they are
defined as the graviton-free matter contributions of the corresponding Lagrange densities.
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L8 QGR-SM :=
(︂
eo0e

ρr T8 oρr

)︂
dVg , (2.67)

L9 QGR-SM :=

(︃
eo0e

ρreσs
(︂
∂ρe

t
σ

)︂
T9 orst

)︃
dVg , (2.68)

and

L10 QGR-SM :=
(︂
eo0e

ρreσsetτΓ
τ
ρσ T10 orst

)︂
dVg . (2.69)

Proof. A direct computation shows that the scalar particles form the Standard Model are of
type 1 and 2. Furthermore, the spinor particles from the Standard Model are of type 7, 8, 9
and 10. Moreover, the bosonic gauge boson particles from the Standard Model are of type 3, 5
and 6 and additionally 1, 2 and 4 for spontaneous symmetry breaking. Finally, the gauge ghosts
are of type 2 and 4 and additionally 1 for spontaneous symmetry breaking. This is discussed in
detail in the following four Subsubsections. ■

Gravitons and scalar particles

Scalar particles from the Standard Model are the Higgs and Goldstone bosons.12 In the following
we describe the interaction of gravitons with a real scalar field and twisted Higgs and Goldstone
fields (which leads to spontaneous symmetry breaking). Geometrically they are described via
sections ϕ ∈ Γ (M,R) and Φ ∈ Γ

(︁
M,H(i)

)︁
, respectively. Then, the corresponding Lagrange

densities are given by

LGR-Scalar =

⎛⎜⎝1

2
gµν

(︁
∂µϕ

)︁
(∂νϕ) +

∑︂
i∈Iϕ

αi
i!
ϕi

⎞⎟⎠ dVg (2.70)

and

LGR-Higgs =

⎛⎝gµν(︁∇G×ρCi

µ Φ
)︁†(︁∇G×ρCi

ν Φ
)︁
+
∑︂
i∈IΦ

αi
i!

(︁
Φ†Φ

)︁i⎞⎠ dVg , (2.71)

where Iϕ and IΦ denote the interaction sets with particle mass −α2 and coupling constants αi
for i ̸= 2. The Higgs bundle from the Standard Model is of the form Equation (2.71) with further
interactions coming from the gauge fixing of the corresponding Electroweak gauge bosons, cf.
Subsubsection 2.3.2. These interactions correspond to type 1 and 2 from Lemma 2.3.4. More
precisely, we have

T1 :=
∑︂
i∈Iϕ

αi
i!
ϕi +

∑︂
i∈IΦ

αi
i!

(︁
Φ†Φ

)︁i
(2.72)

and

T2 µν :=
1

2

(︁
∂µϕ

)︁
(∂νϕ) +

(︁
∇G×ρCi

µ Φ
)︁†(︁∇G×ρCi

ν Φ
)︁
. (2.73)

Gravitons and spinor particles

Spinor particles from the Standard Model are leptons and quarks. In the following we describe
the interaction of gravitons with spinor fields and a vector of twisted spinor fields. Geometrically
they are described via sections ψ ∈ Γ (M,ΣM) and Ψ ∈ Γ

(︁
M,ΣM⊕j)︁, respectively. The

corresponding dual spinor fields are defined via

ψ := eo0 (γoψ)
† (2.74)

12The gauge ghosts are discussed in Subsubsection 2.3.2.
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and

Ψ := eo0 (γoΨ)† , (2.75)

where eo0 is a vielbein with its curved index fixed to µ ≡ 0 and flat index o, i.e. a vielbein
contracted with the normalized timelike vector field e (dt), and γm and γm are the Dirac matrices
for the Minkowski background metric η on M and M⊕j , respectively. Thus, dual spinor fields
depend on the metric via the vielbein eo0 with fixed timelike curved index.13 We remark that
if the spacetime (M,γ) is globally hyperbolic, it is possible to choose charts in which eo0 ≡ δo0,
as is done implicitly in e.g. [39, 42, 43, 44]. However it should be noted that in this setting the
theory is no longer invariant under general diffeomorphisms, but only under the subgroup of
diffeomorphisms preserving global hyperbolicity. As we do not want to restrict our analysis to
such charts and diffeomorphisms, we set

ψo := (γoψ)
† (2.76)

and

Ψo := (γoΨ)† (2.77)

for later use. Then, the corresponding Lagrange densities are given by

LGR-Spinor =
(︂
ψ
(︁
i /∇ΣM −mψ

)︁
ψ
)︂
dVg (2.78)

and

LGR-Spinorj =
(︂
Ψ
(︁
i /∇G×ρΣM⊕j

−mΨ

)︁
Ψ
)︂
dVg , (2.79)

where mΨ is a diagonal j × j-matrix with entries given via the corresponding spinor particle
masses, and with the Dirac operators given via

/∇ΣM
:= eµmγm

(︁
∂µ +ϖµ

)︁
(2.80)

and

/∇G×ρΣM⊕j

:= eµmγm
(︁
∂µ +ϖµ

)︁
+ eµmγm

(︂
igAaµba

)︂
, (2.81)

where ϖµ ∈ Γ
(︁
M,T ∗M ⊗ End (ΣM)

)︁
is the spin connection form and igA ∈ Γ

(︁
M,T ∗M ⊗

End
(︁
ΣM⊕j)︁)︁ the corresponding gauge group connection form. These interactions correspond

to type 7, 8, 9 and 10 from Lemma 2.3.4. More precisely, we have

T7 o := −mψψoψ −ΨomΨΨ , (2.82)

T8 oρr := ψoγr
(︁
∂ρψ

)︁
+Ψoγr

(︁
∂ρΨ

)︁
, (2.83)

T9 orst := − i

4
ψo (γrσst)ψ − i

4
Ψo (γrσst)Ψ , (2.84)

with σst :=
i
2 [γs, γt] and σst :=

i
2 [γs,γt], and

T10 orst := − i

4
ψo (γrσst)ψ − i

4
Ψo (γrσst)Ψ

≡ T9 orst .
(2.85)

13We emphasize the placement of γo and γo in the following equations, as only the timelike Dirac matrices γ0
and γ0 are hermitian, whereas the other Dirac matrices are antihermitian.
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We remark that the interaction of leptons and quarks with the Higgs and Goldstone bosons are
given by

LYukawa = −

⎛⎜⎝ ∑︂
{ϕ,ψo,ψ}∈IY

α{ϕ,ψo,ψ}
ϕψoψ

⎞⎟⎠ dVg (2.86)

which represent the Yukawa interaction terms for the interaction set IY , with corresponding
coupling constants α{ϕ,ψo,ψ}

. These interactions are of type 7 from Lemma 2.3.4. More precisely,
we have

T7 o := −
∑︂

{ϕ,ψo,ψ}∈IY

α{ϕ,ψo,ψ}
ϕψoψ . (2.87)

Gravitons and gauge bosons

Gauge bosons from the Standard Model are the photon, the Z- andW±-bosons, and the gluons.
In the following we describe the interaction of gravitons with gauge bosons from a Quantum
Yang–Mills theory. We denote the Yang–Mills gauge group by G and its Lie algebra by g.
Geometrically, gauge bosons are described via connection forms igA ∈ Γ (M,T ∗M ⊗ g) on the
underlying principle bundle. More precisely, they are given as the components with respect to
a basis choice {ba} on g. Then, the corresponding Lagrange densities are given by14

LGR-YM =

(︃
− 1

4g2
δabg

µνgρσF aµρF
b
νσ

)︃
dVg (2.88)

and the Lorenz gauge fixing by15

LGR-YM-GF =

(︃
1

2ξ
δabg

µνgρσ
(︁
∇TM
µ Aaν

)︁(︁
∇TM
ρ Abσ

)︁)︃
dVg . (2.89)

These interactions correspond to type 3, 5 and 6 from Lemma 2.3.4. More precisely, we have16

T3 µνρσ := − 1

4g2
δabF

a
µρF

b
νσ +

1

2ξ
δab
(︁
∂µA

a
ν

)︁(︁
∂ρA

b
σ

)︁
, (2.90)

T5 µντ := −1

ξ
δab
(︁
∂µA

a
ν

)︁
Abτ (2.91)

and

T6 κλ :=
1

2ξ
δabA

a
κA

b
λ . (2.92)

We remark that the Lorenz gauge fixing Lagrange densities for the Z- and W±-bosons need
slight modifications due to the spontaneous symmetry breaking and are given by

LZ-Boson-GF =

(︃
1

2ξZ
gµνgρσ

(︁
∇TM
µ Zν)

(︁
∇TM
ρ Zσ

)︁
+mZϕZg

µν
(︁
∇TM
µ Zν

)︁
+
ξZ
2
m2
Zϕ

2
Z

)︃
dVg

(2.93)

14We remark that this obviously also includes abelian gauge theories, such as (quantum) electrodynamics, by
setting g to be abelian, i.e. fabc ≡ 0.

15It is convenient to use the covariant Lorenz gauge fixing gµν∇TM
µ Aa

ν
!
= 0, as this choice avoids couplings from

graviton-ghosts to gauge ghosts [4].
16We remark the minus sign due to the covariant derivative on forms and the additional factor of 2 due to the

binomial theorem in Equation (2.91).
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and

LW -Boson-GF =

(︃
1

ξW
gµνgρσ

(︁
∇TM
µ W−

ν

)︁(︁
∇TM
ρ W+

σ

)︁
+ ξWm

2
WϕW−ϕW+

+imW g
µν
(︂
ϕW+

(︁
∇TM
µ W−

ν

)︁
− ϕW−

(︁
∇TM
µ W+

ν

)︁)︂)︃
dVg ,

(2.94)

where ξs is the corresponding gauge fixing parameter and ms the corresponding mass for s ∈{︁
Z,W+,W−}︁, and ϕZ , ϕW+ and ϕW− are the Goldstone bosons. These interactions additionally

require type 1, 2 and 4 from Lemma 2.3.4. More precisely, we have

T1 :=
ξZ
2
m2
Zϕ

2
Z + ξWm

2
WϕW−ϕW+ , (2.95)

T2 µν := ξZmZϕZ
(︁
∂µZν

)︁
+ iξWmW

(︂
ϕW+

(︁
∂µW

−
ν

)︁
− ϕW−

(︁
∂µW

+
ν

)︁)︂
, (2.96)

T3 µνρσ :=
1

2ξZ

(︁
∂µZν

)︁(︁
∂ρZσ

)︁
+

1

ξW

(︁
∂µW

−
ν

)︁(︁
∂ρW

+
σ

)︁
(2.97)

and

T4 τ := (ξsms)ϕ
sA−s

τ . (2.98)

We refer to Subsubsection 2.3.2 for further interactions between Z- and W±-bosons and Higgs
and Goldstone bosons coming from the covariant derivative on the Higgs bundle.

Gravitons and gauge ghosts

Gauge ghosts and gauge antighosts from the Standard Model, accompanying their corresponding
gauge bosons igA ∈ Γ (M,T ∗M ⊗ g), are fermionic g-valued scalar particles c ∈ Γ

(︁
M, g[0, 1]

)︁
and c ∈ Γ

(︁
M, g∗[0,−1]

)︁
. Then, the corresponding Lagrange density is given by

LGR-YM-Ghost = −
(︂
gµνca

(︁
∇TM
µ (∂νc

a)
)︁
+ ggµνfabc ca

(︁
∇TM
µ Abνc

c
)︁)︂

dVg . (2.99)

These interactions correspond to type 2 and 4 from Lemma 2.3.4. More precisely, we have17

T2 µν := −ca
(︁
∂µ∂νc

a
)︁
+ gfabc ca

(︁
∂µA

b
νc
c
)︁

(2.100)

and

T4 τ := −ca
(︁
∂τ c

a
)︁
+ gfabc caA

b
τ c
c . (2.101)

We remark that the interaction of Electroweak gauge ghosts with the Higgs and Goldstone
bosons are given by

LEW-Ghost = −

⎛⎝ ∑︂
{s1,s2,s3}∈IEW-Ghost

(︁
ξs2ms2

)︁
ϕs1cs2cs3

⎞⎠ dVg , (2.102)

where ξsi is the corresponding gauge fixing parameter, msi the corresponding mass for si ∈{︁
A,Z,W+,W−, H

}︁
and IEW-Ghost is the corresponding interaction set. These interactions are

of type 1 from Lemma 2.3.4. More precisely, we have

T1 := −
∑︂

{s1,s2,s3}∈IEW-Ghost

(︁
ξs2ms2

)︁
ϕs1cs2cs3 . (2.103)

We comment that with our chosen covariant Lorenz gauge fixing in Equation (2.89) there are
no interactions between graviton-ghosts and gauge ghosts present. This is due to the fact, that
the gauge-fixing Lagrange density is a tensor density of weight 1, cf. [4].

17The ghost Lagrange densities are calculated with Faddeev–Popov’s method [103], cf. [1, Subsubsection 2.2.3]
and [3, 4]. We mention that this construction can be embedded into a more general context, using BRST and
anti-BRST operators [80, 104].

42



2.4. The diffeomorphism-gauge BRST double complex

2.4 The diffeomorphism-gauge BRST double complex

BRST cohomology is a powerful tool to study quantum gauge theories together with their gauge
fixings and corresponding ghosts via homological algebra [105, 106, 107, 108]. More precisely,
a nilpotent operator D is introduced that performs an infinitesimal gauge transformation in
direction of the ghost field. This so-called BRST operator D can be seen either as an odd
super vector field on the super vector bundle of particle fields or as an odd superderivation
on the superalgebra of particle fields. The nilpotency of D can then be used to compute its
cohomology. This is useful, as physical states of the system can be identified with elements in
the 0-th cohomology class. Furthermore, this formalism can be used to unify the gauge fixing
and ghost Lagrange densities as follows: First of all, we understand a quantum gauge theory
Lagrange density LQGT as the sum of the classical gauge theory Lagrange density LGT together
with a gauge fixing Lagrange density LGF and its corresponding ghost Lagrange density LGhost,
i.e.

LQGT := LGT + LGF + LGhost . (2.104)

By construction, the gauge fixing and ghost Lagrange densities are not independent: In the
Faddeev–Popov setup the ghost Lagrange density is designed such that the ghost field satisfies
residual gauge transformations of the chosen gauge fixing as equations of motion, with the
antighost as Lagrange multiplier.18 In the BRST framework, both the gauge fixing and ghost
Lagrange densities can be generated from a so-called gauge fixing fermion Υ via the action of
D, i.e.

LGF + LGhost ≡ DΥ . (2.105)

Since the term DΥ is D-exact, it is also D-closed and thus does not contribute to the 0th
cohomology class. Thus, in particular, it does not affect physical observables. To incorporate
the gauge fixing, we additionally add the corresponding Lautrup–Nakanishi auxiliary fields [109,
110]. These are Lie algebra valued fields that act as Lagrange multipliers and whose equations
of motion are precisely the gauge fixing conditions. We remark that it is also possible to define
anti-BRST operators, which are homological differentials, by essentially replacing ghosts with
antighosts in addition with a slightly modified action on the corresponding ghost, antighost and
Lautrup–Nakanishi auxiliary fields, cf. [80, 111, 112] and the definitions below. In addition, we
refer to the following introductory texts [113, 114, 115], the historical overview [116] and earlier
investigations on the BRST setup of perturbative quantum gravity [111, 112, 117].

In this section, we extend and study this setup for (effective) Quantum General Relativity
coupled to the Standard Model: This implies first of all the existence of two such operators, P
and Q: The first performs infinitesimal diffeomorphisms and the second performs infinitesimal
gauge transformations, cf. Definitions 2.4.1 and 2.4.9. Then we provide the two gauge fixing
fermions ϛ and 𭟋: The first implements the de Donder gauge fixing together with the respective
graviton-ghosts and the second implements the Lorenz gauge fixing together with the respective
gauge ghosts, cf. Propositions 2.4.4 and 2.4.11. In particular, we have reworked the conventions
such that the quadratic gauge fixing and ghost Lagrange densities are rescaled by the respective
inverses of the gauge fixing parameters ζ and ξ: This induces that unphysical propagators are
then rescaled via the respective gauge fixing parameters. Thus, the degree of a Feynman graph
in the gauge fixing parameters is a measure for the unphysicalness of its virtual particles, which
we will use later in Chapter 3 and Section 5.2. Furthermore, we show that all non-constant
functionals on the superalgebra of particle fields that are essentially closed with respect to P
are scalar tensor densities of weight w = 1, cf. Lemma 2.4.3. This allows us to show that the
graviton-ghosts decouple from matter of the Standard Model if the gauge theory gauge fixing
fermion is a tensor density of weight w = 1, cf. Theorem 2.4.17. In particular, every gauge

18We remark that it is possible to generalize this setup by BRST and anti-BRST transformations, so that ghosts
and antighosts can be treated on an equal footing [80].
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theory gauge fixing fermion can be modified uniquely to satisfy said condition. Moreover, we
prove that the two BRST operators anticommute, i.e.

[︁
P,Q

]︁
= 0, in Theorem 2.4.15.19 This is

a non-trivial observation, as infinitesimal diffeomorphisms concern all particle fields and thus in
particular the operator Q. As a result, their sum D := P + Q is also a differential, which we
call total BRST operator. This then allows us again to identify the physical states as elements
of the respective 0-th cohomology class. In addition, we show that the sum over the suitably
modified gauge fixing fermions Υ := ϛ(1) + 𭟋{1} is again a gauge fixing fermion, which we call
total gauge fixing fermion, cf. Theorem 2.4.18. In particular, we obtain the complete gauge
fixing and ghost Lagrange densities of (effective) Quantum General Relativity coupled to the
Standard Model via DΥ. Finally, we also introduce the corresponding anti-BRST differentials
in Definitions 2.4.7 and 2.4.13 and show that all BRST and anti-BRST operators mutually
anticommute in Corollaries 2.4.8, 2.4.14 and 2.4.16 together with the already mentioned result
Theorem 2.4.15.

2.4.1 The diffeomorphism complex

In this subsection, we study the diffeomorphism BRST operator P together with the de Donder
gauge fixing fermion ϛ and its linearized variant ϛ(1):

Definition 2.4.1. We define the diffeomorphism BRST operator P ∈ X(1,0)

(︁
BQ

)︁
as the follow-

ing odd vector field on the spacetime-matter bundle with graviton-ghost degree 1:

P :=

(︃
1

ζ
∂µCν +

1

ζ
∂νCµ − 2CρΓ

ρ
µν

)︃
∂

∂hµν
+ κCρ

(︁
∂ρCσ

)︁ ∂

∂Cσ
+

1

ζ
Bσ ∂

∂C
σ

+ κ
(︂
Cρ
(︁
∂ρA

a
µ

)︁
+
(︁
∂µC

ρ
)︁
Aaρ

)︂ ∂

∂Aaµ

+ κCρ
(︁
∂ρc

a
)︁ ∂

∂ca
+ κCρ

(︁
∂ρc

a
)︁ ∂

∂ca
+ κCρ

(︁
∂ρb

a
)︁ ∂

∂ba

+ κCρ
(︁
∂ρΦ

)︁ ∂

∂Φ
+ κCρ

(︃
∇ΣM
ρ Ψ+

i

4

(︁
∂µXν − ∂νXµ

)︁
eµmeνnσmnΨ

)︃
∂

∂Ψ

(2.106)

Equivalently, its action on fundamental particle fields is given as follows:

Phµν :=
1

ζ
∂µCν +

1

ζ
∂νCµ − 2CρΓ

ρ
µν (2.107a)

PCρ := κCσ
(︁
∂σCρ

)︁
(2.107b)

PC
ρ
:=

1

ζ
Bρ (2.107c)

PBρ := 0 (2.107d)

Pηµν := 0 (2.107e)

P∂µ := 0 (2.107f)

PΓρµν :=
(︂
Cσ
(︁
∂σΓ

ρ
µν

)︁
+
(︁
∂µC

σ
)︁
Γρσν + (∂νC

σ) Γρµσ − (∂σC
ρ) Γσµν + ∂µ∂νC

ρ
)︂

(2.107g)

PAaµ := κ
(︂
Cρ
(︁
∂ρA

a
µ

)︁
+
(︁
∂µC

ρ
)︁
Aaρ

)︂
(2.107h)

Pca := κCρ
(︁
∂ρc

a
)︁

(2.107i)

Pca := κCρ
(︁
∂ρc

a
)︁

(2.107j)

Pba := κCρ
(︁
∂ρb

a
)︁

(2.107k)

Pδab := 0 (2.107l)

19We emphasize that we use the symbol [·, ·] for the supercommutator: In particular, it denotes the anticom-
mutator if both arguments are odd, cf. Definition 2.2.2.
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PΦ := κCρ
(︁
∂ρΦ

)︁
(2.107m)

PΨ := κCρ
(︃
∇ΣM
ρ Ψ+

i

4

(︁
∂µXν − ∂νXµ

)︁
eµmeνn (σmn ·Ψ)

)︃
(2.107n)

We remark that the action of P on all fields φ /∈
{︁
h,C,C,B, η

}︁
is given via the geodesic Lie

derivative with respect to C and rescaled via κ, i.e. Pφ ≡ κ£Cφ.
20 ♦

Proposition 2.4.2. Given the situation of Definition 2.4.1, we have[︁
P, P

]︁
≡ 2P 2 ≡ 0 , (2.108)

i.e. P is a cohomological vector field with respect to the graviton-ghost degree.

Proof. This follows immediately after a short calculation using the Jacobi identity. ■

Lemma 2.4.3. Let f ∈ C∞
{w},(0,0)

(︁
BQ,R

)︁
be a non-constant local functional of tensor density

weight w ∈ R.21 Then we have
P f ≃TD 0 (2.109)

if and only if w = 1, where ≃TD means equality modulo total derivatives.22

Proof. We calculate

P f = £Cf

= Cρ
(︁
∂ρf
)︁
+ w

(︁
∂ρC

ρ
)︁
f

= ∂ρ (C
ρf) + (w − 1)

(︁
∂ρC

ρ
)︁
f ,

(2.110)

which is a total derivative if and only if w = 1, and thus proves the claimed statement. ■

Proposition 2.4.4. The Quantum General Relativity gauge fixing Lagrange density and its
accompanying ghost Lagrange density

LQGR-GF + LQGR-Ghost = − 1

4κ2ζ
gµνdDµdDν dVg

− 1

2ζ
gµνg

ρσC
µ (︁
∂ρ∂σC

ν
)︁
dVg

− 1

2
C
µ
(︂(︁
∂νdDµ

)︁
Cν + dDν

(︁
∂µC

ν
)︁)︂

dVg

(2.111)

for the de Donder gauge fixing functional dDµ := gρσΓρσµ can be obtained from the following
gauge fixing fermion ϛ ∈ C(−1,0)

(︁
BQ

)︁
ϛ :=

1

2
C
ρ
(︃
1

κ
dDρ +

1

2
Bρ

)︃
dVg (2.112)

via Pϛ.

20We remark that the Lie derivative of spinor fields is a non-trivial notion: This is due to the fact that the
construction of the spinor bundle depends directly on the metric, which is itself affected by the Lie derivative.
We use the formula of Kosmann [118], which uses the connection on the spinor bundle. It can be shown, however,
that the result is indeed independent of the chosen connection. We remark that this formula can be embedded
into the construction of a universal spinor bundle cf. [102].

21I.e. f ≡
(︁
−Det (g)

)︁w/2
f for an ordinary functional f ∈ C∞

{0},(0,0) (BQ,R).
22The same statement also holds for the diffeomorphism anti-BRST operator P , cf. Definition 2.4.7.
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Proof. The claimed statement follows directly from the calculations

Pϛ =
1

2ζ
Bρ

(︃
1

κ
dDρ +

1

2
Bρ

)︃
dVg −

1

2κ
C
ρ (︁
PdDρ

)︁
dVg

− 1

2
C
ρ
(︃
1

κ
dDρ +

1

2
Bρ

)︃(︁
P dVg

)︁ (2.113a)

with

PdDρ = P
(︁
gµνΓρµν

)︁
= Cσ

(︁
∂σdDρ

)︁
+
(︁
∂ρC

σ
)︁
dDσ + gµνgρσ

(︁
∂µ∂νC

σ
)︁ (2.113b)

along with the total derivative

P dVg = ∂ρ
(︁
Cρ dVg

)︁
(2.113c)

and then finally eliminating the Lautrup–Nakanishi auxiliary field Bρ by inserting its equation
of motion

EoM
(︁
Bρ
)︁
= − 1

κ
dDρ , (2.113d)

which are obtained as usual via an Euler–Lagrange variation of Equation (2.113a). ■

Corollary 2.4.5. Given the situation of Proposition 2.4.4. Then the linearized de Donder gauge
fixing and ghost Lagrange densities read

LQGR-GF + LQGR-Ghost = − 1

4κ2ζ
ηµνdD(1)

µ dD(1)
ν dVη

− 1

2ζ
ηρσC

µ (︁
∂ρ∂σCµ

)︁
dVη

− 1

2
ηρσC

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂
dVη

(2.114)

with the linearized de Donder gauge fixing functional dD
(1)
µ := ηρσΓρσµ. They can be obtained

from the following gauge fixing fermion ϛ(1) ∈ C(−1,0)

(︁
BQ

)︁
ϛ(1) :=

1

2
C
ρ
(︃
1

κ
dD(1)

ρ +
1

2
Bρ

)︃
dVη (2.115)

via Pϛ(1).

Proof. This can be shown analogously to the proof of Proposition 2.4.4. ■

Remark 2.4.6. In the following, we will only use the linearized de Donder gauge fixing and ghost
Lagrange densities from Corollary 2.4.5. The reason is that the perturbative expansion becomes
simpler if the gauge fixing functional does only contribute to the propagator. Nevertheless, the
complete de Donder gauge fixing can also be useful, as it does not depend on the choice of a
background metric.
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2.4. The diffeomorphism-gauge BRST double complex

Definition 2.4.7. Given the situation of Definition 2.4.1, we additionally define the diffeomor-
phism anti-BRST operator P ∈ X(−1,0)

(︁
BQ

)︁
as the following odd vector field on the spacetime-

matter bundle with graviton-ghost degree -1:

P := P

⃓⃓⃓⃓
⃓
C⇝C

(2.116a)

together with the following additional changes

PCρ := −1

ζ
Bρ + κCσ

(︁
∂σCρ

)︁
+ κ

(︁
∂ρC

σ)︁
Cσ (2.116b)

PC
ρ
:= κCσ

(︁
∂σCρ

)︁
(2.116c)

PBρ := κCσ
(︁
∂σBρ

)︁
− κ

(︁
∂σC

ρ)︁
Bσ (2.116d)

♦

Corollary 2.4.8. Given the situation of Definition 2.4.7, we have[︁
P , P

]︁
≡ 2P

2 ≡ 0 (2.117)

and [︁
P, P

]︁
≡ P ◦ P + P ◦ P ≡ 0 , (2.118)

i.e. P is a homological vector field with respect to the graviton-ghost degree that anticommutes
with P .

Proof. This statement can be shown analogously to Proposition 2.4.2. ■

2.4.2 The gauge complex

In this subsection, we study the gauge BRST operator Q together with the Lorenz gauge fixing
fermion 𭟋 and its density variant 𭟋{1}:

Definition 2.4.9. We define the gauge BRST operator Q ∈ X(0,1)

(︁
BQ

)︁
as the following odd

vector field on the spacetime-matter bundle with gauge ghost degree 1:

Q :=

(︃
1

ξ
∂µc

a + gfabc c
bAcµ

)︃
∂

∂Aaµ
+

g

2
fabc c

bcc
∂

∂ca
+

1

ξ
ba

∂

∂ca

+ gca (Ha · Φ)
∂

∂Φ
+ gca (Sa ·Ψ)

∂

∂Ψ

(2.119)

Equivalently, its action on fundamental particle fields is given as follows:

QAaµ :=
1

ξ
∂µc

a + gfabc c
bAcµ (2.120a)

Qca :=
g

2
fabc c

bcc (2.120b)

Qca :=
1

ξ
ba (2.120c)

Qba := 0 (2.120d)

Qδab := 0 (2.120e)

Qhµν := 0 (2.120f)
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QCρ := 0 (2.120g)

QC
ρ
:= 0 (2.120h)

QBρ := 0 (2.120i)

Qηµν := 0 (2.120j)

Q∂µ := 0 (2.120k)

QΓρµν := 0 (2.120l)

QΦ := gca (Ha · Φ) (2.120m)

QΨ := gca (Sa ·Ψ) (2.120n)

We remark that the action of Q on all fields φ /∈
{︁
A, c, c, b, δ

}︁
is given via the gauge Lie derivative

with respect to c and rescaled via g, i.e. Qφ ≡ gℓcφ. ♦

Proposition 2.4.10. Given the situation of Definition 2.4.9, we have[︁
Q,Q

]︁
≡ 2Q2 ≡ 0 , (2.121)

i.e. Q is a cohomological vector field with respect to the gauge ghost degree.

Proof. This follows immediately after a short calculation using the Jacobi identity. ■

Proposition 2.4.11. The Quantum Yang–Mills theory gauge fixing Lagrange density and its
accompanying ghost Lagrange density

LQYM-GF + LQYM-Ghost = − 1

2g2ξ
δablL

alLb dVη

− 1

ξ
ηµνca

(︁
∂µ∂νc

a
)︁
dVη

− gηµνfabc ca

(︂
∂µ
(︁
cbAcν

)︁)︂
dVη

(2.122)

for the Minkowski metric Lorenz gauge fixing functional lLa := gηµν
(︁
∂µA

a
ν

)︁
can be obtained from

the following gauge fixing fermion 𭟋 ∈ C{0},(0,−1)

(︁
BQ

)︁
𭟋 := ca

(︃
1

g
lLa +

1

2
ba
)︃
dVη (2.123)

via Q𭟋.

Proof. The claimed statement follows directly from the calculations

Q𭟋 =
1

ξ
ba

(︃
1

g
lLa +

1

2
ba
)︃
dVη −

1

g
ca (QlL

a) dVη (2.124a)

with

QlLa = gηµν∂µ (QA
a
ν)

= gηµν∂µ

(︃
1

ξ
∂νc

a + gfabc c
bAcν

)︃
(2.124b)

and then finally eliminating the Lautrup–Nakanishi auxiliary field ba by inserting its equation
of motion

EoM(ba) = −1

g
lLa , (2.124c)

which are obtained as usual via an Euler–Lagrange variation of Equation (2.124a). ■
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Corollary 2.4.12. Given the situation of Proposition 2.4.11. Then the covariant Lorenz gauge
fixing and ghost Lagrange densities read

LQYM-GF + LQYM-Ghost = − 1

2g2ξ
δabL

aLb dVg

− 1

ξ
gµνca

(︂
∇TM
µ (∂νc

a)
)︂
dVg

− ggµνfabc ca

(︂
∇TM
µ

(︁
cbAcν

)︁)︂
dVg ,

(2.125)

with the covariant Lorenz gauge fixing functional La := ggµν
(︁
∇TM
µ Aaν

)︁
. They can be obtained

from the following gauge fixing fermion 𭟋{1} ∈ C{1},(0,−1)

(︁
BQ

)︁
𭟋{1} := ca

(︃
1

g
La +

1

2
ba
)︃
dVg (2.126)

via Q𭟋{1}.

Proof. This can be shown analogously to the proof of Proposition 2.4.11. ■

Definition 2.4.13. Given the situation of Definition 2.4.9, we additionally define the gauge
anti-BRST operator Q ∈ X(0,−1)

(︁
BQ

)︁
as the following odd vector field on the spacetime-matter

bundle with gauge ghost degree -1:

Q := Q

⃓⃓⃓⃓
⃓
c⇝c

(2.127a)

together with the following additional changes

Qca := −1

ξ
ba + gfabc c

bcc (2.127b)

Qca :=
g

2
fabc c

bcc (2.127c)

Qba := gfabc c
bbc (2.127d)

♦

Corollary 2.4.14. Given the situation of Definition 2.4.13, we have[︁
Q,Q

]︁
≡ 2Q

2 ≡ 0 (2.128)

and [︁
Q,Q

]︁
≡ Q ◦Q+Q ◦Q ≡ 0 , (2.129)

i.e. Q is a homological vector field with respect to the gauge ghost degree that anticommutes with
Q.

Proof. This statement can be shown analogously to Proposition 2.4.10. ■
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2.4.3 The double complex

In this subsection, we show that the two BRST operators P and Q anticommute and thus give
rise to the total BRST operator as the sum D := P +Q. Additionally, we show that each gauge
theory gauge fixing fermion can be modified uniquely to become a tensor density of weight w = 1.
This is a useful choice, as then the graviton-ghosts decouple from matter of the Standard Model.
Finally, we introduce the total gauge fixing fermion as the sum Υ := ϛ(1) + 𭟋{1}, where ϛ(1) is
the gauge fixing fermion corresponding to the linearized de Donder gauge fixing and 𭟋{1} is the
gauge fixing fermion corresponding to the covariant Lorenz gauge fixing. This setup allows us to
create the complete gauge fixing and ghost Lagrange densities of (effective) Quantum General
Relativity coupled to the Standard Model via DΥ:

Theorem 2.4.15. Given the two BRST operators P ∈ X(1,0)

(︁
BQ

)︁
and Q ∈ X(0,1)

(︁
BQ

)︁
from

Definition 2.4.1 and Definition 2.4.9, respectively. Then we have[︁
P,Q

]︁
≡ P ◦Q+Q ◦ P ≡ 0 , (2.130)

i.e. their sum

D := P +Q (2.131)

is also a cohomological vector field with respect to the total ghost degree. We call D ∈ X(1)

(︁
BQ

)︁
the total BRST operator.

Proof. We show this statement by an explicit calculation:

P ◦Q = κ
(︃
1

ξ

(︁
∂µC

ρ
)︁ (︁
∂ρc

a
)︁
+

1

ξ
Cρ
(︁
∂µ∂ρc

a
)︁
+ gfabcC

ρ
(︁
∂ρc

b
)︁
Acµ

+ gfabcC
ρcb
(︁
∂ρA

c
µ

)︁
+ gfabc

(︁
∂µC

ρ
)︁
cbAcρ

)︃
∂

∂Aaµ

+
κg
2
fabcC

ρ

(︃(︁
∂ρc

b
)︁
cc + cb

(︁
∂ρc

c
)︁)︃ ∂

∂ca
+

κ
ξ
Cρ
(︁
∂ρb

a
)︁ ∂

∂ca

+ κgCρcaHa ·
(︁
∂ρΦ

)︁ ∂

∂Φ

+ κgCρcaSa ·
(︃
∇ΣM
ρ Ψ+

i

4

(︁
∂µXν − ∂νXµ

)︁
eµmeνn (σmn ·Ψ)

)︃
∂

∂Ψ

= −Q ◦ P ,

(2.132)

where we have used Cρca ≡ −caCρ and
[︁
Sa,σmn

]︁
≡ 0. ■

Corollary 2.4.16. Given the two anti-BRST operators P ∈ X(−1,0)

(︁
BQ

)︁
and Q ∈ X(0,−1)

(︁
BQ

)︁
from Definition 2.4.7 and Definition 2.4.13, respectively. Then we have[︁

P ,Q
]︁
≡ P ◦Q+Q ◦ P ≡ 0 , (2.133)

i.e. their sum

D := P +Q (2.134)

is also a homological vector field with respect to the total ghost degree. We call D ∈ X(−1)

(︁
BQ

)︁
the total anti-BRST operator. Furthermore, given the two BRST operators P ∈ X(1,0)

(︁
BQ

)︁
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and Q ∈ X(0,1)

(︁
BQ

)︁
from Definition 2.4.1 and Definition 2.4.9, respectively. Then we have

additionally [︁
P,Q

]︁
≡ P ◦Q+Q ◦ P ≡ 0 (2.135)

and [︁
P ,Q

]︁
≡ P ◦Q+Q ◦ P ≡ 0 , (2.136)

i.e. all BRST and anti-BRST operators mutually anticommute.

Proof. This statement can be shown analogously to Theorem 2.4.15. ■

Theorem 2.4.17. The graviton-ghosts decouple from matter of the Standard Model if and only
if the gauge fixing fermion of Yang–Mills theory is a tensor density of weight w = 1.23 In
particular, every such gauge fixing fermion can be modified uniquely to satisfy said condition;
the case of the Lorenz gauge fixing is given via 𭟋{1} in Equation (2.126).

Proof. We start with the first assertion: Let ω be a tensor density of weight w = 1. Then, due
to Lemma 2.4.3, we have

Pω ≃TD 0 , (2.137)

where ≃TD means equality modulo total derivatives. Furthermore, due to Theorem 2.4.15, we
have

(P ◦Q) = − (Q ◦ P ) , (2.138)

which implies
(P ◦Q)ω ≃TD 0 . (2.139)

Thus, on the level of Lagrange densities, we have

PLQYM ≃TD 0 (2.140)

if and only if LQYM is a tensor density of weight w = 1. Using the above reasoning, this is
equivalent to

LQYM := LYM +Qχ (2.141)

with χ being a gauge fixing fermion of tensor density weight w = 1. It directly follows that
there are no interactions between graviton-ghosts and the fields φ ∈

{︁
A, c, c, b,Φ,Ψ

}︁
, given that

LYM and the matter Lagrange densities are covariant, and thus tensor densities of weight w = 1.
The second assertion follows directly from the fact that any functional on the spacetime-matter
bundle f ∈ C∞

{0},(0,0)
(︁
BQ,R

)︁
can be modified uniquely to obtain tensor density weight w = 1

by the following replacements

f ⇝
√︁

−Det (g) f

⃓⃓⃓⃓
⃓ηµν⇝gµν

∂µ⇝∇TM
µ

, (2.142)

which concludes the proof. ■

23Equivalently: If the gauge fixing and gauge ghost Lagrange densities of Yang–Mills theory are tensor densities
of weight w = 1.
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Theorem 2.4.18. Given the total BRST operator D from Theorem 2.4.15 and let Υ ∈ C(−1)

(︁
BQ

)︁
Υ := ϛ(1) +𭟋{1} (2.143)

be the sum of the gauge fixing fermions from Corollaries 2.4.5 and 2.4.12, respectively. Then the
complete gauge fixing and ghost Lagrange densities for (effective) Quantum General Relativity
coupled to the Standard Model can be generated via DΥ.

