
Fine-Grained Parameterized Algorithms
on Width Parameters and Beyond

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
M.Sc. Falko Hegerfeld

Präsidentin der Humboldt-Universität zu Berlin:
Prof. Dr. Julia von Blumenthal

Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Caren Tischendorf

Gutachter:
1. Prof. Dr. Stefan Kratsch
2. Prof. Dr. Sebastian Siebertz
3. Prof. Dr. Jesper Nederlof

Tag der mündlichen Prüfung: 23.08.2023

Abstract

The question at the heart of parameterized complexity is how input structure governs the
complexity of a problem. We investigate this question from a fine-grained perspective and
study problem-parameter-combinations with single-exponential running time, i.e., time
αknc, where n is the input size, k the parameter value, and α and c are positive constants.
Our goal is to determine the optimal base α for a given combination. For many connectivity
problems such as CONNECTED VERTEX COVER or CONNECTED DOMINATING SET, the optimal
base is known relative to treewidth. Treewidth is a fundamental graph parameter that
measures the size of vertex separators necessary to fully decompose a graph and, as part of
the class of width parameters, naturally admits dynamic programming algorithms.

In the first part of this thesis, we study how the optimal base changes for these connec-
tivity problems when going to more expressive width parameters capable of capturing dense
graphs by allowing for more intricate separators. We provide new parameterized dynamic
programming algorithms and (conditional) lower bounds to determine the optimal base, in
particular, we obtain for the parameter sequence treewidth, modular-treewidth, clique-width
that the optimal base for
• CONNECTED VERTEX COVER starts at 3, increases to 5, and then to 6,
• CONNECTED DOMINATING SET starts at 4, stays at 4, and then increases to 5.

In the second part, we go beyond width parameters and study more restrictive parameter-
izations like depth parameters and modulators that do not allow for graphs with arbitrarily
many disjoint balanced separators. For treedepth, the depth-analog of treewidth, we improve
the space requirement of the algorithms for the connectivity problems from exponential to
polynomial while maintaining the base by transforming the usual dynamic programming
algorithms into branching algorithms. The lower bound techniques for width parameteriza-
tions do not carry over to these more restrictive parameterizations and as a result, only a
few optimal bases are known. We seek to remedy this situation and move away from the
connectivity problems to standard vertex-deletion problems. In particular, we show that
the optimal base of ODD CYCLE TRANSVERSAL parameterized by a modulator to treewidth
2 is 3 which also implies that the optimal base relative to treedepth is 3. Additionally, we
show that similar lower bounds can be obtained in the realm of dense graphs by considering
modulators consisting of so-called twinclasses.

3

Zusammenfassung

Die Kernaufgabe der parameterisierten Komplexität ist zu verstehen, wie Eingabestruktur die
Problemkomplexität beeinflusst. Wir untersuchen diese Fragestellung aus einer granularen
Perspektive und betrachten Problem-Parameter-Kombinationen mit einfach exponentieller
Laufzeit, d.h., Laufzeit αknc, wobei n die Eingabegröße ist, k der Parameterwert, und α

und c zwei positive Konstanten sind. Unser Ziel ist es, die optimale Laufzeitbasis α für eine
gegebene Kombination zu bestimmen. Für viele Zusammenhangsprobleme, wie CONNECTED

VERTEX COVER oder CONNECTED DOMINATING SET, ist die optimale Basis bezüglich dem Pa-
rameter Baumweite bekannt. Die Baumweite ist ein fundamentaler Graphparameter, welcher
misst, welche Größe von Knotenseparatoren notwendig ist, um einen Graphen vollständig
zu zerlegen. Außerdem gehört die Baumweite zu der Klasse der Weiteparameter, welche auf
natürliche Weise zu Algorithmen mit dem Prinzip der dynamischen Programmierung führen.

Im ersten Teil dieser Dissertation untersuchen wir, wie sich die optimale Laufzeitbasis
für diverse Zusammenhangsprobleme verändert, wenn wir zu ausdrucksstärkeren Weit-
eparametern wechseln, die mit Hilfe von komplexeren Separatoren auch in der Lage sind
dichte Graphen zu modellieren. Wir entwerfen neue parameterisierte Algorithmen nach dem
Prinzip der dynamischen Programmierung und (bedingte) untere Schranken, um diese opti-
malen Basen zu bestimmen. Insbesondere zeigen wir für die Parametersequenz Baumweite,
modulare Baumweite, und Cliquenweite, dass die optimale Basis von
• CONNECTED VERTEX COVER bei 3 startet, sich erst auf 5 erhöht und dann auf 6,
• CONNECTED DOMINATING SET bei 4 startet, erst bei 4 bleibt und sich dann auf 5 erhöht.

Im zweiten Teil gehen wir über Weiteparameter hinaus und analysieren restriktivere Arten
von Parametern. Diese weiteren Parameter lassen sich als Tiefenparameter oder Modulatoren
klassifizieren und verbieten Graphen, welche beliebig viele disjunkte balancierte Separatoren
enthalten. Für die Baumtiefe, welche das Tiefenanalogon der Baumweite ist, verbessern
wir den Platzbedarf der Algorithmen für Zusammenhangsprobleme von exponentiell auf
polynomiell und behalten zugleich die Laufzeitbasis bei. Dies erreichen wir, indem wir
die gewöhnlichen Algorithmen, welche auf dynamischer Programmierung basieren, in
platzsparende Verzweigungsalgorithmen umwandeln. Die Beweistechniken für untere
Schranken bezüglich Weiteparametern übertragen sich jedoch nicht zu diesen restriktiveren
Parametern, deswegen sind für diesen Fall nur wenige optimale Laufzeitbasen bekannt.
Wir wollen diesen Mangel beheben und wechseln von den Zusammenhangsproblemen zu
gewöhnlichen Knotenlöschungsproblemen. Insbesondere zeigen wir, dass die optimale Basis
von ODD CYCLE TRANSVERSAL parameterisiert mit einem Modulator zu Baumweite 2 den
Wert 3 hat. Zusätzlich zeigen wir, dass sich im Bereich der dichten Graphen ähnliche untere
Schranken erzielen lassen, indem man Modulatoren betrachtet, welche aus Mengen von
Zwillingsknoten bestehen.

5

Acknowledgement

I would like to start by thanking my supervisor Stefan for his guidance and constant support.
We met in Bonn, where he introduced me to the area of parameterized complexity and shortly
after he moved to Berlin I followed to start my PhD under him. His deep understanding
of the subject helped me to overcome a multitude of obstacles in the research. Moreover,
you always had an open door and would answer any of my questions with great care.
Lastly, I want to thank you for always creating a nice atmosphere in the research group and
rekindling my interest in board games.

Next, I would like to thank my former colleagues Astrid, Eva-Maria, Robert, Sebastian,
and in particular Florian, who accompanied me most of the way, for fun discussions at
lunch and at our regular gaming evenings. I share the same appreciation for my current
colleagues Katrin, Leonid, Narek, Pascal, and Vera, who all proofread parts of the thesis and
provided helpful comments. I also have to thank Narek and Vera for being great coauthors;
working with you two was very enjoyable. Moreover, my gratitude also goes out to Florian,
Frank, Leonid, Narek, and Robert for all their teaching efforts and the many entertaining
"EThI"-meetings. A further thank you to Galina who was always quick to help and never
forgot to print a "Happy Birthday"-note.

Part of my research was funded by the Deutsche Forschungsgemeinschaft within the
Emmy Noether-grant (KR 4286/1), which I am grateful for. Furthermore, thanks in advance
to all committee members for reading my thesis.

Lastly, I want to express my gratitude to my family for their unwavering support through-
out this journey and especially to Ceci, who always took great care of me. Thank you!

7

Dedicated to my father,
who keeps inspiring me

Contents

1 Introduction 1
1.1 Width Parameters . 2

1.1.1 A Case Study: 3-COLORING . 6
1.2 Depth Parameters and Modulators . 9
1.3 Connectivity Problems . 11
1.4 Organization of the Thesis . 12

I Basics 13

2 Preliminaries 15
2.1 Notation . 15
2.2 Complexity . 17
2.3 Parameterized Complexity . 18
2.4 Graph Parameters . 20

2.4.1 Width Parameters . 20
2.4.2 Beyond Width Parameters . 24
2.4.3 Lifting to Twinclasses and Modules 25
2.4.4 Parameter Relationships . 32

3 Techniques 39
3.1 Connectivity Problems and Cut-and-Count 39

3.1.1 Connectivity Problems . 39
3.1.2 Cut-and-Count-Technique . 39
3.1.3 Related Work and Techniques . 43

3.2 SETH-Lower Bounds Relative to Width Parameters 45
3.2.1 General Lower Bound Principle . 45
3.2.2 Lower Bound for TOTAL DOMINATING SET[cutwidth] 48
3.2.3 Lower Bound for DOMINATING SET[tc-cutwidth] 55

II Connectivity Problems on Dense Width Parameters 59

4 Introduction 61
4.1 Connectivity Problems Parameterized by Clique-Width 62
4.2 Connectivity Problems Parameterized by Modular-Treewidth 63
4.3 Fine-Grained Complexity Landscape . 64

11

4.4 Related Work . 66
4.5 Organization . 67

5 Algorithms Parameterized By Clique-Width 69
5.1 Dynamic Programming on Clique Expressions 69

5.1.1 Algorithmic Techniques . 70
5.1.2 Nice Clique-Expressions . 71

5.2 Fast Convolution Algorithms . 76
5.2.1 Trimmed Subset Convolution . 77
5.2.2 Lattice-based Convolution . 82

5.3 Connected Vertex Cover Algorithm . 84
5.4 Connected Dominating Set Algorithm . 88
5.5 Connected Deletion to q-Colorable Algorithm 96
5.6 Steiner Tree Algorithm . 100

6 Algorithms Parameterized By Modular-Treewidth 103
6.1 Dynamic Programming for Modular-Treewidth 103

6.1.1 Cut and Count for Modular-Treewidth 104
6.2 Independent Set Algorithm . 106
6.3 Steiner Tree Reduction . 110
6.4 Connected Dominating Set Reduction . 112
6.5 Connected Vertex Cover Algorithm . 116

6.5.1 Dynamic Programming for Prime Nodes 117
6.6 Feedback Vertex Set Algorithm . 122

6.6.1 Structure of Optimum Induced Forests 123
6.6.2 Application of Isolation Lemma . 125
6.6.3 Detecting Acyclicness . 126
6.6.4 Outer Dynamic Programming Algorithm 127
6.6.5 Inner Dynamic Programming Algorithm 132

7 Lower Bounds Parameterized By Clique-Width 141
7.1 General Approach . 141
7.2 Connected Vertex Cover Lower Bound . 142

7.2.1 Path Gadget . 142
7.2.2 Complete Construction . 149

7.3 Connected Dominating Set Lower Bound . 153
7.3.1 Path Gadget . 154
7.3.2 Complete Construction . 160

8 Lower Bounds Parameterized By Modular-Treewidth 165
8.1 General Approach . 165
8.2 Connected Vertex Cover Lower Bound . 166

8.2.1 Path Gadget Construction and Analysis 166
8.2.2 Complete Construction . 173

8.3 Feedback Vertex Set Lower Bound . 178

12 Contents

9 Conclusion and Future Work 191

III Beyond Width Parameters 195

10 Introduction 197
10.1 Connectivity Problems Parameterized By Treedepth 198
10.2 Tight Lower Bounds Under Modulator-Parameterizations 199
10.3 Organization . 204

11 Branching Algorithms on Treedepth Decompositions 205
11.1 Overview . 205
11.2 Steiner Tree . 208

11.2.1 Adapting the Algorithm to Other Problems 213
11.3 Connected Deletion to q-Colorable . 213
11.4 Connected Dominating Set . 217
11.5 Feedback Vertex Set . 220

12 Modulator Lower Bound for VERTEX COVER 225
12.1 Lower Bound . 225
12.2 Further Consequences . 227

13 Lower Bound for Deletion to q-Colorable 229
13.1 Outline of Modulator Lower Bounds . 229

13.1.1 Technical Obstacle . 229
13.1.2 Outline of Construction . 230
13.1.3 Sparse Setting . 231
13.1.4 Dense Setting . 231

13.2 Construction of Critical Graphs . 234
13.3 Dense Setting . 236

13.3.1 Preliminary Gadgets . 237
13.3.2 Complete Construction . 239
13.3.3 Proofs . 246

13.4 Sparse Setting . 252

14 Algorithm for Deletion to q-Colorable 259

15 Conclusion and Future Work 263

IV Conclusion 267

16 Summary 269

17 Future Work 271

Bibliography 275

Contents 13

A Appendix 289
A.1 Problem Definitions . 289

A.1.1 Graph Problems . 289
A.1.2 Connectivity Problems . 290
A.1.3 Satisfiability and Hitting Set . 291

Selbstständigkeitserklärung 293

14 Contents

Introduction 1
Divide-and-conquer is one of the most fundamental algorithmic paradigms; it describes
the ubiquitous principle of recursively decomposing a problem into simpler subproblems,
whose solutions are then combined to a solution of the original problem. Many seminal
algorithms such as fast Fourier transforms, Quicksort, Strassen’s fast matrix multiplication,
or the Floyd-Warshall algorithm for the ALL-PAIRS SHORTEST PATH1 problem make use of
divide-and-conquer, see the book of Cormen et al. [39]. All of these algorithms are efficient
in the classical sense, meaning that their running time scales polynomially in the input size.
We will instead deal with classically intractable problems, which are not believed to admit
polynomial-time algorithms.

This work is focused on solving problems of a graph-theoretical nature, which are a source
for many intractable problems, with divide-and-conquer algorithms. Graphs abstractly model
networks arising from a pairwise relationship, such as social, transportation, or biological
networks. We apply divide-and-conquer to graph problems in a generic and essentially
problem-agnostic way by directly decomposing a given graph into smaller subgraphs and
deriving the subproblems for divide-and-conquer from such a graph decomposition.

The obtained graph decompositions can be leveraged by an algorithm only if the interac-
tion between subgraphs is simple, so that the resulting subproblems are easier to solve than
the original problem. However, not every graph allows for such decompositions, implying
that the existence of an algorithmically beneficial decomposition is imposing a structural
restriction on the considered graphs. As we are dealing with classically intractable problems,
structural restrictions are actually desired: Classical intractability only witnesses that some
problem instances are difficult to solve; instead, we want to identify structural requirements
that simplify the problem and, in particular, avoid these difficult instances. This is done
via the language of parameterized complexity, where the structure of a problem instance
is quantified via so-called parameters and a smaller parameter value indicates a greater
structural constraint. The mentioned graph decompositions correspond to certain classes of
parameters that we cover in more detail later.