Proof. This follows directly from the calculation

DΥ =
(︁
P +Q

)︁(︁
ϛ(1) +𭟋{1}

)︁
= Pϛ(1) + P𭟋{1} +Qϛ(1) +Q𭟋{1}
≃TD Pϛ(1) +Q𭟋{1} ,

(2.144)

where we have used Lemma 2.4.3 and ≃TD means equality modulo total derivatives. ■
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Chapter 3

Hopf algebraic renormalization

In this chapter, we discuss the Hopf algebraic renormalization of gauge theories and gravity. This
includes first some preliminaries on Connes–Kreimer renormalization theory. Then we discuss
Quantum Field Theories that lead to an ill-defined renormalization Hopf algebra and possible
solutions together with their physical implications. In addition, we introduce the notion of a
predictive Quantum Field Theory as a (possibly non-renormalizable) Quantum Field Theory
which allows for a well-defined perturbative expansion. Next, we study combinatorial properties
of the superficial degree of divergente in order to generalize known coproduct identities and a
theorem of van Suijlekom so that they are applicable to (effective) Quantum General Relativity
coupled to the Standard Model. This theorem relates (generalized) gauge symmetries to Hopf
ideals and we close this chapter with criteria that ensure that these Hopf ideals are compatible
with renormalized Feynman rules.

3.1 Preliminaries of Hopf algebraic renormalization

We start this chapter by briefly recalling the relevant definitions and notations from Hopf alge-
braic renormalization: We consider Q to be a local Quantum Field Theory (QFT), i.e. a QFT
given by a Lagrange functional. Then, in a nutshell, the renormalization Hopf algebra1 HQ of
a QFT Q consists of a vector space HQ with algebra structure (HQ,m, I), coalgebra structure

(HQ,∆, Î) and antipode S : HQ → HQ. More precisely, given the set GQ of 1PI Feynman graphs
of Q, the vector space HQ is defined as the vector space over Q generated by the elements of the
set GQ and disjoint unions thereof. Then, the product m is simply given via disjoint union, with
the empty graph as unit. The interesting structures are the coproduct ∆ and the antipode S:
It was realized by Kreimer that the organization of subdivergences of Feynman graphs can be
encoded into a coalgebra structure on HQ [45]. Then, building upon this, Connes and Kreimer
formulated the renormalized Feynman rules ΦR as an algebraic Birkhoff decomposition with
respect to the renormalization scheme R [16]. See Definition 3.1.14 and Definition 3.1.37 for the
formal definitions and [1, Section 3] for a more detailed introduction using the same notations
and conventions.2 This mathematical formulation of the renormalization operation allows for a
precise analysis of symmetries via Hopf ideals. We want to deepen this viewpoint in the context
of quantum gauge theories by generalizing results from [46, 47, 48, 49, 50]. Finally, we also
mention some detailed introductory texts [119, 120, 121, 122, 123, 124].

1We use the symbol HQ by abuse of notation simultaneously for the vector space HQ as well as for the complete
renormalization Hopf algebra (HQ,m, I,∆, Î, S).

2We remark that some of the introductory material in this section is borrowed from [1, Section 3].
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Definition 3.1.1 (Multiset over a set). Let M and S be sets. The set M is called a multiset
over S, if M contains elements of S in arbitrary multiplicity. Then, the multiset

π : M → S , ms ↦→ s , (3.1)

where π projects the elements of M to S, can be canonically identified with the set (s, ns) ∈˜︂MS ⊂ S × N0, where the natural number ns indicates the multiplicity of each element s in M
(which can possibly be zero). We call ˜︂MS the multiset representation of M over S. Given the

multiset representation ˜︂MS of M over S, we define the two projections

ς : ˜︂MS → S , (s, ns) ↦→ s (3.2a)

and

ϱ : ˜︂MS → N0 , (s, ns) ↦→ ns . (3.2b)

Additionally, if the elements in the set S are ordered, we define the corresponding multiset-vector
as the vector n := (n1, . . . , ns)

⊺ ∈ Ns
0, where s is the cardinality of the set S and ni denotes the

multiplicity of the element si in M . Furthermore, two multisets M1 and M2 over the same set
S are called isomorphic, if each element s ∈ S has the same multiplicity ns in either M1 and
M2. In the following, we will always assume that the underlying set S is ordered and thus use
the equivalence between multisets and their multiset-vectors. ♦

Remark 3.1.2. Given the situation of Definition 3.1.1, a multiset M over S and its multiset
representation ˜︂MS are in general different sets, as they might have different cardinalities. As an
extreme example, every set can be seen as a multiset over the singleton. Therefore, its multiset
representation consist only of the element (∗, n), where n is the cardinality of the set. On the
other hand, a set viewed as a multiset over itself has the same cardinality as its underlying
set, but its elements are distinctly marked. Accordingly, its multiset representation consist of
elements (s, 1), for each element s in the underlying set. In this spirit, a multiset M over a set
S can be seen as a S-colored set, by means of the map π from Equation (3.1).

Definition 3.1.3 (Residue, amplitude and coupling constant set). Let Q be a QFT given via
the Lagrange density LQ. Then each monomial in LQ describes either a fundamental interaction
or a propagation of the involved particles. We collect this information in two sets, called vertex

residue set R[0]
Q and edge residue set R[1]

Q , as follows: The first set consists of all fundamental
interactions and the second set consists of all propagators, or, equivalently, particle types of Q.
Finally, the residue set is then defined as the disjoint union

RQ := R[0]
Q ⊔R[1]

Q . (3.3)

We denote the cardinality of the vertex set via vQ := #R[0]
Q . Furthermore, we define the set of

amplitudes AQ as the set containing all possible external leg structures of 1PI Feynman graphs.
In particular, it is given as the disjoint union

AQ := RQ ⊔QQ , (3.4)

where QQ denotes the set of pure quantum corrections, that is, interactions which are only
possible via trees or Feynman graphs, but not directly via residues in the set RQ. If Q is a
quantum gauge theory, we add additional labels to the edge-types: One for the physical degrees
of freedom and at least one for the unphysical degrees of freedom, cf. Remark 3.1.5 and [7].
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Moreover, we denote by qQ the set of physical coupling constants and, if present, gauge fixing
parameters appearing in the Lagrange density LQ. Finally, we define the function

θ : AQ → qQ , r ↦→

⎧⎪⎨⎪⎩qr
:= qv

(︂∏︁
e∈E(v)

√
qe

)︂
if r = v ∈ R[0]

Q

1 else, i.e. r ∈
(︂
AQ \ R[0]

Q

)︂ , (3.5)

where qv denotes the coupling constant that scales the vertex-type v, qe denotes the gauge fixing
parameter that is associated to the edge-type e if it is unphysical and finally E (v) denotes the
set of edges that are attached to the vertex v. We denote the cardinality of the set of physical
coupling constants via qQ := #qQ. ♦

Definition 3.1.4 (Transversal structure). Let Q be a quantum gauge theory. Then each inde-
pendent gauge fixing term induces a longitudinal projection operator L for the propagator of
the corresponding gauge field. Together with the respective identity operator I we define the
associated transversal projection operator T via

T := I −L . (3.6)

We refer to the set {L, I,T } as transversal structure. Additionally, let fQ denote the number
of independent gauge fixing terms of Q.3 Then we consider the union

TQ :=

fQ⋃︂
k=1

{L, I,T }k (3.7)

and refer to it as the transversal structure of Q. ♦

Remark 3.1.5. The ‘physical’ and ‘unphysical’ labels together with the particle-type labels of Def-
inition 3.1.3 connect as follows to the physics of quantum gauge theories: Physical particle-types
are transversal gauge field edges, canceled ghost field edges and matter field edges, respectively.
Contrary, unphysical particle-types are longitudinal or canceled gauge field edges, ghost field
edges and canceled matter field edges, respectively. Thus, our ‘physical’ and ‘unphysical’ labels
are related to cancellation identities [22, 23, 24, 25, 26, 27] and the marking of edges in the
construction of Feynman graph cohomology [56, 59]. Additionally, if Q has several longitudinal
projection operators we need to keep track which longitudinal projection induced the cancella-
tion of an edge. This is the reason why we extend our setup to allow for possibly several distinct
‘unphysical’ labels, each of which is related to the corresponding gauge fixing parameter. This
discussion will be studied in detail in [7], cf. [4, 5].

Definition 3.1.6 ((Feynman) graphs and Feynman graph set). A graph G := (V,E, β) is given
via a set of vertices V , a set of edges E = E0 ⊔E1, where E0 is the subset of unoriented and E1

is the subset of oriented edges, and a morphism4

β : E → (V × V × Z2) , e ↦→

{︄
(v1, v2; 0) if e ∈ E0

(vi, vt; 1) if e ∈ E1

, (3.8)

3This includes in particular the coupling of gravity to gauge theories, which requires independent gauge fixing
terms for the diffeomorphism invariance and the gauge invariance, cf. e.g. [1, 3]. With that we also obtain two
separate transversal structures: {L, I, T} for the Quantum Yang–Mills theory part and {L ,I ,T } for the (effective)
Quantum General Relativity part, cf. Equations (3.129) and Equations (3.133).

4We remark that the map β is necessary if graphs are allowed to have multi-edges or simultaneously oriented
and unoriented edges, which is typically the case in physics.
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mapping edges to tuples of vertices together with their binary orientation information; if the
edge is oriented, the order of the vertices is first initial then terminal. Given a graph G, the
corresponding sets are denoted via V ≡ V (G) ≡ G[0] and E ≡ E (G) ≡ G[1], where we omit
the dependence on the graph G only if there is no ambiguity possible. Finally, given a QFT
Q, we define a Feynman graph Γ := (G, {∗p, ∗f}, EExt, τ) as a graph G with the following extra
structure: We add a set of external edges EExt and two external vertices {∗p, ∗f}, where ∗p is
the endpoint for past external edges and ∗f is the endpoint for future external edges. Then, we
extend the map β to the set of external edges EExt via

β

⃓⃓⃓⃓
⃓
EExt

: EExt →
(︂(︁
V ⊔

{︁
∗p, ∗f

}︁)︁
×
(︁
V ⊔

{︁
∗p, ∗f

}︁)︁
× Z2

)︂
, e ↦→

{︄
(v1, v2; 0) if e ∈ E0

(vi, vt; 1) if e ∈ E1

.

(3.9)
Additionally, the vertex set V and the edge set E ⊔ EExt are considered as multisets over the

vertex residue set R[0]
Q and the edge residue set R[1]

Q , respectively:

τ : (V ⊔ E ⊔ EExt) → RQ , r ↦→

⎧⎨⎩rv ∈ R[0]
Q if r ∈ V

re ∈ R[1]
Q if r ∈ E ⊔ EExt

, (3.10)

where the map τ corresponds to the map π from Equation (3.1). Thus, using the coloring
function τ , we view Feynman graphs as RQ-colored graphs. Two Feynman graphs from the
same QFT Q are considered to be isomorphic, if they are isomorphic as RQ-colored graphs
and if they have the same external leg structure, cf. Definition 3.1.9. Furthermore, using the
composition θ◦τ with the coupling constant function θ from Equation (3.5), we can also view the
vertex set V as a multiset over the coupling constant set qQ, where then the composition θ ◦ τ
corresponds to the map π from Equation (3.1). We remark, however, that edges are unlabeled in
this coloring (labeled by 1). Finally, a connected graph is called ‘one-particle irreducible (1PI)’,
if it is still connected after the removal of any of its internal edges.5 We denote the set of all
1PI Feynman graphs of Q by GQ. ♦

Definition 3.1.7 (Residue of a Feynman graph). Let Q be a local QFT with residue set RQ

and 1PI Feynman graph set GQ. Then the external leg structure of a Feynman graph Γ ∈ GQ is
called its residue and denoted via Res (Γ) ∈ AQ. It is considered as the graph obtained from Γ
by shrinking all its internal edges to a single vertex. ♦

Definition 3.1.8 (Sets of half-edges, corollas and external vertex residues). Given a graph G,
we define the set of half-edges H (G) ≡ G[1/2] via

H (G) :=
{︁
hv ∼= (v, e)

⃓⃓
v ∈ V, e ∈ E and v ∈ β (e)

}︁
, (3.11)

where v ∈ β (e) means that the vertex v is attached to the edge e. The set of half-edges is
then accompanied by the involution ι, which interchanges an internal half-edge with the internal
half-edge that it forms the internal edge with and furthermore fixates external half-edges:

ι : H (G) → H (G) , (v, e) ↦→

{︄
(w, e) if e ∈ E (G) and v, w ∈ β (e)

(v, e) if e ∈ EExt (G)
(3.12)

Thus, ι can be used to reproduce the set E (G)⊔EExt (G) from the set H (G). Additionally, we
define the set of corollas C (G)

C (G) :=

{︃
cv ∼=

(︂
v,
{︁
hv ∈ H (G, v)

}︁)︂⃓⃓⃓⃓
v ∈ V

}︃
, (3.13)

5In the mathematical literature these graphs are called bridge-free.
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where {hv ∈ H (G, v)} is the set of half-edges attached to the vertex v. We also apply these
constructions to Feynman graphs Γ by means of its underlying graph G. Finally, we define the
set of external vertex residues W (Γ) of a (not necessary connected) Feynman graph Γ via

W (Γ) :=
{︂
rγ := Res (γ)

⃓⃓⃓
γ connected component of Γ and rγ ∈ R[0]

Q

}︂
, (3.14)

i.e.W (Γ) is a multiset over R[0]
Q , by means of τ from Equation (3.10), and furthermore a multiset

over qQ, by means of θ ◦ τ from Equations (3.5) and (3.10).6 ♦

Definition 3.1.9 (Automorphisms of (Feynman) graphs). Let G be a graph. A map a : G→ G,
or, more precisely, the collection of its two underlying maps

aV : V → V , v1 ↦→ v2 (3.15a)

and

aE : E → E , e1 ↦→ e2 (3.15b)

is called an automorphism of G, if aV and aE are bijections which are additionally compatible
with β in the sense that β ◦ aE ≡ (aV × aV × IdZ2) ◦ β. Furthermore, given a Feynman graph
Γ and a map α : Γ → Γ. Then α is called automorphism of Γ, if α is an automorphism of the
underlying graph, additionally compatible with the coloring function τ , i.e. τ ◦ α ≡ τ , and the
identity on external edges. The group of automorphisms of a Feynman graph Γ will be denoted
via Aut (Γ) and its rank via Sym (Γ), to which we refer as its symmetry factor. ♦

Definition 3.1.10 (Feynman graph invariants). Let Q be a QFT, GQ its 1PI Feynman graph

set, R[0]
Q its vertex residue set and qQ its coupling constant set. We equip the elements in the

sets R[0]
Q and qQ with an arbitrary ordering, in order to have well-defined multiset vectors in

the sense of Definition 3.1.1. Given a Feynman graph Γ ∈ GQ, we associate the following two
numbers and four multi-indices to it:

• κ (Γ) ∈ N0 denotes the number of its connected components

• λ (Γ) ∈ N0 denotes the number of its independent loops,7 where we only consider loops by
internal edges, i.e. remove the two external vertices {∗p, ∗f}

• IntVtx (Γ) ∈ ZvQ denotes the multiset vector of V (Γ) over R[0]
Q , with respect to τ from

Equation (3.10)

• ExtVtx (Γ) ∈ ZvQ denotes the multiset vector of W (Γ) over R[0]
Q , with respect to τ from

Equation (3.10)

• IntCpl (Γ) ∈ ZqQ denotes the multiset vector of V (Γ) over qQ, with respect to θ ◦ τ from
Equations (3.5) and (3.10)

• ExtCpl (Γ) ∈ ZqQ denotes the multiset vector of W (Γ) over qQ, with respect to θ ◦ τ from
Equations (3.5) and (3.10)

Then we extend these invariants to the unit I ∈ HQ by 0 ∈ N0, 0 ∈ ZvQ and 0 ∈ ZqQ ,
respectively, and to disjoint unions of 1PI Feynman graphs via addition, i.e.

Inv (Γ1 ⊔ Γ2) := Inv (Γ1) + Inv (Γ2) , (3.16)

where Inv (Γ) is any of the invariants above and Γ1,Γ2 ∈ GQ. ♦

6We remark that if Γ is connected, then W (Γ) contains at most one element.
7In the mathematical literature this is usually called a cycle.
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Definition 3.1.11 (Weight of residues). Let Q be a QFT with residue set RQ. We introduce
a weight function

ω : RQ → Z , , r ↦→ Degp
(︁
Φ (r)

)︁
, (3.17)

which maps a residue r ∈ RQ to the degree of its corresponding Feynman rule Φ (r), viewed as
a polynomial in momenta (or, in position space, derivatives). ♦

Definition 3.1.12 (Superficial degree of divergence). Let Q be a QFT with weighted residue
set (RQ, ω) and Feynman graph set GQ. We turn GQ into a weighted set as well by extending
ω to the function

ω : GQ → Z , Γ ↦→ dλ (Γ) +
∑︂

v∈V (Γ)

ω (v) +
∑︂

e∈E(Γ)

ω (e) , (3.18)

where d is the dimension of spacetime. Then, the weight ω (Γ) of a Feynman graph Γ is called its
‘superficial degree of divergence (SDD)’. A Feynman graph Γ is called superficially divergent if
ω (Γ) ≥ 0 and superficially convergent if ω (Γ) < 0. Finally, we set ω (I) := 0 for convenience. ♦

Definition 3.1.13 (Set of superficially divergent subgraphs of a Feynman graph). Let Q be a
QFT with weighted Feynman graph set (GQ, ω) and Γ ∈ GQ a Feynman graph. Then we denote
by D (Γ) the set of superficially divergent subgraphs of Γ, i.e.

D (Γ) :=

⎧⎨⎩I ⊆ γ ⊆ Γ

⃓⃓⃓⃓
⃓⃓ γ =

⨆︂
i

γi with γi ∈ GQ and ω (γi) ≥ 0

⎫⎬⎭ , (3.19a)

and by D′ (Γ) the set of proper divergent subgraphs

D′ (Γ) :=
{︁
γ ∈ D (Γ) | I ⊊ γ ⊊ Γ

}︁
. (3.19b)

We remark that the condition Res (γi) ∈ RQ for all divergent γi ensures the well-definedness of
the renormalization Hopf algebra, cf. [1, Subsection 3.3]. ♦

Definition 3.1.14 (The (associated) renormalization Hopf algebra). Given a QFT Q with
weighted Feynman graph set (GQ, ω). Then the renormalization Hopf algebra is modeled on the
Q-vector space generated by 1PI Feynman graphs from the set GQ and disjoint unions thereof.
More precisely, the product m : HQ⊗Q HQ → HQ is given via disjoint union and the coproduct
∆: HQ → HQ ⊗Q HQ is given via the decomposition of (products of) 1PI Feynman graphs into
the sum of all pairs of divergent subgraphs with the remaining cographs:

∆ : HQ → HQ ⊗Q HQ , Γ ↦→
∑︂

γ∈D(Γ)

γ ⊗Q Γ/γ , (3.20)

where the cograph Γ/γ is defined by shrinking the internal edges of γ in Γ to a new vertex for
each connected component of γ. Furthermore, the unit I : Q ↪→ HQ is given via a multiple of

the empty graph and the counit Î : HQ →→ Q is given via the map sending all non-empty graphs
to zero and the empty graph to its prefactor.8 Moreover, the antipode is recursively defined
as the negative of the convolution product with itself and the projector onto the augmentation
ideal, cf. Definition 3.1.15 and Definition 3.1.16, i.e. via the normalization S (I) := I and else as
follows:

S : HQ → HQ , Γ ↦→ −Γ−
∑︂
D′(Γ)

S (γ) Γ/γ . (3.21)

8We remark that technically the unit and counit of the algebra and their respective functions are separate
objects, which can be conveniently identified.
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In the following, we will omit the ground field from the tensor product, i.e. set ⊗ := ⊗Q. Finally,
we remark that especially in the context of quantum gauge theories the above construction can
be ill-defined, cf. the comment at the end of Definition 3.1.13. This then leads to the notion of
an associated renormalization Hopf algebra, introduced in [1, Subsection 3.3] and reproduced in
Section 3.2. ♦

Definition 3.1.15 (Convolution product). Let k be a ring, A a k-algebra and C a k-coalgebra.
Then, using the product mA on A and the coproduct ∆C on C, we can turn the k-module
Homk−Mod (C,A) of k-linear maps from C to A into a k-algebra as well, by defining the convo-
lution product ⋆ as follows: Given f, g ∈ Homk−Mod (C,A), then we set

f ⋆ g := mA ◦ (f ⊗ g) ◦∆C . (3.22)

Obviously, this definition extends trivially if A or C possesses additionally a bi- or Hopf algebra
structure. It is commutative, if C is cocommutative and A is commutative. Finally, given a
k-Hopf algebra H, we remark that the algebra of endomorphisms (Homk−Mod (H,H) , ⋆) is a
group, with the antipode S being the ⋆-inverse to the identity morphism IdH . ♦

Definition 3.1.16 (Augmentation ideal). Given a bi- or a Hopf algebra B, then the kernel of
the coidentity

Aug
(︁
HQ

)︁
:= Ker

(︁
Î
)︁

(3.23)

is an ideal, called the augmentation ideal. Additionally, we denote the projection map to it via
A , i.e.

A : HQ →→ Aug
(︁
HQ

)︁
⊂ HQ , G ↦→

∑︂
{αs,Gs}∈S(G)

Î(Gs)=0

αsGs , (3.24)

where S (G) denotes the set of summands of G ∈ HQ, cf. Definition 3.1.17. ♦

Definition 3.1.17 (Basis decomposition of Hopf algebra elements). Let Q be a QFT, GQ the
set of its 1PI Feynman graphs and HQ its (associated) renormalization Hopf algebra. Given an
element G ∈ HQ, we are interested in its decomposition with respect to elements in the set GQ.
Therefore, we denote by S (G) the set of its summands, grouped into tuples of prefactors αs ∈ Q
(where we exclude the trivial case αs = 0 if Gs ∈ Aug

(︁
HQ

)︁
) and graphs Gs ∈ HQ that can be

disjoint unions, i.e. Gs =
⨆︁
i Γi for Γi ∈ GQ,9 such that

G ≡
∑︂

{αs,Gs}∈S(G)

αsGs . (3.25)

Additionally, we also write Gs ∈ S (G) instead of Gs ∈ {αs,Gs} ∈ S (G), if we are only interested
in properties of the graph Gs. Furthermore, given such a Gs ∈ S (G), we denote by C (Gs) the
set of its connected components (where we exclude the identity I ∈ HQ if Gs ∈ Aug

(︁
HQ

)︁
), such

that
Gs ≡

∏︂
Gc∈C(Gs)

Gc . (3.26)

In particular, we have

G ≡
∑︂

{αs,Gs}∈S(G)

αs

⎛⎝ ∏︂
Gc∈C(Gs)

Gc

⎞⎠ . (3.27)

♦
9This is actually the decomposition from Equation (3.26).
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Definition 3.1.18 (Connectedness and gradings of the renormalization Hopf algebra). Given
the situation of Definition 3.1.10, we construct the following three gradings on the renormaliza-
tion Hopf algebra HQ: Let G ∈ HQ be an element with Gs ∈ S (G), we associate the following
number and two multi-indices to Gs:

• Loop-grading, denoted via L, l ∈ N0, and given by

LoopGrd (Gs) :=
∑︂

Gc∈C(Gs)

λ (Gc) (3.28)

• Vertex-grading, denoted via V,v ∈ ZvQ , and given by

VtxGrd (Gs) := IntVtx (Gs)− ExtVtx (Gs) (3.29)

• Coupling-grading, denoted via C, c ∈ ZqQ , and given by

CplGrd (Gs) := IntCpl (Gs)− ExtCpl (Gs) (3.30)

In statements that are valid in any of these three gradings, we denote the grading function by
Grd and the gradings via G and g. Furthermore, we denote the unit multi-index with respect

to a vertex residue v ∈ R[0]
Q or a coupling constant q ∈ qQ via ev and eq, respectively. Moreover,

we denote the restriction of an object or an element to any of these three gradings via

(︁
HQ

)︁
G

:= HQ

⃓⃓⃓⃓
⃓
G

, (3.31)

and omit the brackets, if no lower index is present. Clearly,(︁
HQ

)︁
L=0

∼=
(︁
HQ

)︁
V=0

∼=
(︁
HQ

)︁
C=0

∼= Q , (3.32)

and thus HQ is connected in all three gradings. ♦

Remark 3.1.19. The three gradings from Definition 3.1.18 are further refinements of each other.
In particular, the vertex-grading is equivalent to the coupling-grading if each vertex is associated
with a unique coupling constant and it is furthermore equivalent to the loop-grading if the theory
has only one vertex type. Additionally, the coupling-grading is equivalent to the loop-grading if
the corresponding theory has only one coupling constant. We remark that both statements are
due to the Euler identity, given in Equation (3.91). Moreover, the numbers and multi-indices
from Definition 3.1.10 and the gradings from Definition 3.1.18 are compatible with the product
of HQ via addition, but not with the addition of HQ, as summands can live in different gradings.

Definition 3.1.20 (Projection to divergent graphs). Let Q be a QFT, GQ its 1PI Feynman
graph set and HQ its (associated) renormalization Hopf algebra. We define the projection map
to divergent Feynman graphs via

Ω : GQ → GQ , Γ ↦→

{︄
Γ if ω (Γ) ≥ 0

0 else, i.e. ω (Γ) < 0
(3.33a)

and then extend it additively and multiplicatively to HQ, i.e.

Ω : HQ → HQ , G ↦→
∑︂

{αs,Gs}∈S(G)

αs

⎛⎝ ∏︂
Gc∈C(Gs)

Ω (Gc)

⎞⎠ , (3.33b)

60



3.1. Preliminaries of Hopf algebraic renormalization

that is, we keep the summands of G only, if all of its connected components are divergent.
Additionally, we also use the following shorthand-notation:

HQ := Im (Ω) (3.34a)

and

G := Ω (G) . (3.34b)

We remark that this definition will be useful for combinatorial Green’s functions Xr, combi-
natorial charges Qv and products thereof in the context of Hopf subalgebras for multiplicative
renormalization, cf. Section 3.5. ♦

Definition 3.1.21 (Superficially compatible grading). Given the situation of Definition 3.1.12
and Definition 3.1.18, a grading is called superficially compatible, if all Feynman graphs with a
given residue and a given grading have the same superficial degree of divergence. Equivalently,
the degree of divergence of a Feynman graph depends only on its residue and the given grading.
This will be studied in Proposition 3.4.13. ♦

Definition 3.1.22 ((Restricted) combinatorial Green’s functions). Let Q be a QFT, AQ the
set of its amplitudes and GQ the set of its Feynman graphs. Given an amplitude r ∈ AQ, we set

xr :=
∑︂
Γ∈GQ

Res(Γ)=r

1

Sym (Γ)
Γ (3.35)

and then define the combinatorial Green’s function with amplitude r as the following sum:

Xr :=

⎧⎪⎪⎨⎪⎪⎩
I+ xr if r ∈ R[0]

Q

I− xr if r ∈ R[1]
Q

xr else, i.e. r ∈ QQ

(3.36)

Furthermore, we denote the restriction of Xr to one of the gradings g from Definition 3.1.18 via

Xrg := Xr

⃓⃓⃓⃓
⃓
g

. (3.37)

♦

Remark 3.1.23. We remark that restricted combinatorial Green’s functions are in the literature
often denoted via crg and differ by a minus sign from our definition. Our convention is such
that they are given as the restriction of the complete combinatorial Green’s function to the
corresponding grading, which provides additional minus signs for propagator graphs.

Definition 3.1.24 ((Restricted) combinatorial charges). Let v ∈ R[0]
Q be a vertex residue, then

we define its combinatorial charge Qv via

Qv :=
Xv∏︁

e∈E(v)

√
Xe

, (3.38)
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where E (v) denotes the set of all edges attached to the vertex v. Furthermore, we denote the
restriction of Qv to one of the gradings g from Definition 3.1.18 via

Qv
g := Qv

⃓⃓⃓⃓
⃓
g

. (3.39)

♦

Definition 3.1.25 ((Restricted) products of combinatorial charges). Let v ∈ ZvQ be a multi-
index of vertex residues. Then we define the product of combinatorial charges associated to v
via

Qv :=

vQ∏︂
k=1

(Qvk)(v)k , (3.40)

where (v)k denotes the k-th entry of v. In particular, given a vertex residue v ∈ R[0]
Q and a

natural number n ∈ N+, we define the exponentiation of the combinatorial charge Qv by n via

Qnv := (Qv)n . (3.41)

Furthermore, we denote the restriction of Qv to one of the gradings g from Definition 3.1.18 via

Qv
g :=

⎛⎝ vQ∏︂
k=1

(Qvk)(v)k

⎞⎠⃓⃓⃓⃓⃓
g

. (3.42)

♦

Definition 3.1.26 (Sets of combinatorial and physical charges, projection map). Let Q be
a QFT. Then we denote via QQ and qQ the sets of combinatorial and physical charges, re-

spectively. We associate to each vertex residue v ∈ R[0]
Q a combinatorial charge and to each

interaction monomial in the Lagrange density LQ a (not necessarily distinct) physical coupling
constant. Additionally, we define the set-theoretic projection map10

Cpl : QQ →→ qQ , Qv ↦→ θ (v) , (3.43)

where θ : R[0]
Q → qQ is the map from Equation (3.5). ♦

Lemma 3.1.27. Given a Feynman graph Γ ∈ GQ, the sets V (Γ) and E (Γ) from Definition 3.1.6
and H (Γ) and C (Γ) from Definition 3.1.8, viewed as multisets over RQ, depend only on its
residue Res (Γ) and its vertex-grading multi-index VtxGrd (Γ). In particular, we obtain well-
defined sets V (r,v), E (r,v), H (r,v) and C (r,v), such that we have V (r,v) ∼= V (Γ), E (r,v) ∼=
E (Γ), H (r,v) ∼= H (Γ) and C (r,v) ∼= C (Γ) as multisets over RQ, for all Γ ∈ GQ with Res (Γ) =
r and VtxGrd (Γ) = v.

Proof. Given Γ ∈ GQ, then by definition its vertex set V (Γ) is a multiset over R[0]
Q , using τ

from Equation (3.10). Thus it is uniquely characterized via its internal residue multi-index

IntVtx (Γ), as it displays the multiplicity of each vertex residue rv ∈ R[0]
Q in the vertex set V (Γ).

10This map is the set-theoretic restriction of the renormalized Feynman rules, which map combinatorial charges
to Feynman integrals corresponding to renormalized physical charges.
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Furthermore, we can reconstruct IntVtx (Γ) from Res (Γ) and VtxGrd (Γ) using the definition,
Equation (3.29), i.e.

V (r,v) ∼= VtxGrd (Γ) + ExtVtx (Γ) , (3.44)

while noting that ExtVtx (Γ) is given for connected Feynman graphs Γ ∈ GQ with Res (Γ) ∈ R[0]
Q

as the multi-indices having a one for the corresponding vertex residue and zeros else, i.e.

(︁
ExtVtx (Γ)

)︁
j
=

⎧⎨⎩1 if Res (Γ) = vj ∈ R[0]
Q

0 else
, (3.45)

and for Feynman graphs Γ ∈ GQ with Res (Γ) ∈
(︁
AQ \ R[0]

Q

)︁
as the zero-multi-index, i.e.

ExtVtx (Γ) = 0 . (3.46)

Thus we have have shown that the set V (r,v) is well-defined as a multiset over R[0]
Q . Moreover,

we can obtain the half-edge set H (r,v) from Res (Γ), V (r,v) and the coloring function τ via

H (r,v) :=

⎧⎨⎩hv ∈ ⨆︂
v∈V (r,v)

H
(︁
v, τ (v)

)︁⎫⎬⎭ \H
(︂
Res (Γ) , τ

(︁
Res (Γ)

)︁)︂
, (3.47)

where τ indicates the vertex-type of v ∈ V (r,v), i.e. which edge-types are attachable to it. Then
we denote via H

(︁
v, τ (v)

)︁
the set of all such pairings hv ∼= (v, e), take its disjoint union and

then remove the set of external half-edges of Γ. Additionally, we obtain the edge set E (r,v) as

a multiset over R[1]
Q from the half-edge set H (r,v) as follows: We use an equivalence relation ∼

which identifies two half-edges to a single edge, if they are of the same particle type, i.e. h1 ∼ h2
if τ (e1) = τ (e2), and then consider the quotient

E (r,v) := H (r,v) / ∼ . (3.48)

We remark that there are in general many possibilities to define ∼, but the resulting multisets
are isomorphic, hence it suffices to take an arbitrary choice. In particular, one such choice is the
involution ι from Definition 3.1.8. Finally, we obtain the corolla set C (r,v) from the vertex set
V (r,v) and the half-edge set H (r,v) by simply associating to each vertex the set of half-edges
attached to it, i.e.

C (r,v) :=

{︃
cv ∼=

(︂
v,
{︁
hv ∈ H (r,v)

}︁)︂⃓⃓⃓⃓
v ∈ V (r,v)

}︃
, (3.49)

which completes the proof. ■

Definition 3.1.28 (Set of superficially divergent insertable graphs for a Feynman graph). Let
Q be a QFT and Γ ∈ GQ a Feynman graph of Q. Then we denote by I (Γ) the set of superficially
divergent graphs that are insertable into Γ, i.e.11

I (Γ) :=
{︂
γ ∈ HQ

⃓⃓⃓
ExtVtx (γ) ≤ IntVtx (Γ) and ω (γc) ≥ 0 for all γc ∈ C (γ)

and Res
(︁
γp
)︁
∈ E (Γ) for all γp ∈ P (γ)

}︂
,

(3.50)

where P (γ) ⊆ C (γ) denotes the set of connected components of γ which are propagator graphs.
♦

11We remark that we have I ∈ I (Γ) for all Γ ∈ GQ.
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Definition 3.1.29 (Insertion factors). Let Q be a QFT, GQ its Feynman graph set and HQ

its (associated) renormalization Hopf algebra. Given two Feynman graphs Γ,Γ′ ∈ GQ and an
element in the Hopf algebra γ ∈ HQ, we want to characterize possible insertions. To this end,
we define the following four combinatorial factors:

• Ins (γ ▷ Γ) denotes the number of ways to insert γ into Γ

• InsAut

(︁
γ ▷ Γ; Γ′)︁ denotes the number of ways to insert γ into Γ, such that the insertion

is automorphic to Γ′

• Insr,v (γ) denotes the number of ways to insert γ into a Feynman graph with residue r and
vertex-grading multi-index v, which is well-defined due to Lemma 3.1.27

• IsoEmb (γ ↪→ Γ) denotes the number of non-trivial isomorphic embeddings of γ as a sub-
graph of Γ

We remark that these numbers are zero, if either γ is not insertable into Γ, i.e. γ /∈ I (Γ), if
there is no insertion possible which is automorphic to Γ′ or if there is no isomorphic embedding
possible. Finally, we set for all Γ ∈ GQ

InsAut (I▷ Γ; Γ) = Ins (I▷ Γ) = Insr,v (I) = IsoEmb (I ↪→ Γ) := 1 . (3.51)

♦

Proposition 3.1.30. Given the situation of Definition 3.1.28, we have for all Feynman graphs
Γ ∈ GQ ∑︂

γ∈I(Γ)

Ins (γ ▷ Γ)

Sym (γ)
γ =

∏︁
v∈V (Γ)X

v∏︁
e∈E(Γ)X

e . (3.52)

Proof. We can insert in each vertex v ∈ V (Γ) at most one superficially divergent vertex cor-
rection γv with Res (γv) = v, i.e. a summand of X

v
. Furthermore, we can insert in each edge

e ∈ E (Γ) arbitrary many superficially divergent edge corrections γe =
∏︁
i γ

e
i with Res

(︁
γei
)︁
= e

for all i, i.e. a summand of 1/X
e
, where the fraction is understood as the formal geometric series

1/ (1− x) ≡
∑︁∞

k=0 x
k.12 Finally, the prefactor Ins (γ ▷ Γ) corresponds to the multiplicity of

similar RQ-colored vertices and edges of Γ, using τ from Equation (3.10). ■

Definition 3.1.31 (Set of superficially divergent insertable graphs for residue and vertex-grad-
ing). Let Q be a QFT, AQ its amplitude set and HQ its (associated) renormalization Hopf
algebra. Given an amplitude r ∈ AQ, a vertex-grading multi-index v ∈ ZvQ with v ̸= 0 and a
Feynman graph Γ ∈ GQ with Res (Γ) = r and VtxGrd (Γ) = v. Then we define the set Ir,v of
superficially divergent graphs insertable into Feynman graphs with residue r and vertex-grading
v via13

Ir,v := I (Γ) , (3.53)

which is well-defined due to Corollary 3.1.32. ♦

Corollary 3.1.32. Given the situation of Definition 3.1.31, the set Ir,v satisfies∑︂
γ∈Ir,v

Insr,v (γ)

Sym (γ)
γ =

∏︁
v∈V (r,v)X

v∏︁
e∈E(r,v)X

e , (3.54)

12We remark that this viewpoint is the reason for the minus sign in the definition of combinatorial Green’s
function for propagators, i.e. Equation (3.36) of Definition 3.1.22.