By measuring the running time of algorithms in terms of the input size and a parameter
value, we can understand how input structure affects problem complexity. Our investigation
of this relationship is concentrated on problems admitting single-exponential algorithms, i.e.,
algorithms with running time αknc, where n denotes the input size, k the parameter value,
and α and c are positive constants; the running time has a single-exponential dependence
on the parameter value and a polynomial dependence on the input size. The constant α,
also called base of the running time, essentially measures how complicated the interaction
between the problem and the considered input structure is. To obtain a precise understanding
of this interaction, we perform a fine-grained analysis that tries to optimize the base α as

1Problem names are, as is common, written in small capitals.

1

much as possible, ideally even proving a tight (conditional) lower bound that α cannot be
improved further; in that case, we call α the optimal base. Our analysis usually neglects to
optimize the polynomial dependence nc, therefore we tend to write O∗(αk) = αknO(1) for
the running time instead.

When the optimality of the base α for some problem-parameter-combination is estab-
lished, it is natural to consider how the base is influenced by changes to the parameter.
We study various structural restrictions on the divide-and-conquer approach for graphs,
corresponding to different parameters, and precisely analyze their effect on the base α.
By considering more lenient structural restrictions, we obtain parameters with a greater
expressiveness, i.e., they capture more graphs compared to a stricter parameter. This expres-
siveness, or generality, comes at the price of more complicated interactions with the input
structure and thus higher algorithmic difficulty. Determining the optimal bases for a range
of parameters, from restrictive to expressive, allows us to give a precise quantification on
the price of generality in this setting. Moreover, if the optimal base remains the same for
a restrictive and a more expressive parameter, we obtain a better understanding of which
structural features cause the algorithmic difficulty and which structural features can be dealt
with at no algorithmic cost.

We divide the considered structural restrictions on the divide-and-conquer approach
into two classes. The first class consists of width parameters, which essentially only limit
the allowed interaction between subgraphs in each step of the decomposition process. In
contrast, the second class consists of depth parameters and modulators, which additionally
restrict how decomposition steps are allowed to interact or even restrict the number of
steps, thus possibly allowing for improved algorithms. Width and depth parameters roughly
correspond to two different algorithmic instantiations of the divide-and-conquer approach;
width parameters correspond to dynamic programming and depth parameters correspond
to branching algorithms. In what follows, we first give a more detailed introduction to
these kinds of parameters, cf. Section 1.1 and Section 1.2, and then introduce connectivity
problems, which form the main class of graph problems studied in this thesis, cf. Section 1.3.

1.1 Width Parameters
We begin by introducing the so-called width parameters. It is challenging to give a formal
framework that precisely2 captures the large number of width parameters that have been
defined in the literature [26, 30, 41, 54, 83, 149, 159, 160, 165, 172], so we settle for an
informal explanation. Intuitively, we view the considered width parameters as arising from
a recursive decomposition of a graph in the vein of divide-and-conquer.

2For many width parameters, one can obtain via the framework of Robertson and Seymour [161], which defines
width parameters based on a symmetric set function, another width parameter that is bounded on the same
graph classes. However, this can usually scale the given width parameter by at least a constant factor, e.g.
we only know that clique-width is at most twice as large as module-width, see Rao [158], but even such a
dependence already affects the base obtained in our fine-grained analysis of single-exponential algorithms.
Eiben et al. [64] show that a natural subclass of symmetric set functions is sufficient to characterize many
known width parameters in this way.

2 Chapter 1 Introduction

Fig. 1.1.: In the left graph, the dashed cyan ellipse highlights a vertex separator of size 3. In the right
graph, the dashed cyan ellipse highlights a dense, but structured, edge separator that can
be built from 3 bicliques.

Hierarchical Decomposition Scheme and Separators. To apply the divide-and-conquer
paradigm to graph problems, we want to decompose the given graph into multiple pieces
on which we can solve the considered problem almost independently. This is simple if
the graph is not connected, then we can simply take its connected components as pieces.
However, once we have done so, we need to change our decomposition strategy, since further
decomposition is only possible if we allow the pieces to interact. Here, we observe that the
ease of designing fast algorithms for the subproblems is correlated with how complicated
the interaction between the pieces is allowed to be, so a good decomposition should limit
the interaction as much as possible.

Going back to the graph, we therefore try to find a separator, which could consist of
vertices or edges, whose removal decomposes the graph into several pieces and which
sufficiently limits the interaction of the pieces. This limitation could be for one of two
reasons: either the separator is small or the separator has a simple structure; the former is
appropriate for sparse graphs and the latter for dense, but structured, graphs, see Figure 1.1.
With the resulting pieces in hand, we simply repeat our strategy and decompose these
pieces over and over, until only sufficiently easy pieces remain where the problem can be
solved directly. This informal decomposition scheme naturally arranges the separators in a
hierarchical, or tree-like, fashion, where every level of the hierarchy corresponds to another
round of decomposition. Hence, we refer to such a decomposition strategy as a hierarchical
decomposition scheme, see Figure 1.2 for an example.

From Hierarchical Decomposition Scheme to Width Parameter. To obtain a width
parameter from a hierarchical decomposition scheme, we have to specify how the quality of
such a scheme should be measured. All considered width parameters are homogeneous in the
sense that each separator is measured by the same criterion, depending only on the width
parameter, e.g., measuring the number of vertices leads to the parameter treewidth, whereas
measuring how easily an edge separator can be constructed from bicliques3 yields the
parameter clique-width. The width of the decomposition is then determined by the maximum
measure attained by any occurring separator. Intuitively, a graph has small treewidth if
it can be recursively decomposed by only using small vertex separators and, similarly, a
graph has small clique-width if it can be recursively decomposed by densely structured edge

3A biclique, or complete bipartite graph, is a graph whose vertices can be partitioned into two sides such that every
edge between the two sides exists, but no other edges exist. Therefore a biclique captures a simple kind of
dense structure.

1.1 Width Parameters 3

Fig. 1.2.: On the left side, a graph is recursively decomposed in a divide-and-conquer manner by
repeatedly removing small vertex separators, which are denoted by the red vertices in each
step, and each red arrow corresponds to a connected component arising from the separator
removal. On the right side, we arrange the separators used in the decomposition on the left
in a hierarchical decomposition scheme of the graph. Each red-encircled group of vertices
corresponds to a separator used in a decomposition step and the red arrows indicate the
hierarchy of separators. The edges of the original graph are hinted at in light gray; due
to the separator structure, the edges outside of separators can only connect ancestors and
descendants.

separators.4 A particular consequence of the width definition is that a decomposition of
low width allows for arbitrarily many disjoint separators with the same quality, e.g., size,
forming a thick path-like graph, see Figure 1.3.

Dynamic Programming for Width Parameters. Equipped with a hierarchical decompo-
sition of low width, we can solve many problems on the given graph. Motivated by its
efficacy on trees, the simplest hierarchical structures, we solve graph problems via bottom-up
dynamic programming along the hierarchical decomposition and build up solutions for the
considered problem by combining partial solutions from each piece at the chosen separa-
tors. Whether two partial solutions can be combined at a separator is determined by their
respective interaction with the separators; this interaction will be referred to as the state of
a partial solution throughout this thesis. The guarantee of low width allows us to conclude
for appropriate graph problems that there are only a few distinct states, thus fast dynamic
programming algorithms can be obtained by solving a subproblem for each possible state on
a separator.

Number of States. The number of states is crucial for the running time of the considered
dynamic programming algorithms as the number of considered subproblems scales with
it. Indeed, for the studied single-exponential algorithms with running time O∗(αk) when
given a decomposition of width k, the running time, except for the polynomial part, can
be explained as follows: The states are determined by essentially making one of α choices
for each unit of width, e.g., in the case of treewidth there are α choices per vertex in the

4The formal definitions of treewidth and clique-width implicitly impose additional restrictions, which are not
captured by our informal discussion, on how different separators must be related.

4 Chapter 1 Introduction

Fig. 1.3.: The left graph shows a path-like graph of treewidth 3, where every column of vertices is a
vertex separator. The right graph shows a path-like graph of clique-width 4, where every
column of edges is a structured edge separator in the sense of clique-width.

separator, hence leading to αk subproblems for a separator of size k. Thus, the base α
of the running time also conveys structural information about the problem, as it captures
how complicated the interaction between the problem and the considered separators is. In
particular, by ruling out smaller running time bases, we also learn that the considered states
are essentially the correct ones. For these reasons, we conduct a precise study of how many
states, and which ones, can be attained at the different separator types for various graph
problems.

Dense Width Parameters. Many tight fine-grained results are known relative to treewidth [27,
45, 48, 51, 59, 60, 63, 68, 71, 72, 115, 126, 131, 132, 145, 146], thus treewidth serves as a
good starting point for fine-grained investigations relative to width parameters. However,
far fewer tight results are known relative to dense width parameters [86, 106, 108, 114,
123], as optimizing the number of states relative to densely structured separators is more
challenging than relative to small vertex separators. In particular, applying the standard
lower bound technique relative to width parameters of Lokshtanov et al. [126] to dense
width parameters requires carefully selecting a specific subset of states. Instead, simply
selecting all possible states is often appropriate for treewidth. Based on the tight results
of Cygan et al. [50, 51] for connectivity problems parameterized by treewidth, we explore
their fine-grained complexity parameterized by the dense width parameters clique-width and
modular-treewidth.

Clique-Width. Coming from the theory of graph grammars, see e.g. the book of Courcelle
and Engelfriet [41], clique-width is defined via algebraic expressions that construct graphs
by repeatedly adding bicliques. Clique-width is arguably the most popular dense graph
parameter. In particular, all of the cited tight fine-grained results [86, 106, 108, 114, 123]
relative to dense width parameters consider (linear-)clique-width. This simultaneously shows
that there are still many gaps regarding the fine-grained complexity of problems relative
to clique-width, but also gives reason to believe that tight results for connectivity problems
parameterized by clique-width are attainable. A disadvantage of clique-width is that the
complexity of computing clique-width is not well-understood, in particular, it is even open
whether graphs of clique-width 4 can be recognized in polynomial time. The best known
algorithms compute an exponential approximation of clique-width in single-exponential
time [147] or double-exponential time [74].

1.1 Width Parameters 5

Modular-Treewidth. The dense width parameter modular-treewidth combines the modular
decomposition, which recursively partitions a graph into modules whose members have the
same neighborhood outside of the module, of a graph with the parameter treewidth. As
the modular decomposition can be efficiently computed, see e.g. Tedder et al. [169], the
algorithms for computing treewidth essentially transfer to modular-treewidth, yielding e.g.
a constant-factor approximation of modular-treewidth in single-exponential time. Modular-
treewidth has been studied much less than clique-width; we are only aware of the work
by Bodlaender and Jansen [22] on MAXIMUM CUT and some works on a related, but
more restrictive parameter [123, 133, 150]. However, modular-treewidth can be viewed
as a natural intermediate step between treewidth and clique-width, thus we can hope
for improved algorithms compared to clique-width. Moreover, the connection between
treewidth and modular-treewidth leads to a more direct transfer of techniques, thus allowing
us to obtain a greater number of tight results.

1.1.1 A Case Study: 3-Coloring
To illustrate how the number of states can be influenced by the considered separator type,
we study the 3-COLORING problem. In the 3-COLORING problem, we are given a graph
G = (V,E) with vertex set V and edge set E, and we must decide whether it is possible
to partition the vertices into three disjoint sets V = V1 ∪ V2 ∪ V3 such that each of them
is an independent set, i.e., no edge of G is fully contained in any one of these sets. For
our sake, the formalism of 3-coloring functions is more convenient; we say that a function
φ : V → {1, 2, 3} is a 3-coloring of G if φ(u) ̸= φ(v) for every edge {u, v} ∈ E, capturing that
the endpoints of each edge must be assigned to different sets. With this formalism, the task
is to decide if a 3-coloring φ of G exists.

Abstractly, given a separator S that decomposes the graph into two pieces A and B, we
want to know how much information about the interaction with S is necessary for us to
decide whether two partial solutions, one living on A and one living on B, combine to a
solution of the whole graph G. This can be understood in terms of communication complexity
as follows. Suppose that Alice has a partial solution φA living on A and Bob has a partial
solution φB living on B. How much information must Alice and Bob communicate, so that
they can decide whether the combination of φA and φB yields a 3-coloring of G?

Small Vertex Separator

We first consider a small vertex separator, which corresponds to the parameters pathwidth
and treewidth. A separation of G is a pair (A,B) of vertex sets such that V = A ∪ B and
such that there are no edges between A \ B and B \ A, in other words, S = A ∩ B is
a vertex separator of G. Having fixed a separation, a partial solution on A is simply a
3-coloring φA : A → {1, 2, 3} of G[A], i.e., the graph induced by A, and similarly for a partial
solution on B. Since each part is correctly colored by the corresponding partial solution
and since there are no edges between A \ B and B \ A, the partial solutions φA and φB

can be combined into a 3-coloring of G if they agree on the separator S = A ∩ B, i.e.,
φA

∣∣
A∩B = φB

∣∣
A∩B . Formally, we denote the resulting 3-coloring by φA⊕φB : V → {1, 2, 3},

6 Chapter 1 Introduction

φA

φB

φA ⊕ φB

A B

A ∩B

Fig. 1.4.: The left graph shows a separation (A, B) with a vertex separator S = A ∩ B of size 3. The
right graph shows how a 3-coloring φA of G[A] and a 3-coloring φB of G[B] that agree on
S = A ∩ B combine to a 3-coloring φA ⊕ φB of G.

where (φA ⊕ φB)(v) = φA(v) for v ∈ A and (φA ⊕ φB)(v) = φB(v) for v ∈ B; this is
well-defined due to the condition φA

∣∣
A∩B = φB

∣∣
A∩B , see Figure 1.4 for an example.

Returning to the communication complexity perspective, we therefore see that it suffices
for Alice to simply communicate the function φA

∣∣
A∩B . If A ∩B consists of k vertices, then

there are 3k possible functions from A ∩ B to {1, 2, 3}, which correspond to the possible
states. By prescribing a function f : A ∩B → {1, 2, 3}, we obtain the subproblem on A (and
analogously on B) that asks if there is 3-coloring of G[A] that agrees with f on A ∩B. This
idea can be turned into an O∗(3k)-time dynamic programming algorithm for 3-COLORING

on graphs of treewidth k. Assuming the Strong Exponential-Time Hypothesis (SETH),
Lokshtanov et al. [126] have shown that the base 3 is optimal.