13We remark that we have I ∈ Ir,v for all r ∈ AQ and v ∈ ZvQ with v ̸= 0.
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and is thus in particular well-defined.

Proof. This follows directly from Lemma 3.1.27 and Proposition 3.1.30. ■

Proposition 3.1.33. Given the situation of Definition 3.1.31, we have for all amplitudes r ∈
AQ and vertex-grading multi-indices v ∈ ZvQ

∑︂
γ∈Ir,v

Insr,v (γ)

Sym (γ)
γ =

⎧⎨⎩X
r
Q

v
if r ∈ RQ∏︁

e∈E(r)

√︁
X
e
Q

v
else, i.e. r ∈ QQ

, (3.55)

where E (r) denotes the set of edges attached to r and the square-root is defined via the formal

series
√
x ≡

∑︁∞
k=0

(︁1/2
k

)︁
(x− 1)k.

Proof. The numerator of the right hand side of Equation (3.54) of Corollary 3.1.32 can be
expressed as follows:14

∏︂
v∈V (r,v)

X
v
=

⎧⎨⎩X
r
X
v

if r ∈ R[0]
Q

X
v

else, i.e. r ∈
(︂
AQ \ R[0]

Q

)︂ , (3.56a)

where the notation X
v
:=
∏︁vQ
k=1

(︁
X
vk)︁vk is analogous to Equation (3.40) of Definition 3.1.25.

Furthermore, the denominator of the right hand side of Equation (3.54) of Corollary 3.1.32 can
be expressed as follows:

I∏︁
e∈E(r,v)X

e =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I∏︁
v∈V (r,v)

(︂∏︁
e∈E(v)

√︁
X
e
)︂ if r ∈ R[0]

Q∏︁
e1∈E(r)

√︁
X
e1∏︁

v∈V (r,v)

(︂∏︁
e2∈E(v)

√︁
X
e2
)︂ else, i.e. r ∈

(︂
AQ \ R[0]

Q

)︂

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
v

X
v if r ∈ R[0]

Q

X
r
Q

v

X
v if r ∈ R[1]

Q∏︁
e∈E(r)

√︁
X
e
Q

v

X
v else, i.e. r ∈ QQ

(3.56b)

Multiplying Equation (3.56a) with Equation (3.56b), we obtain∏︁
v∈V (r,v)X

v∏︁
e∈E(r,v)X

e =

⎧⎨⎩X
r
Q

v
if r ∈ RQ∏︁

e∈E(r)

√︁
X
e
Q

v
else, i.e. r ∈ QQ

. (3.57)

Finally, the prefactor Insr,v (γ) corresponds to the multiplicity of similar RQ-colored vertices
and edges of Feynman graphs with residue r and vertex-grading multi-index v, using τ from
Equation (3.10). ■

14The two cases emerge due to the vertex-grading, which treats Feynman graphs with vertex residues differently
in order to obtain a valid grading of the renormalization Hopf algebra, cf. Equation (3.29) of Definition 3.1.18.
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Lemma 3.1.34 ([48, Lemma 12]). Given the situation of Definition 3.1.9 and Definition 3.1.29,
we have for all Feynman graphs Γ ∈ GQ and their corresponding subgraphs I ⊆ γ ⊆ Γ

Sym (γ) Sym
(︁
Γ/γ

)︁
Sym (Γ)

=
InsAut

(︁
γ ▷ Γ/γ; Γ

)︁
IsoEmb (γ ↪→ Γ)

. (3.58)

Proof. Let Γ ∈ GQ be a Feynman graph. Then, by definition, we have

Sym (Γ) = #Aut (Γ) , (3.59)

where the automorphisms are fixing the external leg structure by definition, cf. Definition 3.1.9.
Thus, for a given subgraph γ ⊆ Γ, we have

Sym (γ) Sym
(︁
Γ/γ

)︁
= #Aut (γ)#Aut

(︁
Γ/γ

)︁
, (3.60)

which counts all automorphisms of Γ/γ times those of γ, fixing both their external legs. Thus,
comparing to Sym (Γ), the following two things can appear: The automorphism group Aut (Γ)
might contain automorphisms which exchange non-trivial isomorphic embeddings γ, γ′ ⊆ Γ and
can thus contain automorphisms exceeding the set Aut (γ) ∪Aut

(︁
Γ/γ

)︁
. Contrary, the quotient

graph Γ/γ might possess symmetries which get spoiled after the insertion of γ into Γ/γ. These
two possibilities are reflected by the quotient InsAut

(︁
γ ▷ Γ/γ; Γ

)︁
/ IsoEmb (γ ↪→ Γ), as it counts

the number of equivalent insertions of γ into Γ/γ automorphic to Γ modulo the additional
symmetries that might appear, cf. Definition 3.1.29. Thus we obtain

Sym (γ) Sym
(︁
Γ/γ

)︁
Sym (Γ)

=
InsAut

(︁
γ ▷ Γ/γ; Γ

)︁
IsoEmb (γ ↪→ Γ)

, (3.61)

as claimed. ■

Definition 3.1.35 (Algebra of formal (Feynman) integral expressions). Let K be a field and
E the K-vector space generated by the set of formal integral expressions, that is pairs (D, I),
where D is a domain and I a differential form on it. Addition is then declared via

(D1, I1) + (D2, I2) := (D1 ⊕D2, I1 ⊕ 02 + 01 ⊕ I2) , (3.62)

where 0i is the zero differential form on the domain Di, and scalar multiplication is declared via

k(D, I) := (D, kI) (3.63)

for k ∈ K. Furthermore, we turn E into an algebra by declaring the multiplication via

(D1, I1)× (D2, I2) := (D1 ⊗K D2, I1 ⊗K I2) , (3.64)

which we call µ. Moreover, we address the name ‘formal integral expression’ by defining the
evaluation character (i.e. algebra morphism)

Int : EFin → C , (D, I) ↦→
∫︂
D
I , (3.65)

where EFin ⊂ E is the subalgebra where the evaluation map is finite and thus well-defined. In
particular, we fix the normal subgroups 1EFin

:= Int−1 (1) ⊂ EFin and 1E := ι
(︁
1EFin

)︁
, where

ι : EFin ↪→ E is the natural inclusion map. Both of these groups consist of formal integral
expressions (D, I) with Int (D, I) = 1. Therefore, we will treat 1E as the equivalence class of
‘units’ on E . Finally, given a QFT Q, we define the algebra of its formal Feynman integral
expressions as follows: We set K := Q and restrict the allowed domains D and differential forms
I according to the chosen Feynman integral representation (position space, momentum space,
parametric space, etc.). ♦
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Remark 3.1.36. The setup of Definition 3.1.35 allows us in particular to address ill-defined
integral expressions by externalizing the integration process.

Definition 3.1.37 (Feynman rules, regularization and renormalization schemes). Let Q be a
QFT, HQ its (associated) renormalization Hopf algebra and EQ its algebra of formal Feynman
integral expressions. Then we define its Feynman rules as the following character (i.e. algebra
morphism)

Φ : HQ → EQ , Γ ↦→ (DΓ, IΓ) , (3.66)

where (DΓ, IΓ) is the formal Feynman integral expression for the Feynman graph Γ. Furthermore,
we introduce a regularization scheme E as a map15

E : EQ ↪→ EQε , (D, I) ↦→
(︁
D, IE (ε)

)︁
:=

⎛⎝D, ∞∑︂
i=0

Ii ε
i

⎞⎠ , (3.67)

where EQε := EQ[[ε]] ⊃ EQ and the coefficients of the Taylor series are differential forms Ii
on D. Additionally, the regulated formal integral expressions

(︁
D, IE (ε)

)︁
are subject to the

boundary condition I (0) ≡ I, which is equivalent to I0 := I, and the integrability condition
Int
(︁
D, IE (ε)

)︁
< ∞, for all ε ∈ J with J ⊆ [0,∞) a non-empty interval. We then set the

regularized Feynman rules as the map

ΦεE : HQ → EQε , Γ ↦→ (E ◦ Φ) (Γ, ε) . (3.68)

Moreover, we introduce a renormalization scheme as a linear map16

R : EQε →→ EQε− ,
(︁
D, IE (ε)

)︁
↦→

{︄
(D, 0D) if

(︁
D, IE (ε)

)︁
∈ Ker (R)(︁

D, IE ,R (ε)
)︁

else
, (3.69)

where EQε− := Im (R) ⊂ EQε and 0D is the zero differential form onD, for all ε ∈ R. Additionally,
to ensure locality of the counterterm, R needs to be a Rota-Baxter operator of weight λ = −1,
i.e. fulfill

µ ◦ (R ⊗ R) + R ◦ µ = R ◦ µ ◦ (R ⊗ Id+ Id⊗R) , (3.70)

where µ denotes the multiplication on EQε (and by abuse of notation also on EQε− via restriction)
from Equation (3.64). In particular, (EQε,R) is a Rota-Baxter algebra of weight λ = −1 and
R induces the splitting

EQε ∼= EQε+ ⊕ EQε− (3.71)

with EQε+ := CoKer (R) and EQε− := Im (R). Then we can introduce the counterterm map S
Φε

E
R ,

sometimes also called ‘twisted antipode’, recursively via the normalization S
Φε

E
R (I) ∈ 1EQε and

S
Φε

E
R : Aug

(︁
HQ

)︁
→ EQε− , Γ ↦→ −R

(︂
S
Φε

E
R ⋆

(︁
ΦεE ◦ A

)︁)︂
(Γ) (3.72)

else, where A : HQ →→ Aug
(︁
HQ

)︁
is the projector onto the augmentation ideal from Defini-

tion 3.1.16. Next we define renormalized Feynman rules via

ΦR : HQ → EQε+ , Γ ↦→ Lim
ε ↦→0

(︂
S
Φε

E
R ⋆ Φ

)︂
(Γ) , (3.73)

15There exist renormalization schemes, such as kinematic renormalization schemes, that are well-defined without
a previous regularization step. These can be seen as embedded into our framework by simply setting E := IdEQ

and considering it as the natural inclusion of EQ into EQ
ε.

16Sometimes, if convenient, we view R also as endomorphism on EQ
ε with image EQ

ε
− and cokernel EQ

ε
+.
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where the corresponding formal Feynman integral expression is well-defined in the limit ε ↦→ 0,
if the cokernel CoKer (R) consists only of convergent formal Feynman integral expressions, cf.
Lemma 3.1.40. We remark that the renormalized Feynman rules ΦR and the counterterm map

S
Φε

E
R correspond to the algebraic Birkhoff decomposition of the Feynman rules Φ with respect

to the renormalization scheme R, as was first observed in [16] and e.g. reviewed in [122, 123].
Finally, we remark that the above discussion can be also lifted to the algebra of meromorphic
functions Mε := C

[︁
ε−1, ε

]︁]︁
, if a suitable regularization scheme E is chosen,17 by setting

˜︁E : EQ → Mε ,
(︁
D, IE (ε)

)︁
↦→ fE (ε) :=

∫︂
D

(︁
IE (ε)

)︁⃓⃓⃓⃓⃓
ε∈J

, (3.74)

for fixed external momentum configurations away from Landau singularities. Then we can
proceed as before by setting a renormalization scheme as a linear map

˜︁R : Mε →→ Mε
− , fE (ε) ↦→

{︄
0 if fE (ε) ∈ Ker

(︁ ˜︁R)︁
fE ,R (ε) else

, (3.75)

where Mε
− := Im

(︁ ˜︁R)︁ ⊂ Mε, and the rest analogously. ♦

Definition 3.1.38 (Hopf subalgebras for multiplicative renormalization). Let Q be a QFT,
RQ its weighted residue set, HQ its (associated) renormalization Hopf algebra and XrG ∈ HQ

a restricted combinatorial Green’s function, where G and g denote one of the gradings from
Definition 3.1.18. We are interested in Hopf subalgebras which correspond to multiplicative
renormalization, i.e. Hopf subalgebras of HQ such that the coproduct factors over restricted
combinatorial Green’s functions as follows:

∆ (XrG) =
∑︂
g

Pg (X
r
G)⊗ XrG−g , (3.76)

where Pg

(︁
XrG
)︁
∈ HQ is a polynomial in graphs such that each summand has multi-index

g.18 ♦

Remark 3.1.39. Given the situation of Definition 3.1.37 and assume that the (associated) renor-
malization Hopf algebra HQ possesses Hopf subalgebras in the sense of Definition 3.1.38. Then
we can calculate the Z-factor for a given residue r ∈ RQ via

ZrE ,R (ε) := S
Φε

E
R (Xr) . (3.77)

More details in this direction can be found in [123, 126] (with a different notation). Additionally,
we remark that the existence of the Hopf subalgebras from Definition 3.1.38 depends crucially
on the grading g. In particular, for the loop-grading these Hopf subalgebras exist if and only if

the QFT has only one fundamental interaction, i.e. R[0]
Q is a singleton. Furthermore, they exist

for the coupling-grading if and only if the QFT has for each fundamental interaction a different
coupling constant, i.e. #QQ = #qQ. Finally, they exist always for the vertex-grading, as we
will see in Proposition 3.5.2, cf. Sections 3.5 and 3.6.

Lemma 3.1.40. The image of the renormalized Feynman rules Im (ΦR) consists of convergent
integral expressions, if the cokernel CoKer (R) of the corresponding renormalization scheme
R ∈ End

(︁
EQε

)︁
does.

17In the sense that the integrated expressions do not contain essential singularities in the regulator.
18There exist closed expressions for the polynomials Pg (X

r
G) as we will see in Section 3.5, in particular Propo-

sition 3.5.2,, which were first introduced in [125].
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Proof. The theorem about the algebraic Birkhoff decomposition, first observed in [16], states in
this context that

ΦR : HQ → EQε+ (3.78)

and

S
Φε

E
R : HQ → EQε− , (3.79)

where EQε+ := CoKer (R) and EQε− := Im (R), and thus Im (ΦR) consists of finite integral
expressions, if CoKer (R) does. ■

Definition 3.1.41 (Proper renormalization schemes). A renormalization scheme R ∈ End
(︁
EQε

)︁
is called proper, if both its kernel Ker (R) and its cokernel CoKer (R) consist only of convergent
integral expressions.19 In particular, we demand that

Im (Φ ◦ Ω) ⊆ CoIm (R) , (3.80)

i.e. the image of superficially divergent graphs under the Feynman rules is a subset of the coimage
of a proper renormalization scheme. ♦

Remark 3.1.42. Definition 3.1.41 is motivated by the fact that in physics we want renormalization
schemes to produce finite, i.e. integrable, renormalized Feynman rules and furthermore preserve
the locality of the theory, i.e. remove divergences of Feynman integrals via contributions from
themselves.

3.2 The associated renormalization Hopf algebra

In this section, we describe a problem which may occur in the construction of the renormalization
Hopf algebra HQ to a given Quantum Field Theory Q using Definition 3.1.14. Then we present
four different solutions to still obtain a renormalization Hopf algebra (which are not isomorphic
if the problem occurs) and discuss their physical interpretation. This section is taken from [1,
Subsection 3.3].

Problem 3.2.1. Given a general Quantum Field Theory Q, Definition 3.1.14 may not yield a
well-defined Hopf algebra due to the following reason: Let Q be such that there exist divergent
Feynman graphs γ ∈ GQ whose residue is not in the residue set, i.e. we have ω (γ) ≥ 0 and
Res (γ) /∈ RQ. Then given any Feynman graph Γ ∈ GQ with γ ∈ D (Γ), the quotients of

the form Γ/γ for γ ⊊ Γ are ill-defined, as they generate a new vertex Res (γ) /∈ R[0]
Q . As a

consequence, the definitions of the coproduct and the antipode are ill-defined as well. Physically
speaking, there is no monomial in the Lagrange density LQ to absorb the divergences coming
from the graph γ.

Remark 3.2.2. In order to remedy Problem 3.2.1 we need to change some of the definitions. This
is explained in the following Solutions 3.2.5, 3.2.6, 3.2.7 and 3.2.8. In order to distinguish the
different objects, we add tildes to the objects with modified definitions. Then, after this section,
we drop the tildes again and simply use the original symbols.

19We allow, as an exception, superficially divergent graphs to be in the kernel of R, if they would lead to an ill-
defined coalgebra structure on the renormalization Hopf algebra. See [1, Subsection 3.3] for a detailed discussion
on this matter.
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Definition 3.2.3 (Modified Feynman graph set). Let Q be a Quantum Field Theory with
residue set RQ. Recall from Definition 3.1.6 that we denote by GQ the set of all one-particle
irreducible (1PI) Feynman graphs that can be generated by the residue set RQ of Q. Moreover,

we define the set ˜︁GQ of all 1PI Feynman graphs of Q which does not contain superficially
divergent subgraphs whose residue is not in the residue set RQ, i.e.˜︁GQ :=

{︁
Γ ∈ GQ

⃓⃓
Res (γ) ∈ RQ for all γ ∈ D (Γ)

}︁
. (3.81)

This set will be used in Solution 3.2.5. ♦

Definition 3.2.4 (Modified sets of superficially divergent subgraphs). Let Q be a Quantum
Field Theory and Γ ∈ GQ a Feynman graph of Q. Recall from Definition 3.1.13 that we denote
by D (Γ) the set of superficially divergent subgraphs of Γ and by D′ (Γ) the set of superficially
divergent proper subgraphs of Γ. Moreover, we define the two additional sets ˜︁D (Γ) and ˜︁D′ (Γ),
corresponding to D (Γ) and D′ (Γ), respectively, which do not contain Feynman graphs with
superficially divergent subgraphs whose residue is not in the residue set RQ, i.e.˜︁D (Γ) :=

{︁
γ ∈ D (Γ)

⃓⃓
Res (γc) ∈ RQ for all γc ∈ C (γ)

}︁
, (3.82a)

where C (γ) denotes the set of connected components of γ, and

˜︁D′ (Γ) :=
{︂
γ ∈ ˜︁D (Γ) | γ ⊊ Γ

}︂
, (3.82b)

These sets will be used in Solution 3.2.6. ♦

Solution 3.2.5. The first solution to Problem 3.2.1 to replace the Feynman graph set GQ from

Definition 3.1.6 by ˜︁GQ from Definition 3.2.3. Then, we can construct the renormalization Hopf

algebra as in Definition 3.1.14, which we now denote by ˜︁H(1)
Q .

Solution 3.2.6. The second solution to Problem 3.2.1 is to simply remove all divergent Feynman
graphs whose residue is not in the residue set from the sets of divergent subgraphs, i.e. replace the
sets D (·) and D′ (·) from Definition 3.1.13 by ˜︁D (·) and ˜︁D′ (·) from Definition 3.2.4, respectively.
Then, we can construct the renormalization Hopf algebra as in Definition 3.1.14, which we now

again denote by ˜︁H(2)
Q .

Solution 3.2.7. The third solution to Problem 3.2.1 is to add all missing residues to the residue
set and set its weights to the value of a divergent Feynman graph with this particular residue.20

This enlarges also the set of Feynman graphs. Then, we can define the Hopf algebra using this

enlarged set of Feynman graphs as in Definition 3.1.14, which we now again denote by ˜︁H(3)
Q .

Solution 3.2.8. The fourth solution to Problem 3.2.1 works only in special cases: Given that
there exist tree diagrams with the residue of a divergent Feynman graph whose residue is not in
the residue set. Then, we can construct the renormalization Hopf algebra as in Definition 3.1.14
by defining the shrinking process as the replacement of the aforementioned graphs with the sum

over all possible such trees, which we now again denote by ˜︁H(4)
Q .21

20If there exist two or more such graphs with different superficial degree of divergence we take the highest for
uniqueness.

21This procedure is a priori non-local, but could effectively become local via appropriate cancellation identities
that are similar to the Slavnov–Taylor identities in Quantum Yang–Mills theory, except that there is no higher-
valent vertex residue. We refer to Section 4.4 for a discussion on Quantum Yang–Mills theory and (effective)
Quantum General Relativity, where we conjecture that this is the right solution for gravity-matter couplings.
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Remark 3.2.9. Equivalently, the renormalization Hopf algebra from Solution 3.2.5 could be
constructed in two different ways: The first possibility is to define HQ as the Q-algebra generated
by the set GQ of Feynman graphs with the product and unit as in Definition 3.1.14. Then we

define the ideal jQ generated via the Feynman graphs in the set GQ\ ˜︁GQ and consider the quotient

˜︁H(1)
Q := HQ/jQ , (3.83)

on which we can define the additional Hopf algebra structures as in Definition 3.1.14. The

second possibility is to use the Hopf algebra ˜︁H(3)
Q from Solution 3.2.7 and define the ideal kQ

generated via Feynman graphs which contain vertices that are not in the residue set R[0]
Q . Then

we obtain ˜︁H(1)
Q := ˜︁H(3)

Q /
(︁
jQ + kQ

)︁
. (3.84)

Remark 3.2.10 (Physical interpretation). Physically, Problem 3.2.1 states that divergent Feyn-
man graphs whose residue is not in the residue set contribute in principle to a divergent Green’s
function which cannot be renormalized if the corresponding vertex is missing in the Quantum
Field Theory. However, there could be still three possibilities that the unrenormalized Feynman
rules remedy the problem themselves: The first one is that the problematic Feynman graphs
itself or the corresponding restricted combinatorial Green’s functions turn out to be in the ker-
nel of the unrenormalized Feynman rules which corresponds to Solution 3.2.5. The second one
is that the problematic Feynman graphs itself or the corresponding restricted combinatorial
Green’s functions turn out to be already finite when applying the unrenormalized Feynman
rules which corresponds to Solution 3.2.6. However, if this is not the case, we need to add
the corresponding vertices with suitable Feynman rules in order to absorb the divergences of
the corresponding restricted combinatorial Green’s functions via multiplicative renormalization
corresponding to Solution 3.2.7. Luckily, for all established physical Quantum Field Theories
this situation did not appear so far. Finally, the last scenario could be still circumvented, if
corresponding tree graphs exist together with corresponding cancellation identities that render
this a priori non-local process local, which corresponds to Solution 3.2.8.

Example 3.2.11 (QED). An illuminating example to Problem 3.2.1 is QED since we need
to apply both, Solution 3.2.5 and Solution 3.2.7: Consider QED with its combinatorics as a
renormalizable Quantum Field Theory (i.e. the superficial degree of divergence of a Feynman
graph depends only on its external leg structure). Then, the Feynman graphs contributing to
the three- and four-point function are divergent — however in contrast to non-abelian quantum
gauge theories, there is no three- and four-photon vertex present to absorb the corresponding
divergences. Luckily, when summing all Feynman graphs of a given loop order we have the
following cancellations after applying the unrenormalized Feynman rules: The Feynman graphs
contributing to the three-point function cancel pairwise due to Furry’s Theorem, cf. [1, Theorem
3.55] for a generalization thereof and the divergences of the Feynman graphs contributing to the
four-point function cancel pairwise due to gauge invariance [127]. Thus, QED is a renormalizable
Quantum Field Theory after all without the need to add a three- and four-photon vertex to the
theory.

Remark 3.2.12 (The situation of QGR-SM). The situation of QGR-SM is worse than the one
for QED, since QGR is non-renormalizable as a Quantum Field Theory (in particular, the
superficial degree of divergence of a pure gravity Feynman graph depends only on its loop
number). In particular, there exist Feynman graphs whose external leg structure consists of any
combination of even numbers of matter particles, with additional gravitons as virtual particles.
These graphs are superficially divergent, however there do not exist corresponding residues

71



3. Hopf algebraic renormalization

in the residue set. For this scenario we suggest Solution 3.2.8 to avoid introducing further
vertices, as the corresponding trees are already part of the theory. In particular, we claim that
corresponding generalized versions of Slavnov–Taylor identities will render this a priori non-local
renormalization operation local. We refer to the more detailed discussion in the beginning of
Section 4.4.

Definition 3.2.13 (Renormalization Hopf algebra associated to a Quantum Field Theory). Let
Q be a Quantum Field Theory. Then we denote by HQ the renormalization Hopf algebra result-
ing from the application of any of the Solutions 3.2.5, 3.2.6, 3.2.7 or 3.2.8 to Definition 3.1.14.
Then we call HQ “the renormalization Hopf algebra associated to Q”. ♦

Remark 3.2.14. The motivation for Definition 3.2.13 is to simplify notation, as for the realm of
this work it is not necessary to distinguish between Solutions 3.2.5, 3.2.6, 3.2.7 and 3.2.8.

3.3 Predictive Quantum Field Theories

To address the situation of (effective) Quantum General Relativity more precisely, we intro-
duce the notion of a ‘predictive Quantum Field Theory’ accompanying the well-established
classification into super-renormalizable, renormalizable and non-renormalizable Quantum Field
Theories. This turns out to be a useful addendum, since renormalization theory allows for non-
renormalizable Quantum Field Theories that have a well-defined perturbative expansion after
a proper incorporation of their internal symmetries [2]. More precisely, it is always possible to
render any Feynman integral finite by applying suitable subtractions. Thus, the relevant ques-
tion becomes whether these subtractions can be organized in a systematic way into Z-factors
to allow for multiplicative renormalization. In addition to the well-established classification of
renormalizability, this situation can be essentially improved by internal symmetries of the theory.
If this is possible, we call a Quantum Field Theory predictive.

Definition 3.3.1 (Classification of quantum field theories). LetQ be a quantum field theory and
let qQ denote the set of coupling constants of Q, that is the set of constants scaling monomials
in LQ involving at least three fields. Then, an interaction with coupling constant αi ∈ qQ is
called:

1. super-renormalizable, iff [αi] < 0

2. renormalizable, iff [αi] = 0

3. non-renormalizable, iff [αi] > 0

where [αi] denotes the mass-dimension of αi. ♦

These criteria for the classification of Q can be equivalently rephrased in terms of its perturbative
expansion via properties of its superficial degree of divergence:

Lemma 3.3.2. Let Q be a quantum field theory with residue set RQ and Feynman graph set
GQ, then the interaction with respect to the residue ri ∈ RQ can be classified according to
Definition 3.3.1 equivalently as follows:

1. super-renormalizable, iff ∂
∂gi
ω (ri,gi) < 0

2. renormalizable, iff ∂
∂gi
ω (ri,gi) = 0
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3. non-renormalizable, iff ∂
∂gi
ω (ri,gi) > 0

where ω denotes the superficial degree of divergence, cf. Definition 3.1.12, and gi denotes an
appropriate grading, cf. Definition 3.1.18, which we consider here as a continuous variable.

Proof. We start by recalling that the action has mass dimension [S] = 0, an infinitesimal line
element [dx] = −1 and the partial derivative [∂] = 1. Thus, the d-dimensional Minkowskian
volume form dVη := dt ∧ dx1 ∧ · · · ∧ dxd−1 has mass dimension

[︁
dVη

]︁
= −d, and the Lagrange

function L ≡ LKin + LInt of the Lagrange density L := L dVη has mass dimension [L] = d.
Applying this knowledge to the kinetic terms LKin ≡

∑︁
i,j (∂ϕi) (∂ϕi)+

(︁
ψj /∂ψj

)︁
, we obtain that

bosonic and ghost fields ϕi have mass dimension [ϕi] = (d − 2)/2, whereas fermionic fields ψj
have mass dimension

[︁
ψj
]︁
= (d− 1)/2. Therefore, the mass dimension of the coupling constant

is directly linked to the number of partial derivatives in each interaction monomial, which, in
turn, is responsible for the UV-behavior of the corresponding Feynman rule. More precisely, let
LInt ≡

∑︁
k αkIk be the interaction Lagrange function and αkIk an interaction monomial therein.

Let #∂Ik denote the number of partial derivatives, #ϕk the number of bosonic and ghost fields
and #ψk the number of fermionic fields in Ik. Using [L] = d again, we obtain

#∂Ik = d− [αk]−
(︃
d− 2

2

)︃
#ϕk −

(︃
d− 1

2

)︃
#ψk . (3.85)

Additionally, we denote by Let #∂Ck
the number of partial derivatives for the corresponding

corolla of the interaction, that is the vertex together with its half-edges. As each half-edge
corresponds to half of a propagator, each bosonic or ghost edge contains −1 derivatives and
each fermionic edge contains −1/2 derivatives. Thus, we obtain

#∂Ck
= d

(︃
1− 1

2
#ϕk −

1

2
#ψk

)︃
− [αk] . (3.86)

Comparing this result to Corollary 3.4.4, which states that an interaction is renormalizable if
the weight of its corolla is

ϖ (v) ≡ d

(︃
1− 1

2
Val (v)

)︃
, (3.87)

super-renormalizable if the weight is smaller and non-renormalizable if the weight is bigger, we
obtain the claimed result by identifying Val (v) ≡ #ϕk +#ψk. ■

After having discussed the notion of renormalizability, we extend this traditional classification
by the notion of a ‘predictive quantum field theory’:

Definition 3.3.3 (Predictive Quantum Field Theory). Let Q be a Quantum Field Theory with
coupling constant set qQ and counterterm set ZQ. We callQ predictive, if the set qQ is finite and
either the set ZQ itself is finite or Q possesses ‘quantum gauge symmetries’, cf. Definition 3.6.1,
inducing a finite set of counterterms ZQGSQ built from the set ZQ. ♦

This then immediately leads to the following:

Observation 3.3.4. Every super-renormalizable or renormalizable Quantum Field Theory Q
with a finite coupling constant set qQ is predictive.

Finally, given the results of [2, 20], we claim the following:

73



3. Hopf algebraic renormalization

Conjecture 3.3.5. (Effective) Quantum General Relativity, possibly coupled to matter from the
Standard Model, is predictive.

3.4 A superficial argument

In this section, we study combinatorial properties of the ‘superficial degree of divergence (SDD)’
from Definition 3.1.12. This integer, combinatorially associated to each Feynman graph Γ ∈ GQ,
provides a measure of the ultraviolet divergence of the corresponding Feynman integral. In fact,
a result of Weinberg states that the ultraviolet divergence of the (formal) Feynman integral
Φ (Γ) is bounded by a polynomial of degree MaxI⊊γ⊆Γ ω (γ), where the maximum is considered
over all non-empty 1PI subgraphs and ω : GQ → Z denotes the SDD of γ [128]. More precisely,
the corresponding Feynman integral converges if ω (Γ) < 0 and ω (γ) < 0 for all non-empty 1PI
subgraphs I ⊊ γ ⊂ Γ. We start this section by providing an alternative definition of the SDD in
terms of weights of corollas in Definition 3.4.1 and Lemma 3.4.2. With this criterion on hand,
we show in Theorem 3.4.3 that the SDD of Feynman graphs with a fixed residue depends affine-
linearly on their vertex-grading. Then we give in Corollary 3.4.4 an alternative characterization
to the classification of QFTs into (super-/non-)renormalizability via weights of corollas. Build-
ing upon this result, we introduce the notion of a ‘cograph-divergent QFT’ in Definition 3.4.6,
which is shown in Proposition 3.4.8 to be the obstacle for the compatibility of coproduct iden-
tities with the projection to divergent Feynman graphs from Definition 3.1.20. Next we study
the superficial compatibility of the coupling-grading and loop-grading in Proposition 3.4.13. We
complete this section by showing that (effective) Quantum General Relativity coupled to the
Standard Model (QGR-SM) satisfies both, i.e. is cograph-divergent and has superficially com-
patible coupling-grading in Corollary 3.4.10 and Corollary 3.4.15. The results in this section
are in particular useful for the following sections, where we want to state our results not only
for the renormalizable case, but include also the more involved super- and non-renormalizable
cases, or even mixes thereof. Finally, this allows us to apply our results to QGR-SM.

Definition 3.4.1 (Weights of corollas). Let Q be a QFT and (RQ, ω) its weighted residue set.

Given a vertex residue v ∈ R[0]
Q , we define the weight of its corolla via

ϖ (v) ≡ ω (cv) := ω (v) +
1

2

∑︂
e∈E(v)

ω (e) . (3.88)

♦

Lemma 3.4.2. Given the situation of Definition 3.4.1, the superficial degree of divergence of a
Feynman graph Γ ∈ GQ can be equivalently calculated via22

ω : GQ → Z , Γ ↦→ dλ (Γ) +
∑︂

v∈V (Γ)

ϖ (v)− 1

2

∑︂
e∈E(Res(Γ))

ω (e) . (3.89)

Proof. This follows directly from the combination of Equation (3.18) from Definition 3.1.12 and
Equation (3.88) from Definition 3.4.1. ■

Theorem 3.4.3 (Superficial degree of divergence via residue and vertex-grading). Given the
situation of Lemma 3.4.2, the superficial degree of divergence of a Feynman graph Γ ∈ GQ can

22We remark that the equivalence holds only for non-trivial graphs, i.e. graphs with at least one vertex.
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be decomposed as follows:23

ω (Γ) ≡ ρ (Γ) + σ (Γ) , (3.90a)

where ρ (Γ) depends only on Res (Γ) and σ (Γ) depends only on VtxGrd (Γ). In particular, we
have:

ρ (Γ) :=

⎧⎨⎩ω
(︁
Res (Γ)

)︁
if Res (Γ) ∈ R[0]

Q

d− 1

2

∑︁
e∈E(Res(Γ)) ω (e) else, i.e. Res (Γ) ∈

(︂
AQ \ R[0]

Q

)︂ (3.90b)

and

σ (Γ) :=

vQ∑︂
i=1

(︄
d

(︃
1

2
Val (vi)− 1

)︃
+ϖ (vi)

)︄(︁
VtxGrd (Γ)

)︁
i

(3.90c)

Notably, σ (Γ) is linear in VtxGrd (Γ) and thus ω (Γ) is affine linear in VtxGrd (Γ).

Proof. We start with Equation (3.89) from Definition 3.4.1: First we rewrite the loop number
using the Euler characteristic24

λ (Γ) = κ (Γ)−#V (Γ) + #E (Γ) , (3.91)

where κ (Γ) = 1, as Γ ∈ GQ is connected. Then we express #V (Γ) in terms of VtxGrd (Γ) and
Res (Γ) via

#V (Γ) =

vQ∑︂
i=1

(︁
IntVtx (Γ)

)︁
i

=

vQ∑︂
i=1

(︂(︁
VtxGrd (Γ)

)︁
i
+
(︁
ExtVtx (Γ)

)︁
i

)︂
=

vQ∑︂
i=1

(︂(︁
VtxGrd (Γ)

)︁
i

)︂
+ δ

Res(Γ)∈R[0]
Q

,

(3.92)

where in the last equality we have used that Γ ∈ GQ is connected by setting

δ
Res(Γ)∈R[0]

Q

=

⎧⎨⎩1 if Res (Γ) ∈ R[0]
Q

0 else, i.e. Res (Γ) ∈
(︂
AQ \ R[0]

Q

)︂ . (3.93)

Furthermore, we express #E (Γ) in terms of VtxGrd (Γ) and the valences of the corresponding
vertices via

#E (Γ) =
1

2

vQ∑︂
i=1

Val (vi)
(︁
IntVtx (Γ)

)︁
i
− 1

2

vQ∑︂
i=1

Val (vi)
(︁
ExtVtx (Γ)

)︁
i

=
1

2

vQ∑︂
i=1

Val (vi)
(︁
VtxGrd (Γ)

)︁
i
.

(3.94)

23The function σ can be expressed equivalently as a linear functional in the coarser gradings, if they are
superficially compatible, cf. Definition 3.1.21.

24For the Euler characteristic, Equation (3.91), we need to either ignore the external (half-)edges or assume
that they are attached to external vertices, as in Definition 3.1.6, and adjust the loop-number accordingly.
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Thus, combining Equations (3.91), (3.92) and (3.94), we obtain

λ (Γ) = 1− δ
Res(Γ)∈R[0]

Q

+
1

2

vQ∑︂
i=1

(︁
Val (vi)− 2

)︁ (︁
VtxGrd (Γ)

)︁
i
. (3.95)

We proceed by rewriting

∑︂
v∈V (Γ)

ϖ (v) =

vQ∑︂
i=1

ϖ (vi)
(︁
VtxGrd (Γ)

)︁
i
. (3.96)

Finally, plugging the above results into Equation (3.89) from Definition 3.4.1 yields the claimed
result. ■

Corollary 3.4.4 (Weights of corollas and renormalizability). Given the situation of Theo-

rem 3.4.3 and a vertex residue v ∈ R[0]
Q . Then its corolla cv is renormalizable if its weight

is

ϖ (v) ≡ d

(︃
1− 1

2
Val (v)

)︃
, (3.97)

non-renormalizable if its weight is bigger and super-renormalizable if its weight is smaller. In
particular, the QFT Q is renormalizable, non-renormalizable or super-renormalizable if all of
its corollas are.

Proof. Before presenting the actual argument, we recall that a QFT Q is called renormalizable,
if, for a fixed residue r, the superficial degree of divergence is independent of the grading,
non-renormalizable if the superficial degree of divergence increases with increasing grading and
super-renormalizable if the superficial degree of divergence decreases with increasing grading.
Using Equation (3.90c) from Theorem 3.4.3, we directly obtain the claimed bound

ϖ (v) = d

(︃
1− 1

2
Val (v)

)︃
, (3.98)

as for this value the superficial degree of divergence of a Feynman graph is independent of the
corolla cv, it is positively affected if its weight is bigger and it is negatively affected if its weight
is smaller. ■

Corollary 3.4.5. Given the situation of Theorem 3.4.3, the dependence of σ (Γ) on VtxGrd (Γ)
can be furthermore refined by decomposing

σ (Γ) ≡ σn (Γ) + σr (Γ) + σs (Γ) (3.99)

where

σn (Γ) ≡
⃓⃓
σn (Γ)

⃓⃓
, (3.100a)

σr (Γ) ≡ 0 (3.100b)

and

σs (Γ) ≡ −
⃓⃓
σs (Γ)

⃓⃓
. (3.100c)

In particular, σn (Γ) depends only on the non-renormalizable corollas, σr (Γ) depends only on
the renormalizable corollas and σs (Γ) depends only on the super-renormalizable corollas.
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Proof. This follows directly from Theorem 3.4.3 and Corollary 3.4.4. ■

Definition 3.4.6 (Cograph-divergent QFTs). Let Q be a QFT with residue set RQ and
weighted Feynman graph set (GQ, ω). We call Q cograph-divergent, if for each superficially
divergent Feynman graph Γ ∈ GQ and its superficially divergent subgraphs γ ∈ D (Γ), the
corresponding cographs Γ/γ are also all superficially divergent, i.e. fulfill ω

(︁
Γ/γ

)︁
≥ 0. ♦

Remark 3.4.7. Definition 3.4.6 is trivially satisfied for super-renormalizable and renormalizable
QFTs. However, it is the obstacle for the compatibility of coproduct identities with the pro-
jection to divergent graphs for non-renormalizable QFTs, as will be shown in Proposition 3.4.8.
Furthermore, we show in Corollary 3.4.10 that (effective) Quantum General Relativity coupled
to the Standard Model is cograph-divergent.

Proposition 3.4.8. Let Q be a QFT with (associated) renormalization Hopf algebra HQ. Then
coproduct identities are compatible with the projection to divergent graphs from Definition 3.1.20
if and only if Q is cograph-divergent: More precisely, given the identity (we assume GV ̸= 0)25

∆(GV) =
∑︂
v

hV−v ⊗ Hv (3.101)

then this implies

∆
(︁
GV

)︁
=
∑︂
v

hV−v ⊗ Hv (3.102)

if and only if Q is cograph-divergent.

Proof. Since the coproduct is additive, we can without loss of generality assume that GV consists
of only one summand. Thus,

GV ≡ α
∏︂
i

Γi (3.103)

with α ∈ Q and Γi ∈ GQ are 1PI Feynman graphs whose vertex-grading adds up to V. Further-
more, we have either GV = GV or GV = 0 by definition, cf. Definition 3.1.20, where the latter
case is excluded by assumption. Using the linearity and multiplicativity of the coproduct,

∆

⎛⎝α∏︂
i

Γi

⎞⎠ = α
∏︂
i

∆(Γi) , (3.104)

we can reduce our calculation to the 1PI Feynman graphs Γi via

∆ (Γi) =
∑︂

γi∈D(Γi)

γi ⊗ Γi/γi . (3.105)

If Q is cograph-divergent, we obtain Γi/γi ≡ Γi/γi, which concludes the proof. ■

Lemma 3.4.9. Let Q be a QFT consisting only of non-renormalizable and renormalizable corol-

las. Then Q is cograph-divergent if ω (v) ≥ 0 for all vertex-residues v ∈ R[0]
Q .

25We remark that hV−v ≡ hV−v by the definition of the coproduct in (associated) renormalization Hopf
algebras, cf. Definition 3.1.14.
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Proof. This is a direct consequence of Equation (3.90a) from Theorem 3.4.3 together with Equa-
tion (3.99) from Corollary 3.4.5: We obtain ω (Γ) ≥ 0 for all Feynman graphs Γ ∈ GQ with
Res (Γ) ∈ RQ, if ρ (r) ≥ 0 for all residues r ∈ RQ. This follows from the fact that the contribu-
tion from σ is non-negative by the assumption that Q consists only of non-renormalizable and
renormalizable corollas. Furthermore, as the weight of an edge is negative in our conventions,

ρ (e) ≥ 0 is trivially satisfied for all edge-residues e ∈ R[1]
Q . Thus, the property ρ (r) ≥ 0 reduces

to ρ (v) ≡ ω (v) ≥ 0 for all vertex residues v ∈ R[0]
Q . As the residue of a Feynman graph Γ

agrees with any of its cographs, i.e. Res (Γ) = Res
(︁
Γ/γ

)︁
for any subgraph γ ⊂ Γ, we obtain the

claimed statement. ■

Corollary 3.4.10. (Effective) Quantum General Relativity coupled to the Standard Model in 4
dimensions of spacetime is cograph-divergent.

Proof. (Effective) Quantum General Relativity (QGR) coupled to the Standard Model (SM)
consists of a non-renormalizable (QGR) and a renormalizable (SM) sub-QFT. Furthermore,

its vertices v ∈ R[0]
QGR-SM are either independent, linear dependent or quadratic dependent on

momenta, and thus satisfy ω (v) ≥ 0. Hence Lemma 3.4.9 applies, which concludes the proof. ■

Remark 3.4.11. A direct consequence of Theorem 3.4.3 is that, for a fixed residue r ∈ RQ, the
zero locus of the superficial degree of divergence ω is a hyperplane in ZvQ . More precisely, we
define the function

ωr : ZvQ → Z , v ↦→ ρ (r) + σ (v) (3.106)

and set H r
0 := (ωr)−1 (0) ⊂ ZvQ . Accordingly, we decompose

ZvQ ∼= H r
+ ⊔ H r

0 ⊔ H r
− (3.107)

as sets, where H r
± are defined such that ωr

⃓⃓
H r

+
> 0 and ωr

⃓⃓
H r

−
< 0. We apply this knowledge to

Proposition 3.4.8: Suppose Q is a non-cograph-divergent QFT and consider for simplicity that
GV is given as the sum over 1PI Feynman graphs with a fixed residue r. Then, the coproduct
identity

∆ (GV) =
∑︂

v∈ZvQ

hV−v ⊗ Hv (3.108)

implies only the following splitted identity

∆
(︁
GV

)︁
=

∑︂
v∈(H r

+⊔H r
0 )

hV−v ⊗ Hv +
∑︂

v′∈H r
−

hV−v′ ⊗ Hv′ , (3.109)

where the elements Hv′ consist precisely of the convergent cographs.

Remark 3.4.12. Given the situation of Proposition 3.4.8 and Remark 3.4.11, analogous state-
ments also hold in the case of the antipode due to Lemma 3.5.1.

Proposition 3.4.13 (Superficial grade compatibility). Given the situation of Definition 3.1.21,
the coupling-grading is superficially compatible if and only if

mϖ (v) = nϖ (w) (3.110)
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holds for all v, w ∈ R[0]
Q and m,n ∈ N+ with θ (v)m = θ (w)n. Furthermore, the loop-grading is

superficially compatible if and only if

1(︁
Val (v)− 2

)︁ϖ (v) =
1(︁

Val (w)− 2
)︁ϖ (w) (3.111)

holds for all v, w ∈ R[0]
Q , where Val (v) denotes the valence of v.

Proof. We start with the superficial compatibility of the coupling-grading: Two vertex residues

v, w ∈ R[0]
Q contribute to the same coupling-grading, if and only if there exist natural numbers

m,n ∈ N+ such that θ (v)m = θ (w)n. Thus, Equation (3.110) is the condition for the superficial
compatibility of the coupling-grading and we proceed to the superficial-compatibility of the
loop-grading: Loop-grading is only sensible if just one coupling constant is present. In this case,
different vertex residues might be scaled via different powers of the same coupling constant.
Applying the previous result, loop-grading is superficially compatible if these powers depend only

on the valences of the vertices, i.e. two vertex residues v, w ∈ R[0]
Q are considered equivalent,

if and only if θ (v)Val(w)−2 = θ (w)Val(v)−2. Thus, Equation (3.111) is the condition for the
superficial compatibility of the loop-grading, which concludes the proof. ■

Remark 3.4.14. Having a superficially compatible coupling-grading is a necessary condition for
the validity of quantum gauge symmetries on the level of Feynman rules — however it is not
sufficient. This will be discussed in Section 3.7.

Corollary 3.4.15. (Effective) Quantum General Relativity coupled to the Standard Model has
a superficially compatible coupling-grading.

Proof. We start by considering the pure gravitational part, i.e. gravitons and graviton-ghosts:
The Feynman rules of (effective) Quantum General Relativity (QGR) are such that each vertex

v ∈ R[0]
QGR has weight ω (v) = 2 and each edge e ∈ R[1]

QGR has weight ω (e) = −2, as the
corresponding Feynman rules are quadratic and inverse quadratic in momenta, respectively.

Thus, the corolla-weight of a vertex v ∈ R[0]
QGR is

ϖ (v) = 2−Val (v) . (3.112)

Applying Equation (3.111) from Proposition 3.4.13 yields

1(︁
Val (v)− 2

)︁ϖ (v) =
2−Val (v)

Val (v)− 2

≡ −1 ,

(3.113)

which shows that QGR has even a superficially compatible loop-grading. Furthermore, the pure
Standard Model (SM) part is renormalizable. Thus, applying Corollary 3.4.4, the corolla-weight

of a vertex v ∈ R[0]
SM is

1(︁
Val (v)− 2

)︁ϖ (v) =
d
(︁
1− 1/2Val (v)

)︁(︁
Val (v)− 2

)︁
≡ −d

2
,

(3.114)

which shows that also the SM has even a superficially compatible loop-grading. Finally, we
consider the mixed part, i.e. SM residues with a positive number of gravitons attached to it.26

26We remark that this includes also edges from the Standard Model, as they become vertices when attaching
graviton half-edges to them.
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It follows from the corresponding Feynman rules that the weights of these corollas depend
only on the SM residue and are thus independent of the number of gravitons attached to them.
Conversely, increasing the number of gravitons of such a vertex by gluing a three-valent graviton
tree (consisting of a vertex and a propagator) also leaves the weight of the corolla unchanged
(as the net difference is 2− 2 = 0), which finishes the proof. ■

3.5 Coproduct and antipode identities

In this section, we state and generalize coproduct identities, known in the literature for the case
of renormalizable QFTs with a single coupling constant [48, 49, 125, 129]. We reprove these
identities and generalize them to cover the more involved cases of super- and non-renormalizable
QFTs and QFTs with several vertex residues. Since coproduct identities imply recursive an-
tipode identities by Lemma 3.5.1, we will in the following only discuss the coproduct cases.

Lemma 3.5.1 (Coproduct and antipode identities). Let Q be a QFT with (associated) renor-
malization Hopf algebra HQ and grading (multi-)indices G and g. Then coproduct identities are
equivalent to recursive antipode identities as follows: Given the identity

∆(G) =
∑︂
g

hg ⊗ Hg , (3.115)

then this is equivalent to the recursive identity

S (G) = −
∑︂
g

S
(︁
hg
)︁
A
(︁
Hg

)︁
, (3.116)

where A is the projector onto the augmentation ideal, cf. Definition 3.1.16.

Proof. This follows immediately from the recursive definition of the antipode on generators
Γ ∈ HQ via

S (Γ) := −
∑︂

γ∈D(Γ)

S (γ)A
(︁
Γ/γ

)︁
≡ − (S ⋆A ) (Γ) ,

(3.117)

which is then linearly and multiplicatively extended to all of HQ, such that

S ⋆ IdHQ
≡ I ◦ Î ≡ IdHQ

⋆S (3.118)

holds, where IdHQ
∈ End

(︁
HQ

)︁
is the identity-endomorphism of HQ.27 ■

Proposition 3.5.2 (Coproduct identities for (divergent/restricted) combinatorial Green’s func-
tions28). Let Q be a QFT, HQ its (associated) renormalization Hopf algebra, r ∈ RQ a residue
and V ∈ ZvQ a vertex-grading multi-index. Then we have the following coproduct identities for
combinatorial Green’s functions:

∆(Xr) =
∑︂

v∈ZvQ

X
r
Q

v ⊗ Xrv , (3.119a)

27In particular, S is the ⋆-inverse to the identity IdHQ and I ◦ Î the ⋆-identity.
28This is a direct generalization of [125, Lemma 4.6], [48, Proposition 16] and [129, Theorem 1] to super-

and non-renormalizable theories, theories with several vertex residues and such with longitudinal and transversal
degrees of freedom.
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∆ (XrV) =
∑︂

v∈ZvQ

(︂
X
r
Q

v
)︂⃓⃓⃓⃓⃓

V−v

⊗ Xrv , (3.119b)

and, provided that Q is cograph-divergent and X
r
V ̸= 0,

∆
(︁
X
r
V

)︁
=
∑︂

v∈ZvQ

(︂
X
r
Q

v
)︂⃓⃓⃓⃓⃓

V−v

⊗ X
r
v . (3.119c)

Proof. We start with Equation (3.119a) by using the linearity of the coproduct, Proposition 3.1.33
and Lemma 3.1.34:

∆ (Xr) =
∑︂
Γ∈GQ

Res(Γ)=r

1

Sym (Γ)
∆ (Γ)

=
∑︂
Γ∈GQ

Res(Γ)=r

∑︂
γ∈D(Γ)

1

Sym (Γ)
γ ⊗ Γ/γ

=
∑︂
Γ∈GQ

Res(Γ)=r

∑︂
γ∈D(Γ)

InsAut

(︁
γ ▷ Γ/γ; Γ

)︁
IsoEmb (γ ↪→ Γ)

(︃
1

Sym (γ)
γ

)︃
⊗

(︄
1

Sym
(︁
Γ/γ

)︁Γ/γ)︄

=
∑︂

Γ′∈GQ

Res(Γ′)=r

⎛⎜⎝ ∑︂
γ′∈I(Γ′)

Ins
(︁
γ′ ▷ Γ′)︁

Sym (γ′)
γ′

⎞⎟⎠⊗
(︃

1

Sym (Γ′)
Γ′
)︃
+ X

r ⊗ I

=
∑︂

v∈ZvQ

⎛⎝ ∑︂
γ′∈Ir,v

Insr,v
(︁
γ′
)︁

Sym (γ′)
γ′

⎞⎠⊗

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

Γ′∈GQ

Res(Γ′)=r
VtxGrd(Γ′)=v

1

Sym (Γ′)
Γ′

⎞⎟⎟⎟⎟⎟⎟⎠+ X
r ⊗ I

=
∑︂

v∈ZvQ

X
r
Q

v ⊗ Xrv

(3.120a)

From this we proceed to Equation (3.119b) via restriction:

∆ (XrV) =
(︁
∆(Xr)

)︁⃓⃓⃓⃓⃓
V

=

⎛⎝ ∑︂
v∈ZvQ

X
r
Q

v ⊗ Xrv

⎞⎠⃓⃓⃓⃓⃓
V

=
∑︂

v∈ZvQ

(︂
X
r
Q

v
)︂⃓⃓⃓⃓⃓

V−v

⊗ Xrv .

(3.120b)

Finally, Equation (3.119c) follows from Equation (3.119b) together with the assumption of Q
being cograph-divergent and the application of Proposition 3.4.8. ■

Proposition 3.5.3 (Coproduct identities for (divergent/restricted) combinatorial charges). Let

Q be a QFT, HQ its (associated) renormalization Hopf algebra, v ∈ R[0]
Q a vertex residue and
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V ∈ ZvQ a vertex-grading multi-index. Then we have the following coproduct identities for
combinatorial charges:

∆(Qv) =
∑︂

v∈ZvQ

Q
v
Q

v ⊗Qv
v , (3.121a)

∆ (Qv
V) =

∑︂
v∈ZvQ

(︂
Q
v
Q

v
)︂⃓⃓⃓⃓⃓

V−v

⊗Qv
v , (3.121b)

and, provided that Q is cograph-divergent and Q
v
V ̸= 0,

∆
(︁
Q
v
V

)︁
=
∑︂

v∈ZvQ

(︂
Q
v
Q

v
)︂⃓⃓⃓⃓⃓

V−v

⊗Q
v
v . (3.121c)

Proof. We start with Equation (3.121a) by using the linearity and multiplicativity of the co-
product and Proposition 3.5.2:

∆ (Qv) =
∆ (Xv)∏︁

e∈E(v)

√︁
∆(Xe)

=

∑︁
vv∈ZvQ X

v
Q

vv ⊗ Xvvv∏︁
e∈E(v)

√︂∑︁
ve∈ZvQ X

e
Q

ve ⊗ Xeve

=

(︂
X
v ⊗ I

)︂(︂∑︁
vv∈ZvQ Q

vv ⊗ Xvvv

)︂
∏︁
e∈E(v)

√︃(︂
X
e ⊗ I

)︂(︂∑︁
ve∈ZvQ Q

ve ⊗ Xeve

)︂

=
(︂
Q
v ⊗ I

)︂⎛⎜⎜⎜⎝
(︂∑︁

vv∈ZvQ Q
vv ⊗ Xvvv

)︂
∏︁
e∈E(v)

√︃(︂∑︁
ve∈ZvQ Q

ve ⊗ Xeve

)︂
⎞⎟⎟⎟⎠

=
(︂
Q
v ⊗ I

)︂⎛⎝ ∑︂
v∈ZvQ

Q
v ⊗Qv

v

⎞⎠
=
∑︂

v∈ZvQ

Q
v
Q

v ⊗Qv
v

(3.122a)

From this we proceed to Equation (3.121b) via restriction:

∆ (Qv
V) =

(︁
∆(Qv)

)︁⃓⃓⃓⃓⃓
V

=

⎛⎝ ∑︂
v∈ZvQ

Q
v
Q

v ⊗Qv
v

⎞⎠⃓⃓⃓⃓⃓
V

=
∑︂

v∈ZvQ

(︂
Q
v
Q

v
)︂⃓⃓⃓⃓⃓

V−v

⊗Qv
v ,

(3.122b)

Finally, Equation (3.121c) follows from Equation (3.121b) together with the assumption of Q
being cograph-divergent and the application of Proposition 3.4.8. ■
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Proposition 3.5.4 (Coproduct identities for exponentiated (divergent/restricted) combinato-

rial charges). Let Q be a QFT, HQ its (associated) renormalization Hopf algebra, v ∈ R[0]
Q a

vertex residue and V ∈ ZvQ a vertex-grading multi-index. Then we have the following coproduct
identities for powers of combinatorial charges by m ∈ Q:29

∆(Qmv) =
∑︂

v∈ZvQ

Q
mv

Q
v ⊗Qmv

v , (3.124a)

∆ (Qmv
V ) =

∑︂
v∈ZvQ

(︂
Q
mv

Q
v
)︂⃓⃓⃓⃓⃓

V−v

⊗Qmv
v , (3.124b)

and, provided that Q is cograph-divergent and Q
mv
V ̸= 0,

∆
(︁
Q
mv
V

)︁
=
∑︂

v∈ZvQ

(︂
Q
mv

Q
v
)︂⃓⃓⃓⃓⃓

V−v

⊗Q
mv
v . (3.124c)

Proof. We start with Equation (3.124a) by using the linearity and multiplicativity of the co-
product and Proposition 3.5.3:

∆ (Qmv) =
(︁
∆(Qv)

)︁m
=

⎛⎝ ∑︂
v∈ZvQ

Q
v
Q

v ⊗Qv
v

⎞⎠m

=

⎛⎜⎝(︂Qv ⊗ I
)︂⎛⎝ ∑︂

v∈ZvQ

Q
v ⊗Qv

v

⎞⎠
⎞⎟⎠
m

=
(︂
Q
mv ⊗ I

)︂⎛⎝ ∑︂
v∈ZvQ

Q
v ⊗Qv

v

⎞⎠m

=
∑︂

v∈ZvQ

Q
mv

Q
v ⊗Qmv

v

(3.125a)

From this we proceed to Equation (3.124b) via restriction:

∆ (Qmv
V ) =

(︁
∆(Qmv)

)︁⃓⃓⃓⃓⃓
V

=

⎛⎝ ∑︂
v∈ZvQ

Q
mv

Q
v ⊗Qmv

v

⎞⎠⃓⃓⃓⃓⃓
V∑︂

v∈ZvQ

(︂
Q
mv

Q
v
)︂⃓⃓⃓⃓⃓

V−v

⊗Qmv
v

(3.125b)

Finally, Equation (3.124c) follows from Equation (3.124b) together with the assumption of Q
being cograph-divergent and the application of Proposition 3.4.8. ■

29The power of an element in the renormalization Hopf algebra G ∈ HQ via a non-natural number m ∈
(︁
Q \ N0

)︁
is understood via the formal binomial series, i.e.

Gm :=

∞∑︂
n=0

(︄
m

n

)︄
(G− I)n . (3.123)

More generally, if the renormalization Hopf algebra is considered over the field K, then the following statements
are true for m ∈ K.
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3.6 Quantum gauge symmetries and subdivergences

In this section, we give a precise definition of ‘quantum gauge symmetries (QGS)’ in Defini-
tion 3.6.1 and prove in Theorem 3.6.6 that they induce Hopf ideals in the (associated) renor-
malization Hopf algebra, even for super- and non-renormalizable QFTs, QFTs with several
coupling constants and QFTs with a transversal structure. This means that Z-factor identities
coming from (generalized) gauge symmetries, such as Equations (1.7) and (1.11), are compati-
ble with the renormalization of subdivergences. Furthermore, we illustrate our framework with
Quantum Yang–Mills theory in Example 3.6.2 and (effective) Quantum General Relativity in
Example 3.6.3. Additionally, we mention the works [1, 130], which contain general results on
Hopf ideals in the context of renormalization Hopf algebras.

Definition 3.6.1 (Quantum gauge symmetries). Let Q be a QFT whose coupling-grading is
superficially compatible, QQ the set of its combinatorial charges with cardinality vQ and qQ
the set of its physical charges with cardinality qQ, cf. Definition 3.1.26. Suppose that vQ > qQ,
then we define the following set of equivalence relations, to which we refer as ‘quantum gauge
symmetries (QGS)’, via(︂

Q
v
C

)︂m
∼
(︂
Q
w
C

)︂n
:⇐⇒ Cpl (Qv)m ≡ Cpl (Qw)n (3.126)

for all v, w ∈ R[0]
Q , m,n ∈ N+ and C ∈ ZqQ . Explicitly, the product of combinatorial charges

is defined as the sum over all possibilities to connect their external edges to trees with the
respective combinatorial charges as vertices. If Q possesses additionally a transversal structure,
cf. Definition 3.1.4, then the external edges are additionally required to respect the ‘physical’ and
‘unphysical’ labels. We remark that this is automatic for internal edges due to the restriction
to particular coupling-gradings, as ‘unphysical’ edges are indexed by the respective gauge fixing
parameters. In particular, this requires connecting gauge field edges to be:

• Transversal, if they are related to higher valent gauge field vertices

• Longitudinal, if they are related to ghost edges

Finally, the set of all quantum gauge symmetries of Q is denoted via QGSQ and elements therein
are given as quadruples of the form {v,m;w, n} ∈ QGSQ. ♦

Example 3.6.2 (Quantum Yang–Mills theory). We continue the example started around Equa-
tion (1.4): Consider Quantum Yang–Mills theory with a Lorenz gauge fixing. Then, the Lagrange
density is given via

LQYM := LYM + LGF + LGhost

= ηµνηρσδab

(︃
− 1

4g2
F aµρF

b
νσ −

1

2ξ

(︁
∂µA

a
ν

)︁(︁
∂ρA

b
σ

)︁)︃
dVη

+ ηµν
(︃
1

ξ
ca
(︁
∂µ∂νc

a
)︁
+ gfabc ca

(︂
∂µ
(︁
cbAcν

)︁)︂)︃
dVη ,

(3.127)

where F aµν := g
(︁
∂µA

a
ν − ∂νA

a
µ

)︁
− g2fabcA

b
µA

c
ν is the local curvature form of the gauge boson Aaµ.

Furthermore, dVη := dt ∧ dx ∧ dy ∧ dz denotes the Minkowskian volume form. Additionally,
ηµν∂µA

a
ν ≡ 0 is the Lorenz gauge fixing functional and ξ denotes the gauge fixing parameter.

Finally, ca and ca are the gauge ghost and gauge antighost, respectively. Then, we have the
following identities, where l of the unspecified external gauge boson legs are considered to be
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longitudinally projected:30

Cpl

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝Q

T

⎞⎟⎟⎟⎟⎟⎠
2T
⎞⎟⎟⎟⎟⎟⎟⎠ = ξl/2g2 = Cpl

⎛⎜⎜⎜⎜⎜⎝Q

⎞⎟⎟⎟⎟⎟⎠ , (3.128a)

where T denotes the projection operator onto the transversal degree of freedom and 2T the
squaring by joining the two transversal half-edges, and

Cpl

⎛⎜⎜⎜⎜⎜⎜⎝Q

L

L

⎞⎟⎟⎟⎟⎟⎟⎠ = ξ1+l/2g = Cpl

⎛⎜⎜⎜⎜⎜⎝Q

⎞⎟⎟⎟⎟⎟⎠ , (3.128b)

where L denotes the projection operator onto the longitudinal degree of freedom, cf. Defini-
tion 3.1.4. More precisely, in the case of the Lorenz gauge fixing, we have

Lνµ :=
1

p2
pνpµ , (3.129a)

Iνµ := δνµ (3.129b)

and

T νµ := Iνµ − Lνµ , (3.129c)

where a short calculation verifies L2 = L, I2 = I and T 2 = T . This implies:31

QGSQYM =

⎧⎪⎨⎪⎩
⎧⎨⎩T , 2T ; , 1

⎫⎬⎭ ,

⎧⎨⎩
L

L

, 1; , 1

⎫⎬⎭
⎫⎪⎬⎪⎭ (3.130)

Example 3.6.3 ((Effective) Quantum General Relativity). We continue the example started
around Equation (1.8): Consider (effective) Quantum General Relativity with the metric decom-
position gµν ≡ ηµν + κhµν , where hµν is the graviton field and κ :=

√
κ the graviton coupling

constant (with κ := 8πG the Einstein gravitational constant), and a linearized de Donder gauge
fixing. Then, the Lagrange density is given via

LQGR := LGR + LGF + LGhost

= − 1

2κ2

(︃√︁
−Det (g)R+

1

2ζ
ηµνdD(1)

µ dD(1)
ν

)︃
dVη

− 1

2
ηρσ

(︃
1

ζ
C
µ (︁
∂ρ∂σCµ

)︁
+ C

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂)︃
dVη ,

(3.131)

where R := gνσRµνµσ is the Ricci scalar (with Rρσµν := ∂µΓ
ρ
νσ−∂νΓρµσ+ΓρµλΓ

λ
νσ−ΓρνλΓ

λ
µσ

the Riemann tensor). Again, dVη := dt ∧ dx ∧ dy ∧ dz denotes the Minkowskian volume form,
which is related to the Riemannian volume form dVg via dVg ≡

√︁
−Det (g) dVη. Additionally,

30The residues were drawn with JaxoDraw [131, 132].
31We only display the generating set.
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dD
(1)
µ := ηρσΓµρσ ≡ 0 is the linearized de Donder gauge fixing functional and ζ the gauge fixing

parameter. Finally, Cµ and C
µ
are the graviton-ghost and graviton-antighost, respectively.

Again, we refer to [1, 3] for more detailed introductions and further comments on the chosen
conventions. Then, we have the following identities, where k ∈ N0 denotes additional graviton
legs and l of the unspecified external graviton legs are considered to be longitudinally projected:32

Cpl

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝Q

T

⎞⎟⎟⎟⎟⎟⎠ •T

⎛⎜⎜⎜⎜⎝Q

T k

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ = ζ l/2κk+2 = Cpl

⎛⎜⎜⎜⎜⎝Q

k+1

⎞⎟⎟⎟⎟⎠ (3.132a)

where T denotes the projection operator onto the transversal degree of freedom and •T the
product by joining the two transversal half-edges together, and

Cpl

⎛⎜⎜⎜⎜⎜⎝Q

L

L

k

⎞⎟⎟⎟⎟⎟⎠ = ζ1+l/2κk+1 = Cpl

⎛⎜⎜⎜⎜⎝Q

k

⎞⎟⎟⎟⎟⎠ , (3.132b)

where L denotes the projection operator onto the longitudinal degree of freedom, cf. Defini-
tion 3.1.4. More precisely, in the case of the linearized de Donder gauge fixing, we have33

Lρσ
µν :=

1

2p2

(︂
δρµp

σpν + δσµp
ρpν + δρνp

σpµ + δσν p
ρpµ − 2ηρσpµpν

)︂
, (3.133a)

I ρσµν :=
1

2

(︂
δρµδ

σ
ν + δσµδ

ρ
ν

)︂
(3.133b)

and

T ρσ
µν := I ρσµν −Lρσ

µν , (3.133c)

where a short calculation verifies L2 = L , I 2 = I and T 2 = T . This implies:34

QGSQGR =

⎧⎨⎩
{︄

T i , ȷ̃ (i, j)T ;T j , ı̃ (i, j)T

}︄ ⃓⃓⃓⃓
⃓⃓ i, j ∈ N0

⎫⎬⎭
⋃︂⎧⎪⎨⎪⎩

⎧⎨⎩
L

L

k , 1; k , 1

⎫⎬⎭
⃓⃓⃓⃓
⃓⃓⃓ k ∈ N0

⎫⎪⎬⎪⎭ ,

(3.134a)

where i, j, k ∈ N0 denote additional graviton legs, and with

ı̃ (i, j) :=
i+ 3

GCD(i+ 3, j + 3)
(3.134b)

and

ȷ̃ (i, j) :=
j + 3

GCD(i+ 3, j + 3)
, (3.134c)

32Again, the residues were drawn with JaxoDraw [131, 132].
33We remark that, unlike in the case of Quantum Yang–Mills theory with a Lorenz gauge fixing in Equations

(3.129), the projection operators L and T are not symmetric with respect to the index-pairs µν and ρσ. The
indices µν belong to vertex Feynman rules and the indices ρσ belong to the propagator Feynman rule. This
reflects their respective weights as tensor densities, which will be discussed and studied further in [7, 4, 5].

34Again, we only display the generating set.
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where GCD (m,n) denotes the greatest common divisor of the two natural numbers m,n ∈ N+,
35

and finally ı̃ (i, j)T and ȷ̃ (i, j)T denote, as exponents of residues, all possibilities to glue them to
trees with transversal intermediate graviton edges. This will be studied further in [4, 5], using
the general theory and Feynman rules developed in [1, 3].

Definition 3.6.4 (Quantum gauge symmetry ideal). Given the situation of Definition 3.6.1, a
cograph-divergent QFT Q and its (associated) renormalization Hopf algebra. Then we define
for each quantum gauge symmetry {v,m;w, n} ∈ QGSQ the ideal

i
{v,m;w,n}
Q :=

∑︂
C′∈ZqQ

⟨︂
Q
mv
C′ −Q

nw
C′

⟩︂
HQ

(3.136a)

and then sum over all such quantum gauge symmetries {v,m;w, n} ∈ QGSQ to obtain the ideal

iQ :=
∑︂

{v,m;w,n}∈QGSQ

i
{v,m;w,n}
Q . (3.136b)

♦

Lemma 3.6.5. Given the situation of Definition 3.6.4 and let

θ : ZvQ → ZqQ , V ↦→ C (3.137)

be the function mapping a vertex-grading multi-index to its corresponding coupling-grading multi-
index with respect to the function θ from Equation (3.5). Then we have

(︁
Q

v
C −Q

w
C

)︁
∈ iQ if and

only if θ (v) = θ (w) for two vertex-grading multi-indices v,w ∈ ZvQ.

Proof. Before we start with the actual proof, we emphasize that θ : AQ → qQ is the function
mapping a vertex residue to its associated (product of) coupling constant(s) and thus θ : ZvQ →
ZqQ is the function mapping a multi-index of vertex residues to its associated multi-index of
coupling constants. From the very definition of the quantum gauge symmetry ideal iQ we know
that

(︁
Q
mv
C −Q

nw
C

)︁
∈ iQ if and only if {v,m;w, n} ∈ QGSQ is a quantum gauge symmetry. Thus

we will now show that we can rewrite the element
(︁
Q

v
C −Q

w
C

)︁
as a sum of the form

(︂
Q

v
C −Q

w
C

)︂
=

∑︂
C′∈ZqQ

⎛⎝ K∏︂
i=1

Q
mivi
C′ −

K∏︂
j=1

Q
njwj

C′

⎞⎠HC−C′ , (3.138)

where {vk,mk;wk, nk} ∈ QGSQ are quantum gauge symmetries for all k ∈ {1, . . . ,K} and
HC−C′ ∈ HQ are elements in the associated renormalization Hopf algebra. For the first direction,
we assume the equality

c := θ (v) = θ (w) . (3.139)

Then, we observe that due to the very definition of quantum gauge symmetries, cf. Defini-

tion 3.6.1, there exist quantum gauge symmetries
{︁
{vk,mk;wk, nk}

}︁K
k=1

such that the two
vertex-grading multi-indices are related via

r := v −
K∑︂
k=1

mkevk = w −
K∑︂
k=1

nkewk
, (3.140)

35More precisely, let m =
∏︁∞

k=0 (pk)
ik and n =

∏︁∞
k=0 (pk)

jk be the respective prime factorizations. Then, we
have

GCD (m,n) :=

∞∏︂
k=0

(pk)
Min(ik,jk) . (3.135)
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where ev is the unit multi-index with respect to the vertex v. Furthermore, since

|c| :=
ZqQ∑︂
i=1

ci <∞ , (3.141)

we observe that this is always possible for a finite number of quantum gauge symmetries, i.e.
K ∈ N. Additionally, given that v = w leads to the trivial case

(︁
Q

v
C − Q

w
C

)︁
= 0 ∈ iQ, we

assume from now on v ̸= w, which implies K ∈ N+. We now proceed with Equation (3.138) by
writing out the term in the brackets by setting HC−C′ := Q

r
C−C′ and using the definition given

in Equation (3.42):⎛⎝ K∏︂
i=1

Q
mivi
C′ −

K∏︂
j=1

Q
njwj

C′

⎞⎠ =

⎛⎝ K∏︂
i=1

(Qvi)mi −
K∏︂
j=1

(Qwj )nj

⎞⎠⃓⃓⃓⃓⃓
C′

=

⎛⎜⎝
⎛⎝K−1∏︂

i=1

(Qvi)mi

⎞⎠(︂(QvK )mK − (QwK )nK

)︂⎞⎟⎠⃓⃓⃓⃓⃓
C′

+

⎛⎜⎝
⎛⎝K−2∏︂

i=1

(Qvi)mi

⎞⎠(︂(QvK−1)mK−1 − (QwK−1)nK−1

)︂
(QwK )nK

⎞⎟⎠⃓⃓⃓⃓⃓
C′

+

⎛⎜⎝
⎛⎝K−3∏︂

i=1

(Qvi)mi

⎞⎠(︂(QvK−2)mK−2 − (QwK−2)nK−2

)︂⎛⎝ K∏︂
j=K−1

(Qwj )nj

⎞⎠
⎞⎟⎠⃓⃓⃓⃓⃓

C′

+ . . .