Dense Edge Separator

Next, we consider a densely structured edge separator, but we first need some preliminary
definitions to make the structure precise. Suppose we have two disjoint vertex sets A and B
with V = A ∪ B that are additionally k-labeled, i.e., there are functions labA : A → [k] =
{1, 2, . . . , k} and labB : B → [k] giving one of k labels to each vertex of A (or B). The edge
separator is described by a relation R ⊆ [k] × [k] such that for all a ∈ A and b ∈ B we
have that {a, b} ∈ E if and only if (labA(a), labB(b)) ∈ R. Therefore, fixing two labels ℓA
and ℓB , either no edges exist between lab−1

A (ℓA) and lab−1
B (ℓB) or all edges between them

exist, i.e., the edges between them induce a biclique with sides lab−1
A (ℓA) and lab−1

B (ℓB),
see Figure 1.5 for an example. Hence, if k is small, then the considered separator can be
easily constructed by adding bicliques that respect the labels on each side. Such separators
correspond to the parameter clique-width5.

Given a 3-coloring φA of G[A] and a 3-coloring φB of G[B], we again ask how much
information is necessary to determine whether φA ⊕ φB, where the previous condition
φA

∣∣
A∩B = φB

∣∣
A∩B is now trivial due to A ∩B = ∅, yields a 3-coloring of G. By considering

5However, how we have defined them here is closer to the related parameter nlc-width, see Wanke [173] and
Johansson [112].

1.1 Width Parameters 7

A B

{ }, { }∩ = ∅
1

2

3

4

1

2

3

4

φA φB

φA ⊕ φB

Fig. 1.5.: The left graph is partitioned into two disjoint vertex sets A and B that are additionally
4-labeled; all vertices in the same red-encircled group have the same label, which is noted
next to the group. The edge separator between A and B in the left graph can be described
by the relation R = {(1, 1), (2, 2), (3, 2), (3, 3)}. The right graph depicts a 3-coloring φA of
G[A] and a 3-coloring φB of G[B] that combine to a 3-coloring φA ⊕φB of G. We exemplify
Lemma 1.1.1 for the pair (1, 1) ∈ R with the right graph. Since φA ⊕ φB is a 3-coloring
of G, the color set φA(lab−1

A (1)) attained by vertices in A with label 1 is disjoint from the
color set φB(lab−1

B (1)) attained by vertices in B with label 1.

for a pair (ℓA, ℓB) ∈ R, the set of colors φA(lab−1
A (ℓA)) used on vertices with label ℓA and

analogously for label ℓB , we can make the following observation, see also Figure 1.5.

Lemma 1.1.1. Under the aforementioned conditions, φ := φA ⊕ φB is a 3-coloring of G if and
only if φA(lab−1

A (ℓA)) ∩ φB(lab−1
B (ℓB)) = ∅ for every pair (ℓA, ℓB) ∈ R.

Proof. If φ is 3-coloring of G and (ℓA, ℓB) ∈ R, then the two color sets φA(lab−1
A (ℓA))

and φB(lab−1
B (ℓB)) must be disjoint: Otherwise, there is an edge between lab−1

A (ℓA) and
lab−1

B (ℓB) whose endpoints get the same color, as all edges between these two vertex sets
exist by definition of R.

If φ is not a 3-coloring of G, then this can only be because some edge {a, b} ∈ E, a ∈ A,
b ∈ B, between A and B is incorrectly colored, i.e., φ(a) = φ(b). Let ℓA = labA(a) and
ℓB = labB(b). By definition of R, we have that (ℓA, ℓB) ∈ R. However, φ(a) = φ(b) implies
that φA(lab−1

A (ℓA)) ∩ φB(lab−1
B (ℓB)) ̸= ∅.

Lemma 1.1.1 motivates that Alice should communicate the color sets φA(lab−1
A (ℓA)) for

all ℓA ∈ [k] instead of the precise mapping φA. Since there are 3 possible colors, there must
be 23 = 8 possible color sets, thus there are 8 possibilities per label. However, this can be
still optimized. Clearly, unused labels, i.e., lab−1

A (ℓA) = ∅, can be ignored, and for all used
labels we have that φA(lab−1

A (ℓA)) ̸= ∅, so that the empty color set can be eliminated from
the possibilities. Furthermore, we only need to consider labels ℓA such that there exists an
ℓB with (ℓA, ℓB) ∈ R, otherwise the vertices in lab−1

A (ℓA) are not incident to any edge of
the edge separator. However, for such labels ℓA, we can eliminate the color set {1, 2, 3} as
we then have φA(lab−1

A (ℓA)) ∩ φB(lab−1
B (ℓB)) ̸= ∅ for every 3-coloring φB of G[B]. Thus,

we have reduced the possibilities to 6 per label. This idea leads to an O∗(6k)-time algorithm
for 3-COLORING on graphs of clique-width k and Lampis [123] has shown that the base 6 is
optimal, assuming SETH.

8 Chapter 1 Introduction

width

depth

Fig. 1.6.: A depiction of the same hierarchical decomposition scheme twice, where the graph edges
and the remaining pieces after the final decomposition round are omitted for readability’s
sake. This decomposition scheme uses small vertex separators. On the left side, we measure
its width at a largest vertex separator denoted in red. On the right side, we measure its
depth at a root-leaf path, denoted in red, leading to the maximum sum of separator sizes.

1.2 Depth Parameters and Modulators
Width parameters restrict the complexity of any single separator in a hierarchical decompo-
sition scheme, but not how separators are allowed to interact or how many separators there
are. Such restrictions further constrain the allowed graph structure and it is natural to ask
whether this allows for algorithmic improvements compared to width parameters. We will
now go beyond width parameters and study depth parameters and modulators, which can
capture the mentioned restrictions and do not fall under the framework of width parameters.

From Hierarchical Decomposition Scheme to Depth Parameters. Depth parameters are
derived from the same hierarchical decomposition schemes as width parameters, but the
mechanism by which the quality of such a scheme is evaluated is different. Whereas the width
of a decomposition scheme is given by the maximum measure attained by any occurring
separator, the depth of a decomposition scheme is given by accumulating the separator
measures along each root-leaf-path in the decomposition scheme and taking the maximum
of these accumulated measures, see Figure 1.6. Thus, the depth of a decomposition scheme
bounds the number of decomposition rounds, i.e., how often we are allowed to recurse, but
also accounts for the complexity of the separators used, e.g., after using a complex separator
only a few additional decomposition rounds or simple separators are allowed. In particular,
a decomposition scheme of low depth does not allow for arbitrarily long path-like graphs,
where we have many disjoint separators with the same measure.

Branching Algorithms. A hierarchical decomposition scheme of low depth can be used
to guide a branching algorithm as follows. Starting at the topmost separator, we make a
number of branching decisions depending on the measure of the separator and then proceed
downwards, recursing independently on each graph piece resulting from the separator
removal. After the final decomposition round, only a sufficiently simple graph remains,
where the subproblem can be solved directly. For such a branching algorithm, the maximum

1.2 Depth Parameters and Modulators 9

number of branching decisions is bounded by the depth of the hierarchical decomposition
scheme. Thus, whereas width parameters model dynamic programming, depth parameters
naturally model branching algorithms. Since fast dynamic programming algorithms usually
achieve their speed by trading away space, they tend to have large space requirements,
which is in particular true for the considered dynamic programming algorithms relative
to width parameters. We will see that in many cases branching algorithms relative to
depth parameters with far smaller space requirements, but similar time complexity, can be
obtained.

Treedepth. The space of depth parameters is far less explored than the space of width
parameters. Even for treedepth, the depth analog of treewidth, and thus arguably the best-
understood depth parameter, many optimal bases remain unknown, e.g., the optimal base
for DOMINATING SET. Many dynamic programming algorithms parameterized by treewidth
can be transformed into branching algorithms parameterized by treedepth, while essentially
maintaining the base of the running time but drastically reducing the space requirement [37,
80, 155]. Although the required transformations can be nontrivial, we show that this
phenomenon extends to many connectivity problems. As it is very challenging to transfer
the lower bound techniques relative to width parameters over to depth parameters, we are
unable to complement the branching algorithms for connectivity problems parameterized
by treedepth with tight lower bounds certifying the optimality of the obtained bases. The
quest for tight lower bounds relative to depth parameters naturally leads to the concept of
modulators.

Modulators. Modulators describe the extreme case where the hierarchical decomposition
scheme consists of only a single separator, so that after one decomposition step all remaining
graph pieces must be sufficiently simple. Hence, admitting a small or simply structured
modulator is typically a far more restrictive requirement than admitting a hierarchical
decomposition scheme of low width or even low depth, however in general it depends on
when a graph is considered to be simple. In particular, lower bounds relative to appropriate
modulators transfer to depth and width parameters. Unlike width and depth parameters,
modulators are not quite as directly associated with an algorithmic paradigm. However,
parameterizing by modulator size often allows for good kernelization6 guarantees and the
intersection of a solution with the modulator can be completely guessed, e.g., for many
benchmark problems the parameterization by solution size is a modulator-parameterization,
which greatly facilitates the technique of iterative compression, see e.g., the book of Cygan et
al. [47].

Lower Bounds Relative to Modulators. As modulators allow for a much larger breadth
of algorithmic paradigms than width parameters, it is natural to expect that considerable
speed-ups can be obtained. It is known that for homomorphism problems, which generalize
coloring problems and do not involve any cardinality or cost constraint, such speed-ups
are not possible [109, 126, 151]. By providing novel lower bound constructions, we show

6A kernelization is a polynomial-time preprocessing algorithm for parameterized problems that reduces an instance
down to an instance whose size is bounded by a function g(k) in the parameter k and preserves the answer.

10 Chapter 1 Introduction

that also for coloring-related vertex-deletion problems such speed-ups are impossible, and
already a single complex separator is sufficient to cause the same complexity as in the general
width parameter case. The considered modulators for these lower bounds are modulators to
constant treewidth, i.e., after removing the modulator a graph of constant treewidth remains,
and a dense analog of such modulators. These modulators forbid multiple disjoint balanced
separators, but still allow for long paths, which gives us enough flexibility to design the
lower bound constructions. Not only do these lower bounds aid our understanding of which
structural features are algorithmically difficult, but they also witness that the branching
algorithms relative to depth parameters cannot improve the base beyond what is achieved
by dynamic programming relative to width parameters in these cases.

1.3 Connectivity Problems
As connectivity problems are one of the main protagonists in this thesis, we dedicate a
separate introductory section to them. Connectivity constraints are global constraints as
opposed to locally checkable constraints, therefore it is often more challenging to design
algorithms for connectivity problems. We consider essentially three types of connectivity
problems in this thesis. The first type is the "pure" connectivity problem STEINER TREE,
where a set of vertices K, called terminals, must be connected as cheaply as possible without
any further constraints. The second type consists of locally checkable graph problems that
have been augmented by a connectivity constraint, such as CONNECTED VERTEX COVER and
CONNECTED DOMINATING SET, where we have to find a connected solution to the original
problem. The requirement that solutions induce a connected graph can be viewed as a
positive connectivity constraint. As the final type, we consider FEEDBACK VERTEX SET which
exemplifies a negative connectivity constraint, where we have to ensure that only an acyclic
graph remains after deleting the vertices in a solution, i.e., all 2-connected subgraphs must
be destroyed.

Treewidth. Cygan et al. [50, 51] obtain optimal fine-grained results for connectivity
problems parameterized by treewidth. Their algorithms use the cut-and-count-technique
which transforms the connectivity constraint to a locally checkable constraint plus modulo-2
counting, thus making connectivity problems more amenable to dynamic programming
techniques. The lower bounds are obtained by the approach of Lokshtanov et al. [126] and
handling the connectivity constraint by checking the connectivity to a distinguished vertex.
As each of these techniques uses a subtly different set of states, the study of the fine-grained
parameterized complexity of connectivity problems is particularly interesting.

Dense Width Parameters. Results of Bergougnoux and Kanté [12] show that single-
exponential algorithms also exist for many connectivity problems parameterized by dense
width parameters, however the obtained bases are not optimal. Motivated by the success of
the cut-and-count-technique for treewidth, we apply the cut-and-count-technique relative
to dense width parameters and combine it with problem-specific insights to obtain optimal

1.3 Connectivity Problems 11

bases. In particular, we obtain for the parameter sequence treewidth, modular-treewidth,
clique-width that the optimal base for
• CONNECTED VERTEX COVER starts at 3, increases to 5, and then increases to 6, and for
• CONNECTED DOMINATING SET starts at 4, stays at 4, and then increases to 5.
These two sequences of optimal bases show for dense width parameters that the combination
of connectivity constraint and standard problem constraints can interact very differently with
the considered separators. It is also interesting to compare with VERTEX COVER, which has
optimal base 2 relative to all three parameters, showing that the impact of the connectivity
constraint can get worse for more expressive width parameters.

Treedepth. The dynamic programming algorithms relative to treewidth of Cygan et al. [51]
imply the same running times for connectivity problems relative to treedepth. As discussed,
we are interested in transforming these dynamic programming algorithms into branching
algorithms relative to treedepth while maintaining the base of the running time but reducing
the space requirement. The presence of the global connectivity constraint makes this seem
like a daunting task at first glance. Fortunately, the constraint transformation of the cut-
and-count-technique facilitates the transformation into a branching algorithm. Thus, the
cut-and-count-technique allows us to obtain, in particular, polynomial-space branching
algorithms with running time O∗(3k) and O∗(4k) for CONNECTED VERTEX COVER and
CONNECTED DOMINATING SET parameterized by treedepth, respectively.

1.4 Organization of the Thesis
This thesis is structured in 4 parts. In Part I, we first discuss the preliminary definitions in
Chapter 2, which in particular contains a detailed look at the considered graph parameters.
In Chapter 3, we give an introduction to two central techniques for this thesis; the cut-and-
count-technique to obtain algorithms for connectivity problems, and the general lower bound
principle to obtain fine-grained lower bounds relative to width parameters.

In Part II, we study several benchmark connectivity problems relative to the two dense
width parameters clique-width and modular-treewidth. We design novel single-exponential
algorithms using the cut-and-count-technique relative to these parameters and in many cases
show that the obtained running time base is optimal. See Section 4.5 for a more detailed
discussion of the organization of Part II. The results of Part II are based on the preprints
[100] and [101], which are both joint work with Stefan Kratsch.

In Part III, we go beyond width parameters and investigate what algorithmic improve-
ments are possible for depth parameters and modulators. First, we obtain fast and space-
efficient branching algorithms for multiple connectivity problems relative to treedepth.
Secondly, we consider a class of vertex-deletion problems related to q-COLORING and show
that they do not admit improved algorithms relative to modulators by designing novel lower
bounds that diverge from the construction principle for width parameters. We refer to
Section 10.3 for a thorough discussion of how Part III is organized. The results of Part III are
based on the articles [99] and [102], which are both joint work with Stefan Kratsch.