+

⎛⎜⎝
⎛⎝ 2∏︂
i=1

(Qvi)mi

⎞⎠(︂(Qv3)m3 − (Qw3)n3

)︂⎛⎝ K∏︂
j=4

(Qwj )nj

⎞⎠
⎞⎟⎠⃓⃓⃓⃓⃓

C′

+

⎛⎜⎝(Qv1)m1

(︂
(Qv2)m2 − (Qw2)n2

)︂⎛⎝ K∏︂
j=3

(Qwj )nj

⎞⎠
⎞⎟⎠⃓⃓⃓⃓⃓

C′

+

⎛⎜⎝(︂(Qv1)m1 − (Qw1)n1

)︂⎛⎝ K∏︂
j=2

(Qwj )nj

⎞⎠
⎞⎟⎠⃓⃓⃓⃓⃓

C′

(3.142)

From this it is straightforward to see that each summand lies in the quantum gauge symmetry
ideal iQ and furthermore that the intermediate terms cancel pairwise. This directly implies the
implication

(︁
Q

v
C−Q

w
C

)︁
∈ iQ if θ (v) = θ (w). Conversely, given that

(︁
Q

v
C−Q

w
C

)︁
∈ iQ, we obtain

a decomposition as in Equation (3.138) by the very definition of the quantum gauge symmetry
ideal, cf. Definition 3.6.4, which directly implies the equality θ (v) = θ (w). This shows the
claimed equivalence and thus concludes the proof. ■

Theorem 3.6.6 (Quantum gauge symmetries induce Hopf ideals36). Given the situation of
Definition 3.6.4, the ideal iQ is a Hopf ideal, i.e. satisfies:

36This is a direct generalization of [49, Theorem 15] to super- and non-renormalizable theories, theories with
several coupling constants and such with longitudinal and transversal degrees of freedom.
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1. ∆
(︁
iQ
)︁
⊆ HQ ⊗ iQ + iQ ⊗HQ

2. Î
(︁
iQ
)︁
= 0

3. S
(︁
iQ
)︁
⊆ iQ

Proof. We start with the following calculation, using Proposition 3.5.4:

∆
(︂
Q
mv
V−mev −Q

nw
V−new

)︂
=

∑︂
v′∈ZvQ

⎛⎝(︃Qmv
Q

v′
)︃⃓⃓⃓⃓
⃓
V−v′−mev

⊗Q
mv
v′

−
(︃
Q
nw

Q
v′
)︃⃓⃓⃓⃓
⃓
V−v′−new

⊗Q
nw
v′

⎞⎠
=

∑︂
v′∈ZvQ

(︂
Q

v′+mev
V−v′−mev ⊗Q

mv
v′ −Q

v′+new
V−v′−new ⊗Q

nw
v′

)︂
=
∑︂

v∈ZvQ

(︂
Q

v
V−v ⊗Q

mv
v−mev −Q

v
V−v ⊗Q

nw
v−new

)︂
=
∑︂

v∈ZvQ

Q
v
V−v ⊗

(︂
Q
mv
v−mev −Q

nw
v−new

)︂

(3.143)

Thus, when summing over all vertex-gradings v ∈ ZvQ that contribute to a particular coupling-
grading c ∈ ZqQ , briefly denoted via v ∈ θ−1 (c) with θ : ZvQ → ZqQ the function defined in
Equation (3.137), we obtain:

∆
(︂
Q
mv
C−meθ(v)

−Q
nw
C−neθ(w)

)︂
=
∑︂

v∈ZvQ

Q
v
C−θ(v) ⊗

(︂
Q
mv
v−mev −Q

nw
v−new

)︂
=
∑︂

c∈ZqQ

∑︂
v∈θ−1(c)

Q
v
C−c ⊗

(︂
Q
mv
v−mev −Q

nw
v−new

)︂ (3.144)

We proceed by introducing the following equivalence relation: Given two elements G,H ∈ HQ,
we set

G ∼ H : ⇐⇒ ∃ I ⊂ iQ such that G = H+ I , (3.145a)

which, on the level of restricted products of combinatorial charges, is due to Lemma 3.6.5
equivalent to the following equivalence relation

Q
v
C′ ∼ Q

w
C′ : ⇐⇒ θ (v) = θ (w) . (3.145b)

Coming back to Equation (3.144), we now want to implement the equivalence relation of Equa-
tions (3.145) on the left-hand side of the tensor product by adding terms in iQ⊗HQ: This implies
that we can define equivalence classes of restricted combinatorial charges where the exponent
is now a coupling-grading multi-index c ∈ ZqQ , which we denote via

[︁
Q

c
C−c

]︁
. More precisely,

let v1, . . . ,vL ∈ ZvQ be all vertex-grading multi-indices with θ (vl) = c for l ∈ {1, . . . , L} and
L ∈ N. Then, the second sum in the second line of Equation (3.144) reads∑︂

v∈θ−1(c)

Q
v
C−c ⊗

(︂
Q
mv
v−mev −Q

nw
v−new

)︂
=

L∑︂
l=1

Q
vl

C−c ⊗
(︂
Q
mv
vl−mev −Q

nw
vl−new

)︂
(3.146)

and the combinatorial charges Q
vl can be identified, modulo the addition of terms in iQ ⊗HQ,

to their equivalence class
[︁
Q

c
C−c

]︁
. Combining these results, we finally obtain:

∆
(︂
Q
mv
C−meθ(v)

−Q
nw
C−neθ(w)

)︂
≃iQ⊗HQ

∑︂
c∈ZqQ

[︂
Q

c
C−c

]︂
⊗
(︂
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︂
⊆ HQ ⊗ iQ + iQ ⊗HQ ,

(3.147)
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where ≃iQ⊗HQ
denotes equality modulo the addition of elements in iQ ⊗HQ. Additionally, we

remark the equality θ (v)m ≡ θ (w)n for quantum gauge symmetries {v,m;w, n} ∈ QGSQ, which
relates the calculations in this proof to the definition of the quantum gauge symmetry ideal, cf.
Definition 3.6.4, by setting

C′ := C−meθ(v) ≡ C− neθ(w) . (3.148)

This shows condition 1. Condition 2 follows immediately, as I /∈ iQ, i.e. iQ ⊂ Aug
(︁
HQ

)︁
. Finally,

condition 3 follows from Lemma 3.5.1 together with condition 1, which finishes the proof. ■

Remark 3.6.7. Theorem 3.6.6 describes the most general situation, as it includes also super- and
non-renormalizable QFTs, QFTs with several coupling constants and QFTs with a transversal
structure. Therefore it can be applied to (effective) Quantum General Relativity in the sense
of [20], possibly coupled to matter from the Standard Model [133], cf. e.g. [1, 3]. Slightly less
general results in this direction can be found in [46, 47, 48, 49, 50, 20, 134], some of them using
the language of Hochschild cohomology.37

Corollary 3.6.8. Given the situation of Theorem 3.6.6, the vertex-grading and coupling-grading
are equivalent if either vQ = qQ with θ bijective, or in the quotient Hopf algebra HQ/iQ. In the
latter case, the ideal iQ is the smallest Hopf ideal with this property.

Proof. This follows directly from the definition of the ideal iQ in Definition 3.6.4, which is
designed such that in the quotient HQ/iQ all Feynman graphs are identified that contribute
to restricted (powers of) combinatorial charges which are associated with (powers) of the same
physical coupling constant. ■

Remark 3.6.9. The Hopf ideal iQ from Theorem 3.6.6 is defined such that in the quotient Hopf
algebra HQ/iQ the coproduct and antipode identities from Section 3.5, which are valid for
vertex-grading, also hold for coupling-grading, cf. Corollary 3.7.2. Thus it is possible to combine
the Z-factors for the set QQ to Z-factors for the set qQ, if the criteria from Theorem 3.7.5 or
Corollary 3.7.7 are satisfied.

3.7 Quantum gauge symmetries and renormalized Feynman rules

Having established that ‘quantum gauge symmetries (QGS)’ are compatible with the treatment
of subdivergences in Theorem 3.6.6, we now turn our attention to their relation with renormalized
Feynman rules. We start this section with the definition of the gauge theory renormalization
Hopf module: Here we implement the quantum gauge symmetries only on the left-hand side
of the tensor product of the coproduct, i.e. only on the superficially divergent subgraphs. As
such, it is the weakest requirement for renormalized Feynman rules to possess quantum gauge
symmetries. More precisely, in this setting the relations are only implemented on the Z-factors,
i.e. R-divergent contributions of the Feynman rules. In Theorem 3.7.5 we provide criteria for
this compatibility of quantum gauge symmetries with the unrenormalized Feynman rules and the
chosen renormalization scheme. Then we show in Corollary 3.7.7 that under mild assumptions on
the unrenormalized Feynman rules this statement is independent of the chosen renormalization
scheme. In particular, this result states that in this case we can implement the quantum gauge
symmetries directly on the renormalization Hopf algebra by taking the quotient with respect to
the quantum gauge symmetry Hopf ideal. Finally, we remark that for theories with a transversal
structure these mild assumptions correspond precisely to the respective cancellation identities.

37We also mention the relevant conference proceedings [21, 135, 136, 137, 138].
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3.7. Quantum gauge symmetries and renormalized Feynman rules

Thus, combining these results, this shows the well-definedness of the Corolla polynomial without
reference to a particular renormalization scheme, cf. Remark 3.7.8.

Definition 3.7.1 (Gauge theory renormalization Hopf module, [139]). Let Q be a cograph-
divergent QFT with quantum gauge symmetries, i.e. QGSQ ̸= ∅, HQ its (associated) renormal-
ization Hopf algebra and iQ the corresponding quantum gauge symmetry Hopf ideal. Let

πQ : HQ →→ HQ/iQ (3.149)

denote the projection map. We consider HQ as a left Hopf module over HQ/iQ with the usual
Hopf structures as in Definition 3.1.14. The interesting map is the comodule map, defined via

δ : HQ →
(︁
HQ/iQ

)︁
⊗HQ , Γ ↦→

(︁
πQ ⊗ IdHQ

)︁
◦∆(Γ) . (3.150)

Then we define the renormalized Feynman rules ΦR using the comodule map δ instead of the

coproduct ∆, i.e. defining the counterterm map S
Φε

E
R on the quotient HQ/iQ. ♦

Corollary 3.7.2. Given the situation of Definition 3.7.1, we have

δ (Xr) =
∑︂

c∈ZqQ

[︂
X
r
Q

c
]︂
⊗ Xrc , (3.151a)

δ (XrC) =
∑︂

c∈ZqQ

[︂
X
r
Q

c
]︂⃓⃓⃓⃓⃓

C−c

⊗ Xrc , (3.151b)

and, provided that X
r
C ̸= 0,

δ
(︂
X
r
C

)︂
=
∑︂

c∈ZqQ

[︂
X
r
Q

c
]︂⃓⃓⃓⃓⃓

C−c

⊗ X
r
c , (3.151c)

where the equivalence classes on the left-hand side of the tensor product are with respect to the
equivalence relation of Equations (3.145), i.e. modulo the addition of elements in iQ. Analogous
results also hold in the cases of Propositions 3.5.3 and 3.5.4.

Proof. This follows directly from Proposition 3.5.2 together with Corollary 3.6.8. ■

Remark 3.7.3. Corollary 3.7.2 states that the gauge theory renormalization Hopf module from
Definition 3.7.1 possesses Hopf subalgebras in the sense of Definition 3.1.38 for coupling-grading,
cf. Remark 3.1.39. This implies that the subdivergence structure of QFTs is compatible with
quantum gauge symmetries in the sense of Definition 3.6.1. Furthermore, it is obvious by
construction that this is the weakest requirement for the compatibility of quantum gauge sym-
metries with multiplicative renormalization, cf. Corollary 3.6.8. Their validity on the level of
renormalized Feynman rules, i.e. the existence and well-definedness of the maps

˜︃
S
Φε

E
R := S

Φε
E

R ◦
(︁
πQ
)︁−1

: HQ/iQ → EQ (3.152a)

and

˜︂ΦR := ΦR ◦
(︁
πQ
)︁−1

: HQ/iQ → EQ , (3.152b)
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3. Hopf algebraic renormalization

where
(︁
πQ
)︁−1

is any right inverse to the projection map πQ from Equation (3.149), with respect
to the following commuting diagrams

HQ EQ

HQ/iQ

πQ

S
Φε

E
R

˜︃
S
Φε

E
R

and

HQ EQ

HQ/iQ

πQ

ΦR

˜︃ΦR

, (3.153)

are then studied in the following Lemma 3.7.4, Theorem 3.7.5 and Corollary 3.7.7. Moreover,
given a quantum gauge theory with a transversal structure, cf. Definition 3.1.4, we stress the
following additional compatibility issue: Recall the setup of Definition 3.1.3 where we repre-
sented each particle type by at least two edges to disentangle their physical and unphysical
degrees of freedom, cf. Remark 3.1.5. Then the Feynman rules are required to be compatible
with this decomposition as follows: The divergent Feynman graphs and their residues need to
behave similar with respect to these physical and unphysical projections. This ensures that the
contraction of subdivergences is a well-defined operation and thus is a necessary condition to
construct the renormalization Hopf algebra, cf. [1, Subsection 3.3]. We will study this further
in [7], cf. [4, 5], using cancellation identities and Feynman graph cohomology.

Lemma 3.7.4. The gauge theory renormalization Hopf module from Definition 3.7.1 is compat-

ible with renormalized Feynman rules if iQ ∈ Ker
(︁
S
Φε

E
R

)︁
. More precisely, if for all {v,m;w, n} ∈

QGSQ and all C′ ∈ ZqQ we have

S
Φε

E
R

(︂
Q
mv
C′

)︂
= S

Φε
E

R

(︂
Q
nw
C′

)︂
. (3.154)

Proof. This statement is equivalent to the well-definedness of the counterterm-map on the equiv-
alence classes of the QGS-equivalence relation: Indeed, we have

Q
mv
C′ ≃QGSQ Q

nw
C′ , (3.155)

and thus Equation (3.154) ensures that the counterterm-map can be unambiguously defined on
the corresponding equivalence classes. ■

Theorem 3.7.5 (Quantum gauge symmetries and renormalized Feynman rules). Given the
situation of Lemma 3.7.4 and a proper renormalization scheme R, then Equation (3.154) is
equivalent to one of the following identities for each c ∈ ZqQ:

1.
[︁
Q

c
C−c

]︁
= [0]

2. Q
mv
c−meθ(v)

= Q
nw
c−neθ(w)

= 0

3. R
(︂
(Φ ◦ A )

(︁
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︁)︂
= 0

Proof. Using Equation (3.144) from the proof of Theorem 3.6.6, we obtain

S
Φε

E
R

(︂
Q
mv
C−meθ(v)

−Q
nw
C−neθ(w)

)︂
=

−
∑︂

c∈ZqQ

R

(︄
S
Φε

E
R

(︃[︂
Q

c
C−c

]︂)︃
(Φ ◦ P)

(︂
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︂)︄
,

(3.156)
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which vanishes, if for all c ∈ ZqQ

R

(︄
S
Φε

E
R

(︃[︂
Q

c
C−c

]︂)︃
(Φ ◦ P)

(︂
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︂)︄
= 0 . (3.157)

Since the coupling-grading is required to be superficially compatible, cf. Definition 3.1.21 and
Definition 3.6.1, we have either[︂

Q
c
C−c

]︂
= [0] or

[︂
Q

c
C−c

]︂
=
[︂
Qc

C−c

]︂
(3.158)

and either
Q
mv
c′ = Q

nw
c′ = 0 or Q

mv
c′ = Qmv

c′ and Q
nw
c′ = Qnw

c′ , (3.159)

where c′ := c−meθ(v) ≡ c−neθ(w). We proceed by noting that R is a linear map, whose kernel
and cokernel consists only of convergent formal Feynman integral expressions, as it is required
to be proper, cf. Definition 3.1.41. This directly implies, by the recursive structure of the

counterterm, that Ker
(︁
S
Φε

E
R

)︁
consists only of convergent formal Feynman integral expressions.

Thus, Equation (3.157) is equivalent to one of the following identities for each c ∈ ZqQ :

1.
[︁
Q

c
C−c

]︁
= [0]

2. Q
mv
c−meθ(v)

= Q
nw
c−neθ(w)

= 0

3. R
(︂
(Φ ◦ A )

(︁
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︁)︂
= 0

This is the claimed statement and thus finishes the proof. ■

Remark 3.7.6. Given the situation of Lemma 3.7.4 and Theorem 3.7.5. We note that Equa-
tion (3.154) and condition 3 are criteria for both, the unrenormalized Feynman rules Φ and the
renormalization scheme R. More precisely, Equation (3.154) states that a common countert-
erm can be chosen for residues that are related via quantum gauge symmetries. Furthermore,
condition 3 states that the corresponding R-divergent contributions from restricted combinato-
rial charges coincide. In contrast, conditions 1 and 2 are solely criteria for the unrenormalized
Feynman rules Φ.

Corollary 3.7.7 (Quantum gauge symmetries and renormalized Feynman rules). The quotient
Hopf algebra HQ/iQ is compatible with renormalized Feynman rules if iQ ∈ Ker (ΦR). More
precisely, if for all {v,m;w, n} ∈ QGSQ and all C′ ∈ ZqQ we have

ΦR

(︂
Q
mv
C′

)︂
= ΦR

(︂
Q
nw
C′

)︂
. (3.160)

If the renormalization scheme R is proper then this is equivalent to one of the following identities
for each c ∈ ZqQ:

1.
[︁
Q

c
C−c

]︁
= [0]

2. Q
mv
c−meθ(v)

= Q
nw
c−neθ(w)

= 0

3. Φ
(︁
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︁
= 0

Proof. Again, using Equation (3.144) from the proof of Theorem 3.6.6 and the same reasoning
as in the proof of Theorem 3.7.5, we obtain

ΦR

(︂
Q
mv
C−meθ(v)

−Q
nw
C−neθ(w)

)︂
=
∑︂

c∈ZqQ

S
Φε

E
R

(︃[︂
Q

c
C−c

]︂)︃
Φ
(︂
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︂
, (3.161)
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which vanishes, if for all c ∈ ZqQ

S
Φε

E
R

(︃[︂
Q

c
C−c

]︂)︃
Φ
(︂
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︂
= 0 . (3.162)

Once more, using the same reasoning as in the proof of Theorem 3.7.5, we obtain that Equa-
tion (3.162) is equivalent to one of the following identities for each c ∈ ZqQ :

1.
[︁
Q

c
C−c

]︁
= [0]

2. Q
mv
c−meθ(v)

= Q
nw
c−neθ(w)

= 0

3. Φ
(︁
Q
mv
c−meθ(v)

−Q
nw
c−neθ(w)

)︁
= 0

This is the claimed statement and thus finishes the proof. ■

Remark 3.7.8. Given the situation of Corollary 3.7.7 and a proper renormalization scheme R,
cf. Definition 3.1.41. We note that while Equation (3.160) is a criterion for both, the unrenor-
malized Feynman rules Φ and the renormalization scheme R, conditions 1 to 3 are solely criteria
for the unrenormalized Feynman rules Φ. More precisely, Equation (3.160) states that the val-
ues of renormalized Feynman rules are equivalent for residues that are related via quantum
gauge symmetries. In contrast, conditions 1 to 3 state that the corresponding unrenormalized
Feynman rules Φ coincide on the restricted combinatorial charges. We remark, however, that
if we consider a quantum gauge theory with a transversal structure, cf. Definition 3.1.4, then
the vertex-residues of the combinatorial charges as well as their coupling-gradings includes the
‘physical’ and ‘unphysical’ labels. Thus, the mentioned criteria need only to hold for all such
restrictions individually. This is directly related to cancellation identities [22, 23, 24, 25, 26, 27],
which are graphical versions of (generalized) Ward–Takahashi and Slavnov–Taylor identities
[75, 76, 77, 78]. More precisely, they indicate the behavior of unrenormalized (tree) Feynman
diagrams with respect to longitudinal and transversal projections. Thus, given that they hold
for Quantum Yang–Mills theory, Corollary 3.7.7 implies the well-definedness of the Corolla poly-
nomial without reference to a particular renormalization scheme R. The Corolla polynomial is
a graph polynomial that relates amplitudes in Quantum Yang–Mills theory to amplitudes in ϕ34-
Theory [55, 56, 57]. More precisely, this graph polynomial is based on half-edges and is used for
the construction of the so-called Corolla differential that relates the corresponding parametric
Feynman integral expressions [56, 24, 58]. Thereby, the corresponding cancellation-identities are
implicitly encoded into a double complex of Feynman graphs, called Feynman graph cohomology
[56, 59]. This double-complex can be interpreted as a perturbative version of BRST cohomology
[105, 106, 107, 108], where the precise relation will be studied in future work [7, 4, 5]. We remark
that this construction has been successfully generalized to Quantum Yang–Mills theories with
spontaneous symmetry breaking [60] and Quantum Electrodynamics with spinors [81, 82, 83].
The possibility to reformulate (effective) Quantum General Relativity in this framework will be
also studied in future work.

Remark 3.7.9. It is possible to endow the character group of the renormalization Hopf algebra
HQ with a manifold structure such that it becomes a regular Lie group in the sense of Milnor,
cf. [86]. Then, in this setting, the character group on the quotient Hopf algebra HQ/iQ is a
closed Lie subgroup thereof [140, 141, 142, 143].
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Chapter 4

Gravity-matter Feynman rules

In this chapter, we discuss the Feynman rules and transversal structure of gauge theories and
gravity. This includes the linearization of the gravity-matter Lagrange densities as well as the
calculation of the corresponding Feynman rules. We provide the Feynman rules of (Effective)
Quantum General Relativity coupled to the Standard Model first for any vertex valence and
with general gauge parameter. Then we display the concrete expressions for all gravity-matter
propagators and three-valent vertices. Finally, we study the longitudinal structure of Quantum
Yang–Mills theory with a Lorenz gauge fixing and (effective) Quantum General Relativity with a
de Donder gauge fixing. This includes properties of the corresponding longitudinal, identical and
transversal projection operators, the respective decompositions of the gauge boson and graviton
propagators and the cancellation identities of all three-valent vertices in (effective) Quantum
General Relativity coupled to the Standard Model.

4.1 Linearized gravity and further preparations

In this section, we start with the expansion of the Lagrange densities of (effective) Quantum
General Relativity coupled to the Standard Model. In particular, we consider the expansion
with respect to the graviton coupling constant κ in the metric decomposition gµν = ηµν +κhµν .

4.1.1 Expansion of the Lagrange densities

Given the Quantum General Relativity Lagrange density

LQGR = − 1

2κ2

(︃√︁
−Det (g)R+

1

2ζ
ηµνdD(1)

µ dD(1)
ν

)︃
dVη

− 1

2
ηρσ

(︃
1

ζ
C
µ (︁
∂ρ∂σCµ

)︁
+ C

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂)︃
dVη

(4.1)

from Convention 2.3.1. In order to calculate the corresponding Feynman rules, we decompose
LQGR with respect to its powers in the gravitational coupling constant κ and the ghost field C
as follows1

LQGR ≡
∞∑︂
m=0

1∑︂
n=0

Lm,nQGR , (4.2)

where we have set Lm,nQGR :=
(︁
LQGR

)︁⃓⃓
O(κmCn)

. Given m ∈ N+, the restricted Lagrange densi-

ties Lm,0QGR correspond to the potential terms for the interaction of (m+ 2) gravitons and the

restricted Lagrange densities Lm,1QGR correspond to the potential terms for the interaction of m

1We omit the term L−1,0
QGR as it is given by a total derivative.
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gravitons with a graviton-ghost and graviton-antighost, while the terms m = 0 and n ∈ {0, 1}
provide the kinetic terms for the graviton and graviton-ghost, respectively. The situation for
the matter-model Lagrange densities from Lemma 2.3.4 is then analogous.2

Lemma 4.1.1 (Inverse metric as Neumann series in the graviton field). Given the metric de-
composition from Definition 2.1.10 and the boundedness condition from Assumption 2.1.12, the
inverse metric is given via the Neumann series

gµν =
∞∑︂
k=0

(−κ)k
(︂
hk
)︂µν

, (4.3)

where

hµν := ηµρηνσhρσ , (4.4a)(︂
h0
)︂µν

:= ηµν (4.4b)

and (︂
hk
)︂µν

:= hµκ1h
κ1
κ2 · · ·h

κk−1ν⏞ ⏟⏟ ⏞
k-times

, k ∈ N . (4.4c)

In particular, the first terms read as follows:

gµν = ηµν − κηµρηνσhρσ + κ2ηµρησκητνhρσhκτ +O
(︂
κ3
)︂
. (4.5)

Proof. We calculate

gµνg
νρ =

(︁
ηµν + κhµν

)︁⎛⎝ ∞∑︂
k=0

(−κ)k
(︂
hk
)︂νρ⎞⎠

= ηµνη
νρ + ηµν

⎛⎝ ∞∑︂
i=1

(−κ)i
(︂
hi
)︂νρ⎞⎠+ κhµν

⎛⎝ ∞∑︂
j=0

(−κ)j
(︂
hj
)︂νρ⎞⎠

= δρµ − κhµν

⎛⎝ ∞∑︂
i=0

(−κ)i
(︂
hi
)︂νρ⎞⎠+ κhµν

⎛⎝ ∞∑︂
j=0

(−κ)j
(︂
hj
)︂νρ⎞⎠

= δρµ ,

(4.6)

as requested. Finally, we remark that the Neumann series

gµν =

∞∑︂
k=0

(−κ)k
(︂
hk
)︂µν

(4.7)

converges precisely for
|κ| ∥h∥max := |κ| max

λ∈EW(h)
|λ| < 1 , (4.8)

where EW (h) denotes the set of eigenvalues of h, as stated. ■

2The shift in m comes from the prefactor 1/κ2 in LQGR and is convenient, because then propagators are of
order κ0 and three-valent vertices of order κ1, etc.
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Lemma 4.1.2 (Vielbein and inverse vielbein as series in the graviton field). Given the metric
decomposition from Definition 2.1.10 and the boundedness condition from Assumption 2.1.12,
the vielbein and inverse vielbein are given via the series

emµ =
∞∑︂
k=0

κk
(︃1

2

k

)︃(︂
hk
)︂m
µ
, (4.9a)

with hmµ := ηmνhµν , and

eµm =
∞∑︂
k=0

κk
(︃
−1

2

k

)︃(︂
hk
)︂µ
m
, (4.9b)

with hµm := ηµνδρmhνρ.

Proof. We recall the defining equations for vielbeins and inverse vielbeins,

gµν = ηmne
m
µ e

n
ν (4.10)

and

ηmn = gµνe
µ
me

ν
n , (4.11)

cf. [1, Definition 2.8]. Thus, we calculate

gµν = ηmne
m
µ e

n
ν

= ηmn

⎛⎝ ∞∑︂
i=0

κi
(︃1

2

i

)︃(︂
hi
)︂m
µ

⎞⎠⎛⎝ ∞∑︂
j=0

κj
(︃1

2

j

)︃(︂
hj
)︂n
ν

⎞⎠
=

∞∑︂
i=0

∞∑︂
j=0

κi+j
(︃1

2

i

)︃(︃1
2

j

)︃(︂
hi+j

)︂
µν

=

∞∑︂
k=0

κk
(︃
1

k

)︃(︂
hk
)︂
µν

= ηµν + κhµν ,

(4.12)

where we have used Vandermonde’s identity, and

gµν = ηmneµme
ν
n

= ηmn

⎛⎝ ∞∑︂
i=0

κi
(︃
−1

2

i

)︃(︂
hi
)︂µ
m

⎞⎠⎛⎝ ∞∑︂
j=0

κj
(︃
−1

2

j

)︃(︂
hj
)︂ν
n

⎞⎠
=

∞∑︂
i=0

∞∑︂
j=0

κi+j
(︃
−1

2

i

)︃(︃
−1

2

j

)︃(︂
hi+j

)︂µν
=

∞∑︂
k=0

κk
(︃
−1

k

)︃(︂
hk
)︂µν

=

∞∑︂
k=0

(−κ)k
(︂
hk
)︂µν

= gµν ,

(4.13)

where we have again used Vandermonde’s identity, the identity
(︁−1
k

)︁
= (−1)k and Lemma 4.1.1.

Finally, the series for the vielbein and inverse vielbein field converge precisely for

|κ| ∥h∥max := |κ| max
λ∈EW(h)

|λ| < 1 , (4.14)

where EW (h) denotes the set of eigenvalues of h, as stated. ■
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Proposition 4.1.3 (Ricci scalar for the Levi-Civita connection, cf. [3]). Using the Levi-Civita
connection, the Ricci scalar is given via partial derivatives of the metric and its inverse as
follows:

R = gµρgνσ
(︁
∂µ∂νgρσ − ∂µ∂ρgνσ

)︁
+ gµρgνσgκλ

(︄(︁
∂µgκλ

)︁(︃
∂νgρσ −

1

4
∂ρgνσ

)︃
+
(︁
∂νgρκ

)︁(︃3

4
∂σgµλ −

1

2
∂µgσλ

)︃

−
(︁
∂µgρκ

)︁
(∂νgσλ)

)︄ (4.15)

Furthermore, we also consider the decomposition

R ≡ gνσ
(︂
∂µΓ

µ
νσ − ∂νΓ

µ
µσ + ΓµµκΓ

κ
νσ − ΓµνκΓ

κ
µσ

)︂
=: R∂Γ +RΓ2

(4.16a)

with

R∂Γ := gνσ
(︂
∂µΓ

µ
νσ − ∂νΓ

µ
µσ

)︂
(4.16b)

and

RΓ2
:= gνσ

(︂
ΓµµκΓ

κ
νσ − ΓµνκΓ

κ
µσ

)︂
. (4.16c)

Then we obtain:

R∂Γ = gµρgνσ
(︁
∂µ∂νgρσ − ∂µ∂ρgνσ

)︁
+ gµρgνσgκλ

(︄(︁
∂µgρκ

)︁(︃1

2
∂λgνσ − ∂νgλσ

)︃
+

1

2

(︁
∂νgµκ

)︁ (︁
∂σgρλ

)︁)︄ (4.17)

and

RΓ2
= gµρgνσgκλ

(︄(︁
∂κgµρ

)︁(︃1

2
∂νgσλ −

1

4
∂λgνσ

)︃
−
(︁
∂νgµκ

)︁(︃1

2
∂ρgσλ −

1

4
∂σgρλ

)︃)︄
(4.18)

Proof. The claim is verified by the calculations

R = R∂Γ +RΓ2
(4.19)

with

R∂Γ = gνσ
(︂
∂µΓ

µ
νσ − ∂νΓ

µ
µσ

)︂
=
(︁
∂µg

µρ
)︁(︃

∂νgρσ −
1

2
∂ρgνσ

)︃
− 1

2
(∂νg

µρ)
(︁
∂σgµρ

)︁
+ gµρ

(︃
∂µ∂νgρσ −

1

2
∂µ∂ρgνσ

)︃
− 1

2
gµρ

(︁
∂ν∂σgµρ

)︁
= gµρgνσ

(︁
∂µ∂νgρσ − ∂µ∂ρgνσ

)︁
+ gµρgνσgκλ

(︄(︁
∂µgρκ

)︁(︃1

2
∂λgνσ − ∂νgλσ

)︃
+

1

2

(︁
∂νgµκ

)︁ (︁
∂σgρλ

)︁)︄
(4.20)
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and

RΓ2
= gνσ

(︂
ΓµµκΓ

κ
νσ − ΓµνκΓ

κ
µσ

)︂
= gµρgνσgκλ

(︄(︁
∂κgµρ

)︁(︃1

2
∂νgσλ −

1

4
∂λgνσ

)︃
−
(︁
∂νgµκ

)︁(︃1

2
∂ρgσλ −

1

4
∂σgρλ

)︃)︄
,

(4.21)

where we have used
(︁
∂ρg

νσ
)︁
gµσ = −gνσ

(︁
∂ρgµσ

)︁
in Equation (4.20) twice, which results from

0 = ∇TM
ρ δνµ

= ∂ρδ
ν
µ + Γνρσδ

σ
µ − Γσρµδ

ν
σ

= ∂ρδ
ν
µ + Γνρµ − Γνρµ

= ∂ρδ
ν
µ

= ∂ρ
(︁
gµσg

νσ
)︁

=
(︁
∂ρgµσ

)︁
gνσ + gµσ

(︁
∂ρg

νσ
)︁
.

(4.22)

■

Corollary 4.1.4. Given the situation of Proposition 4.1.3, the grade-m part in the gravitational
coupling constant κ of the Ricci scalar R is given via

R∂Γ

⃓⃓⃓⃓
⃓
O(κ0)

= RΓ2

⃓⃓⃓⃓
⃓
O(κ0)

= RΓ2

⃓⃓⃓⃓
⃓
O(κ1)

= 0 , (4.23a)

R∂Γ

⃓⃓⃓⃓
⃓
O(κ1)

= κηµρηνσ
(︁
∂µ∂νhρσ − ∂µ∂ρhνσ

)︁
(4.23b)

and for m > 1

R∂Γ

⃓⃓⃓⃓
⃓
O(κm)

= − (−κ)m
∑︂

i+j=m−1

(︂
hi
)︂µρ (︂

hj
)︂νσ (︁

∂µ∂νhρσ − ∂µ∂ρhνσ
)︁

+ (−κ)m
∑︂

i+j+k=m−2

(︂
hi
)︂µρ (︂

hj
)︂νσ (︂

hk
)︂κλ(︄(︁

∂µhρκ
)︁(︃1

2
∂λhνσ − ∂νhλσ

)︃

+
1

2

(︁
∂νhµκ

)︁ (︁
∂σhρλ

)︁)︃
(4.23c)

and

RΓ2

⃓⃓⃓⃓
⃓
O(κm)

= (−κ)m
∑︂

i+j+k=m−2

(︂
hi
)︂µρ (︂

hj
)︂νσ (︂

hk
)︂κλ(︄(︁

∂κhµρ
)︁(︃1

2
∂νhσλ −

1

4
∂λhνσ

)︃

−
(︁
∂νhµκ

)︁(︃1

2
∂ρhσλ −

1

4
∂σhρλ

)︃)︄
.

(4.23d)

Proof. This follows directly from Proposition 4.1.3 together with Lemma 4.1.1. ■
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Proposition 4.1.5 (Metric expression for the de Donder gauge fixing). Given the square of the
de Donder gauge fixing,

dD2 := gµνdDµdDν (4.24)

with dDµ := gρσΓρσµ, this can be rewritten as

dD2 = gµρgνσgκλ
(︃(︁
∂νgσµ

)︁ (︁
∂κgλρ

)︁
−
(︁
∂νgσµ

)︁ (︁
∂ρgκλ

)︁
+

1

4

(︁
∂µgνσ

)︁ (︁
∂ρgκλ

)︁)︃
. (4.25)

Furthermore, its quadratic part is given by

dD2
(2) := dD2

⃓⃓⃓⃓
⃓
O(κ2)

≡ ηµνdD(1)
µ dD(1)

ν

(4.26)

with dD
(1)
µ := ηρσΓρσµ, and can be rewritten as

dD2
(2) = ηµρηνσηκλ

(︃(︁
∂νgσµ

)︁ (︁
∂κgλρ

)︁
−
(︁
∂νgσµ

)︁ (︁
∂ρgκλ

)︁
+

1

4

(︁
∂µgνσ

)︁ (︁
∂ρgκλ

)︁)︃
. (4.27)

Proof. The claim is verified by the calculation

dD2 = gµνdDµdDν

=
1

4
gµρgνσgκλ

(︁
∂νgσµ + ∂σgµν − ∂µgνσ

)︁ (︁
∂κgλρ + ∂λgρκ − ∂ρgκλ

)︁
=

1

4
gµρgνσgκλ

(︂(︁
∂νgσµ

)︁ (︁
∂κgλρ

)︁
+
(︁
∂νgσµ

)︁ (︁
∂λgρκ

)︁
−
(︁
∂νgσµ

)︁ (︁
∂ρgκλ

)︁
+
(︁
∂σgµν

)︁ (︁
∂κgλρ

)︁
+
(︁
∂σgµν

)︁ (︁
∂λgρκ

)︁
−
(︁
∂σgµν

)︁ (︁
∂ρgκλ

)︁
−
(︁
∂µgνσ

)︁ (︁
∂κgλρ

)︁
−
(︁
∂µgνσ

)︁ (︁
∂λgρκ

)︁
+
(︁
∂µgνσ

)︁ (︁
∂ρgκλ

)︁)︂
= gµρgνσgκλ

(︃(︁
∂νgσµ

)︁ (︁
∂κgλρ

)︁
−
(︁
∂νgσµ

)︁ (︁
∂ρgκλ

)︁
+

1

4

(︁
∂µgνσ

)︁ (︁
∂ρgκλ

)︁)︃
,

(4.28)

together with the obvious restriction to O
(︁
κ2
)︁
. ■

Corollary 4.1.6. Given the situation of Proposition 4.1.5, the grade-m part in the gravitational
coupling constant κ of the square of the de Donder gauge fixing dD2 is given for m < 2 via

dD2

⃓⃓⃓⃓
⃓
O(κm)

= 0 (4.29a)

and for m > 1 via

dD2

⃓⃓⃓⃓
⃓
O(κm)

= (−κ)m
∑︂

i+j+k=m−2

(︂
hi
)︂µρ (︂

hj
)︂νσ (︂

hk
)︂κλ

×
(︃(︁
∂νhσµ

)︁ (︁
∂κhλρ

)︁
−
(︁
∂νhσµ

)︁ (︁
∂ρhκλ

)︁
+

1

4

(︁
∂µhνσ

)︁ (︁
∂ρhκλ

)︁)︃
.

(4.29b)

In particular, the quadratic term dD2
(2) is given by

dD2
(2) := dD2

⃓⃓⃓⃓
⃓
O(κ2)

= κ2ηµρηνσηκλ
(︃(︁
∂νhσµ

)︁ (︁
∂κhλρ

)︁
−
(︁
∂νhσµ

)︁ (︁
∂ρhκλ

)︁
+

1

4

(︁
∂µhνσ

)︁ (︁
∂ρhκλ

)︁)︃
.

(4.30)
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Proof. This follows directly from Proposition 4.1.5 together with Lemma 4.1.1. ■

Proposition 4.1.7 (Determinant of the metric as a series in the graviton field). Given the
metric decomposition from Definition 2.1.10, the negative of the determinant of the metric,
−Det (g), is given via

−Det (g) = 1 + a+ b+ c+ d (4.31)

with

a := κTr (ηh)

≡ κηµνhµν ,
(4.32a)

b := κ2

(︃
1

2
Tr (ηh)2 − 1

2
Tr
(︂
(ηh)2

)︂)︃
≡ κ2

(︃
1

2
ηµνηρσ − 1

2
ηµσηρν

)︃
hµνhρσ ,

(4.32b)

c := κ3

(︃
1

6

(︁
Tr (ηh)

)︁3 − 1

2
Tr (ηh) Tr

(︂
(ηh)2

)︂
+

1

3
Tr
(︂
(ηh)3

)︂)︃
≡ κ3

(︃
1

6
ηµνηρσηλτ − 1

2
ηµνηρτηλσ +

1

3
ηµτηρνηλσ

)︃
hµνhρσhλτ

(4.32c)

and

d := κ4

(︃
1

24

(︁
Tr (ηh)

)︁4 − 1

4

(︁
Tr (ηh)

)︁2
Tr
(︂
(ηh)2

)︂
+

1

3
Tr (ηh) Tr

(︂
(ηh)3

)︂
+
1

8

(︃
Tr
(︂
(ηh)2

)︂)︃2

− 1

4
Tr
(︂
(ηh)4

)︂)︄

≡ κ4

(︃
1

24
ηµνηρσηλτηϑφ − 1

4
ηµνηρσηλφηϑτ +

1

3
ηµνηρφηλσηϑτ

+
1

8
ηµσηρνηλφηϑτ − 1

4
ηµφηρνηλσηϑτ

)︃
hµνhρσhλτhϑφ .

(4.32d)

Proof. Given a 4× 4-matrix M ∈ MatC (4× 4), from Newton’s identities we get the relation

Det (M) =
1

4!
Det

⎛⎜⎜⎜⎝
Tr (M) 1 0 0
Tr
(︁
M2
)︁

Tr (M) 2 0
Tr
(︁
M3
)︁

Tr
(︁
M2
)︁

Tr (M) 3
Tr
(︁
M4
)︁

Tr
(︁
M3
)︁

Tr
(︁
M2
)︁

Tr (M)

⎞⎟⎟⎟⎠
=

1

4!