We conclude in Part IV and present future work.

12 Chapter 1 Introduction

Part I

Basics

Preliminaries 2
We discuss the preliminaries in this chapter. Some basic notation is defined Section 2.1. In
Section 2.2 and Section 2.3, we discuss the necessary basics of classical complexity theory
and parameterized complexity theory. In Section 2.4, we formally define the considered
graph parameters and study the relationships among them.

The problem definitions can be found in appendix A.1.

2.1 Notation
Miscellaneous Notation. For n1, n2 ∈ Z, we write [n1, n2] = {x ∈ Z : n1 ≤ x ≤ n2} and
[n2] = [1, n2]. For a boolean predicate p, we let [p] denote the Iverson bracket of p, which is 1
if p is true and 0 if p is false.

For two integers a, b we write a ≡c b to indicate equality modulo c ∈ N, i.e., a ≡c b if and
only if a− b is divisible by c. For c ∈ N≥2, we denote by Zc we denote the ring of integers
modulo c. For a field or ring F we denote by F[Z1, Z2, . . . , Zt] the ring of polynomials in the
indeterminates Z1, Z2, . . . , Zt with coefficients in F.

The power set of a set A is denoted by P(A). For a set S and 0 ≤ k ≤ |S|, we define(
S
k

)
= {T ⊆ S : |T | = k}, and

(
S

≤k
)

= {T ⊆ S : |T | ≤ k}, and
(
S

≥k
)

analogously. For

0 ≤ k ≤ n, we define
(
n

≤k
)

= |
([n]

≤k
)
| and similarly

(
n

≥k
)
. For a set family S, we define⋃

(S) =
⋃
S∈S S. A set family F is called laminar if for every X,Y ∈ F it holds that

X ∩ Y = ∅, X ⊆ Y , or Y ⊆ X. An ordered tuple of sets (A1, . . . , Aℓ) is an ordered
subpartition if Ai ∩Aj = ∅ for all i ̸= j ∈ [ℓ].

Function Notation. Given a function f : A → B, we denote its domain by dom(f) = A.
For a function f : V → Z and a subset W ⊆ V , we write f(W) =

∑
v∈W f(v). For

functions g : A → B, where B ̸⊆ Z, and A′ ⊆ A, we still denote the image of A′ under g
by g(A′) = {g(v) : v ∈ A′}. If f : A → B is a function and A′ ⊆ A, then f

∣∣
A′ denotes the

restriction of f to A′; and for a subset B′ ⊆ B, we denote the preimage of B′ under f by
f−1(B′) = {a ∈ A : f(a) ∈ B′}. For a function f we denote by f [v 7→ α] the function
(f \ {(v, f(v))}) ∪ {(v, α)}, viewing f as a set; we also write f [v 7→ α,w 7→ β] instead of
(f [v 7→ α])[w 7→ β]. For two functions f, g : A → N, we write f(n) = O(g(n)) if there exist
constants n0 and c such that f(n) ≤ cg(n) for all n ≥ n0. When discussing the running time
of algorithms, we use the O∗-notation to hide polynomial factors in the input size.

Graph Notation. We use common graph-theoretic notation, mostly following the book of
Diestel [55]. Let G = (V,E) be an undirected graph. We denote the number of vertices by n
and the number of edges by m. Furthermore, we denote by cc(G) the number of connected

15

components of G. For a vertex set X ⊆ V , we denote by G[X] the subgraph of G that is
induced by X, and G−X denotes the graph G[V \X]. The complement graph of G is given
by G = (V,

(
V
2
)

\ E).
The open neighborhood of a vertex v is given by NG(v) = {u ∈ V : {u, v} ∈ E}, whereas

the closed neighborhood is given by NG[v] = NG(v) ∪ {v}. We extend these notations to
sets X ⊆ V by setting NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \ X. The degree of

v ∈ V is denoted by degG(v) = |NG(v)|. For two disjoint vertex sets A,B ⊆ V , we let
EG(A,B) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B} denote the set of edges with one endpoint
in A and the other in B. Furthermore, adding a join between A and B means adding an
edge between every vertex in A and every vertex in B. For a vertex set X ⊆ V , we define
δG(X) = EG(X,V \ X) and we write δG(v) = δG({v}) for single vertices v. When the
underlying graph is clear from the context, we omit the subscript in these notations.

A separation of G is a pair of vertex subsets (A,B) with A ∪ B = V such that E(A \
B,B \A) = ∅; the set A ∩B is the (vertex) separator of this separation. An edge separator is
an edge set E′ ⊆ E whose removal increases the number of connected components of G.

A cut of a set X ⊆ V is a pair (XL, XR) with XL ∩XR = ∅ and XL ∪XR = X, we also
use the notation X = XL ·∪XR. We refer to XL and XR as the left side and right side of the
cut, respectively. Note that either side may be empty, although in our applications the left
side is usually nonempty. A cut of a graph G = (V,E) is a cut of the vertex set V .

An r-coloring of a graph G = (V,E) is a function φ : V → [r] such that φ(u) ̸= φ(v) for
all {u, v} ∈ E. We say that G is r-colorable if there is an r-coloring of G; G is bipartite if G
is 2-colorable. The chromatic number of G, denoted by χ(G), is the minimum r such that
G is r-colorable. A vertex set X ⊆ V is an independent set of G if G[X] contains no edges.
A vertex set X ⊆ V is a vertex cover of G if G−X contains no edges. A vertex set X ⊆ V

is a clique of G if G[X] is a complete graph. A vertex set X ⊆ V is a biclique if G[X] is a
complete bipartite graph. A vertex-disjoint packing P in G is a collection of subgraphs of G
such that no pair of subgraphs share a vertex. A matching is a vertex-disjoint packing of
edges.

Satisfiability. A literal is a boolean variable x or its negation ¬x. A clause is a finite set
of literals. A boolean formula σ in conjunctive normal form (CNF) is a finite set of clauses;
the set of variables occurring in σ is denoted var(σ). A (partial) truth assignment of σ is a
function τ : X → {0, 1}, where X ⊆ var(σ); we say that τ satisfies σ if in every clause of σ
there is some positive literal x with τ(x) = 1 or some negative literal ¬x with τ(x) = 0. We
say that σ is satisfiable if a truth assignment τ : var(σ) → {0, 1} exists that satisfies σ.

Strong Exponential-Time Hypothesis. The Strong Exponential-Time Hypothesis (SETH)
[35, 105] concerns the complexity of q-SATISFIABILITY. We define for all q ≥ 3 the quantity

cq = inf{δ : q-SATISFIABILITY can be solved in time O(2δn)}.

The weaker Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [104] posits that
c3 > 0, whereas the Strong Exponential-Time Hypothesis states that limq→∞ cq = 1. Or
equivalently, for every δ < 1, there is some q such that q-SATISFIABILITY cannot be solved in

16 Chapter 2 Preliminaries

time O(2δn). Our lower bounds will rely on SETH, as ETH is not strong enough to allow us
to pin down the running time base of single-exponential algorithms. However for some of
our lower bounds, the following weaker variant of SETH, also called CNF-SETH, see e.g. the
survey of Lokshtanov et al. [127], is sufficient.

Conjecture 2.1.1 (CNF-SETH). For every ε > 0, there is no algorithm solving SATISFIABILITY

with n variables and m clauses in time O(poly(m)(2 − ε)n).

In some cases, we make use of the following equivalent statements.

Theorem 2.1.2 ([46]). The following statements are equivalent to SETH:
1. For all δ < 1, there is a clause size q such that q-SATISFIABILITY cannot be solved in time

O(2δn), where n is the number of variables.
2. For all δ < 1, there is a set size q such that q-HITTING SET, i.e., all sets contain at most q

elements, cannot be solved in time O(2δn), where n is the universe size.

2.2 Complexity
To formally study the impact of instance structure on problem complexity, we make use of
the language of complexity theory and, in particular, parameterized complexity. We begin
by giving a quick overview of the relevant classical complexity theory, for more details
we refer to the book of Arora and Barak [5]. All problems considered in this thesis are
decision problems, i.e., problems for which the only possible answers are "true" and "false", or
acceptance and rejection respectively. Formally, decision problems are modeled as languages
L ⊆ Σ∗, where Σ is some finite alphabet and Σ∗ is the set of all finite strings over Σ, and
the goal is to decide for a given instance x ∈ Σ∗ whether x is contained in L. If x ∈ L,
we say that x is a positive instance or yes-instance, and otherwise x is a negative instance or
no-instance.

Typically, the considered decision problems arise from some underlying optimization
problem, where we have to find given an instance x ∈ Σ∗ a feasible solution y ∈ S(x),
where S(x) is a set containing all feasible solutions of x, optimizing some objective function
objx : S(x) → Z. By additionally supplying an instance x with a target value b ∈ Z, often
also called budget, we can turn this into a decision problem as follows. Given a pair (x, b),
which can also be modeled as a string, we have to decide whether there exists a feasible
solution y ∈ S(x) with objx(y) ≤ b if we considered a minimization problem or objx(y) ≥ b

if we considered a maximization problem.

Complexity Classes. We can arrange decision problems into complexity classes based on
which kind of algorithms they admit. In classical complexity theory, we measure the running
time of an algorithm in terms of the input size1 |x|. The complexity class P consists of all
decision problems L that can be solved in polynomial time, i.e., there exists a polynomial-
time algorithm that correctly accepts or rejects based on whether the given instance x is

1For graph problems, we usually do not directly measure in terms of the input size, but instead in terms of the
number of vertices n and sometimes the number of edges m. We assume that a reasonable encoding of graphs
is used, i.e., a graph with n vertices should be encoded using O(n2) bits.

2.2 Complexity 17

contained in L. The complexity class NP consists of all decision problems L that can be
verified in polynomial time, i.e., there exists a polynomial-time algorithm A that gets as input
a pair (x, y), where y ∈ Σ∗ is a certificate, and if x ∈ L, then there exists a certificate y of
polynomially-bounded size such that A accepts (x, y), and if x /∈ L, then A rejects (x, y) for
all certificates y. Every polynomial-time solvable decision problem can also be verified in
polynomial time, therefore P ⊆ NP.

Reductions. The complexity of problems can be compared via reductions. A decision
problem A ⊆ Σ∗ is polynomial-time (many-one-)reducible to a decision problem B ⊆ Γ∗ if
there exists a polynomial-time computable function f : Σ∗ → Γ∗ such that x ∈ A if and
only if f(x) ∈ B. In that case, A is at least as easy to solve as B and B is at least as hard
to solve as A. A decision problem B is NP-hard when every decision problem A ∈ NP is
polynomial-time reducible to B; if additionally B ∈ NP, then B is NP-complete.

P versus NP. The central open question of classical complexity theory is whether P = NP
or P ̸= NP. The majority of computer scientists believe that P ̸= NP, see the poll conducted
by Gasarch [93]. The statement P ̸= NP in particular implies that NP-hard problems do not
admit polynomial-time algorithms. We use P ̸= NP as one of our complexity hypotheses,
since all of our lower bounds assume the much stronger SETH (or CNF-SETH) which implies
ETH which in turn implies P ̸= NP. While any of these hypotheses could turn out to be false,
the connections between the problem complexities witnessed by our reductions remain.

2.3 Parameterized Complexity
The disadvantage of classical complexity theory is that by measuring the running time
only in terms of the input size |x|, we cannot study how the structure of x impacts the
problem complexity. Let us explain this disadvantage by considering the concept of NP-
hardness. When a decision problem A ⊆ Σ∗ is NP-hard, then it only follows that there is
some subfamily of hard, or worst-case, instances Ihard ⊆ Σ∗ and for instances x ∈ Ihard it is
algorithmically difficult to decide whether x ∈ A or x /∈ A. However, A being NP-hard does
not imply anything about the complexity of the problem for instances x ∈ Σ∗ \ Ihard: they
could all be easy to solve, all be hard to solve, or anything in between these two extremes.
In particular, this also means that we do not have to give up on solving a problem after
its NP-hardness is established. Indeed, the instances we care about could lie outside of
Ihard and be much easier to solve, but this requires a closer investigation of the problem
complexity.

We approach this closer investigation of problem complexity via the framework of
parameterized complexity. In essence, the idea of parameterized complexity is to introduce
a secondary measure called a parameter, usually denoted by k, in addition to the input
size |x| and measure the running time of algorithms in terms of both |x| and k. In this
thesis, we view the parameter as a quantification of input structure in the sense that a
lower parameter value represents a more structured instance, however it is also common to
parameterize optimization problems by the desired solution size. Whereas the input size |x|

18 Chapter 2 Preliminaries

is immutable once we have agreed on an encoding, we can consider many different kinds of
parameterizations that measure various kinds of structure and for each of them investigate
its impact on problem complexity. This allows us to understand which kinds of structure
make a problem hard and which kinds make it easy. Later, in Section 2.4.4, we also study
how parameters, and hence structures, can be comparable with each other and how that
affects problem complexity with respect to different parameterizations. We now proceed
with the formal definitions, for further details we refer to the books [47, 56, 70, 144].

Definition 2.3.1. A parameterized problem is a language P ⊆ Σ∗ × N, where Σ is a finite
alphabet, and for an instance (x, k) ∈ Σ∗ × N, the value k is called the parameter.

Definition 2.3.2. A parameterized problem P ⊆ Σ∗ × N is fixed-parameter tractable (FPT)
if there exists a computable function f : N → N, a constant c, and an (FPT-)algorithm A
that on input (x, k) ∈ Σ∗ ×N correctly decides whether (x, k) ∈ P in time at most f(k) · |x|c.
The class of all fixed-parameter tractable problems is denoted FPT.

In most cases, the parameter value k is polynomially bounded by the instance size |x|,
which implies that the function f must have superpolynomial growth when the underlying
decision problem is NP-hard. Therefore, an FPT-algorithm shows that the combinatorial
explosion present in the problem can be isolated to only depend on the parameter and not
the instance size.

Admitting an FPT-algorithm is essentially the best case for a parameterized problem
and the only kind considered in this thesis, however not all parameterized problems admit
FPT-algorithms. In the worst case, a parameterized problem could already be NP-hard for
constant parameter value, also called para-NP-hard, and therefore cannot be in FPT unless
P = NP. If instead the problem is polynomial-time solvable for each fixed parameter value,
but the degree of the polynomial in the running time is allowed to depend on the parameter
value, then we obtain the complexity class XP.