(︃
Tr (M)4 − 6Tr (M)2Tr

(︂
M2
)︂
+ 8Tr (M) Tr

(︂
M3
)︂

+3Tr
(︂
M2
)︂2

− 6Tr
(︂
M4
)︂)︃

.

(4.33)

Next, using the metric decomposition g = η + κh, we obtain3

−Det (g) = −Det (η + κh)

= −Det (η)Det
(︂
δ + κη−1h

)︂
= Det (δ + κηh) ,

(4.34)

3In accordance with index-notation, we set δ to be the unit matrix.
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where we have used Det (η) = −1 and η−1 = η. Setting M := δ + κηh, using the linearity and
cyclicity of the trace and the fact that Tr (δ) = 4, we get

Tr (δ + κηh) = 4 + κTr (ηh) (4.35)

Tr
(︂
(δ + κηh)2

)︂
= 4 + 2κTr (ηh) + κ2Tr

(︂
(ηh)2

)︂
(4.36)

Tr
(︂
(δ + κηh)3

)︂
= 4 + 3κTr (ηh) + 3κ2Tr

(︂
(ηh)2

)︂
+ κ3Tr

(︂
(ηh)3

)︂
(4.37)

Tr
(︂
(δ + κηh)4

)︂
= 4 + 4κTr (ηh) + 6κ2Tr

(︂
(ηh)2

)︂
+ 4κ3Tr

(︂
(ηh)3

)︂
+ κ4Tr

(︂
(ηh)4

)︂
. (4.38)

Combining these results, we obtain

−Det (g) = 1 + κTr (ηh) + κ2

(︃
1

2
Tr (ηh)2 − 1

2
Tr
(︂
(ηh)2

)︂)︃
+ κ3

(︃
1

6
Tr (ηh)3 − 1

2
Tr (ηh) Tr

(︂
(ηh)2

)︂
+

1

3
Tr
(︂
(ηh)3

)︂)︃
+ κ4

(︃
1

24
Tr (ηh)4 − 1

4
Tr (ηh)2Tr

(︂
ηh2
)︂
+

1

3
Tr (ηh) Tr

(︂
(ηh)3

)︂
+
1

8
Tr
(︂
(ηh)2

)︂2
− 1

4
Tr
(︂
(ηh)4

)︂)︃
,

(4.39)

which, when restricting to the powers in the coupling constant, yields the claimed result. ■

Corollary 4.1.8. Given the situation of Proposition 4.1.7 and assume furthermore the bounded-
ness condition from Assumption 2.1.12, the grade-m part in the gravitational coupling constant
κ of the square-root of the negative of the determinant of the metric,

√︁
−Det (g), is given via

√︁
−Det (g)

⃓⃓⃓⃓
⃓
O(κm)

=
∑︂

i+j+k+l=m
i≥j≥k≥l≥0

j−k∑︂
p=0

k−l∑︂
q=0

q∑︂
r=0

l∑︂
s=0

s∑︂
t=0

t∑︂
u=0

u∑︂
v=0(︃1

2

i

)︃(︃
i

j

)︃(︃
j

k

)︃(︃
k

l

)︃(︃
j − k

p

)︃(︃
k − l

q

)︃(︃
q

r

)︃(︃
l

s

)︃(︃
s

t

)︃(︃
t

u

)︃(︃
u

v

)︃
× (−1)p+q−r+s−t+v 2−j+l+r+s+2t−3u+v3−k+q−r+s−t+u

× ai+j+k+l−2p−2q−r−2s−t−ubp+q−r+s−t+2u−2vcr+t−udv

(4.40)

with

a := κTr (ηh)

≡ κηµνhµν ,
(4.41a)

b := κ2Tr
(︂
(ηh)2

)︂
≡ κ2ηµσηρνhµνhρσ ,

(4.41b)

c := κ3Tr
(︂
(ηh)3

)︂
≡ κ3ηµτηρνηλσhµνhρσhλτ

(4.41c)

and

d := κ4Tr
(︂
(ηh)4

)︂
≡ κ4ηµφηρνηλσηϑτhµνhρσhλτhϑφ .

(4.41d)
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Proof. We use Equation (4.31),

−Det (g) = 1 + a+ b+ c+ d , (4.42)

and plug it into the Taylor series of the square-root around x = 0,4

√
x =

∞∑︂
i=0

(︃1
2

i

)︃
(x− 1)i , (4.43)

to obtain √︁
−Det (g) =

∞∑︂
i=0

(︃1
2

i

)︃
(a+ b+ c+ d)i . (4.44)

Applying the binomial theorem iteratively three times, we get√︁
−Det (g) =

∞∑︂
i=0

(︃1
2

i

)︃
(a+ b+ c+ d)i

=
∞∑︂
i=0

i∑︂
j=0

(︃1
2

i

)︃(︃
i

j

)︃
ai−j (b+ c+ d)j

=

∞∑︂
i=0

i∑︂
j=0

j∑︂
k=0

(︃1
2

i

)︃(︃
i

j

)︃(︃
j

k

)︃
ai−jbj−k (c+ d)k

=

∞∑︂
i=0

i∑︂
j=0

j∑︂
k=0

k∑︂
l=0

(︃1
2

i

)︃(︃
i

j

)︃(︃
j

k

)︃(︃
k

l

)︃
ai−jbj−kck−ldl .

(4.45)

Observe, that from Equations (4.31) and (4.32) we have the relations

−Det (g)

⃓⃓⃓⃓
⃓
O(κ)

≡ a (4.46a)

−Det (g)

⃓⃓⃓⃓
⃓
O(κ2)

≡ b (4.46b)

−Det (g)

⃓⃓⃓⃓
⃓
O(κ3)

≡ c (4.46c)

and

−Det (g)

⃓⃓⃓⃓
⃓
O(κ4)

≡ d , (4.46d)

and thus the restriction to the grade-m part in the gravitational coupling constant κ is given
via the integer solutions to

m
!
= i− j + 2j − 2k + 3k − 3l + 4l

= i+ j + k + l
(4.47)

with i ≥ j ≥ k ≥ l, i.e.√︁
−Det (g)

⃓⃓⃓⃓
⃓
O(κm)

=
∑︂

i+j+k+l=m
i≥j≥k≥l≥0

(︃1
2

i

)︃(︃
i

j

)︃(︃
j

k

)︃(︃
k

l

)︃
ai−jbj−kck−ldl . (4.48)

4Here we need the assumption |κ| ∥h∥max
:= |κ|maxλ∈EW(h) |λ| < 1, where EW (h) denotes the set of eigen-

values of h, to assure convergence.
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Finally, using Newton’s identities, i.e. the relations from Equations (4.32) and (4.41),

a ≡ a , (4.49a)

b ≡ 1

2
a2 − 1

2
b , (4.49b)

c ≡ 1

6
a3 − 1

2
ab+

1

3
c (4.49c)

and

d ≡ 1

24
a4 − 1

4
a2b+

1

3
ac+

1

8
b2 − 1

4
d , (4.49d)

we obtain, using again the Binomial theorem iteratively seven times,

ai−jbj−kck−ldl =

j−k∑︂
p=0

k−l∑︂
q=0

q∑︂
r=0

l∑︂
s=0

s∑︂
t=0

t∑︂
u=0

u∑︂
v=0(︃

j − k

p

)︃(︃
k − l

q

)︃(︃
q

r

)︃(︃
l

s

)︃(︃
s

t

)︃(︃
t

u

)︃(︃
u

v

)︃
× (−1)p+q−r+s−t+v 2−j+l+r+s+2t−3u+v3−k+q−r+s−t+u

× ai+j+k+l−2p−2q−r−2s−t−ubp+q−r+s−t+2u−2vcr+t−udv ,

(4.50)

and thus finally

√︁
−Det (g)

⃓⃓⃓⃓
⃓
O(κm)

=
∑︂

i+j+k+l=m
i≥j≥k≥l≥0

j−k∑︂
p=0

k−l∑︂
q=0

q∑︂
r=0

l∑︂
s=0

s∑︂
t=0

t∑︂
u=0

u∑︂
v=0(︃1

2

i

)︃(︃
i

j

)︃(︃
j

k

)︃(︃
k

l

)︃(︃
j − k

p

)︃(︃
k − l

q

)︃(︃
q

r

)︃(︃
l

s

)︃(︃
s

t

)︃(︃
t

u

)︃(︃
u

v

)︃
× (−1)p+q−r+s−t+v 2−j+l+r+s+2t−3u+v3−k+q−r+s−t+u

× ai+j+k+l−2p−2q−r−2s−t−ubp+q−r+s−t+2u−2vcr+t−udv ,

(4.51)

as claimed. ■

4.1.2 Notation and building blocks

Given the Quantum General Relativity Lagrange density

LQGR = − 1

2κ2

(︃√︁
−Det (g)R+

1

2ζ
ηµνdD(1)

µ dD(1)
ν

)︃
dVη

− 1

2
ηρσ

(︃
1

ζ
C
µ (︁
∂ρ∂σCµ

)︁
+ C

µ
(︂
∂µ
(︁
ΓνρσCν

)︁
− 2∂ρ

(︁
ΓνµσCν

)︁)︂)︃
dVη

(4.52)

from Convention 2.3.1 and the decomposition into its powers in the gravitational coupling con-
stant κ and the ghost field C

LQGR ≡
∞∑︂
m=0

1∑︂
n=0

Lm,nQGR (4.53)

from the introduction of Section 4.1.1. Then, we extend the Lagrange densities Lm,nQGR for given
m ∈ N+, which were interpreted in the introduction of Section 4.1.1 as potential terms for either
(m+ 2) gravitons or m gravitons and a graviton-ghost and graviton-antighost, to either (m+ 2)
distinguishable gravitons or m distinguishable gravitons and a graviton-ghost and graviton-
antighost via symmetrization, depending on n ∈ {0, 1}. This then reflects the bosonic character
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of gravitons and allows the calculation of the corresponding Feynman rules as the remaining
matrix elements of these potential terms. We start by introducing the notation and then present
the Feynman rules.

Definition 4.1.9. We denote the graviton m-point vertex Feynman rule with ingoing momenta{︁
pσ1 , · · · , pσm

}︁
via G

µ1ν1|···|µmνm
m

(︁
pσ1 , · · · , pσm

)︁
.5 It is defined as follows:

Gµ1ν1|···|µmνm
m (pσ1 , · · · , pσm) := i

⎛⎝ m∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F
(︂
L(m−2),0
QGR

)︂
, (4.54)

where the prefactor i is a convention from the path integral, δ̄/δ̄ĥµiνi denotes the symmetrized

functional derivative with respect to the Fourier transformed graviton field ĥµiνi together with
the additional agreement (represented by the bar δ̄/δ̄·) that the possible preceding momentum
is also labelled by the particle number i, e.g.

δ̄

δ̄ĥµiνi

(︂
pκĥρσ

)︂
:=

1

2
piκ

(︂
δ̂
µi
ρ δ̂

νi
σ + δ̂

µi
σ δ̂

νi
ρ

)︂
, (4.55)

and L(m−2),0
QGR is the symmetrized extension of L(m−2),0

QGR to m distinguishable gravitons. Further-
more, we denote the graviton propagator Feynman rule with momentum pσ, gauge parameter
ζ and regulator for Landau singularities ϵ via Pµ1ν1|µ2ν2 (p

σ; ζ; ϵ). It is defined as the inverse of
the matrix element for the graviton kinetic term:6

Pµ1ν1|µ2ν2 (p
σ; ζ; 0)G

µ2ν2|µ3ν3
2 (pσ; ζ) =

1

2

(︂
δ̂
µ3
µ1 δ̂

ν3
ν1 + δ̂

ν3
µ1 δ̂

µ3
ν1

)︂
, (4.56)

where each tuple µiνi is treated as one index, which excludes the a priori possible term η̂µ1ν1 η̂
µ3ν3

on the right-hand side. Moreover, we denote the graviton-ghost m-point vertex Feynman rule

with ingoing momenta
{︁
pσ1 , · · · , pσm

}︁
via C

ρ1|ρ2∥µ3ν3|···|µmνm
m

(︁
pσ1 , · · · , pσm

)︁
, where particle 1 is the

graviton-ghost, particle 2 is the graviton-antighost and the rest are gravitons. It is defined as
follows:

Cρ1|ρ2∥µ3ν3|···|µmνmm (pσ1 , · · · , pσm) := i

⎛⎝ δ̄

δ̄ ˆ︁Cρ1 δ̄

δ̄ˆ︁Cρ2
m∏︂
i=3

δ̄

δ̄ĥµiνi

⎞⎠F
(︂
Lm,1QGR

)︂
, (4.57)

where, additionally to the above mentioned setting, δ̄/δ̄ ˆ︁Cρ1 and δ̄/δ̄ˆ︁Cρ2 denotes the functional

derivative with respect to the Fourier transformed graviton-ghost field ˆ︁Cρ1 and Fourier trans-

formed graviton-antighost field ˆ︁Cρ2 , respectively, and Lm,1QGR is the symmetrized extension of

Lm,1QGR to m distinguishable gravitons. Additionally, we denote the graviton-ghost propagator
Feynman rule with momentum pσ and regulator for Landau singularities ϵ via pρ1|ρ2 (p

σ; ϵ). It
is defined as the inverse of the matrix element for the graviton-ghost kinetic term:7

pρ1|ρ2 (p
σ; 0)C

ρ2|ρ3
2 (pσ) = δ̂

ρ3
ρ1 . (4.58)

Finally, we denote the graviton-matter m-point vertex Feynman rule of type k from Lemma 2.3.4

with ingoing momenta
{︁
pσ1 , · · · , pσm

}︁
via Mk

κ...τ∥o...t|||µ1ν1|···|µmνm
m

(︁
pσ1 , · · · , pσm

)︁
, where we count

5The vertical bars in µ1ν1| · · · |µmνm are added solely for better readability.
6We use momentum conservation to set pσ1 := pσ and pσ2 := −pσ in the expression G

µ2ν2|µ3ν3
2 (pσ1 , p

σ
2 ; ζ).

7Again, we use momentum conservation to set pσ1 := pσ and pσ2 := −pσ in the expression C
µ2ν2|µ3ν3
2 (pσ1 , p

σ
2 ).
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only graviton particles, as the matter-contributions are condensed into the tensors Tk , whose
Feynman rule contributions can be found e.g. in [133]. They are defined as follows:

Mk
κ...τ∥o...t|||µ1ν1|···|µmνm
m (pσ1 , · · · , pσm) :=

i

⎛⎝ δ̄

δ̄ ˆ︁Tk κ...τ∥o...t

m∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F
(︂

Lm,0QGR-SMk

)︂
, (4.59)

where we use again the above mentioned setting. ♦

Convention 4.1.10. We consider all momenta
{︁
pσ1 , · · · , pσm

}︁
incoming and we assume momen-

tum conservation on quadratic Feynman rules, i.e. set pσ1 := pσ and pσ2 := −pσ. ♦

Lemma 4.1.11. Introducing the notation

Tµ1ν1|···|µnνnn :=

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F
(︂
Tr
(︁
(ηh)n

)︁)︂
, (4.60)

we obtain

Tµ1ν1|···|µnνnn =
1

2n

∑︂
µi↔νi

∑︂
s∈Sn

t
µs(1)νs(1)|···|µs(n)νs(n)
n (4.61a)

with

tµ1ν1|···|µnνnn = κn
⎛⎝δ̂ν1νn+1

n∏︂
a=1

η̂µaνa+1

⎞⎠ . (4.61b)

Furthermore, introducing the notation

Hµν|||µ1ν1|···|µnνnn :=

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F
(︁
(hn)µν

)︁
, (4.62)

we obtain

Hµν0 = ηµν (4.63a)

and for n > 0

Hµν|||µ1ν1|···|µnνnn =
1

2n

∑︂
µi↔νi

∑︂
s∈Sn

h
µν|µs(1)νs(1)|···|µs(n)νs(n)
n (4.63b)

with

hµν|||µ1ν1|···|µnνnn = κn
⎛⎝δ̂µµ0 δ̂ννn+1

n∏︂
a=0

η̂µaνa+1

⎞⎠ . (4.63c)

Moreover, introducing the notation

(︁
H′
n

)︁µν|||µ1ν1|···|µnνn
ρ

(pσ1 , · · · , pσn) :=

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F
(︂
∂ρ
(︁
(hn)µν

)︁)︂
, (4.64)
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we obtain (︁
H′
0

)︁µν
ρ

= 0 (4.65a)

and for n > 0(︁
H′
n

)︁µν|||µ1ν1|···|µnνn
ρ

(pσ1 , · · · , pσn) =
1

2n

∑︂
µi↔νi

∑︂
s∈Sn

(︁
h′n
)︁µν|||µs(1)νs(1)|···|µs(n)νs(n)

ρ

(︂
pσs(1), · · · , p

σ
s(n)

)︂ (4.65b)

with

(︁
h′n
)︁µν|||µ1ν1|···|µnνn
ρ

(pσ1 , · · · , pσn) = κn
⎛⎝ n∑︂
m=1

pnρ

⎞⎠⎛⎝δ̂µµ0 δ̂ννn+1

n∏︂
a=0

η̂µaνa+1

⎞⎠ . (4.65c)

Proof. This follows from directly from the definition. ■

Corollary 4.1.12. Given the situation of Lemma 4.1.11, we have⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝gµν ⃓⃓⃓⃓⃓
O(κn)

⎞⎠ = (−1)nHµν|||µ1ν1|···|µnνnn , (4.66)

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝erρ
⃓⃓⃓⃓
⃓
O(κn)

⎞⎠ =

(︃1
2

n

)︃
(Hn)

r|||µ1ν1|···|µnνn
ρ , (4.67)

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝eρr
⃓⃓⃓⃓
⃓
O(κn)

⎞⎠ =

(︃
−1

2

n

)︃
(Hn)

ρ|||µ1ν1|···|µnνn
r , (4.68)

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝(︂∂σerρ)︂
⃓⃓⃓⃓
⃓
O(κn)

⎞⎠ =

(︃1
2

n

)︃
η̂µρδ̂

r

ν

(︁
H′
n

)︁µν|||µ1ν1|···|µnνn
σ

(pσ1 , · · · , pσn) (4.69)

and ⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝(∂σe
ρ
r)

⃓⃓⃓⃓
⃓
O(κn)

⎞⎠ =

(︃
−1

2

n

)︃
δ̂
ρ

µη̂νr
(︁
H′
n

)︁µν|||µ1ν1|···|µnνn
σ

(pσ1 , · · · , pσn) . (4.70)

Proof. This follows directly from Lemmata 4.1.1, 4.1.2 and 4.1.11. ■

Lemma 4.1.13. Introducing the notation

Γµ1ν1µνρ (pσ1 ) :=
δ̄

δ̄ĥµ1ν1
F
(︁
Γµνρ

)︁
(4.71)

with

Γµνρ := gρσΓ
σ
µν

≡ 1

2

(︁
∂µgνρ + ∂νgρµ − ∂ρgµν

)︁ (4.72)
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we obtain

Γµ1ν1µνρ (pσ1 ) =
κ
4

(︃
p1µ

(︂
δ̂
µ1
ρ δ̂

ν1
ν + δ̂

µ1
ν δ̂

ν1
ρ

)︂
+ p1ν

(︂
δ̂
µ1
µ δ̂

ν1
ρ + δ̂

µ1
ρ δ̂

ν1
µ

)︂
−p1ρ

(︂
δ̂
µ1
µ δ̂

ν1
ν + δ̂

µ1
ν δ̂

ν1
µ

)︂)︃
.

(4.73)

Proof. This follows from directly from the expression

ˆ︁Γµνρ = κ
2

(︂
pµĥνρ + pν ĥρµ − pρĥµν

)︂
. (4.74)

■

Lemma 4.1.14. Introducing the notation

Rµ1ν1|···|µnνn
n (pσ1 , · · · , pσn) :=

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝R⃓⃓⃓⃓⃓
O(κn)

⎞⎠ , (4.75)

we obtain

R0 = 0 , (4.76a)

Rµ1ν1
1 (pσ1 ) = −κ

(︂
pµ11 p

ν1
1 − p21η̂

µ1ν1
)︂

(4.76b)

and for n > 1

Rµ1ν1|···|µnνn
n (pσ1 , · · · , pσn) =

1

2n

∑︂
µi↔νi

∑︂
s∈Sn

r
µs(1)νs(1)|···|µs(n)νs(n)
n

(︂
pσs(1), · · · , p

σ
s(n)

)︂
(4.76c)

with

rµ1ν1|···|µnνnn (pσ1 , · · · , pσn) =
(︂
r∂Γn

)︂µ1ν1|···|µnνn
(pσ1 , · · · , pσn)

+
(︂
rΓ

2

n

)︂µ1ν1|···|µnνn
(pσ1 , · · · , pσn) ,

(4.76d)

(︂
r∂Γn

)︂µ1ν1|···|µnνn
(pσ1 , · · · , pσn) = (−κ)n

∑︂
i+j=n−1

⎛⎝δ̂ρνi+1

i∏︂
a=0

η̂µaνa+1

⎞⎠⎛⎝δ̂νµi i+j∏︂
b=i

η̂µbνb+1

⎞⎠
×
(︂
pnµ0p

n
ν δ̂
µn
ρ − pnµ0p

n
ρ δ̂
µn
ν

)︂
− (−κ)n

∑︂
i+j+k=n−2

⎛⎝δ̂ρνi+1

i∏︂
a=0

η̂µaνa+1

⎞⎠⎛⎝δ̂νµi δ̂σνi+j+1

i+j∏︂
b=i

η̂µbνb+1

⎞⎠
×

⎛⎝δ̂κµi+j
δ̂
λ

νi+j+k+1

i+j+k∏︂
c=i+j

η̂µcνc+1

⎞⎠
×

(︄(︂
pn−1
µ0 δ̂

µn−1

ρ δ̂
νn−1

κ

)︂(︃1

2
pnλδ̂

µn
ν δ̂

νn
σ − pnν δ̂

µn
λ δ̂

νn
σ

)︃

+
1

2

(︂
pn−1
ν δ̂

µn−1

µ0 δ̂
νn−1

κ

)︂(︂
pnσ δ̂

µn
ρ δ̂

νn
λ

)︂)︄

(4.76e)
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4.1. Linearized gravity and further preparations

and(︂
rΓ

2

n

)︂µ1ν1|···|µnνn
(pσ1 , · · · , pσn) =

− (−κ)n
∑︂

i+j+k=n−2

⎛⎝δ̂ρνi+1

i∏︂
a=0

η̂µaνa+1

⎞⎠⎛⎝δ̂νµi δ̂σνi+j+1

i+j∏︂
b=i

η̂µbνb+1

⎞⎠
×

⎛⎝δ̂κµi+j
δ̂
λ

νi+j+k+1

i+j+k∏︂
c=i+j

η̂µcνc+1

⎞⎠
×

(︄(︂
pn−1
κ δ̂

µn−1

µ0 δ̂
νn−1

ρ

)︂(︃1

2
pnν δ̂

µn
σ δ̂

νn
λ − 1

4
pnλδ̂

µn
ν δ̂

νn
σ

)︃

−
(︂
pn−1
ν δ̂

µn−1

µ0 δ̂
νn−1

κ

)︂(︃1

2
pnρ δ̂

µn
σ δ̂

νn
λ − 1

4
pnσ δ̂

µn
ρ δ̂

νn
λ

)︃)︄
.

(4.76f)

Proof. This follows directly from Corollaries 4.1.4 and 4.1.12. Furthermore, we remark the global
minus sign due to the Fourier transform and the omission of Kronecker symbols, if possible. ■

Lemma 4.1.15. Introducing the notation

dDµ1ν1|···|µnνn
n (pσ1 , · · · , pσn) :=

⎛⎝ n∏︂
i=1

δ̄

δ̄ĥµiνi

⎞⎠F

⎛⎝dD2

⃓⃓⃓⃓
⃓
O(κn)

⎞⎠ , (4.77)

we obtain

dD0 = 0 , (4.78a)

dDµ1ν1
1 (pσ1 ) = 0 (4.78b)

and for n > 1

dDµ1ν1|···|µnνn
n (pσ1 , · · · , pσn) =

1

2n

∑︂
µi↔νi

∑︂
s∈Sn

dd
µs(1)νs(1)|···|µs(n)νs(n)
n

(︂
pσs(1), · · · , p

σ
s(n)

)︂
(4.78c)

with

ddµ1ν1|···|µnνnn (pσ1 , · · · , pσn) = − (−κ)n
∑︂

i+j+k=n−2

⎛⎝δ̂ρνi+1

i∏︂
a=0

η̂µaνa+1

⎞⎠
×

⎛⎝δ̂νµi δ̂σνi+j+1

i+j∏︂
b=i

η̂µbνb+1

⎞⎠⎛⎝δ̂κµi+j
δ̂
λ

νi+j+k+1

i+j+k∏︂
c=i+j

η̂µcνc+1

⎞⎠
×
(︃(︂

pn−1
ν δ̂

µn−1

σ δ̂
νn−1

µ0

)︂(︂
pnκ δ̂

µn
λ δ̂

νn
ρ

)︂
−
(︂
pn−1
ν δ̂

µn−1

σ δ̂
νn−1

µ0

)︂(︂
pnρ δ̂

µn
κ δ̂

νn
λ

)︂
+
1

4

(︂
pn−1
µ0 δ̂

µn−1

ν δ̂
νn−1

σ

)︂(︂
pnρ δ̂

µn
κ δ̂

νn
λ

)︂)︃
.

(4.78d)

In particular, the quadratic part is given by (using momentum conservation, i.e. setting pσ1 := pσ

and pσ2 := −pσ)

dD
µ1ν1|µ2ν2
2 (pσ,−pσ) = κ2

(︁
pµ1pν1 η̂µ2ν2 + pµ2pν2 η̂µ1ν1

)︁
− 1

2
κ2
(︁
pµ1pµ2 η̂ν1ν2 + pµ1pν2 η̂ν1µ2 + pν1pµ2 η̂µ1ν2 + pν1pν2 η̂µ1µ2

)︁
− 1

2
κ2
(︁
p2η̂µ1ν1 η̂µ2ν2

)︁
.

(4.79)
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4. Gravity-matter Feynman rules

Proof. This follows directly from Corollaries 4.1.6 and 4.1.12. Furthermore, we remark the global
minus sign due to the Fourier transform and the omission of Kronecker symbols, if possible. ■

Lemma 4.1.16. Introducing the notation

Vµ1ν1|···|µnνn
n :=

⎛⎝ n∏︂
i=1

δ

δĥµiνi

⎞⎠F

⎛⎝√︁−Det (g)

⃓⃓⃓⃓
⃓
O(κn)

⎞⎠ , (4.80)

we obtain

Vµ1ν1|···|µnνn
n =

1

2n

∑︂
µi↔νi

∑︂
s∈Sn

v
µs(1)νs(1)|···|µs(n)νs(n)
n (4.81a)

with

vµ1ν1|···|µnνnn = κn
∑︂

i+j+k+l=m
i≥j≥k≥l≥0

j−k∑︂
p=0

k−l∑︂
q=0

q∑︂
r=0

l∑︂
s=0

s∑︂
t=0

t∑︂
u=0

u∑︂
v=0(︃1

2

i

)︃(︃
i

j

)︃(︃
j

k

)︃(︃
k

l

)︃(︃
j − k

p

)︃(︃
k − l

q

)︃(︃
q

r

)︃(︃
l

s

)︃(︃
s

t

)︃(︃
t

u

)︃(︃
u

v

)︃
× (−1)p+q−r+s−t+v 2−j+l+r+s+2t−3u+v3−k+q−r+s−t+u

×

⎛⎝ a∏︂
a=1

η̂µaνa

⎞⎠⎛⎝ a+b∏︂
b=a+1

η̂µbµb+b η̂νbνb+b

⎞⎠⎛⎝ a+2b+c∏︂
c=a+2b+1

η̂µcνc+c η̂µc+cνc+2c η̂µc+2cνc

⎞⎠
×

⎛⎝ a+2b+3c+d∏︂
d=a+2b+3c+1

η̂µdνd+d η̂µd+dνd+2d η̂µd+2dνd+3d η̂µd+3dνd

⎞⎠

(4.81b)

and

a := i+ j + k + l − 2p− 2q − r − 2s− t− u

b := p+ q − r + s− t+ 2u− 2v

c := r + t− u

d := v .

(4.81c)

Proof. This follows directly from Corollaries 4.1.8 and 4.1.12. ■

4.2 Feynman rules for any valence

In this section, we present the gravitational Feynman rules for (effective) Quantum General Rel-
ativity coupled to the Standard Model. We provide the vertex Feynman rules in any valence and
the propagator Feynman rules with a general gauge parameter corresponding to the quadratic
de Donder gauge fixing.

4.2.1 Gravitons and graviton-ghosts

Having done all preparations in Subsection 4.1.2, we now list the corresponding Feynman rules
for gravitons and their ghosts.
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4.2. Feynman rules for any valence

Theorem 4.2.1. Given the metric decomposition gµν = ηµν + κhµν and assume |κ| ∥h∥max :=
|κ|maxλ∈EW(h) |λ| < 1, where EW(h) denotes the set of eigenvalues of h. Then the graviton
2-point vertex Feynman rule for (effective) Quantum General Relativity reads (where ζ denotes
the gauge parameter and we use momentum conservation on the quadratic term, i.e. set pσ1 := pσ

and pσ2 := −pσ):

G
µ1ν1|µ2ν2
2 (pσ; ζ) =

i

4

(︃
1− 1

ζ

)︃
(pµ1pν1 η̂µ2ν2 + pµ2pν2 η̂µ1ν1)

− i

8

(︃
1− 1

ζ

)︃
(pµ1pµ2 η̂ν1ν2 + pµ1pν2 η̂ν1µ2 + pν1pµ2 η̂µ1ν2 + pν1pν2 η̂µ1µ2)

− i

4

(︃
1− 1

2ζ

)︃(︂
p2η̂µ1ν1 η̂µ2ν2

)︂
+

i

8

(︂
p2η̂µ1µ2 η̂ν1ν2 + p2η̂µ1ν2 η̂ν1µ2

)︂
(4.82)

Furthermore, the graviton n-point vertex Feynman rules with n > 2 for (effective) Quantum
General Relativity read (where gn denotes the corresponding unsymmetrized Feynman rules and
δm1 ̸=n is set to 0 if m1 = n and to 1 else, eliminating contributions coming from total deriva-
tives):

Gµ1ν1|···|µnνn
n (pσ1 , · · · , pσn) =

i

2n

∑︂
µi↔νi

∑︂
s∈Sn

g
µs(1)νs(1)|···|µs(n)νs(n)
n

(︂
pσs(1), · · · , p

σ
s(n)

)︂
(4.83a)
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4. Gravity-matter Feynman rules

with

gµ1ν1|···|µnνnn (pσ1 , · · · , pσn) =

(−κ)n−2

2

∑︂
m1+m2=n

⎧⎪⎨⎪⎩
m1−1∑︂
i=0

⎛⎝δ̂µµ0 δ̂ρνi+1

i∏︂
a=0

η̂µaνa+1

⎞⎠⎛⎝δ̂νµi δ̂σνm1

m1−1∏︂
b=i

η̂µbνb+1

⎞⎠
× δm1 ̸=n

[︂
pm1
µ pm1

ν δ̂
µm1
ρ δ̂

νm1
σ − pm1

µ pm1
ρ δ̂

µm1
ν δ̂

νm1
σ

]︂
−

∑︂
j+k+l=m1−2

⎛⎝δ̂µµ0 δ̂ρνj+1

j∏︂
a=0

η̂µaνa+j

⎞⎠⎛⎝δ̂νµj δ̂σνj+k+1

j+k∏︂
b=j

η̂µbνb+1

⎞⎠
×

⎛⎝δ̂κµj+k
δ̂
λ

νm1−1

m1−2∏︂
c=j+k

η̂µcνc+1

⎞⎠
×

⎛⎝δm1 ̸=n

[︄(︂
pn−1
µ δ̂

µn−1

ρ δ̂
νn−1

κ

)︂(︃1

2
pnλδ̂

µn
ν δ̂

νn
σ − pnν δ̂

µn
λ δ̂

νn
σ

)︃

+
1

2

(︂
pn−1
ν δ̂

µn−1

µ δ̂
νn−1

κ

)︂(︂
pnσ δ̂

µn
ρ δ̂

νn
λ

)︂]︄

+
(︂
pn−1
κ δ̂

µn−1

µ δ̂
νn−1

ρ

)︂(︃1

2
pnν δ̂

µn
σ δ̂

νn
λ − 1

4
pnλδ̂

µn
ν δ̂

νn
σ

)︃
−
(︂
pn−1
ν δ̂

µn−1

µ δ̂
νn−1

κ

)︂(︃1

2
pnρ δ̂

µn
σ δ̂

νn
λ − 1

4
pnσ δ̂

µn
ρ δ̂

νn
λ

)︃}︄

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︂

i+j+k+l=m2
i≥j≥k≥l≥0

j−k∑︂
p=0

k−l∑︂
q=0

q∑︂
r=0

l∑︂
s=0

s∑︂
t=0

t∑︂
u=0

u∑︂
v=0(︃1

2

i

)︃(︃
i

j

)︃(︃
j

k

)︃(︃
k

l

)︃(︃
j − k

p

)︃(︃
k − l

q

)︃(︃
q

r

)︃(︃
l

s

)︃(︃
s

t

)︃(︃
t

u

)︃(︃
u

v

)︃
× (−1)p+q−r+s−t+v 2−j+l+r+s+2t−3u+v3−k+q−r+s−t+u

×

⎛⎝ m1+a∏︂
a=m1+1

η̂µaνa

⎞⎠⎛⎝ m1+a+b∏︂
b=m1+a+1

η̂µbµb+b η̂νbνb+b

⎞⎠
×

⎛⎝ m1+a+2b+c∏︂
c=m1+a+2b+1

η̂µcνc+c η̂µc+cνc+2c η̂µc+2cνc

⎞⎠
×

⎛⎝ m1+a+2b+3c+d∏︂
d=m1+a+2b+3c+1

η̂µdνd+d η̂µd+dνd+2d η̂µd+2dνd+3d η̂µd+3dνd

⎞⎠
⎫⎪⎬⎪⎭

(4.83b)

and

a := i+ j + k + l − 2p− 2q − r − 2s− t− u

b := p+ q − r + s− t+ 2u− 2v

c := r + t− u

d := v

(4.83c)

Proof. This follows from the combination of Lemmata 4.1.11, 4.1.14, 4.1.15 and 4.1.16, since we
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4.2. Feynman rules for any valence

have

Gµ1ν1|···|µnνn
n (pσ1 , · · · , pσn) =

i

2n

∑︂
µi↔νi

∑︂
s∈Sn

g
µs(1)νs(1)|···|µs(n)νs(n)
n

(︂
pσs(1), · · · , p

σ
s(n)

)︂
(4.84a)

with

gµ1ν1|···|µnνnn (pσ1 , · · · , pσn) =

− 1

2κ2

n∑︂
m=1

(︂
Rµ1ν1|···|µmνm
m (pσ1 , · · · , pσmm )×V

µn−mνn−m|···|µnνn
n−m

)︂
+ δn=2

1

2ζ
dD

µ1ν1|µ2ν2
2 (pσ1 , p

σ
2 ) ,

(4.84b)

where δn=2 is set to 1 for n = 2 and to 0 else, and modulo total derivatives which come from
the R∂Γ contributions of degree n. ■

Remark 4.2.2. The one-valent Feynman rule actually reads

Gµ1ν1
1 (pσ1 ) =

i

2κ

(︂
pµ11 p

ν1
1 − p21η̂

µ1ν1
)︂
. (4.85)

However this term comes from a total derivative in the Lagrange density and can thus be set to
zero. Equivalently, on the level of Feynman rules, it vanishes due to momentum conservation.