Definition 2.3.3. A parameterized problem P ⊆ Σ∗ × N is slicewise-polynomial (XP) if
there exist two computable functions f, g : N → N and an (XP-)algorithm A that on input
(x, k) ∈ Σ∗ × N correctly decides whether (x, k) ∈ P in time at most f(k) · |x|g(k). The class
of all slicewise-polynomial problems is denoted XP.

We clearly have that FPT ⊆ XP and it can be seen that FPT ̸= XP.
Similar to the theory of NP-hardness, there is also a notion of parameterized reductions

and the complexity class W[1]. Under the widely believed, see e.g. Downey and Fellows [56],
assumption FPT ̸= W[1], we can rule out FPT-algorithms by giving a parameterized reduc-
tion from a W[1]-hard problem. However, this classification and notion of reductions is far
too coarse for our fine-grained setting and hence we omit the formal definitions here. The
assumption FPT ̸= W[1] is stronger than P ̸= NP and it was shown by Chen et al. [36] that
ETH implies FPT ̸= W[1].

2.3 Parameterized Complexity 19

a

b

f

c

g

d

h

e
{a, c, d} {a, d, f} {d, f, h} {d, e}

{a, b, c}

{f, g, h}

Fig. 2.1.: The right side shows a tree decomposition of width 2 of the graph G on the left side. The
vertex sets inside the nodes are the bags of the tree decomposition.

2.4 Graph Parameters
In this section, we give an overview of the main graph parameters considered in this thesis.

A graph parameter is a function p that assigns each graph G a number p(G) ∈ N. All
considered graph parameters are monotone wrt. induced subgraphs, i.e., if H is an induced
subgraph of G, then p(H) ≤ p(G).

Parameterized Graph Problems. Let GRAPH PROBLEM denote a graph problem, i.e., a
decision problem where part of the input is a graph G. Given a graph parameter p, we let
GRAPH PROBLEM[p] denote the corresponding parameterized problem where parameter k
means that p(G) ≤ k. As the considered graph parameters are typically NP-hard to compute,
we assume that we are also supplied a witness for p(G) ≤ k, which is usually some sort of
graph decomposition or algebraic expression constructing the graph.

2.4.1 Width Parameters
We begin by giving the formal definitions of the graph parameters considered in this thesis
and afterwards, we focus on studying the relationships among them.

Tree Decompositions. A path/tree decomposition of a graphG = (V,E) is a pair (T , (Bt)t∈V (T)),
where T is a path/tree and every bag Bt ⊆ V , t ∈ V (T), is a set of vertices such that the
following properties are satisfied:
• every vertex v ∈ V is contained in some bag v ∈ Bt,
• every edge {v, w} ∈ E is contained in some bag {u, v} ⊆ Bt,
• for every vertex v, the set {t ∈ V (T) : v ∈ Bt} is connected in T .
The width of a path/tree decomposition (T , (Bt)t∈V (T)) is maxt∈V (T) |Bt| − 1. The path-
width/treewidth of a graph G, denoted pw(G) or tw(G) respectively, is the minimum width
of a path/tree decomposition of G.

See Figure 2.1 for an example of a tree decomposition. Intuitively, a tree decomposition
of low width shows how a graph can be decomposed by using small vertex separators. Even
approximating treewidth or pathwidth up to any constant absolute error is NP-hard by
Bodlaender et al. [21]. Treewidth can be computed exactly in time 2O(k3)n by Bodlaen-

20 Chapter 2 Preliminaries

a

b

f

c

g

d

h

e

a b c d e f g h

Fig. 2.2.: The right side shows a linear layout of cutwidth 3 of the graph on the left. The dashed cyan
line marks a position where cutwidth 3 is attained.

der [17] or in time 2O(k2)n4 by Korhonen and Lokshtanov [118] or (2k + 1)-approximated
in time 2O(k)n by Korhonen [117]. Pathwidth can be computed exactly in time 2O(k2)n by
Fürer [78].

For dynamic programming algorithms on tree decompositions, we define a standard
refinement of tree decompositions that simplifies setting up the various recurrences of the
dynamic program. Like Cygan et al. [51], we further refine the nice tree decompositions of
Kloks [116] and obtain very nice tree decompositions.

Definition 2.4.1. A tree decomposition (T , (Bt)t∈V (T)) is very nice if it is rooted at the root
node r̂ ∈ V (T) with Br̂ = ∅ and every bag Bt has one of the following types:
• Leaf bag: t has no children and Bt = ∅.
• Introduce vertex v bag: t has exactly one child t′ and Bt = Bt′ ∪ {v} with v /∈ Bt′ .
• Forget vertex v bag: t has one child t′ and Bt = Bt′ \ {v} with v ∈ Bt′ .
• Introduce edge {v, w} bag: t is labeled with an edge {v, w} ∈ E and t has one child t′

which satisfies {v, w} ⊆ Bt = Bt′ .
• Join bag: t has exactly two children t1 and t2 with Bt = Bt1 = Bt2 .
Furthermore, we require that every edge in E is introduced exactly once.

The following lemma shows that we can always work with very nice tree decompositions
after preprocessing.

Lemma 2.4.2 ([51]). Any tree decomposition of G can be converted into a very nice tree
decomposition of G with the same width in polynomial time.

Cutwidth. A linear layout of a graph G = (V,E) with n vertices is a linear ordering of its
vertices given by a bijection π : V → [n]. The cutwidth of G with respect to π is

ctwπ(G) = max
i∈[n]

|{{u, v} ∈ E : π(u) ≤ i ∧ π(v) > i}|.

The cutwidth ctw(G) of G is the minimum cutwidth over all linear layouts of G.
See Figure 2.2 for an example of a linear layout. A linear layout of low width shows

how a graph can be decomposed via small edge separators. Cutwidth is NP-hard to compute
by Garey and Johnson [91] and can be computed exactly in time 2O(k2)n by Thilikos et
al. [171]. As cutwidth does not allow for a tree-like arrangement of the separators, several
parameters have been suggested to overcome this issue, such as tree-cut width [176, 89],
edge-cut width [29], and edge-treewidth [130].

2.4 Graph Parameters 21

1(a)

2(b)
⊕

a

b

cd e

f

η1,2 ρ1→3

⊕
1(c)

η1,2 ρ2→3

⊕
2(d)

2(e)

⊕ η1,2 ρ1→2

⊕
1(f)

η1,2

Fig. 2.3.: The right side depicts the associated syntax tree Tµ of a 3-expression µ that constructs the
graph G on the left side, i.e., G = Gµ.

Clique-Expressions and Clique-Width. A labeled graph is a graph G = (V,E) together
with a label function lab : V → N = {1, 2, 3, . . .}; we usually omit mentioning lab explicitly.
A labeled graph is k-labeled if lab(v) ≤ k for all v ∈ V . We consider the following four
operations on labeled graphs:

• the introduce-operation ℓ(v) which constructs a single-vertex graph whose unique vertex
v has label ℓ,

• the union-operation G1 ⊕G2 which constructs the disjoint union of two labeled graphs
G1 and G2,

• the relabel-operation ρi→j(G) changes the label of all vertices in G with label i to label j,
• the join-operation ηi,j(G), i ̸= j, which adds an edge between every vertex in G with

label i and every vertex in G with label j.

A valid expression that only consists of introduce-, union-, relabel-, and join-operations is
called a clique-expression. The graph constructed by a clique-expression µ is denoted Gµ and
the constructed label function is denoted labµ : V (Gµ) → N.

We associate with a clique-expression µ the syntax tree Tµ in the natural way and we
associate with each node t ∈ V (Tµ) the corresponding operation, see Figure 2.3. For any
node t ∈ V (Tµ) the subtree rooted at t induces a subexpression µt.

We say that a clique-expression µ is a k-clique-expression or just k-expression if Gt is k-
labeled for all t ∈ V (Tµ). The clique-width of a graph G, denoted by cw(G), is the minimum
k such that there exists a k-expression µ with G = Gµ. A clique-expression µ is linear if in
every union-operation the second graph consists only of a single vertex. Accordingly, we also
define the linear-clique-width of a graph G, denoted lin-cw(G), by only considering linear
clique-expressions.

A k-clique-expression, with k small, shows how a graph can be decomposed via possibly
large, but structured edge separators. To be more precise, the edge separators induced by
a k-clique-expression have small neighborhood diversity, i.e., the vertices on one side of
the edge separator only have k possible types of neighborhoods on the other side of the
separator. Ducoffe [62] formalizes this behavior using the notion of partition trees, which
were introduced by Courcelle et al. [42], instead of clique-expressions.

Even approximating clique-width with sublinear additive error is NP-hard by Fellows
et al. [69]. It is open whether clique-width can be computed by an XP algorithm and it

22 Chapter 2 Preliminaries

is even open if graphs of clique-width at most 4 can be recognized in polynomial time. A
(22k+1 − 1)-approximation for clique-width can be computed in time 22O(k)

n2 by Fomin and
Korhonen [74] or a (23k+1)-approximation in time 8kn4 by Oum [147]; both algorithms
actually approximate rankwidth, whose formal definition we omit here, which approximates
clique-width via Lemma 2.4.3, thus yielding an exponential error.

Lemma 2.4.3 ([149]). For any graph G, we have constructively2 that rw(G) ≤ cw(G) ≤
2rw(G)+1 − 1, where rw(G) is the rankwidth of G.

Clique-width is more expressive than treewidth in the sense that every family of graphs
with bounded treewidth also has bounded clique-width, but there are families with bounded
clique-width and unbounded treewidth, such as the family of all cliques. However, Corneil
and Rotics [40] show that the dependence between treewidth and clique-width can be expo-
nential, cf. Lemma 2.4.4, which means in our setting that a single-exponential algorithm for
some GRAPH PROBLEM[clique-width] a priori only results in a double-exponential algorithm,
i.e., with running time 22O(k)

nO(1), for GRAPH PROBLEM[treewidth].

Lemma 2.4.4 ([40]). For any graph G, we have constructively that cw(G) ≤ 3 · 2tw(G)−1.
Furthermore, for every k ∈ N>0, there exists a graph Gk with tw(G) = k and cw(G) ≥
2⌊k/2⌋−1.

The second part of Lemma 2.4.4 combined with the inequality rw(G) ≤ tw(G)+1, which
was proven by Oum [148], also implies that the gap between rankwidth and clique-width
can be exponential. Hence, the exponential error when approximating clique-width via
Lemma 2.4.3 cannot be avoided.

Multi-Clique-Width. Multi-clique-width is an extension of clique-width that has been intro-
duced by Fürer [79] to bridge the exponential gap, cf. Lemma 2.4.4, between treewidth
and clique-width. A set-labeled graph is a graph G = (V,E) with a set-label function
slab : V → P(N), note that slab(V) = ∅ is allowed. A set-labeled graph is k-set-labeled if
max(slab(v)) ≤ k for all v ∈ V . Any label function naturally gives rise to a set-label function
by replacing each label with the corresponding singleton set. A multi-clique-expression is a
valid expression formed by the defining operations of clique-expressions (which we naturally
extend to set-labeled graphs) and additionally the following two operations:
• the set-relabel-operation ρℓ→S , ∅ ≠ S ⊆ N, replaces label ℓ by the set of labels S, so that

any label set S′ with ℓ ∈ S′ changes to (S′ \ {ℓ}) ∪ S,
• the deletion-operation ϵℓ deletes the label ℓ from all vertices.
All other terms are defined in analogy to clique-expressions. In particular, a multi-k-expression
is a multi-clique-expression so that every subexpression yields a k-set-labeled graph. The
multi-clique-width of a graph G, denoted mcw(G), is the minimum k such that there exists
a multi-k-expression µ with G = Gµ. We remark that the definition of Fürer [79] also
allows for a more powerful introduce-operation that can introduce several vertices with
several labels at once, but this can be simulated by multiple introduces, followed by multiple
unions, and a set-relabel-operation without changing the multi-clique-width for any graph
that contains at least one edge.

2Meaning that both inequalities come with polynomial-time algorithms appropriately transforming the decomposi-
tion for one parameter into a decomposition for the other parameter, see Section 2.4.4 for more details.

2.4 Graph Parameters 23

a

b

f

c

g

d

h

e

c

f

h

d

e

gb

a

Fig. 2.4.: The right side depicts a treedepth decomposition T = (V, ET) of depth 5 of the graph G on
the left side. The dashed cyan edges denote the edges in ET .

Lemma 2.4.5 ([79]). For every graph G, it holds constructively that mcw ≤ cw ≤ 2mcw.

Very little is known about computing or approximating multi-clique-width. It is currently
not known whether computing multi-clique-width is NP-hard. The only algorithms we are
aware of are the algorithms for approximating clique-width via rank-width, which therefore
also approximate multi-clique-width leading to another exponential increase of the error
due to Lemma 2.4.5 and thus we only get a double-exponential error in total.

Dynamic Programming Conventions. We will see many dynamic programming algorithms
on various graph decompositions in this thesis. Therefore, we have some conventions for the
notation used to present them. Typically, each node t of a decomposition has some associated
table At with an underlying family of partial solutions often denoted by At. The table At
is indexed by various objects: target numbers describing the size, cost, weight, etc. of the
considered partial solutions and a signature f describing the state of the considered partial
solutions. The target numbers are denoted by lowercase letters with a line over them, such as
c or w, and are written as superscripts of the table, i.e., Ac,w

t . A signature f is a function that
maps a set associated with the node t to a problem-dependent set States. The set States
consists of formal symbols describing the possible states of a decomposition-dependent
object, such as a vertex or a label class; the states are usually denoted by bold numbers or
capital letters, such as 0, 1, or A.

2.4.2 Beyond Width Parameters
We proceed by defining the relevant graph parameters that cannot be classified as width
parameters.

Treedepth. Treedepth is the depth parameter equivalent of treewidth. A treedepth decom-
position of an undirected graph G = (V,E) is a rooted forest T = (V,ET) such that for
every edge {u, v} ∈ E either u is an ancestor or descendant of v in T . The depth of a rooted
forest is the largest number of nodes on a path from a root to a leaf. The treedepth of G,
denoted td(G), is the minimum depth over all treedepth decomposition of G.

See Figure 2.4 for an example of a treedepth decomposition. Treedepth decompositions
are often also called elimination forests/trees. Indeed, treedepth has been studied under
many different names such as minimum elimination tree height [21], ordered chromatic

24 Chapter 2 Preliminaries

number [113], and vertex ranking [20], and treedepth plays an important role in the theory
of sparse graphs [143, 142, 141]. Formally supporting that the underlying decomposition
scheme for width parameters and depth parameters is the same, Fürer and Yu [80] prove
the following lemma; further parameter relationships will be discussed later.