Theorem 4.2.3. Given the situation of Theorem 4.2.1, the graviton propagator Feynman rule
for (effective) Quantum General Relativity reads:

Pµ1ν1|µ2ν2 (p
σ; ζ; ϵ) = − 2i

p2 + iϵ

[︄(︂
η̂µ1µ2 η̂ν1ν2 + η̂µ1ν2 η̂ν1µ2 − η̂µ1ν1 η̂µ2ν2

)︂
−
(︃
1− ζ

p2

)︃(︂
η̂µ1µ2pν1pν2 + η̂µ1ν2pν1pµ2 + η̂ν1µ2pµ1pν2 + η̂ν1ν2pµ1pµ2

)︂]︄ (4.86)

Proof. To calculate the graviton propagator, we recall

G
µ1ν1|µ2ν2
2 (pσ; ζ) =

i

4

(︃
1− 1

ζ

)︃
(pµ1pν1 η̂µ2ν2 + pµ2pν2 η̂µ1ν1)

− i

8

(︃
1− 1

ζ

)︃
(pµ1pµ2 η̂ν1ν2 + pµ1pν2 η̂ν1µ2 + pν1pµ2 η̂µ1ν2 + pν1pν2 η̂µ1µ2)

− i

4

(︃
1− 1

2ζ

)︃(︂
p2η̂µ1ν1 η̂µ2ν2

)︂
+

i

8

(︂
p2η̂µ1µ2 η̂ν1ν2 + p2η̂µ1ν2 η̂ν1µ2

)︂
(4.87)

from Theorem 4.2.1 and then invert it to obtain the propagator, i.e. such that8

G
µ1ν1|µ2ν2
2 (pσ; ζ)Pµ2ν2|µ3ν3 (p

σ; ζ; 0) =
1

2

(︂
δ̂
µ1
µ3 δ̂

ν1
ν3 + δ̂

µ1
ν3 δ̂

ν1
µ3

)︂
(4.88)

holds, and we obtain Equation (4.86). ■

8Where we treat the tuples of indices µiνi as one index, i.e. exclude the a priori possible term η̂µ1ν1 η̂µ3ν3
on

the right hand side.
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4. Gravity-matter Feynman rules

Theorem 4.2.4. Given the situation of Theorem 4.2.1, the graviton-ghost 2-point vertex Feyn-
man rule for (effective) Quantum General Relativity reads:

Cρ1ρ22 (pσ) =
i

2ζ
p2η̂ρ1ρ2 (4.89)

Furthermore, the graviton-ghost n-point vertex Feynman rules with n > 2 for (effective) Quan-
tum General Relativity read (where cn denotes the corresponding unsymmetrized Feynman rules):

Cρ1|ρ2∥µ3ν3|···|µnνnn (pσ1 , · · · , pσn) =
i

2n−2

∑︂
µi↔νi

∑︂
s∈Sn−2

s̃(i):=s(i−2)+2

c
ρ1|ρ2∥µs̃(3)νs̃(3)|···|µs̃(n)νs̃(n)
n (pσ1 , · · · , pσn) (4.90a)

with

cρ1|ρ2∥µ3ν3|···|µnνnn (pσ1 , · · · , pσn) =
(−κ)n−2

4

⎧⎨⎩
(︄
δ̂
ρ1
µ3 δ̂

µ

νn+1

n∏︂
a=3

η̂µaνa+1

)︄
η̂ρ2ν η̂ρσ

×

[︄
p(2)ν

(︃
p(3)ρ δ̂

µ3
µ δ̂

ν3
σ + p(3)σ δ̂

µ3
ρ δ̂

ν3
µ − p(3)µ δ̂

µ3
ρ δ̂

ν3
σ

)︃

−2p(2)ρ

(︃
p(3)σ δ̂

µ3
ν δ̂

ν3
µ + p(3)ν δ̂

µ3
µ δ̂

ν3
σ − p(3)µ δ̂

µ3
σ δ̂

ν3
ν

)︃]︄⎫⎬⎭ ,

(4.90b)

where particle 1 is the graviton-ghost, particle 2 is the graviton-antighost and the other particles
are gravitons.

Proof. The case n = 2 is immediate and the cases n > 2 follow directly from Lemmata 4.1.11
and 4.1.13, since we have for n > 2

Cρ1|ρ2∥µ3ν3|···|µnνnn (pσ1 , · · · , pσn) =
i

2n−2

∑︂
µi↔νi

∑︂
s∈Sn−2

s̃(i):=s(i−2)+2

c
ρ1|ρ2∥µs̃(3)νs̃(3)|···|µs̃(n)νs̃(n)
n (pσ1 , · · · , pσn) (4.91)

with

cρ1|ρ2∥µ3ν3|···|µnνnn (pσ1 , · · · , pσn) =

(−1)n

2
h
ρ1µ|||µ4ν4|···|µnνn
n−3 η̂ρ2ν η̂ρσ

⎡⎢⎢⎢⎣
⎛⎜⎜⎝ n∑︂
k=1
k ̸=2

pkν

⎞⎟⎟⎠Γµ3ν3ρσµ (pσ1 )− 2

⎛⎜⎜⎝ n∑︂
k=1
k ̸=2

pkρ

⎞⎟⎟⎠Γµ3ν3νσµ (pσ1 )

⎤⎥⎥⎥⎦ , (4.92)

and then used momentum conservation twice, i.e. the relation⎛⎜⎜⎝ n∑︂
k=1
k ̸=2

p(k)τ

⎞⎟⎟⎠ = −p(2)τ . (4.93)

■
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4.2. Feynman rules for any valence

Theorem 4.2.5. Given the situation of Theorem 4.2.1, the graviton-ghost propagator Feynman
rule for (effective) Quantum General Relativity reads:

pρ1|ρ2

(︂
p2, ϵ

)︂
= − 2iζ

p2 + iϵ
η̂ρ1ρ2 (4.94)

Proof. To calculate the graviton-ghost propagator, we recall

C
ρ1|ρ2
2 (pσ) =

i

2ζ
p2η̂ρ1ρ2 (4.95)

from Theorem 4.2.4 and then invert it to obtain the propagator, i.e. such that

C
ρ1|ρ2
2 (pσ) pρ2|ρ3

(︂
p2, 0

)︂
= δ̂

ρ1
ρ3 (4.96)

holds, and we obtain Equation (4.94). ■

Example 4.2.6. Given the situation of Theorem 4.2.1, the three- and four-valent graviton
vertex Feynman rules read as follows:9

G
µ1ν1|µ2ν2|µ3ν3
3 (pσ1 , p

σ
2 , p

σ
3 ) =

i

8

∑︂
µi↔νi

∑︂
s∈S3

g
µs(1)νs(1)|µs(2)νs(2)|µs(3)νs(3)
3

(︂
pσs(1), p

σ
s(2)

)︂
(4.97a)

with

g
µ1ν1|µ2ν2|µ3ν3
3 (pσ1 , p

σ
2 ) =

κ
4

{︄
1

2
pµ31 p

ν3
2 η̂

µ1µ2 η̂ν1ν2 − pµ31 p
µ1
2 η̂

ν1µ2 η̂ν2ν3

+ (p1 · p2)
(︃
− 1

2
η̂µ1ν1 η̂µ2µ3 η̂ν2ν3 + η̂µ1ν2 η̂µ2ν3 η̂µ3ν1

− 1

4
η̂µ1µ2 η̂ν1ν2 η̂µ3ν3 +

1

8
η̂µ1ν1 η̂µ2ν2 η̂µ3ν3

)︃}︄
(4.97b)

and

G
µ1ν1|···|µ4ν4
4 (pσ1 , · · · , pσ4 ) =

i

16

∑︂
µi↔νi

∑︂
s∈S4

g
µs(1)νs(1)|···|µs(4)νs(4)
4

(︂
pσs(1), p

σ
s(2)

)︂
(4.98a)

9We have used momentum conservation, i.e. performed a partial integration on the Lagrange density for
General Relativity, to obtain a more compact form.
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4. Gravity-matter Feynman rules

with

g
µ1ν1|···|µ4ν4
4 (pσ1 , p

σ
2 ) =

κ
4

{︄
− pµ31 p

ν3
2 η̂

µ1µ2 η̂ν1µ4 η̂ν2ν4 + 2pµ31 p
µ1
2 η̂

ν1µ2 η̂ν2µ4 η̂ν3ν4

− 1

2
pµ31 p

µ1
2 η̂

ν1µ2 η̂ν2ν3 η̂µ4ν4 + pµ31 p
ν3
2 η̂

µ1µ2 η̂ν1ν2 η̂µ4ν4

− 1

2
pµ31 p

µ4
2 η̂

µ1µ2 η̂ν1ν2 η̂ν3ν4 + pµ31 p
µ4
2 η̂

µ1µ2 η̂ν1ν3 η̂ν2ν4

− 1

2
pµ21 p

µ3
2 η̂

µ1ν1 η̂ν2µ4 η̂ν3ν4 +
1

4
pµ21 p

µ1
2 η̂

ν1ν2 η̂µ3µ4 η̂ν3ν4

+ (p1 · p2)
(︃
− 1

16
η̂µ1µ2 η̂ν1ν2 η̂µ3ν3 η̂µ4ν4 +

1

8
η̂µ1µ2 η̂ν1ν2 η̂µ3µ4 η̂ν3ν4

+
1

2
η̂µ1µ2 η̂ν1µ3 η̂ν2ν3 η̂µ4ν4 − η̂µ1µ2 η̂ν1µ3 η̂ν2µ4 η̂ν3ν4

+
1

2
η̂µ1µ3 η̂ν1ν3 η̂µ2µ4 η̂ν2ν4 − 1

2
η̂µ1µ3 η̂ν1µ4 η̂µ2ν3 η̂ν2ν4

− 1

4
η̂µ1ν1 η̂µ2µ3 η̂ν2ν3 η̂µ4ν4 +

1

2
η̂µ1ν1 η̂µ2µ3 η̂ν2µ4 η̂ν3ν4

+
1

32
η̂µ1ν1 η̂µ2ν2 η̂µ3ν3 η̂µ4ν4 − 1

8
η̂µ1ν1 η̂µ2ν2 η̂µ3µ4 η̂ν3ν4

)︃}︄
(4.98b)

We remark that the three- and four-valent graviton vertex Feynman rules agree with the cited
literature modulo prefactors and minus signs. Additionally, given the situation of Theorem 4.2.4,
the three- and four-valent graviton-ghost vertex Feynman rules read as follows:

C
ρ1|ρ2∥µ3ν3
3 (pσ2 , p

σ
3 ) =

iκ
4

{︄
− pρ22

(︃
pµ33 η̂

ρ1ν3 + pν33 η̂
ρ1µ3 − pρ13 η̂

µ3ν3

)︃

− pρ13

(︃
pµ32 η̂

ρ2ν3 + pν32 η̂
ρ2µ3

)︃
+ pρ23

(︃
pµ32 η̂

ρ1ν3 + pν32 η̂
ρ1µ3

)︃

+ (p2 · p3)
(︃
η̂ρ1µ3 η̂ρ2ν3 + η̂ρ1ν3 η̂ρ2µ3

)︃}︄
(4.99)
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4.2. Feynman rules for any valence

and

C
ρ1|ρ2∥µ3ν3|µ4ν4
4 (pσ2 , p

σ
3 , p

σ
4 ) =

iκ2

8

{︄
pρ22

(︃
pν33 η̂

ρ1µ4 η̂µ3ν4 + pµ33 η̂
ρ1µ4 η̂ν3ν4 + pν33 η̂

ρ1ν4 η̂µ3µ4

+ pµ33 η̂
ρ1ν4 η̂ν3µ4 − pµ43 η̂

ρ1ν4 η̂µ3ν3 − pν43 η̂
ρ1µ4 η̂µ3ν3

)︃

+ pρ22

(︃
pν44 η̂

ρ1µ3 η̂µ4ν3 + pµ44 η̂
ρ1µ3 η̂ν4ν3 + pν44 η̂

ρ1ν3 η̂µ4µ3

+ pµ44 η̂
ρ1ν3 η̂ν4µ3 − pµ34 η̂

ρ1ν3 η̂µ4ν4 − pν34 η̂
ρ1µ3 η̂µ4ν4

)︃

− pρ23

(︃
pµ32 η̂

ρ1µ4 η̂ν3ν4 + pν32 η̂
ρ1µ4 η̂µ3ν4 + pµ32 η̂

ρ1ν4 η̂ν3µ4 + pν32 η̂
ρ1ν4 η̂µ3µ4

)︃

− pρ24

(︃
pµ42 η̂

ρ1µ3 η̂ν4ν3 + pν42 η̂
ρ1µ3 η̂µ4ν3 + pµ42 η̂

ρ1ν3 η̂ν4µ3 + pν42 η̂
ρ1ν3 η̂µ4µ3

)︃

+ pµ32 p
µ4
3 η̂

ρ1ν4 η̂ρ2ν3 + pν32 p
µ4
3 η̂

ρ1ν4 η̂ρ2µ3 + pµ32 p
ν4
3 η̂

ρ1µ4 η̂ρ2ν3 + pν32 p
ν4
3 η̂

ρ1µ4 η̂ρ2µ3

+ pµ42 p
µ3
4 η̂

ρ1ν3 η̂ρ2ν4 + pµ42 p
ν3
4 η̂

ρ1µ3 η̂ρ2ν4 + pν42 p
µ3
4 η̂

ρ1ν3 η̂ρ2µ4 + pν42 p
ν3
4 η̂

ρ1µ3 η̂ρ2µ4

− (p2 · p3)
(︃
η̂ρ1µ4 η̂ρ2µ3 η̂ν3ν4 + η̂ρ1µ4 η̂ρ2ν3 η̂µ3ν4

+ η̂ρ1ν4 η̂ρ2µ3 η̂ν3µ4 + η̂ρ1ν4 η̂ρ2ν3 η̂µ3µ4
)︃

− (p2 · p4)
(︃
η̂ρ1µ3 η̂ρ2µ4 η̂ν4ν3 + η̂ρ1µ3 η̂ρ2ν4 η̂µ4ν3

+ η̂ρ1ν3 η̂ρ2µ4 η̂ν4µ3 + η̂ρ1ν3 η̂ρ2ν4 η̂µ4µ3
)︃}︄

(4.100)

4.2.2 Gravitons and matter

Having done all preparations in Subsection 4.1.2, we now list the corresponding Feynman rules
for the interactions of gravitons with matter from the Standard Model. To this end, we state the
Feynman rules for the interactions according to the classification of Lemma 2.3.4 and refer for
the corresponding matter contributions to [133] in order to keep this dissertation at a reasonable
length.

Theorem 4.2.7. Given the situation of Theorem 4.2.1 and the matter-model Lagrange densities
from Lemma 2.3.4, the graviton-matter n-point vertex Feynman rule for (effective) Quantum
General Relativity coupled to the matter-model Lagrange density of type k reads:

Mk
µ1ν1|···|µnνn
n (pσ1 , · · · , pσn) =

i

2n

∑︂
µi↔νi

∑︂
s∈Sn

mk
µs(1)νs(1)|···|µs(n)νs(n)
n

(︂
pσs(1), · · · , p

σ
s(n)

)︂
(4.101)
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4. Gravity-matter Feynman rules

with

m1
µ1ν1|···|µnνn
n

(︂ ˆ︁T1 )︂
= ˆ︁T1 vµ1ν1|···|µnνnn , (4.102)

m2
µ1ν1|···|µnνn
n

(︂ ˆ︁T2 )︂
= ˆ︁T2 µν

∑︂
m1+m2=n

(−1)m1 h
µν|||µ1ν1|···|µm1νm1
m1

× v
µm1+1νm1+1|···|µnνn
m2 ,

(4.103)

m3
µ1ν1|···|µnνn
n

(︂ ˆ︁T3 )︂
= ˆ︁T3 µνρσ

∑︂
m1+m2

+m3=n

(−1)m1+m2 h
µν|||µ1ν1|···|µm1νm1
m1

× h
ρσ|||µm1+1νm1+1|···|µm1+m2νm1+m2
m2

× v
µm1+m2+1νm1+m2+1|···|µnνn
m3 ,

(4.104)

m4
µ1ν1|···|µnνn
n

(︂ ˆ︁T4 ; pσ1

)︂
= ˆ︁T4 ρΓ

µ1ν1
µνσ (pσ1 )

∑︂
m1+m2

+m3=n−1

(−1)m1+m2

× h
µν|||µ2ν2|···|µm1+1νm1+1
m1

× h
ρσ|||µm1+2νm1+2|···|µm1+m2+1νm1+m2+1
m2

× v
µm1+m2+2νm1+m2+2|···|µnνn
m3 ,

(4.105)

m5
µ1ν1|···|µnνn
n

(︂ ˆ︁T5 ; pσ1

)︂
= ˆ︁T5 ρσκΓ

µ1ν1
µνλ (pσ1 )

∑︂
m1+m2+m3

+m4=n−1

(−1)m1+m2+m3

× h
µν|||µ2ν2|···|µm1+1νm1+1
m1

× h
ρσ|||µm1+2νm1+2|···|µm1+m2+1νm1+m2+1
m2

× h
κλ|||µm1+m2+2νm1+m2+2|···|µm1+m2+m3+1νm1+m2+m3+1
m3

× v
µm1+m2+m3+2νm1+m2+m3+2|···|µnνn
m4 ,

(4.106)

m6
µ1ν1|···|µnνn
n

(︂ ˆ︁T6 ; pσ1 , p
σ
2

)︂
= ˆ︁T6 κιΓ

µ1ν1
µνλ (pσ1 )Γ

µ2ν2
ρστ (pσ2 )

∑︂
m1+m2+m3

+m4+m5=n−2

× (−1)m1+m2+m3+m4 h
µν|||µ3ν3|···|µm1+2νm1+2
m1

× h
ρσ|||µm1+m2+3νm1+m2+3|···|µm1+m2+2νm1+m2+2
m2

× h
κλ|||µm1+1νm1+1|···|µm1+m2νm1+m2
m3

× h
ιτ |||µm1+1νm1+1|···|µm1+m2νm1+m2
m4 vµm+1νm+1|···|µnνn

m5
,

(4.107)

m7
µ1ν1|···|µnνn
n

(︂ ˆ︁T7 )︂
= ˆ︁T7 o

∑︂
m1+m2=n

(︃ 1
2

m1

)︃
η̂0υh

υo|||µ1ν1|···|µm1νm1
m1

× v
µm1+1νm1+1|···|µnνn
m2 ,

(4.108)

m8
µ1ν1|···|µnνn
n

(︂ ˆ︁T8 )︂
= ˆ︁T8 oρr

∑︂
m1+m2

+m3=n

(︃ 1
2

m1

)︃(︃
−1

2

m2

)︃
η̂0υh

υo|||µ1ν1|···|µm1νm1
m1

× h
ρr|||µm1+1νm1+1|···|µm1+m2νm1+m2
m2

× v
µm1+m2+1νm1+m2+1|···|µnνn
m3 ,

(4.109)
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m9
µ1ν1|···|µnνn
n

(︂ ˆ︁T9 ; pσ1 , · · · , pσn
)︂
= ˆ︁T9 orst

∑︂
m1+m2+m3

+m4+m5=n

(︃ 1
2

m1

)︃(︃
−1

2

m2

)︃(︃
−1

2

m3

)︃(︃ 1
2

m4

)︃

× η̂0υh
υo|||µ1ν1|···|µm1νm1
m1

× h
ρr|||µm1+1νm1+1|···|µm1+m2νm1+m2
m2

× h
σs|||µm1+m2+1νm1+m2+1|···|µm1+m2+m3νm1+m2+m3
m3

× η̂στ
(︁
h′m4

)︁τt|||µm1+m2+m3+1νm1+m2+m3+1|···|µm1+m2+m3+m4νm1+m2+m3+m4

ρ(︂
p
σm1+m2+m3+1

m1+m2+m3+1, · · · , p
σm1+m2+m3+m4
m1+m2+m3+m4

)︂
× v

µm1+m2+m3+m4+1νm1+m2+m3+m4+1|···|µnνn
m5 ,

(4.110)

and

m10
µ1ν1|···|µnνn
n

(︂ ˆ︁T10 ; pσ1

)︂
= ˆ︁T10 orstΓ

µ1ν1
ρστ (pσ1 )

∑︂
m1+m2+m3

+m4+m5=n

(︃ 1
2

m1

)︃(︃
−1

2

m2

)︃(︃
−1

2

m3

)︃

×
(︃
−1

2

m4

)︃
η̂0υh

υo|||µ2ν2|···|µm1+1νm1+1
m1

× h
ρr|||µm1+2νm1+2|···|µm1+m2+1νm1+m2+1
m2

× h
σs|||µm1+m2+2νm1+m2+2|···|µm1+m2+m3νm1+m2+m3
m3

× h
τt|||µm1+m2+m3+2νm1+m2+m3+2|···|µm1+m2+m3+m4+1νm1+m2+m3+m4+1
m4

× v
µm1+m2+m3+m4+2νm1+m2+m3+m4+2|···|µnνn
m5 .

(4.111)

Proof. This follows directly from Corollary 4.1.12 with Lemmata 4.1.13 and 4.1.16. ■

4.3 Explicit Feynman rules

After these general results, we additionally provide the concrete gravity-matter Feynman rules
for all propagators and three-valent vertices of (effective) Quantum General Relativity coupled to
the Standard Model. In this section and the section thereafter, we use the symmetrized fermion
Lagrange density and the following symmetric (hermitian) ghost Lagrange densities associated
to the Lorenz and de Donder gauge fixing conditions, respectively. For Quantum Yang–Mills
theory, we propose the following Lagrange density as a direct generalization of [80, Equation
(3.6)] to include the couplings of gauge ghosts and gauge bosons to gravitons:

LQYM-Sym-Ghost = −1

ξ
gµν

(︂(︁
∂µca

)︁(︁
∂µc

a
)︁)︂

dVg

− g

2
gµνfabc

(︂(︁
∂µca

)︁(︁
cbAcν

)︁
+
(︁
caA

b
ν

)︁(︁
∂µc

c
)︁)︂

dVg

− g2

8
gµνfabc f

de
a cbcdc

cce

(4.112)
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4. Gravity-matter Feynman rules

Then, applying the same reasoning to (effective) Quantum General Relativity, we propose the
following symmetric Lagrange density for graviton-ghosts:

LQGR-Sym-Ghost = − 1

4ζ
ηρσ
(︂
C
µ(︁
∂ρ∂σCµ

)︁
+
(︁
∂ρ∂σCµ

)︁
Cµ
)︂
dVη

− 1

4
ηρσ
(︂(︁
∂µC

µ)︁(︁
ΓνρσCν

)︁
− 2
(︁
∂ρC

µ)︁(︁
ΓνµσCν

)︁
+
(︁
ΓνρσCν

)︁(︁
∂µC

µ
)︁
− 2
(︁
ΓνµσCν

)︁(︁
∂ρC

µ
)︁)︂

dVη

− κ2

16
ηρσ
(︃
C
µ(︁
∂µCρ

)︁
C
ν(︁
∂νCσ

)︁
−
(︁
∂ρC

µ)︁
CµC

ν(︁
∂νCσ

)︁
− C

µ(︁
∂µCρ

)︁(︁
∂σC

ν)︁
Cν +

(︁
∂ρC

µ)︁
Cµ
(︁
∂σC

ν)︁
Cν

)︃
dVη

(4.113)

We remark that a proper derivation thereof via the diffeomorphism and gauge BRST and anti-
BRST operators from Section 2.4 will be provided in [104]. In particular, we emphasize that,
compared to the analysis of Quantum Yang–Mills theory in [80], there are now a priori infinitely
many possible monomials, which makes this task quite involved. Additionally, we remark the
presence of four-valent gauge ghost and graviton-ghost interactions. However, we also highlight
the benefit of significantly simpler cancellation identities, which is the reason for choosing them
here, cf. Theoremata 4.4.12 and 4.4.24. From this section onwards, we also omit the hats to
indicate Fourier transformed quantities, in particular on the Minkowski metric η and on the
Kronecker symbol δ, to improve readability:

4.3.1 Gravity-matter propagators

Φ ( ) =
i

p2 −m2 + iϵ
(4.114)

Φ ( ) =
i
(︁
/p+m

)︁
p2 −m2 + iϵ

(4.115)

Φ ( ) = − i

p2 + iϵ
δa1a2

(︃
ηρ1ρ2 −

(1− ξ)

p2
pρ1pρ2

)︃
(4.116)

Φ ( ) = − iξ

p2 + iϵ
δa1a2 (4.117)

Φ ( ) = − 2i

p2 + iϵ

[︄ (︁
ηµ1µ2ην1ν2 + ηµ1ν2ην1µ2 − ηµ1ν1ηµ2ν2

)︁
−
(︃
1− ζ

p2

)︃(︁
ηµ1µ2pν1pν2 + ηµ1ν2pν1pµ2 + ην1µ2pµ1pν2 + ην1ν2pµ1pµ2

)︁ ]︄ (4.118)

Φ ( ) = − 2iζ

p2 + iϵ
ηρ1ρ2 (4.119)

4.3.2 Gravity-matter vertices

Φ

⎛⎝ ⎞⎠ = − ig

2
(q1 − q2)

ρHakl (4.120)

Φ

⎛⎝ ⎞⎠ = −igγρSakl (4.121)
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Φ

⎛⎝ ⎞⎠ = −gfa1a2a3
∑︂
s∈S3

(︃
ηρs(1)ρs(2)

(︂
ps(1) − ps(2)

)︂ρs(3))︃
(4.122)

Φ

⎛⎝ ⎞⎠ =
ig

2
fab1b2 (q1 − q2)

ρ (4.123)

Φ

⎛⎝ ⎞⎠ =
iκ
2

(︃
qµ1 q

ν
2 + qν1q

µ
2 − ηµν

(︂
q1 · q2 +m2

)︂)︃
(4.124)

Φ

⎛⎝ ⎞⎠ =
iκ
8

(︃
2ηµν

(︂
/q1 − /q2 − 2m

)︂
− (q1 − q2)µ γν − (q1 − q2)ν γµ

)︃
(4.125)

Φ

⎛⎝ ⎞⎠ =
iκ
2
δa1a2

(︄
(q1 · q2) (ηµνηρ1ρ2 − ηµρ1ηνρ2 − ηµρ2ηνρ1)

− ηµνqρ21 q
ρ1
2 − ηρ1ρ2

(︁
qµ1 q

ν
2 + qµ2 q

ν
1

)︁
+ qρ21

(︁
ηµρ1qν2 + ηνρ1qµ2

)︁
+ qρ12

(︁
ηµρ2qν1 + ηνρ2qµ1

)︁
− 1

ξ
ηµν

(︁
qρ11 q

ρ2
2 + pρ1qρ22 + pρ2qρ11

)︁
+

1

ξ
qρ11
(︁
ηµρ2qν2 + ηνρ2qµ2 + ηµρ2pν + ηνρ2pµ

)︁
+

1

ξ
qρ22
(︁
ηµρ1qν1 + ηνρ1qµ1 + ηµρ1pν + ηνρ1pµ

)︁)︄

(4.126)

Φ

⎛⎝ ⎞⎠ =
iκ
2ξ

(︂
(q1 · q2) ηµν − qµ1 q

ν
2 − qµ2 q

ν
1

)︂
(4.127)

Φ

⎛⎝ ⎞⎠ = − iκ
32

∑︂
µi↔νi

∑︂
s∈S3

(︄
p
µs(3)
s(1) p

µs(1)
s(2) η

νs(1)µs(2)ηνs(2)νs(3) − 1

2
p
µs(3)
s(1) p

νs(3)
s(2) η

µs(1)µs(2)ηνs(1)νs(2)

+
(︂
ps(1) · ps(2)

)︂(︃ 1

2
ηµs(1)νs(1)ηµs(2)µs(3)ηνs(2)νs(3) − ηµs(1)νs(2)ηµs(2)νs(3)ηµs(3)νs(1)

+
1

4
ηµs(1)µs(2)ηνs(1)νs(2)ηµs(3)νs(3) − 1

8
ηµs(1)νs(1)ηµs(2)νs(2)ηµs(3)νs(3)

)︃)︄
(4.128)
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Φ

⎛⎝ ⎞⎠ =
iκ
8

(︄
pρ1
(︃
qµ1 η

ρ2ν + qν1η
ρ2µ − qµ2 η

ρ2ν − qν2η
ρ2µ

)︃

+ pρ2
(︃
qµ2 η

ρ1ν + qν2η
ρ1µ − qµ1 η

ρ1ν − qν1η
ρ1µ

)︃

− qρ11

(︃
pµηρ2ν + pνηρ2µ − pρ2ηµν

)︃

− qρ22

(︃
pµηρ1ν + pνηρ1µ − pρ1ηµν

)︃

− 2
(︁
q1 · q2

)︁(︃
ηρ1µηρ2ν + ηρ1νηρ2µ

)︃)︄

(4.129)

4.4 Longitudinal and transversal projections

The gauge fixing of (generalized) gauge theories introduces a fundamental new property, namely
the notion of longitudinal and transversal degrees of freedom. These degrees of freedom, which
characterize propagating gauge fields, become especially important when Feynman rules are
considered: This is due to the fact that only the transversal degrees of freedom are physical.
Thus, physically consistent theories should be such that unphysical (longitudinal) degrees of
freedom are suppressed in scattering processes. In this section, we want to study the cases
of Quantum Yang–Mills theory with a Lorenz gauge fixing (QYM) and (effective) Quantum
General Relativity with a de Donder gauge fixing (QGR). In particular, we start with known
and immediate identities in QYM and then proceed to their novel and involved counterparts in
QGR. To this end, we first introduce the notion of an optimal gauge fixing in Definition 4.4.1:
This is a gauge fixing that, for a given gauge theory, acts only on the vertical (i.e. gauge) degrees
of freedom and thus complements the Lagrange density of the gauge theory in a unique way.
In particular, we show that the Lorenz gauge fixing for Quantum Yang–Mills theory and the
de Donder gauge fixing for (effective) Quantum General Relativity are both optimal in Theo-
remata 4.4.9 and 4.4.20, which highlights their special roles. Then we present the respective
transversal structures, i.e. the sets of longitudinal, identical and transversal projection opera-
tors introduced in Definition 3.1.4, together with their corresponding metrics: First we recall
the situation of QYM in Definition 4.4.2 and then we introduce the corresponding counterpart
of QGR in Definition 4.4.13. Then we study the decomposition of the longitudinal projection
operators into the product of the respective gauge transformation and gauge fixing projections
in Lemmata 4.4.4 and 4.4.15. In addition, we show that the provided longitudinal, identical and
transversal projection operators are indeed projectors in Propositions 4.4.5 and 4.4.16. Further-
more, we show that the gauge transformation and gauge fixing projections are eigentensors of
the respective transversal structures in Corollaries 4.4.6 and 4.4.17. Thereafter, we study the
action of the corresponding metrics on said tensors in Lemmata 4.4.7 and 4.4.18 and Corollar-
ies 4.4.8 and 4.4.19. This allows us then finally to simplify the gluon and graviton propagators
and relate them to their ghost propagators via the gauge fixing projections in Theoremata 4.4.9
and 4.4.20. Additionally, we provide cancellation identities for the gluon and graviton vertex
Feynman rules in Theoremata 4.4.10 and 4.4.22, as well as for the corresponding couplings to
matter from the Standard Model in Theoremata 4.4.12 and 4.4.24. These identities then suggest
the use of Solution 3.2.8 for gravity-matter couplings: Higher-valent matter Feynman diagrams
are divergent, if the virtual particles of the Feynman graphs are gravitons (e.g. scalar, spinor or
photon four-point diagrams).10 This is problematic, as there exist no such residues in the respec-
tive Lagrange densities, cf. Section 2.3. However, we suggest the absorption of these divergences

10A similar situation appears for gauge ghosts with the Faddeev–Popov ghost construction.
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4.4. Longitudinal and transversal projections

via corresponding trees and claim that the corresponding cancellation identities render these a
priori non-local operations local. More precisely, this resembles the Slavnov–Taylor identities
in Quantum Yang–Mills theory, which also relate local residues (four-valent interaction-vertex)
with non-local trees (two three-valent vertices glued together with a propagator); the only dif-
ference here is the lack of a four-valent vertex in the first place. Finally, we complete our
investigations with a comment on the differences of the two most prominent definitions of the
graviton field: The metric decomposition and the metric density decomposition of Goldberg and
Capper et al. in Remark 4.4.21.

Definition 4.4.1 (Optimal gauge fixing). Let Q be a quantum gauge theory with Lagrange
density

LQ = LClassical + LGF + LGhost , (4.130)

We call a gauge fixing functional optimal, if the following three conditions are satisfied:

• The tensor T is proportional to the Feynman rule of the quadratic term in LClassical

• The tensor L is proportional to the Feynman rule of the quadratic term in LGF

• The tensors satisfy T +L = I, where I denotes the corresponding identity tensor

♦

4.4.1 Quantum Yang–Mills theory with matter

We recall known and immediate identities for the transversal structure of Quantum Yang–Mills
theory with a Lorenz gauge fixing.

Definition 4.4.2 (Transversal structure of QYM). Consider Quantum Yang–Mills theory with
a Lorenz gauge fixing. Then we set its transversal structure TQYM :=

{︁
L, I, T

}︁
as follows:11

Lνµ :=
1

p2
pνpµ , (4.131a)

Iνµ := δνµ (4.131b)

and

T νµ := Iνµ − Lνµ , (4.131c)

where we have set p2 := ηµνp
µpν . Lorentz indices on L, I and T are raised and lowered with

the metric G, defined via

Gµν :=
1

p2
ηµν (4.132a)

and its inverse

Gµν := p2ηµν . (4.132b)

Finally, we define the following two tensors

gµ :=
1

p2
pµ (4.133a)

11We remark that the color indices are implicitly included in the tensors L, I and T by considering their tensor
product with the identity matrix δ. We suppress this to simplify the notation.
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and

lν := pν . (4.133b)

♦

Remark 4.4.3. The tensor g corresponds to a gauge transformation and the tensor l describes
the gauge fixing projection. Furthermore, their degree in p2 is chosen such that the contraction
with g corresponds to the contraction with half of a longitudinal gauge boson propagator.

Lemma 4.4.4. The following identities hold, i.e. g and l are inverse to each other and L
decomposes into the product of g and l:

gµl
µ = 1 (4.134a)

lνgµ = Lνµ (4.134b)

Proof. This follows immediately from basic tensor calculations. ■

Proposition 4.4.5. The following identities hold, i.e. the tensors L, I and T are projectors:

LτµL
ν
τ = Lνµ (4.135a)

IτµI
ν
τ = Iνµ (4.135b)

T τµT
ν
τ = T νµ (4.135c)

Additionally, the tensor I is the identity with respect to the metric G and its inverse G−1:

GµτG
τν = Iνµ (4.136)

Proof. This follows immediately from Lemma 4.4.4 and basic tensor calculations. ■

Corollary 4.4.6. The two tensors g and l are eigenvectors of the tensors L, I and T with
respective eigenvalues 1 and 0, i.e. we have:

Lνµgν = gν (4.137a)

Lνµl
µ = lµ (4.137b)

Iνµgν = gν (4.137c)

Iνµl
µ = lµ (4.137d)

T νµ gν = 0 (4.137e)

T νµ l
µ = 0 (4.137f)

Proof. This follows immediately from Lemma 4.4.4 and basic tensor calculations. ■

Lemma 4.4.7. The following identities hold, i.e. g and l are related via G:

Gµν l
ν = gµ (4.138a)

Gµνgµ = lν (4.138b)

Proof. This follows immediately from basic tensor calculations. ■
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Corollary 4.4.8. The following identities hold, i.e. L with raised and lowered indices decomposes
into products of two g or l tensors, respectively:

Lµν = gµgν (4.139a)

Lµν = lµlν (4.139b)

Proof. This follows immediately from Lemma 4.4.4 and Lemma 4.4.7. ■

Theorem 4.4.9. The Feynman rule of the gauge boson propagator can be written as follows:

Φ ( ) = − ip2

p2 + iϵ
δab
(︁
Tµν + ξLµν

)︁
(4.140)

Furthermore, the Feynman rules of the gauge boson propagator and the gauge ghost propagator
are related as follows:

Φ
(︁ )︁

= Φ
(︁
l l

)︁
(4.141)

In particular, the Lorenz gauge fixing is the optimal gauge fixing condition for Quantum Yang–
Mills theory.

Proof. Equation (4.140) follows from the previous results in this subsection together with the
Feynman rule

Φ ( ) = − i

p2 + iϵ
δab
(︃
ηµν −

(1− ξ)

p2
pµpν

)︃
. (4.142)

From this, Equation (4.141) follows from the previous results in this subsection together with
the Feynman rule

Φ ( ) = − iξ

p2 + iϵ
δab . (4.143)

The final claim follows then directly from Equation (4.140). ■

Theorem 4.4.10. The Feynman rule of the three-valent gauge boson vertex satisfies the follow-
ing contraction identities:

Φ

⎛⎜⎝g

g

g

⎞⎟⎠ = Φ

⎛⎝L

L

L

⎞⎠ = 0 , (4.144)

Φ

⎛⎝g

T

T

⎞⎠ ≃OS 0 (4.145)

and thus

Φ

⎛⎝g

I

I

⎞⎠ ≃OS Φ

⎛⎝g

T

L

⎞⎠+Φ

⎛⎝g

L

T

⎞⎠ , (4.146)

where ≃OS indicates equality on-shell, i.e. modulo momentum conservation and equations of
motion.
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Proof. Starting with the first identity, we recall the decomposition Lνµ = lνgµ of Equation (4.134b)
and therefore only calculate the contraction with the g tensors:

Φ

⎛⎜⎝g

g

g

⎞⎟⎠ = −gfa1a2a3
1

p21 p
2
2 p

2
3

p1ρ1p
2
ρ2p

3
ρ3

∑︂
s∈S3

{︄
ηρs(1)ρs(2)

(︂
ps(1) − ps(2)

)︂ρs(3)}︄

= 0

(4.147)

For the two remaining identities we recall the decomposition Iνµ = T νµ +Lνµ of Equation (4.131c)
and calculate

Φ

⎛⎝g

I

I

⎞⎠ = −gfa1a2a3
1

p21
p1ρ1

∑︂
s∈S3

{︄
ηρs(1)ρs(2)

(︂
ps(1) − ps(2)

)︂ρs(3)}︄

≃MC gfa1a2a3
1

p21

(︁
Iρ1ρ2 (pσ2 )− Iρ1ρ2 (pσ3 )− Lρ1ρ2 (pσ2 ) + Lρ1ρ2 (pσ3 )

)︁
≃EoM −gfa1a2a3

1

p21

(︁
Lρ1ρ2 (pσ2 )− Lρ1ρ2 (pσ3 )

)︁
(4.148)

by noting Iµν = p2ηµν and recalling the identity Lµν T ρµ = 0, where ≃MC indicates equality
modulo momentum conservation and ≃EoM indicates equality modulo equations of motion. ■

Remark 4.4.11. Equations (4.145) and (4.146) imply that the longitudinal projection of a sin-
gle gluon results in both, transversal on-shell cancellations and propagating longitudinal gluon
modes. We will find out that this is similar in (effective) Quantum General Relativity, cf.
Remark 4.4.23.