Lemma 2.4.6 ([80]). The treedepth of a graph G = (V,E) is equal to the minimum forget-
depth of (very) nice tree decompositions of G, where the forget-depth of a nice tree decomposition
is the maximum number of forget bags on a root-leaf-path in the decomposition.

Treedepth is NP-hard to compute even for bipartite graphs as shown by Bodlaender et
al. [20]. Nadara et al. [135] show that treedepth can be computed exactly in time 2O(k2)n

and polynomial space and Czerwiński et al. [52] give an O(tw log3/2 tw)-approximation in
polynomial time.

Modulators. Given a family of graphs F , an F -modulator of a graph G = (V,E) is a
vertex set X ⊆ V such that G − X ∈ F . For a graph parameter p and constant c ∈ N,
define the family Fp≤c = {G : p(G) ≤ c} of graphs with parameter value at most c; we
will use this notation for the parameters treewidth, pathwidth, and treedepth. We also call
an Ftw≤c-modulator a modulator to treewidth c and an Fpw≤c-modulator a modulator to
pathwidth c. We define distF (G) as the minimum size of an F -modulator of G; if F = Fp≤c

for some graph parameter p and constant c, we simply write distp≤c(G). Let Find be the
family of all independent sets and Fforest be the family of all forests, we remark that a
vertex cover is an Find-modulator and a feedback vertex set is an Fforest-modulator; we write
vc(G) = distFind

(G) and fvs(G) = distFforest
(G).

Lewis and Yannakakis [124] have shown that computing F -modulators is NP-hard,
whenever F is a nontrivial3 family of graphs that is closed under taking subgraphs, which in
particular applies to the cases considered by us. Fomin et al. [75] obtain general results on
computing F -modulators for minor-closed families F that do not contain all planar graphs,
which includes Ftw≤c and Fpw≤c; in particular, they present constant-factor approximation
algorithms and single-exponential parameterized algorithms for such families.

2.4.3 Lifting to Twinclasses and Modules
So far we have defined a variety of graph parameters, but most of them only cover sparse
graphs. We study two generic ways how a sparse graph parameter can be lifted to a graph
parameter capable of capturing dense graphs. Both ways rely on partitioning the vertex
set so that all vertices in one part of the partition have the same neighborhood in some
sense. Given such a partition, we can contract each part of the partition into a single vertex
and obtain a quotient graph, describing the adjacencies among the parts of the partition, on
which we can measure the given parameter.

Lifting to Twinclasses

Quotients and Twins. Let Π be a partition of V (G). The quotient graph G/Π is given by
V (G/Π) = Π and E(G/Π) = {{B1, B2} ⊆ Π : B1 ̸= B2, ∃u ∈ B1, v ∈ B2 : {u, v} ∈ E(G)}.

3Nontrivial in this context means that the family has infinite size and avoids infinitely many graphs.

2.4 Graph Parameters 25

We say that two vertices u, v are twins if N(u) \ {v} = N(v) \ {u}. The equivalence classes
of this relation are called twinclasses and we let Πtc(G) denote the partition of V (G) into
twinclasses. If N(u) = N(v), then u and v are false twins and if N [u] = N [v], then u and
v are true twins. Every twinclass of size at least 2 consists of only false twins or only true
twins. A false twinclass induces an independent set and a true twinclass induces a clique.

Lifting Graph Parameters. Given a graph parameter p, we define its twinclass-variant tc-p
by setting tc-p(G) = p(G/Πtc(G)) for all graphs G. In particular, we obtain the parameters
twinclass-treewidth, twinclass-pathwidth, twinclass-cutwidth, and twinclass-treedepth. The
parameters twinclass-treewidth and twinclass-pathwidth have been considered before under
the name modular treewidth and modular pathwidth [123, 133, 150]. We use the prefix
twinclass instead of modular to distinguish from the quotient graph arising from a modular
partition of G. If we denote the number of vertices of a graph G by n(G), then the parameter
tc-n is also called neighborhood diversity, which was introduced by Lampis [122] and
investigated further by Ganian [85] in the context of parameterized algorithms. We will see
in Lemma 2.4.11 that the twinclass-variants of our considered parameters are NP-hard to
compute, however algorithms for computing a decomposition/expression transfer as we can
compute G/Πtc(G) in polynomial time.

We also lift F -modulators into the twinclass setting. However, in this case, we do not
simply measure distF (G/Πtc(G)), but only apply the twinclass-lifting to the modular and
not the remaining graph, leading to the following definition. Given a family of graphs F ,
an F -twinclass-modulator (TCM) M ⊆ Πtc(G) of G is a set of twinclasses of G such that
G−

⋃
(M) ∈ F . The size of a twinclass-modulator M is |M|, i.e., the number of twinclasses

M contains. We define tcmF (G) as the minimum size of an F -twinclass-modulator of
G. For families of the form Fp≤c, we introduce similar abbreviations as for the standard
modulators.

Lifting to Modules

Similar to twinclass-lifting, we can also use the modular decomposition, a well-known tool to
capture dense graphs, of a graph to turn sparse graph parameters into dense parameters.
Notable differences to the twinclass-case are that, in general, a modular decomposition yields
several quotient graphs and not only a single one. Additionally, some quotient graphs can be
considered edge cases on which we will not measure the given parameter. However, we gain
that the modular-variant of a parameter is more expressive than the twinclass-variant.

Modular Decomposition. A vertex set M ⊆ V (G) is a module of G if N(v)\M = N(w)\M
for every pair v, w ∈ M of vertices in M . Equivalently, for every u ∈ V (G) \M it holds that
M ⊆ N(u) or M ∩N(u) = ∅. In particular, every twinclass is a module. We let M(G) denote
the set of all modules ofG. The modules ∅, V (G), and all singletons are called trivial. A prime
graph is a graph that only admits trivial modules. If M ̸= V (G), then we say that M is proper.
For two disjoint modules M1,M2 ∈ M(G), either {{v, w} : v ∈ M1, w ∈ M2} ⊆ E(G) or
{{v, w} : v ∈ M1, w ∈ M2} ∩E(G) = ∅; in the first case, M1 and M2 are adjacent and in the
second case, they are nonadjacent.

26 Chapter 2 Preliminaries

a b c d

e
f

g

h
i

j k l

V (G)

{a, b, c, d} {e} {f, g, h} {i} {j, k, l,m, n}

{a} {b} {c} {d} {f} {g} {h} {j} {k, l,m, n}

m n
{k} {l} {m}{n}

prime

prime

prime

parallelser.

Fig. 2.5.: The left side depicts a graph G, where all modules in M∗
tree(G) \ {V (G)} are highlighted

by dashed cyan ellipses. The right side depicts the modular decomposition tree of G, where
all internal nodes are annotated with their type according to Theorem 2.4.7; in the case of
prime nodes, also the corresponding quotient graph is shown in a dashed cyan rectangle.

A moduleM is strong if for every moduleM ′ ∈ M(G) we have thatM∩M ′ = ∅,M ⊆ M ′,
or M ′ ⊆ M , so strong modules intersect other modules only in a trivial way. Let Ms(G)
denote the set of all strong modules of G. The defining property of strong modules implies
that Ms(G) is a laminar set family4. Thus, the Hasse diagram5 of Mtree(G) = Ms(G) \ {∅}
with the inclusion-relation, is a rooted tree, called the modular decomposition (tree) of G.
We freely switch between viewing Mtree(G) as a set family or as the modular decomposition
tree of G. In the latter case, we usually speak of nodes of the modular decomposition tree.

Every graphGwith at least two vertices can be uniquely partitioned into a set of inclusion-
maximal non-trivial strong modules Πmod(G) = {M1, . . . ,Mℓ}, with ℓ ≥ 2, called canonical
modular partition. For M ∈ Mtree(G) with |M | ≥ 2, let children(M) = Πmod(G[M]) as
the sets in Πmod(G[M]) are precisely the children of M in the modular decomposition tree;
if |M | = 1, then children(M) = ∅. We write M∗

tree(G) = Mtree(G) \ {{v} : v ∈ V }. Each
internal node M ∈ M∗

tree(G) of the modular decomposition tree is associated with a quotient
graph GqM = G[M]/Πmod(G[M]), which captures the adjacencies among the child modules
of M . The original graph G can be reconstructed from its modular decomposition tree and
all associated quotient graphs. The quotient graphs occurring in the modular decomposition
tree can be classified into three cases:

Theorem 2.4.7 ([84]). For M ∈ M∗
tree(G), exactly one of the following holds:

• Parallel node: G[M] is not connected and GqM is an independent set,
• Series node: the complement G[M] is not connected and GqM is a clique,
• Prime node: Πmod(G[M]) consists of the inclusion-maximal proper modules of G[M] and

GqM is a prime graph, i.e., GqM has no nontrivial modules.

4A set family F is laminar if for every S1, S2 ∈ F it holds that S1 ⊆ S2, S2 ⊆ S1, or S1 ∩ S2 = ∅
5The Hasse diagram is a drawing of the transitive reduction, i.e., there is an edge from M1 ∈ Mtree(G) to

M2 ∈ Mtree(G) if M1 ⊊ M2 and there is no M3 ∈ Mtree(G) with M1 ⊊ M3 ⊊ M2.

2.4 Graph Parameters 27

See Figure 2.5 for an example of a modular decomposition tree. We emphasize that
when we say that a module M is a prime node of G, it means that the associated quotient
graph GqM is a prime graph, whereas the graph G[M] is not necessarily a prime graph. We
collect the graphs that appear as prime quotient graphs in the modular decomposition of G
in the family Hp(G) = {GqM : M ∈ M∗

tree(G), GqM is prime}. The modular decomposition
tree can be computed in time O(n+m), see e.g. Tedder et al. [169] or the survey by Habib
and Paul [97].

Let M ∈ Mtree(G) \ {V } and M↑ ∈ Mtree(G) be its parent module. We have that
M ∈ Πmod(G[M↑]), hence M appears as a vertex of the quotient graph Gq

M↑ ; we will
also denote this vertex by vqM . Note that Gq

M↑ is the only quotient graph in the modular
decomposition of G where M appears as a vertex. So, we implicitly know that vqM ∈ V (Gq

M↑)
without having to specify M↑.

Lifting Graph Parameters. Many graph problems can be solved by working only on Hp(G).
Hence, we consider the values of standard graph parameters on Hp(G). Given a graph pa-
rameter p, we define its modular-variant by setting mod-p(G) = max(1,maxH∈Hp(G) p(H))
for all graphs G. In particular, we obtain the parameters modular-treewidth, modular-
pathwidth, modular-cutwidth, and modular-treedepth. This version of modular-treewidth
was first used by Bodlaender and Jansen for MAXIMUM CUT [22]. Kratsch and Nelles [120]
combine modular decompositions with tree-depth in various ways and obtain parameterized
algorithms for various efficiently solvable problems. If we denote the number of vertices of
a graph G by n(G), then the parameter mod-n is essentially the parameter modular-width,
for which Gajarsky et al. [83] and Kratsch and Nelles [119] obtain several parameterized
algorithms. Ganian et al. [90] study so-called rank-width-d covers, which are very similar to
the parameter modular-rank-width, in the context of meta-kernelization.

Computing Modular-Variants. Lemma 2.4.11 will show that the modular-variants of the
considered parameters are NP-hard to compute. As the modular decomposition tree can
be computed in time O(n+m) via, e.g., the algorithm of Tedder et al. [169], we can run
algorithms computing the original graph parameter on all the resulting quotient graphs
and thus obtain an algorithm for computing the modular-variant. As a consequence, we
obtain reasonable algorithms for approximating or exactly computing modular-variants of
several graph parameters, which we are still lacking for (multi-)clique-width. The following
theorem illustrates this approach in more detail for modular-treewidth.

Theorem 2.4.8. If Atw is an algorithm that given an n-vertex graph G and an integer k, in
time O(f(k)nc), c ≥ 1, either outputs a tree decomposition of width at most g(k) or determines
that tw(G) > k, then there is an algorithm Amod-tw that given an n-vertex m-edge graph G
and an integer k, in time O(f(k)nc +m) either outputs a tree decomposition of width at most
g(k) for every prime quotient graph GqM ∈ Hp(G) or determines that mod-tw(G) > k.

Proof. The algorithm Amod-tw works as follows. We first compute the modular decomposition
tree of G in time O(n+m) with, e.g., the algorithm of Tedder et al. [169] and obtain the
family of prime quotient graphs Hp(G). Then, we run Atw on every H ∈ Hp(G); reporting
that mod-tw(G) > k if Atw reports tw(H) for some H ∈ Hp(G). Since the modular

28 Chapter 2 Preliminaries

decomposition tree has n leaves and every internal node has at least two children, we obtain
that |Mtree(G)| ≤ 2n. This also implies that

∑
H∈Hp(G) |V (H)| ≤ 2n, since the vertices

of the quotient graph GqM at M ∈ M∗
tree(G) are in one-to-one correspondence with the

children of M in the modular decomposition tree. Neglecting the constant term, we can
bound the running time of all Atw by using a calculation similar to Kratsch and Nelles [119]
as follows: ∑

H∈Hp(G)

f(k)|V (H)|c ≤ f(k)nc−1
∑

H∈Hp(G)

|V (H)| ≤ 2f(k)|V (H)|c.

The algorithm is clearly correct, so this concludes the proof.

Corollary 2.4.9. There is an algorithm, that given an n-vertex graph G and an integer k, in
time 2O(k)n+m either outputs a tree decomposition of width at most 2k + 1 for every prime
quotient graph GqM ∈ Hp(G) or determines that mod-tw(G) > k.

Proof. We apply Theorem 2.4.8 with the algorithm of Korhonen [117] that satisfies f(k) =
2O(k) and g(k) = 2k + 1.

Properties of Twinclass- and Modular-Variants

The following theorem implies that if a graph parameter p is monotone wrt. induced
subgraphs, then also tc-p and mod-p are monotone wrt. induced subgraphs.

Lemma 2.4.10. Let G,H be graphs. If H is an induced subgraph of G, then Hq
tc = H/Πtc(H)

is an induced subgraph of Gqtc = G/Πtc(G) and for every graph H̃ ∈ Hp(H) there is some
graph G̃ ∈ Hp(G) such that H̃ is an induced subgraph of G̃.

Proof. For the first part, note that if two vertices v, w ∈ V (H) ⊆ V (G) are twins in G, then
they are also twins in H. Therefore, every twinclass of G intersects at most one twinclass of
H. Consider some map ι : V (Hq

tc) = Πtc(H) → V (Gqtc) = Πtc(G) that maps each twinclass
C of H to some twinclass of G intersecting C; the precise choice of the twinclass of G does
not matter. The map ι is injective by the previous argument. We have {C,C ′} ∈ E(Hq

tc) if
and only if {ι(C), ι(C ′)} ∈ E(Gqtc), therefore Hq

tc is an induced subgraph of Gqtc.