Theorem 4.4.12. The Feynman rules of the three-valent interactions of gauge bosons with
scalars, spinors and gauge ghosts satisfy the following on-shell contraction identities:

Φ

⎛⎝g

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 (4.149)

Φ

⎛⎝g

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 (4.150)

Φ

⎛⎝g

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 , (4.151)

where ≃OS indicates equality on-shell, i.e. modulo momentum conservation and equations of
motion.

Proof. Again, we only calculate the contraction with the g tensors due to the decomposition
Lνµ = lνgµ of Equation (4.134b). Furthermore, we consider all momenta incoming and denote
the gluon momentum by pσ and the matter momenta by qσ1 and qσ2 . Furthermore, we denote
the gauge boson Lorentz and color indices by ρ and a, respectively. Moreover, H and S denote
the infinitesimal gauge group actions on the Higgs bundle and spinor bundle, respectively. In
Equations (4.153) and (4.154) number 1 denotes the particle and number 2 denotes the anti-
particle. In particular, in Equation (4.153) this implies that the equations of motion differ in
a relative sign. In addition, in Equation (4.154) we denote the gauge ghost color indices by c1
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and c2, respectively. Additionally, in Equation (4.154) we use the symmetric (hermitian) gauge
ghost Lagrange density of Equation (4.112). With that, we present the actual calculations:

Φ

⎛⎝g

⎞⎠ = − ig

2

(︃
1

p2
pρ

)︃(︁
(q1 − q2)

ρHakl
)︁

≃MC
ig

2p2

(︂
q21 − q22

)︂
Hakl

=
ig

2p2

(︃(︂
q21 −m2

)︂
−
(︂
q22 −m2

)︂)︃
Hakl

≃EoM 0

(4.152)

Φ

⎛⎝g

⎞⎠ = −ig

(︃
1

p2
pρ

)︃
(γρSakl)

≃MC
ig

p2

(︃(︂
/q1 −m

)︂
+
(︂
/q2 +m

)︂)︃
Sakl

≃EoM 0 ,

(4.153)

Φ

⎛⎝g

⎞⎠ =
ig

2

(︃
1

p2
pρ

)︃(︁
fab1b2 (q1 − q2)

ρ)︁
≃MC − ig

2p2
fab1b2

(︂
q21 − q22

)︂
≃EoM 0 ,

(4.154)

where ≃MC indicates equality modulo momentum conservation and ≃EoM indicates equality
modulo equations of motion. ■

4.4.2 (Effective) Quantum General Relativity with matter

We introduce novel and involved identities for the transversal structure of (effective) Quantum
General Relativity with a de Donder gauge fixing.

Definition 4.4.13 (Transversal structure of QGR). Consider (effective) Quantum General Rel-
ativity with a de Donder gauge fixing. Then we set its transversal structure TQGR :=

{︁
L ,I ,T

}︁
as follows:

Lρσ
µν :=

1

2p2

(︂
δρµp

σpν + δσµp
ρpν + δρνp

σpµ + δσν p
ρpµ − 2ηρσpµpν

)︂
, (4.155a)

I ρσµν :=
1

2

(︂
δρµδ

σ
ν + δσµδ

ρ
ν

)︂
(4.155b)

and

T ρσ
µν := I ρσµν −Lρσ

µν , (4.155c)

where we have set p2 := ηµνp
µpν . Lorentz indices on L , I and T are raised and lowered with the

metric G , defined via12

Gµνρσ :=
1

p2
(︁
ηµρηνσ + ηµσηνρ − ηµνηρσ

)︁
(4.156a)

12The reason for the unsymmetric definition concerning the factor 1/4 is motivated by Equations (4.157).
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and its inverse

Gµνρσ :=
p2

4
(ηµρηνσ + ηµσηνρ − ηµνηρσ) . (4.156b)

Finally, we define the following two tensors

G κ
µν :=

1

p2
(︁
pµδ

κ
ν + pνδ

κ
µ

)︁
(4.157a)

and

L ρσ
λ :=

1

2

(︁
pρδσλ + pσδρλ − pλη

ρσ
)︁
. (4.157b)

♦

Remark 4.4.14. The tensor G corresponds to a gauge transformation and the tensor L describes
the gauge fixing projection. Furthermore, their degree in p2 is chosen such that the contraction
with G corresponds to the contraction with half of a longitudinal gauge boson propagator.

Lemma 4.4.15. The following identities hold, i.e. G and L are inverse to each other and L
decomposes into the product of G and L :

G κ
µνL

µν
λ = δκλ (4.158a)

L ρσ
τ G τ

µν = Lρσ
µν (4.158b)

Proof. This follows immediately from basic tensor calculations. ■

Proposition 4.4.16. The following identities hold, i.e. the tensors L , I and T are projectors:

Lκλ
µν L

ρσ
κλ = Lρσ

µν (4.159a)

Iκλµν I
ρσ
κλ = Iρσµν (4.159b)

Tκλ
µν T

ρσ
κλ = Tρσ

µν (4.159c)

Additionally, the tensor I is the identity with respect to the metric G and its inverse G−1:

GµνκλGκλρσ = I ρσµν (4.160)

Proof. This follows immediately from Lemma 4.4.15 and basic tensor calculations. ■

Corollary 4.4.17. The two tensors G and L are eigentensors of the tensors L , I and T with
respective eigenvalues 1 and 0, i.e. we have:

Lρσ
µνG

κ
ρσ = G κ

µν (4.161a)

Lρσ
µνL

µν
λ = L ρσ

λ (4.161b)

IρσµνG κ
ρσ = G κ

µν (4.161c)

IρσµνL
µν
λ = L ρσ

λ (4.161d)

Tρσ
µνG

κ
ρσ = 0 (4.161e)

Tρσ
µνL

µν
λ = 0 (4.161f)
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Proof. This follows immediately from Lemma 4.4.15 and basic tensor calculations. ■

Lemma 4.4.18. The following identities hold, i.e. G and L are related via G ⊗ η:

Gµνρση
κλL ρσ

λ = G κ
µν (4.162a)

GµνρσηκλG
κ
µν = L ρσ

λ (4.162b)

Proof. This follows immediately from basic tensor calculations. ■

Corollary 4.4.19. The following identities hold, i.e. L with raised and lowered indices decom-
poses into products of two G or L tensors, respectively:

Lµνρσ = ηκλG
κ
µνG

λ
ρσ (4.163a)

Lµνρσ = ηκλL µν
κ L ρσ

λ (4.163b)

Proof. This follows immediately from Lemma 4.4.15 and Lemma 4.4.18. ■

Theorem 4.4.20. The Feynman rule of the graviton propagator can be written as follows:

Φ ( ) = − 2ip2

p2 + iϵ

(︁
Tµνρσ + ζLµνρσ

)︁
(4.164)

Furthermore, the Feynman rules of the graviton propagator and the graviton-ghost propagator
are related as follows:

Φ
(︁ )︁

= Φ
(︁
L L

)︁
(4.165)

In particular, the de Donder gauge fixing is the optimal gauge fixing condition for (effective)
Quantum General Relativity.

Proof. Equation (4.164) follows from the previous results in this subsection together with the
Feynman rule

Φ ( ) = − 2i

p2 + iϵ

[︄ (︁
ηµρηνσ + ηµσηνρ − ηµνηρσ

)︁
−
(︃
1− ζ

p2

)︃(︁
ηµρpνpσ + ηµσpνpρ + ηνρpµpσ + ηνσpµpρ

)︁ ]︄
.

(4.166)

From this, Equation (4.165) follows from the previous results in this subsection together with
the Feynman rule

Φ ( ) = − 2iζ

p2 + iϵ
ηρσ . (4.167)

The final claim follows then directly from Equation (4.164). ■
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Remark 4.4.21. Given the metric density decomposition of Goldberg and Capper et al. [51, 52,
53, 54], i.e.

ϕµν :=
1

κ

(︂√︁
−Det (g)gµν − ηµν

)︂
⇐⇒

√︁
−Det (g)gµν ≡ ηµν + κϕµν , (4.168)

together with the gauge fixing functional

Cµ := ∂νϕ
µν ≡ 0 . (4.169)

Then, the corresponding graviton propagator is given via

Φ ( ) = − 2i

p2
(︁
p2 + iϵ

)︁ (Tµνρσ + ζLµνρσ) , (4.170)

i.e. the roles of G and L are reversed! In particular, the gauge fixing functional Cµ (ϕ) is the
optimal gauge fixing condition for the metric density decomposition, cf. Theorem 4.4.20. This
is due to the fact that in this case the graviton field ϕµν is a tensor density of weight 1, instead
of the vertex Feynman rules. This will be studied further in [8], cf. Subsection 5.2.

Theorem 4.4.22. The Feynman rule of the three-valent graviton vertex satisfies the following
contraction identities:

Φ

⎛⎜⎝G

G

G

⎞⎟⎠ ≃MC Φ

⎛⎜⎝L

L

L

⎞⎟⎠ ≃MC 0 , (4.171)

Φ

⎛⎝G

T

T

⎞⎠ ≃OS 0 (4.172)

and thus

Φ

⎛⎝G

I

I

⎞⎠ ≃OS Φ

⎛⎝G

T

L

⎞⎠+Φ

⎛⎝G

L

T

⎞⎠ , (4.173)

where ≃MC indicates equality modulo momentum conservation and ≃OS indicates equality on-
shell, i.e. modulo momentum conservation and equations of motion.

Proof. All three identities are checked with a Python program written by the author, cf. [144].
In addition, we emphasize the relation between the three identities via the decompositions
Lρσ
µν = L ρσ

τ G τ
µν of Equation (4.158b) and Iρσµν = Tρσ

µν +Lρσ
µν of Equation (4.155c). ■

Remark 4.4.23. Equations (4.172) and (4.173) imply that the longitudinal projection of a single
graviton results in both, transversal on-shell cancellations and propagating longitudinal gluon
modes. This is similar to Quantum Yang–Mills theory, cf. Remark 4.4.11.

Theorem 4.4.24. The Feynman rules of the three-valent interactions of gravitons with scalars,
spinors, gauge bosons, gauge ghosts and graviton-ghosts satisfy the following on-shell contraction
identities:

Φ

⎛⎝G

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 (4.174)
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Φ

⎛⎝G

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 (4.175)

Φ

⎛⎝G

T

T

⎞⎠ ≃OS Φ

⎛⎝L

T

T

⎞⎠ ≃OS 0 , (4.176)

Φ

⎛⎝G

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 , (4.177)

Φ

⎛⎝G

⎞⎠ ≃OS Φ

⎛⎝L

⎞⎠ ≃OS 0 , (4.178)

where ≃OS indicates equality on-shell, i.e. modulo momentum conservation and equations of
motion.

Proof. Again, we only calculate the contraction with the G tensors due to the decomposition
Lρσ
µν = L ρσ

τ G τ
µν of Equation (4.158b). Furthermore, we consider all momenta incoming and

denote the graviton momentum by pσ and the matter momenta by qσ1 and qσ2 . Furthermore, we
denote the graviton Lorentz indices by µ and ν, respectively. In Equations (4.180), (4.182) and
(4.183) number 1 denotes the particle and number 2 denotes the anti-particle. In particular, in
Equation (4.180) this implies that the equations of motion differ in a relative sign. In addition,
in Equation (4.182) we denote the gauge ghost color indices by c1 and c2, respectively, and
in Equation (4.183) we denote the graviton-ghost Lorentz indices by ρ1 and ρ2, respectively.
Additionally, in Equation (4.183) we use the symmetric (hermitian) graviton-ghost Lagrange
density of Equation (4.113). With that, we present the actual calculations:

Φ

⎛⎝G

⎞⎠ =
iκ
2p2

(︂
pµδ

τ
ν + pνδ

τ
µ

)︂(︄
− ηµν

(︂
q1 · q2 +m2

)︂
+ qµ1 q

ν
2 + qν1q

µ
2

)︄

≃MC
iκ
p2

(︄(︂
q21 −m2

)︂
qτ2 +

(︂
q22 −m2

)︂
qτ1

)︄
≃EoM 0

(4.179)

Φ

⎛⎝G

⎞⎠ =
iκ
8p2

(︂
pµδ

τ
ν + pνδ

τ
µ

)︂

×

(︄
2ηµν

(︂
/q1 − /q2 − 2m

)︂
− (q1 − q2)µ γν − (q1 − q2)ν γµ

)︄

≃MC
iκ
4p2

(︄
− 2 (q1 + q2)

τ
(︂
/q1 − /q2 − 2m

)︂
+ (q1 − q2)

τ
(︂
/q1 + /q2 +m−m

)︂
+
(︂
q21 − q22 +m−m

)︂
γτ

)︄

≃EoM
iκ
4p2

(︄(︂
/q1 −m

)︂(︃
−2 (q1 + q2)

τ + (q1 − q2)
τ +

(︂
/q1 +m

)︂
γτ
)︃

+
(︂
/q2 +m

)︂(︃
2 (q1 + q2)

τ + (q1 − q2)
τ −

(︂
/q2 −m

)︂
γτ
)︃)︄

≃EoM 0

(4.180)
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Φ

⎛⎝G

T

T

⎞⎠ =
iκ
2p2

(︂
pµδ

τ
ν + pνδ

τ
µ

)︂

× δa1a2

(︄
(q1 · q2) (ηµνησ1σ2 − ηµσ1ηνσ2 − ηµσ2ηνσ1)

− ηµνqσ21 qσ12 − ησ1σ2
(︁
qµ1 q

ν
2 + qµ2 q

ν
1

)︁
+ qσ21

(︁
ηµσ1qν2 + ηνσ1qµ2

)︁
+ qσ12

(︁
ηµσ2qν1 + ηνσ2qµ1

)︁
− 1

ξ
ηµν

(︁
qσ11 qσ22 + pσ1qσ22 + pσ2qσ11

)︁
+

1

ξ
qσ11
(︁
ηµσ2qν2 + ηνσ2qµ2 + ηµσ2pν + ηνσ2pµ

)︁
+

1

ξ
qσ22
(︁
ηµσ1qν1 + ηνσ1qµ1 + ηµσ1pν + ηνσ1pµ

)︁)︄
× T ρ1σ1 (q1)× T ρ2σ2 (q2)

≃MC
iκ
p2
δa1a2

⎛⎝qτ1 (︃q22ησ1σ2 − qσ12 qσ21 +
1

ξ
qσ11 qσ22

)︃

+ qτ2

(︃
q21η

σ1σ2 − qσ12 qσ21 +
1

ξ
qσ11 qσ22

)︃

+ ητσ1

(︄
(q1 · q2)

(︃
1 +

1

ξ

)︃
qσ22 − q22

(︃
qσ21 − 1

ξ
qσ22

)︃)︄

+ητσ2

(︄
(q1 · q2)

(︃
1 +

1

ξ

)︃
qσ11 − q21

(︃
qσ12 − 1

ξ
qσ11

)︃)︄⎞⎠
× T ρ1σ1 (q1)× T ρ2σ2 (q2)

=
iκ
p2
δa1a2

(︄
qτ1

(︂
q22η

σ1σ2 − qσ12 qσ21

)︂
+ qτ2

(︂
q21η

σ1σ2 − qσ12 qσ21

)︂
− q22η

τσ1qσ21 − q21η
τσ2qσ12

)︄
× T ρ1σ1 (q1)× T ρ2σ2 (q2)

≃EoM 0

(4.181)

Φ

⎛⎝G

⎞⎠ =
iκ
2ξp2

(︂
pµδ

τ
ν + pνδ

τ
µ

)︂(︄
(q1 · q2) ηµν − qµ1 q

ν
2 − qµ2 q

ν
1

)︄

≃MC
iκ
ξp2

(︄
− (q1 · q2) (q1 + q2)

τ + (q1 · q2) (q1 + q2)
τ + qτ1q

2
2 + qτ2q

2
1

)︄

=
iκ
ξp2

(︄
qτ1q

2
2 + qτ2q

2
1

)︄
≃EoM 0 ,

(4.182)
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Φ

⎛⎝G

⎞⎠ =
iκ
8p2

(︂
pµδ

τ
ν + pνδ

τ
µ

)︂

×

(︄(︁
q21 + q22 − p2

)︁(︃
ηρ1µηρ2ν + ηρ1νηρ2µ

)︃

− qρ11

(︃
pµηρ2ν + pνηρ2µ − pρ2ηµν

)︃

− qρ22

(︃
pµηρ1ν + pνηρ1µ − pρ1ηµν

)︃

+ pρ1
(︃
qµ1 η

ρ2ν + qν1η
ρ2µ − qµ2 η

ρ2ν − qν2η
ρ2µ

)︃

+ pρ2
(︃
− qµ1 η

ρ1ν − qν1η
ρ1µ + qµ2 η

ρ1ν + qν2η
ρ1µ

)︃)︄

≃MC
iκ
4p2

(︄
ητρ1

(︃(︂
2q21 + p2

)︂
qρ21 − 2q21q

ρ2
2

)︃

+ητρ2
(︃(︂

2q22 + p2
)︂
qρ12 − 2q22q

ρ1
1

)︃)︄
≃EoM 0 ,

(4.183)

where ≃MC indicates equality modulo momentum conservation and ≃EoM indicates equality
modulo equations of motion. ■

Remark 4.4.25. We emphasize that the longitudinal projection of the graviton in Equation (4.176)
also induces longitudinal gluon-modes, cf. Equation (4.181). We remove them via transversal
gluon projection operators, cf. Definition 4.4.2, as we are here interested in physical external
particles (which are on-shell and transversal). In general, however, these longitudinal gluon legs
are important as they lead to further cancellations, cf. Theoremata 4.4.10 and 4.4.12. This is,
as we have seen, equivalent to the three-valent gluon and graviton vertex Feynman rules, cf.
Remarks 4.4.11 and 4.4.23. We will study this in detail in future work.
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Chapter 5

Conclusion

We end this dissertation with a summary on the achieved results. Then we discuss planned
follow-up projects. This includes a generalization of Wigner’s classification to linearized gravity,
perturbative BRST cohomology via dg-Hopf algebras and a study on the equivalence of the two
most prominent definitions of the graviton field.

5.1 Summary

We have studied several renormalization related aspects of gauge theories and gravity:

First, we studied the diffeomorphism-gauge BRST double complex for (effective) Quantum Gen-
eral Relativity coupled to the Standard Model in Section 2.4: The main results are Theo-
rem 2.4.15, which states that the diffeomorphism BRST operator and the gauge BRST operator
anticommute. In particular, after introducing the corresponding anti-BRST operators, we even
found that all BRST and anti-BRST operators mutually anticommute in Corollary 2.4.16. A
further main result is Theorem 2.4.17, which states that the graviton-ghosts decouple from mat-
ter of the Standard Model if and only if the gauge theory gauge fixing fermion is a tensor density
of weight w = 1. Our final main result in this direction is Theorem 2.4.18, which states that we
can generate the complete gauge fixing and ghost Lagrange densities for (effective) Quantum
General Relativity coupled to the Standard Model via the action of the total BRST operator on
the total gauge fixing fermion.

Then, we analyzed the renormalization of gauge theories and gravity in the Hopf algebra setup
of Connes and Kreimer. The main results are Theorem 3.6.6 and Theorem 3.7.5, where the
first states that quantum gauge symmetries correspond to Hopf ideals in the renormalization
Hopf algebra and the second provides criteria for their validity on the level of renormalized
Feynman rules. To this end, we first discussed a particular problem of quantum gauge theories
that can lead to an ill-defined renormalization Hopf algebra and then presented four possible
solutions therefore in Section 3.2. Next, we introduced the notion of a predictive Quantum Field
Theory to address non-renormalizable Quantum Field Theories that allow for a well-defined
perturbative expansion in Section 3.3. In particular, building upon the results of [2, 20], we
claim that (effective) Quantum General Relativity is predictive, which constitutes the main
motivation for the studies in this dissertation. Further, we studied combinatorial properties
of the superficial degree of divergence in Section 3.4 and generalized known coproduct and
antipode identities to the super- and non-renormalizable cases in Section 3.5. Additionally,
we extended this framework to theories with multiple vertex residues and coupling constants in
Definition 3.1.18 and discussed the incorporation of transversal structures in Remark 3.1.5. Then
we illustrated the developed theory in the cases of Quantum Yang–Mills theory in Example 3.6.2
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and (effective) Quantum General Relativity in Example 3.6.3. Finally, we discussed, as a direct
consequence of our findings, the well-definedness of the Corolla polynomial without reference to
a particular renormalization scheme in Remark 3.7.8, cf. [55, 56, 57].

Next, we derived and presented the Feynman rules for (effective) Quantum General Relativity
and the gravitational couplings to the Standard Model. The main results are Theorem 4.2.1
stating the graviton vertex Feynman rules, Theorem 4.2.3 stating the corresponding graviton
propagator Feynman rule, Theorem 4.2.4 stating the graviton-ghost vertex Feynman rules and
Theorem 4.2.5 stating the corresponding graviton-ghost propagator Feynman rule. Additionally,
the graviton-matter vertex Feynman rules are stated in Theorem 4.2.7 on the level of 10 generic
matter-model Lagrange densities, as classified by Lemma 2.3.4. The complete graviton-matter
Feynman rules can then be obtained by adding the corresponding matter contributions, which
are listed e.g. in [133]. Finally, we displayed the three- and four-valent graviton and graviton-
ghost vertex Feynman rules explicitly in Example 4.2.6.

Finally, we presented the explicit Feynman rules for all propagators and three-valent vertices for
(effective) Quantum General Relativity coupled to the Standard Model in Section 4.3. We then
proceeded by studying the corresponding longitudinal, identical and transversal projection oper-
ators for gauge bosons and gravitons in Section 4.4: The main results are decompositions of the
gluon and graviton propagators with respect to the corresponding transversal and longitudinal
projection operators in Theoremata 4.4.9 and 4.4.20. Further main results in this direction are
the corresponding cancellation identities for all three-valent vertices in Theoremata 4.4.10 and
4.4.12 and Theoremata 4.4.22 and 4.4.24. Finally, in Remark 4.4.21, we discussed the duality
of the metric density decomposition of Goldberg and Capper et al. with respect to the usual
metric decomposition used in this dissertation.

5.2 Outlook

In this final section, we describe our planned follow-up projects that build directly on the results
of this dissertation:

On a Generalization of Wigner’s Classification to Linearized Gravity

Wigner’s classification of elementary particles is a fundamental ingredient for the standard ap-
proach to Quantum Field Theories (QFTs) [96]. More precisely, this classification uses the two
Casimir operators C1 and C2 of the Poincaré group P (M) to classify elementary particles via
their mass and helicity or spin. More precisely, we have

C1 := ηµνPµPν (5.1a)

and

C2 := ηµνWµWν , (5.1b)

where Pµ is the 4-momentum operator and Wµ := 1
2ε

νρσ
µ JνρPσ is the Pauli–Lubanski operator

with Jµν := XµPν −XνPµ the angular 4-momentum operator. This classification is then used
among other things to construct the Fock space for the theory under consideration. Unfortu-
nately, both these operators rely directly on the linear structure of M . Thus, there is no direct
way to apply this classification to linearized gravity. However, we generalize this classification
to simple spacetimes and diffeomorphism invariant theories: To this end, we start with a simple
spacetime, cf. Definition 2.1.7, given as the triple (M,γ, τ), where

τ : M →M (5.2)
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is a fixed diffeomorphism, called the trivialization map, and (M , η) is the background Minkowski
spacetime. We remark that we did not demand that τ is an isometry, i.e. we have in general
τ∗γ ̸≡ η. Instead, we use this construction to pushforward the metric g := τ∗γ and with that
define the graviton field on the background Minkowski spacetime M via

h :=
1

κ
(g − η) ∈ Γ

(︁
M , S2T ∗M

)︁
, (5.3)

cf. Definition 2.1.10. We remark that in this picture the choice of τ is essential to the definition
of the graviton field: More precisely, we could equivalently pullback the Minkowski background
metric b := τ∗η and with that define the graviton field on the spacetime M via

θ :=
1

κ
(γ − b) ∈ Γ

(︁
M,S2T ∗M

)︁
. (5.4)

Now, in this picture the choice of τ is equivalent to the choice of the background metric b.
Additionally, we used the construction of a simple spacetime (M,γ, τ) to define the Fourier
transformation for sections of particle fields via

F : Γ
(︁
M,E

)︁
→ ˆ︁Γ(︁M,E

)︁
, φ (xα) ↦→ φ̂ (pα) (5.5a)

with

φ̂ (pα) :=
1

(2π)2
τ∗
(︃∫︂

M
(τ∗φ)

(︁
yβ
)︁
e−iη(y,p) dVη

)︃
(5.5b)

in Definition 2.2.24. To generalize Wigner’s classification to elementary particles in linearized
gravity, we use the trivialization map to define a linear structure on M as follows:

Definition 5.2.1 (Linear structure). Let (M,γ, τ) be a simple spacetime. Then we define an
addition via

+τ : M ×M →M , (x1, x2) ↦→ τ−1
(︁
τ (x1) + τ (x2)

)︁
(5.6a)

and a scalar multiplication by real numbers via

·τ : R×M →M , (r, x) ↦→ τ−1
(︁
r · τ (x)

)︁
. (5.6b)

We refer to (M,+τ , ·τ ) as linear structure of M . ♦

In particular, this allows us to pullback the Poincaré group of M to M via τ as follows:

Definition 5.2.2 (Pullback Poincaré group). Let (M,γ, τ) be a simple spacetime. Then we set

Pτ (M) := τ∗P (M) . (5.7)

Equivalently, this is the Poincaré group obtained with respect to the linear structrure introduced
in Definition 5.2.1. We refer to Pτ (M) as pullback Poincaré group. ♦

Obviously, both definitions depend crucially on τ and are not invariant under general diffeomor-
phisms ϕ ∈ Diff (M). However, for diffeomorphism invariant theories, we obtain the following:

Lemma 5.2.3. Let (M,γ, τ) be a simple spacetime and T a classical diffeomorphism invariant
theory, given via the Lagrange density LT. Then the choice of the trivialization map τ can be
absorbed into the diffeomorphism invariance of LT.
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Proof. Let τ1 : M → M and τ2 : M → M be two trivialization maps. Then, there exists a
diffeomorphism ϕ ∈ Diff (M) such that

τ1 = τ2 ◦ ϕ . (5.8)

Since T is diffeomorphism invariant by assumption, we have

LT ≃TD ϕ∗LT , (5.9)

where ≃TD means equality modulo total derivatives. Thus, the choice of the trivialization map
τ has no physical relevance. ■

Unfortunately, this statement does not apply to the pullback Poincaré group with its two Casimir
operators. Hence, for the corresponding Quantum Field Theory, it is necessary to fix the trivi-
alization map τ . Thus, given a diffeomorphism ϕ ∈ Diff (M), the following questions arise:

• How is the mass of an elementary particle affected by ϕ?

• How is the helicity or spin of an elementary particle affected by ϕ?

• Is it possible to give a sensible definition of the corresponding Fock space without the need
to fix the trivialization map τ?

This project will be continued in [6].

Cancellation Identities and Renormalization

BRST cohomology is a powerful tool to study several aspects of gauge theories, most notably
its gauge invariance, possible gauge fixings and their corresponding ghosts [105, 106, 107, 108].
Geometrically, in this approach the BRST operator D : FQ → FQ with D2 = 0 turns the
sheaf of particle fields FQ into a differential-graded superalgebra, cf. Section 2.4. An important
open question is how this setup, which is based on the path integral, can be incorporated into
the perturbative expansion, i.e. on the algebra of Feynman graphs. A possible candidate is
the Feynman graph cohomology of Kreimer et al. [56, 59]. We argue that, analogously to the
situation in BRST cohomology, the Feynman graph differential D : HQ → HQ with D2 = 0
should turn the renormalization Hopf algebra HQ into a differential-graded Hopf algebra: This
means that the Hopf structures are compatible with the differential. More precisely, we have:

Definition 5.2.4 (Differential-graded renormalization Hopf algebra). Let Q be a quantum
gauge theory with (associated) renormalization Hopf algebra (HQ,m, I,∆, Î, S) and quantum
gauge symmetry ideal iQ, cf. Definitions 3.1.14 and 3.6.4. Let D : HQ → HQ be a Feynman
graph differential, e.g. Definition 5.2.6, that satisfies the following equations:

D ◦m = m ◦
(︂
D ⊗ Id+(−1)Deg1 Id⊗D

)︂
(5.10a)

D ◦ I = 0 (5.10b)

∆ ◦ D =
(︂
D ⊗ Id+(−1)Deg1 Id⊗D

)︂
◦∆ (5.10c)

Î ◦ D = 0 (5.10d)

D ◦ S = S ◦ D (5.10e)

D
(︁
iQ
)︁
⊆ iQ (5.10f)

Here, Deg1 denotes the degree of the element on the left-hand side of the tensor product, e.g. in
the corresponding gauge parameter. Then we call (HQ,D) a differential-graded renormalization
Hopf algebra. ♦
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We remark that the compatibility of the differential D with the coalgebra structure of HQ

ensures the compatibility of the differential with the renormalization operation. Unfortunately,
with this setup we immediately obtain the following negative result:

Lemma 5.2.5. The edge-marking and cycle-marking graph differentials of [56, 59] are not
compatible with the renormalization Hopf algebra HQ in the sense of Equations (5.10).

Proof. This statement follows immediately, as both marking differentials are in their present
form not compatible with the contraction of divergent subgraphs: The edge-markings are not
compatible with the renormalization Hopf algebra, as they would require connected Feynman
graphs. More precisely, the edge-markings are designed to relate trees of lower-valent vertices
with higher-valent vertices. This is not preserved in the contraction of 1PI divergent subgraphs.
Additionally, the cycle-markings are not compatible with the renormalization Hopf algebra, as
cycles are not preserved in the contraction of divergent subgraphs. ■

Nevertheless, we remark that there exist the following options to achieve compatibility: The
edge-markings could be made compatible via redefining the renormalization Hopf algebra so that
it is generated by connected Feynman graphs rather than 1PI Feynman graphs. Additionally,
the cycle-markings could be made compatible by changing them into path-markings. However,
we suggest the following quantum gauge symmetry differential : It has the advantage that it is
immediately compatible with the renormalization Hopf algebra in the sense of Equations (5.10).
Additionally, it is directly related to BRST cohomology, as it projects edges onto their unphysical
degrees of freedom:

Definition 5.2.6 (Quantum gauge symmetry differential). Let Q be a quantum gauge theory
with Feynman graph set GQ, renormalization Hopf algebra HQ and transversal structure TQ.
We consider the edge set EΓ of each Feynman graph Γ ∈ GQ to be ordered and introduce an
additional edge-labeling via the longitudinal projection operators in TQ. Then we define for
each longitudinal projection operator L ∈ TQ a ‘quantum gauge symmetry differential’ DL via

DL (Γ) :=
∑︂

L∈℘(EΓ)

(−1)Sgn(L) ΓL , (5.11a)

where ℘ (EΓ) denotes the power set of the set of unlabeled edges EΓ ⊆ EΓ and ΓL denotes the

Feynman graph where the edges in the set L are marked via L. In addition, (−1)Sgn(L) denotes
the sign associated to the set L according to the ordering of the edge set EΓ. Then we define
the ‘total quantum gauge symmetry differential’ as the sum

D (Γ) :=
∑︂
L∈TQ

DL (Γ) . (5.11b)

Additionally, we define the corresponding Feynman rules as follows: On compatible gauge field
edges the label L simply denotes the longitudinal projection via the operator L. Then, the
corresponding vertex Feynman rules are given via the respective longitudinal projections, which
lead to cancellation identities. Finally, on the remaining edge-types the label L represents the
cancellation of the edge due to the longitudinal projection of a neighboring vertex via L. ♦

Thus, with this definition we can represent the corresponding cancellation identities [22, 23, 24,
25, 26, 27] on the algebra of Feynman graphs. In particular, we remark that the cohomology
class corresponding to a given Feynman graph is the sum of this graph with all possible labelings
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and respective signs. Thus, in particular each such element represents a linear combination of
graphs, where all edges are projected onto their physical degrees of freedom. With this setup,
we arrive at the following:

Conjecture 5.2.7. Let Q be a quantum gauge theory with Feynman rule Φ. Let furthermore iQ
be the quantum gauge symmetry ideal from Definition 3.6.4 and D the quantum gauge symmetry
differential from Definition 5.2.6. Then the condition

D
(︁
iQ
)︁
∈ Ker (Φ) (5.12)

is equivalent to the transversality of the theory.

Thus, given this setup, the following questions arise:

• How do the graph differentials of [56, 59] and Definition 5.2.6 compare physically?

• How is the precise relation of the quantum gauge symmetry differential D with the BRST
differential D?

• Is it useful to define also a quantum gauge symmetry anti-differential D analogous to the
anti-BRST operator D?

Finally, we comment on the concrete case of (effective) Quantum General Relativity coupled to
the Standard Model: Given the setup of Definition 5.2.6, we obtain the following two differentials:
First we obtain P := DL associated to the longitudinal projection operator for gravitons L ∈
TQGR and second we obtain Q := DL associated to the longitudinal projection operator for
gauge bosons L ∈ TQYM. Then we obtain the total quantum gauge symmetry differential via

D := P + Q (5.13a)

as above. We remark the similarity to the BRST differentials P , Q and

D := P +Q , (5.13b)

cf. Section 2.4. In particular, the labeling via L and L allows to distinguish if an edge was
cancelled due to the longitudinal projection of a neighboring graviton or of a neighboring gauge
boson. Additionally, this setup also allows the cancellation of a gauge boson edge due to the
longitudinal projection of a neighboring graviton and vice versa. Thus, contrary to the setup of
[56, 59], our differentials are not contracting edges to create higher valent vertices or label cycles
to create ghost loops. Rather, they incorporate the cancellation identities of the theory into its
renormalization Hopf algebra via Feynman rule cohomology. This project will be continued in
[6].

On a Family of Metric Decompositions in Linearized Gravity

There are two prominent metric decompositions and definitions of the graviton field in General
Relativity: First, there is the metric decomposition with respect to the Minkowski background
metric that goes back to M. Fierz, W. Pauli and L. Rosenfeld from the 1930s [28], i.e.

hµν :=
1

κ
(︁
gµν − ηµν

)︁
⇐⇒ gµν ≡ ηµν + κhµν . (5.14)

Secondly, there is the metric density decomposition of Goldberg and Capper et al. [51, 52, 53, 54]
from the 1950s and 1970s, respectively, i.e.

ϕµν :=
1

κ

(︂√︁
−Det (g)gµν − ηµν

)︂
⇐⇒

√︁
−Det (g)gµν ≡ ηµν + κϕµν . (5.15)
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There are numerous articles discussing perturbative calculations andWard identities with respect
to both graviton fields, hµν and ϕµν . However, there is no work known to the author that studies
their relationship. Thus, comparing both approaches, the following questions arise:

• Are both perturbative expansions equivalent?

• Do both graviton fields satisfy equivalent Ward identities?

• If not, which is the physically correct choice?

To this end, we introduce the following homotopy:

Definition 5.2.8 (Graviton density family). Let h{ω} ∈ Γ
(︁
M, Sym2 (T ∗M)

)︁
be the following

tensor density with ω ∈ [0, 1] a homotopy in its tensor density weight:

h{ω}
µν :=

1

κ

(︂(︁
−Det (g)

)︁ω/2
gµν − ηµν

)︂
⇐⇒

(︁
−Det (g)

)︁ω/2
gµν ≡ ηµν + κh{ω}

µν (5.16)

Then we call h
{ω}
µν the graviton density family. ♦

This definition then allows us to study the transition from the graviton field hµν to the graviton
density ϕµν . In particular, we have

h{0}
µν ≡ hµν (5.17)

and

h{1}
µν ≡ ϕµν , (5.18)

where the indices on the graviton density family h
{ω}
µν are raised and lowered with the Minkowski

background metric ηµν and its inverse ηµν . In this project, we plan to calculate the Feynman
rules in the sense of [3] with ω as an additional open parameter. This then allows us to analyze
the dependence of tree and loop Feynman amplitudes on ω. First calculations for the graviton
propagator suggest the following:

Conjecture 5.2.9. The perturbative expansion with respect to the graviton density family h
{ω}
µν

depends on ω only via the external leg structure. Thus, the corresponding Feynman integrals and
Ward identities are equivalent with respect to ω ∈ [0, 1] modulo transformations on the external
graviton legs of the amplitudes.

In particular, we emphasize the following interesting result that was already mentioned in Re-
mark 4.4.21: Comparing the propagators of the graviton field hµν and the graviton density ϕµν ,
the transversal and longitudinal decompositions are dual to each other with respect to the ten-
sors G and L , cf. Corollary 4.4.19 and Theorem 4.4.20. In addition, the transition is induced
via the metric G and its inverse G−1, cf. Lemma 4.4.18. This can be understood as follows:
G describes an infinitesimal gauge transformation of proper (0, 2)-tensors, i.e. ω = 0, whereas
L describes an infinitesimal gauge transformation of (0, 2)-tensor densities with weight ω = 1.
Thus, a particularly interesting situation appears in the case ω = 1/2, i.e.

h{1/2}
µν :=

1

κ

(︂(︁
−Det (g)

)︁1/4
gµν − ηµν

)︂
⇐⇒

(︁
−Det (g)

)︁1/4
gµν ≡ ηµν + κh{1/2}

µν , (5.19)

as in this case the tensors L and T become symmetric with respect to their upper and lower
indices! In particular, this situation resembles the transversal structure of Quantum Yang–Mills
theory with a Lorenz gauge fixing, cf. Subsection 4.4.1. This project will be continued in [8].
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