The second part is more involved. Consider some H̃ ∈ Hp(H) and let M̃H ∈ M∗
tree(H)

such that H̃ = H[M̃H]/Πmod(H[M̃H]). Pick the inclusion-minimal M̃G ∈ M∗
tree(G) such

that M̃H ⊆ M̃G; M̃G is unique since M∗
tree(G) is a laminar set family. We first claim that M̃G

is a prime node of G. By Theorem 2.4.7, it suffices to show that G[M̃G] and its complement
graph are connected. Since M̃H is a prime node of H, we already know that H[M̃H] and
its complement graph are connected. Therefore, H[M̃H] = G[M̃H] is part of a connected
component of G[M̃G]. If G[M̃G] were disconnected, then M̃G is not minimal, since the
connected component of G[M̃G] containing M̃H would induce a smaller module. Since also
the complement graph of H[M̃H] must be an induced subgraph of the complement graph of
G[M̃G], we can repeat the same argument to see that also the complement graph of G[M̃G]
is connected. Therefore, M̃G is a prime node of G.

2.4 Graph Parameters 29

Now, set G̃ = G[M̃G]/Πmod(G[M̃G]) ∈ Hp(G). We claim that H̃ is an induced subgraph
of G̃. Consider any MG ∈ Πmod(G[M̃G]) with MG ∩ M̃H ̸= ∅. We claim that MG ∩ M̃H is a
(not necessarily strong) module of H[M̃H]: pick any v, w ∈ MG ∩ M̃H and compute

N
H[M̃H](v) \MG = (NG(v) ∩ M̃H) \MG = (NG(w) ∩ M̃H) \MG

= N
H[M̃H](w) \MG,

where the second equality uses that MG is a module of G. We cannot have M̃H ⊆ MG

by minimality of M̃G, hence MG ∩ M̃H is a proper module of H[M̃H]. By Theorem 2.4.7,
Πmod(H[M̃H]) consists of all inclusion-maximal proper modules of H[M̃H] and therefore
MG can intersect at most one module in Πmod(H[M̃H]), otherwise the maximality would be
violated for some modules. Similarly to the twinclass case, we can now define an injective
map ι : Πmod(H[M̃H]) → Πmod(G[M̃G]) mapping each module MH ∈ Πmod(H[M̃H]) to
some module MG ∈ Πmod(G[M̃G]) intersecting MH and witnessing that H̃ is an induced
subgraph of G̃.

By giving an essentially parameter-preserving graph transformation so that all nontrivial
twinclasses and modules are destroyed, we can show that many twinclass- and modular-
variants are NP-hard to compute.

Lemma 2.4.11. The parameters tc-td, tc-ctw, tc-pw, tc-tw, mod-td, mod-ctw, mod-pw and
mod-tw are all NP-hard to compute.

Proof. We show all of these hardness results by the same approach: we transform a given
graph G into a graph G′ such that G′ has a trivial modular structure, i.e., G′ is a prime graph,
and such that p(G) = p(G′)+O(1) for p ∈ {td, ctw, pw, tw}. Since G′ is prime, we then have
that mod-p(G′) = tc-p(G′) = p(G′) = p(G) + O(1) and we have reduced the computation
of p to its twinclass-variant tc-p or modular-variant mod-p, thus the NP-hardness transfers.

We begin by handling the parameters treedepth, pathwidth, and treewidth. Without loss
of generality, assume that G = (V,E) is a connected graph with at least two vertices. The
graph G′ = (V ∪ V ′, E ∪E′), with V ′ = {v′ : v ∈ V } and E′ = {{v, v′} : v ∈ V }, is obtained
from G by attaching a private degree-1 vertex to each vertex of G.

We claim that G′ is a prime graph, i.e., G′ only admits trivial modules and hence also
only trivial twinclasses. Suppose that ∅ ≠ M ̸= V (G′) is a module of G′ with |M | ≥ 2. If
v ∈ M , then also v′ ∈ M , as otherwise NG′(v)\M ̸= NG′(w)\M for every w ∈ M \{v} ≠ ∅.
If |M ∩ V ′| ≤ 1, then we must have M = {v, v′} for some v ∈ V by the previous argument,
but this cannot be a module of G′, since there is at least one vertex w ∈ V that is adjacent
to v but not to v′ by assumption on G. If |M ∩ V ′| ≥ 2, then v′ ∈ M also implies v ∈ M ,
as v is adjacent to v′ but not to w′ ∈ (M ∩ V ′) \ {v′} ≠ ∅. Hence, we have {v, v′} ⊆ M or
{v, v′} ∩M = ∅ for every v ∈ V . Since M ̸= V (G′) and G is connected, there exists some
v ∈ M ∩ V and w ∈ NG′(v) \M , but w is not adjacent to v′, so M cannot be a module. This
proves the claim.

We have that tw(G′) = tw(G), since G is a subgraph of G′ and every tree decomposition
of G gives rise to a tree decomposition of G′ of the same width by picking for every vertex
v ∈ V some bag B with v ∈ B and attaching the bag {v, v′} as a degree-1 node. Hence,

30 Chapter 2 Preliminaries

tc-tw and mod-tw must be NP-hard to compute, since Arnborg et al. [4] have shown that
treewidth is NP-hard to compute.

We claim that td(G′) = td(G) + 1 and hence tc-td and mod-td must be NP-hard to
compute, since Pothen [157] has shown that treedepth is NP-hard to compute. We have
td(G′) ≤ td(G) + 1, since a treedepth decomposition for G′ can be obtained by taking
a treedepth decomposition of G and attaching v′ as a child of v for every v ∈ V . We
have td(G′) ≥ td(G) + 1, since every root-leaf path in a treedepth decomposition of G′

must contain at least one vertex of V ′; otherwise some v ∈ V is a leaf in the treedepth
decomposition of G′ for which v and v′ cannot be in an ancestor-descendant-relationship.

For pathwidth, we only have that pw(G) ≤ pw(G′) ≤ pw(G) + 1, but this still allows us
to conclude that mod-pw and tc-pw are NP-hard to compute as Bodlaender et al. [21] have
shown that even approximating pathwidth up to any constant absolute error is NP-hard. It
remains to prove the two inequalities. The first one pw(G) ≤ pw(G′) immediately follows,
since G is a subgraph of G′. For the second inequality pw(G′) ≤ pw(G) + 1, we consider any
very nice path decomposition of G of width k and transform it into a path decomposition of
G′ of width at most k + 1 as follows. For every v ∈ V , we consider its introduce bag Bv and
add the bag Bv

′ := Bv ∪ {v′} between Bv and its original successor, then all vertices and
edges of G′ are covered and the width of the decomposition only increases by 1.

It remains to handle the parameter cutwidth. Here, we choose a different construction
for G′. We again assume that G = (V,E) is connected and contains at least two vertices. We
construct G′ = (V ′, E′) by subdividing every edge of G twice, i.e., every edge {v, w} ∈ E

is replaced by two new vertices sv{v,w}, s
w
{v,w} and the edges {v, sv{v,w}}, {sv{v,w}, s

w
{v,w}},

{sw{v,w}, w}. This construction was also used by Bojikian et al. [24] to solve several problems
parameterized by cutwidth. We proceed by showing that G′ is prime.

Suppose that M is a module of G′ with |M | ≥ 2. If M contains two original vertices
v, w ∈ V , then M must contain all subdivision vertices adjacent to them, as each subdivision
vertex is adjacent to exactly one original vertex. If |M ∩ {v, sv{v,w}, s

w
{v,w}, w}| ≥ 2 for some

edge {v, w} ∈ E, then we must have {v, sv{v,w}, s
w
{v,w}, w} ⊆ M as the induced path on four

vertices is a prime graph. We cannot have |M | ≥ 2 and |M ∩ {v, sv{v,w}, s
w
{v,w}, w}| = 1 for

some edge {v, w} ∈ E, as otherwise there exists a subdivision vertex outside of M that is
adjacent to some vertices of M , but not to all of them. By using that G′ is connected and
applying these three arguments repeatedly, we see that |M | ≥ 2 implies M = V ′ and G′ can
therefore not have any nontrivial modules.

We claim that ctw(G) = ctw(G′) and hence tc-ctw and mod-ctw are NP-hard to compute,
as Garey and Johnson [91] have shown that cutwidth is NP-hard to compute. To prove the
claim, we argue that subdividing any edge {v, w} of a graph does not change the cutwidth.
Let s denote the resulting subdivision vertex. We can account for s by adding it anywhere
between v and w in the original layout, which is easily seen to not increase the width of
the layout. For the other direction, we can assume without loss of generality that s lies
between v and w in the linear layout, then removing s yields a linear layout for G of the
same width.

2.4 Graph Parameters 31

2.4.4 Parameter Relationships
As we want to investigate how different input structure quantified via graph parameters
impacts problem complexity, it is particularly important to understand how the various
graph parameters are related to each other. Due to such relations, the obtained algorithms
and lower bounds are not only isolated results, but rather paint a larger picture describing
how the problem complexity changes when moving towards a more or less restrictive input
structure.

The Relation ⪯. Let p, q be two graph parameters, we write p ⪯ q if there exists some
c ∈ N0 such that p(G) ≤ q(G) + c for all graphs G. If p ⪯ q, then p is at least as expressive
as q and q is at least as restrictive as p. The relation ⪯ is a preorder as it is transitive and
reflexive. However, it is not a partial order, as we lack antisymmetry, since p ⪯ q and q ⪯ p
only implies that p and q differ by at most a constant on all graphs and not necessarily
that p = q. If p ⪯ q, then algorithms for parameterization by p essentially carry over to
parameterization by q, and lower bounds carry over in the other direction.

The Relation ⪯∗. Since we only consider single-exponential algorithms in this thesis,
a less restrictive inequality suffices for algorithms to carry over so that the exponential
dependence remains the same, which will be formalized in the forthcoming lemma. Let
p, q be two graph parameters, we write p ⪯∗ q if there exists some c ∈ N0 such that
p(G) ≤ q(G) + c log(|V (G)| + 1) for all graphs G, where the 1 in the logarithm handles
the empty graph. Essentially, the logarithmic term transforms into a polynomial factor for
single-exponential algorithms, cf. Lemma 2.4.12. Again, ⪯∗ is a preorder, but not a partial
order, and p ⪯ q implies p ⪯∗ q.

Lemma 2.4.12. Let p, q be two graph parameters and α ∈ R>1. If p ⪯∗ q, then O∗(αp(G)) ≤
O∗(αq(G)).

Proof. Since there is some c ∈ N0 such that p(G) ≤ q(G) + c log(|V (G)| + 1) for all graphs
G, we compute for all graphs G that

αp(G) ≤ αq(G)+c log(|V (G)|+1) = αq(G)2c log(|V (G)|+1) logα = αq(G)(|V (G)| + 1)c logα

≤ αq(G)|V (G)|O(1).

Witnesses and Constructive Inequalities. Almost all considered graph parameters p in
this thesis are known to be NP-hard to compute, but, in all considered cases, inequalities of
the form p(G) ≤ k can be verified in polynomial time given an appropriate witness, which
is typically some graph decomposition or expression. We say that a witness for p(G) ≤ k

is a p-decomposition of G of value k.6 We remark that for e.g. modulators to treewidth
c, a decomposition consists of a modulator and an appropriate tree decomposition of the
remaining graph. As all considered algorithms assume that a decomposition is already given,
the relations p ⪯ q and p ⪯∗ q are only algorithmically useful if a q-decomposition of G can

6We only use this notion informally. Without explicitly fixing a verification algorithm, there can be many structurally
different witnesses for ” p(G) ≤ k”, but we will only consider the "canonical witnesses/decompositions" given
by the parameter definition.

32 Chapter 2 Preliminaries

be efficiently transformed into a p-decomposition of G with the appropriate value. We say
that an inequality p(G) ≤ f(q(G)), for some computable function f , between two graph
parameters p and q is constructive if it comes with a polynomial-time algorithm transform a
q-decomposition of value k into a p-decomposition of value f(k).

Transfer of Algorithms and Lower Bounds. All considered inequalities between param-
eters will be constructive. Hence, if p ⪯∗ q and GRAPH PROBLEM[p] is solvable in time
O∗(αk), then GRAPH PROBLEM[q] is also solvable in time O∗(αk), by first transforming the
q-decomposition into an appropriate p-decomposition and then running the algorithm for
GRAPH PROBLEM[p], where we use Lemma 2.4.12 to transfer the running time. On the
other hand, if p ⪯∗ q and GRAPH PROBLEM[q] is not solvable in time O∗(αk), then also
GRAPH PROBLEM[p] is not solvable in time O∗(αk).

Relationship Overview

Figure 2.6 shows an overview of the relations ⪯ and ⪯∗ for the graph parameters considered
in this thesis. We will provide proofs or cite appropriate references for these relationships in
the remaining part of this subsection.

vc fvs disttw≤c td pw

tw

lin-cw cw mcw

ctw

tc-tdtcmtw≤c

tc-ctw

tc-pw

tc-tw

mod-pw

mod-tw

distpw≤c

standard parameters

twinclass-/modular-variants

q ⪯ p: p q
p qq ⪯∗ p:

Fig. 2.6.: The proven or cited relationships between the graph parameters considered in this thesis.
Due to transitivity, any path consisting of only black arrows from parameter p to q implies
that q ⪯ p. If the path contains at least one red arrow, then we can only conclude q ⪯∗ p.
Roughly, the parameters on the left are more restrictive than the parameters on the right.

Known Inequalities Among Standard Graph Parameters

We begin by listing the known relationships between standard graph parameters, i.e.,
as opposed to their twinclass- and modular-variants, considered in this thesis. These
inequalities cover the relationships among the studied sparse parameters and some of the
known relationships for clique-width.

Lemma 2.4.13. (Folklore) We have constructively that fvs ⪯ vc and for every constant c ∈ N>0

it holds constructively that distpw≤c ⪯ vc, disttw≤c ⪯ fvs, and disttw≤c ⪯ distpw≤c.

2.4 Graph Parameters 33

Proof. All these inequalities follow from the fact that for two graph families F1 and F2 with
F1 ⊆ F2, any F1-modulator is also an F2-modulator and therefore distF2(G) ≤ distF1(G)
for all graphs G.

Lemma 2.4.14. (Folklore) For every constant c ∈ N>0 it holds constructively that td ⪯
disttd≤c, pw ⪯ distpw≤c, and tw ⪯ disttw≤c. In particular, we have constructively that
td ⪯ vc.

Proof. If p ∈ {td, pw, tw}, then it holds for all graphs G that p(G) ≤ distp≤c(G) + c. Given
an Fp≤c-modulator X, we add X to every bag of a path/tree decomposition for G−X if
p ∈ {pw, tw}. For p = td, we create a treedepth decomposition for G by starting with a path
corresponding to X and attaching a treedepth decomposition for G − X below this path.
The final inequality follows due to vc = disttd≤1.

Lemma 2.4.15. (Folklore) We have constructively that tw ⪯ pw and mcw ⪯ cw ⪯ lin-cw.

Proof. All these inequalities follow since the parameters on the right are defined by the same
decomposition as on the left, but with additional constraints.

Lemma 2.4.16 ([18]). For any graph G, it holds constructively that pw(G) ≤ ctw(G), hence
pw ⪯ ctw.

Lemma 2.4.17 (Chapter 6 of [142]). For any graph G, it holds constructively that pw(G) ≤
td(G) − 1, td(G) ≤ (tw(G) + 1) log2 |V (G)|, and td(G) ≤ td(G − v) + 1 for any vertex
v ∈ V (G).

Corollary 2.4.18. For any constant c and graph G, it holds constructively that td(G) ≤
disttw≤c(G) + (c+ 1) log2 |V (G)| and therefore td ⪯∗ disttw≤c.

Proof. Let X be a modulator to treewidth c for G. Lemma 2.4.17 implies that td(G−X) ≤
(c+ 1) log2 |V (G)|. By repeatedly invoking the inequality td(G) ≤ td(G− v) + 1 of the same
lemma for v ∈ X, we therefore obtain td(G) ≤ |X| + (c+ 1) log2 |V (G)|.

Lemma 2.4.19 ([69]). For any graph G, we have that cw(G) ≤ lin-cw(G) ≤ pw(G) + 2
constructively, hence cw ⪯ lin-cw ⪯ pw.

Lemma 2.4.20 ([79]). For every graph G, it holds that mcw(G) ≤ tw(G) + 2 constructively
and hence mcw ⪯ tw.

Relationships Involving Twinclass- or Modular-Variants

We now consider also relationships involving twinclass- or modular-variants of the considered
parameters. We begin by proving a generic lemma implying that relationships among the
original parameters carry over to their twinclass- or modular-variants.

Lemma 2.4.21. Let p, q be two graph parameters satisfying p ⪯ q constructively. It holds
constructively that tc-p ⪯ tc-q and mod-p ⪯ mod-q. Similarly for the relation ⪯∗.

34 Chapter 2 Preliminaries

Proof. Let c be the constant such that p(G) ≤ q(G) + c for all graphs G. We com-
pute that tc-p(G) = p(G/Πtc(G)) ≤ q(G/Πtc(G)) + c = tc-q(G) + c and mod-p(G) =
max(1,maxH∈Hp(G) p(H)) ≤ max(1,maxH∈Hp(G) q(H)) + c = mod-q(G) + c, hence tc-p ⪯
tc-q and mod-p ⪯ mod-q. For ⪯∗, the inequalities follow very similarly by additionally using
that the occurring quotient graphs have at most as many vertices as the original graph.

Additionally, we show that the modular-variant is at least as expressive as the twinclass-
variant and that the twinclass-variant is at least as expressive as the original parameter.

Lemma 2.4.22. Let p be a graph parameter such that p(H) ≤ p(G) constructively whenever H
is an induced subgraph of G. We have for every graph G that tc-p(G) ≤ p(G) constructively. If
Hp(G) ̸= ∅, we also have mod-p(G) ≤ tc-p(G) constructively. In particular, mod-p ⪯ tc-p ⪯ p.

Proof. Since G/Πtc(G) is an induced subgraph of G, we have that tc-p(G) = p(G/Πtc(G)) ≤
p(G). For mod-p(G) ≤ tc-p(G), we argue that every graph in Hp(G) is an induced subgraph
of G/Πtc(G). Consider any prime node M ∈ Mtree(G). Since M is a module, one can first
see that all twinclasses X of G[M] are of the form X = C ∩M , where C is some twinclass
of G. This shows that G[M]/Πtc(G[M]) is an induced subgraph of G/Πtc(G). Furthermore,
since every twinclass is also a module and Πmod(G[M]) consists of all inclusion-maximal
proper modules of G[M] by Theorem 2.4.7, we see that Πtc(G[M]) must be a finer partition
than Πmod(G[M]). Hence, G[M]/Πmod(G[M]) is an induced subgraph of G[M]/Πtc(G[M])
and also of G/Πtc(G).

To establish mod-p ⪯ tc-p, it remains to consider the case Hp(G) = ∅. In that case,
mod-p(G) = 1 is simply some constant independent of G which can be accounted for with
an appropriate constant in the definition of mod-p ⪯ tc-p.

We need separate proofs for twinclass-modulators to obtain analogs of Lemma 2.4.14
and Corollary 2.4.18.

Lemma 2.4.23. For any graph G and constant c ∈ N>0, we have constructively that
tc-tw(G) ⪯ tcmtw≤c(G) + c and tc-td(G) ≤ tcmtw≤c(G) + (c+ 1) log2 |V (G/Πtc(G))|, hence
tc-tw ⪯ tcmtw≤c and tc-td ⪯∗ tcmtw≤c.

Proof. Let M be a twinclass-modulator to treewidth c of G. We have that G/Πtc(G) − M is
an induced subgraph of G −

⋃
(M), so tw(G/Πtc(G) − M) ≤ tw(G −

⋃
(M)) ≤ c, where

we interpret M as a vertex subset of G/Πtc(G). Therefore, we can view M as a modu-
lator to treewidth c of G/Πtc(G). By applying Lemma 2.4.14, we obtain that tc-tw(G) =
tw(G/Πtc(G)) ≤ |M| + c, proving the first inequality. By applying Corollary 2.4.18, we ob-
tain tc-td(G) = td(G/Πtc(G)) ≤ |M| + (c+ 1) log2 |V (G/Πtc(G))|, thus proving the second
inequality and tc-td ⪯∗ tcmtw≤c follows due to |V (G/Πtc(G))| ≤ |V (G)|.

Lemma 2.4.24. Let F be a graph family closed under induced subgraphs. For any graph G, it
holds constructively that tcmF (G) ≤ distF (G), hence tcmF ⪯ distF .

Proof. Let X be an F -modulator of G and consider the twinclass-modulator M obtained by
taking every twinclass of G that X intersects. Since G−

⋃
(M) is an induced subgraph of

G−X ∈ F , it follows by assumption that M is an F -twinclass-modulator. Clearly, the size
of M is at most the size of X.

2.4 Graph Parameters 35

Lemma 2.4.25. For every graph G and c ∈ N, it holds that tw(G) ≤ disttw≤c(G) + c,
tc-tw(G) ≤ tcmtw≤c(G) + c, and tcmtw≤c(G) ≤ disttw≤c(G), hence tw ⪯ disttw≤c, and
tc-tw ⪯ tcmtw≤c, and tcmtw≤c ⪯ disttw≤c.

Proof. For the first inequality, we add the modulator into every bag of a tree decomposition
of the remaining graph. The second inequality follows by applying the same argument on
the level of the quotient graph. The third inequality follows from Lemma 2.4.24.

Having lifted the known parameter relationships via Lemma 2.4.21 and Lemma 2.4.22
to the twinclass-variants and modular-variants, we will now see that appropriate versions of
clique-width are at least as expressive as the twinclass- and modular-variants of pathwidth
and treewidth.

Lemma 2.4.26 ([123]). For any graph G, it holds constructively that lin-cw(G) ≤ tc-pw(G) +
3, hence lin-cw ⪯ tc-pw.

Corollary 2.4.27. For any graph G, we have cw(G) ≤ mod-pw(G) + 2 constructively, hence
cw ⪯ mod-pw.

Proof. Given a path decomposition of width k for every prime quotient graph H ∈ Hp(G),
we construct a clique-expression µ for G using at most k + 2 labels. To do so, we inductively
construct a (k + 2)-expression µM for every G[M], M ∈ Mtree(G).

As the base case, we consider the leaves of the modular decomposition tree which
correspond to singleton modules {v}, v ∈ V , and therefore each µ{v} simply consists of a
single introduce-operation. For any internal node M of the modular decomposition tree with
Πmod(G[M]) = {M1, . . . ,Mℓ}, we inductively assume that the clique-expressions µi := µMi

for G[Mi], i ∈ [ℓ], have already been constructed. Furthermore, we assume without loss of
generality that every µi relabels all labels to label 1 at the end. We now distinguish between
the node type of M in the modular decomposition tree. If M is a parallel node, then we
obtain µM by successively taking the union of all µi, i ∈ [ℓ].

If M is a series node, then we set µ′
1 := µ1 and µ′

i+1 := ρ2→1(η1,2(µ′
i ⊕ ρ1→2(µi+1))) for

all i ∈ [ℓ− 1] and µM = µ′
ℓ. So, we add one child module after the other and add all edges

to the previous child modules using two labels.
If M is a prime node, then GqM = G[M]/Πmod(G[M]) ∈ Hp(G) and we are given a

path decomposition of GqM of width at most k. By Lemma 2.4.19, we can convert this path
decomposition into a (k + 2)-expression µqM of GqM . We obtain the clique-expression µM

by replacing every introduce-operation ℓ(vqMi
) in µqM with the (k + 2)-expression ρ1→ℓ(µi).

This works, because by the definition of GqM and modules G[M] can be constructed by
substituting G[Mi] for vqMi

in GqM for all Mi ∈ Πmod(G[M]).

Corollary 2.4.28. For every graph G = (V,E), it holds constructively that mcw(G) ≤
mod-tw(G) + 3 and hence mcw ⪯ mod-tw.

Proof. The proof works by the same principle as the proof of Corollary 2.4.27. Due to
Lemma 2.4.20, a tree decomposition of width k can be transformed into a multi-clique-
expression with k + 2 labels. However, the resulting multi-clique-expression may contain
deletion-operations ϵℓ and we introduce another label k + 3 and replace such deletions by

36 Chapter 2 Preliminaries

relabels ρℓ→(k+3). Thus, we obtain a multi-clique-expression using k + 3 labels without any
deletion-operations and by adding further relabel-operations we can again assume that all
vertices have the same label at the end. This allows us to mimic the proof of Corollary 2.4.27
to obtain a multi-(k + 3)-expression for G given tree decompositions of width k for every
H ∈ Hp(G).

Finally, we show that for clique-width and multi-clique-width, lifting to the twinclass- or
modular-variants does not increase the expressivity of the parameters.

Lemma 2.4.29. For every graph G, the following inequalities hold constructively:

cw(G) ≤ max(2, tc-cw(G)), cw(G) ≤ max(2,mod-cw(G)),

mcw(G) ≤ max(2, tc-mcw(G)), mcw(G) ≤ max(2,mod-mcw(G)).

In particular, we have cw ⪯ mod-cw ⪯ tc-cw ⪯ cw and mcw ⪯ mod-mcw ⪯ tc-mcw ⪯ mcw.

Proof. For the twinclass-variants, we see that any (multi-)clique-expression µ for G/Πtc(G)
can be easily turned into a (multi-)clique-expression µ′ for G using at most one extra label by
replacing every introduce-operation in µ by a 2-expression creating the appropriate twinclass.
The second label is only needed in the case of true twinclasses.

For the modular-variants, we use the same principle as in the proofs of Corollary 2.4.27
and Corollary 2.4.28. For parallel and series nodes, the quotient graph is an independent set
or clique, respectively, and both cases can be handled by a simple 2-expression. For prime
nodes, we are given a (multi-)k-expression of the quotient graph. In all three cases, we
substitute inductively computed expressions for the introduce-operations contained in the
expression for the quotient graph to obtain a (multi)-k-expression for the subgraph induced
by the current module and can continue with the induction.

The final part follows from the proven inequalities together with Lemma 2.4.22.

Counterexamples for Parameter Relationships

Due to the large number of considered parameters, we do not provide exhaustive compar-
isons between parameters p, q to show that p ⪯ q or p ⪯∗ q does not hold or even show that
p and q are incomparable7. However, we emphasize that such results can often be transferred
to twinclass- or modular-variants by using similar parameter-preserving transformations as
in the proof of Lemma 2.4.11 that destroy any twinclass or modular structure. For example,
attaching a private degree-1 vertex to every vertex of a clique yields a family of graphs with
unbounded modular-treewidth, but bounded linear-clique-width.

We also provide an example family to show that the twinclass-treewidth can be arbitrarily
larger than the modular-treewidth. Consider cliques where every vertex is replaced with
a P4, i.e., a path on 4 vertices, such that the path is a module in the new graph. Formally,
for k ∈ N, define the graph Gk = (Vk, Ek) with Vk = {vi,j : i ∈ [k], j ∈ [4]} and Ek =
{{vi,j , vi′,j′} : i ̸= i′ ∈ [k], j, j′ ∈ [4]} ∪ {{vi,j , vi,j+1} : i ∈ [k], j ∈ [3]}. Since the path
on 4 vertices is a prime graph, it is easy to see that Gk has no nontrivial twinclasses,

7Two graph parameters p, q are incomparable, if there exist graph families Fp and Fq such that p is bounded on
Fp and q is unbounded on Fp, and vice versa for Fq.

2.4 Graph Parameters 37

hence tc-tw(Gk) = tw(Gk) ≥ k − 1 because Gk contains a k-clique. However, we have
mod-tw(Gk) = mod-pw(Gk) = 1, since the modular decomposition of Gk only contains
series nodes and prime nodes whose associated quotient graphs are P4’s.

Search Game Characterizations
To prove that the graphs in our lower bound constructions have small treewidth or pathwidth,
it is easier to use a search game characterization instead of directly constructing a tree or
path decomposition.

Cops and Robbers. The search game corresponding to treewidth is the omniscient-cops-
and-robber-game. In this game, k+1 cops try to capture a robber on a graph G. The cops can
occupy vertices of G and the robber can run at infinite speed along edges through vertices
that are not occupied by cops. The cops and the robber are omniscient in that they know
each other’s position at all times. At the start, the cops are placed on some vertices and
the robber chooses a starting vertex for the escape. In every round, some cops get into
their helicopters and declare where they will land next. Before these cops land again, the
robber may move to any other vertex that is reachable by a path that does not contain any
non-airborne cop. Afterwards, the cops land, and the next round begins. The cops win if
they have a strategy to capture the robber by landing on the robber’s location after a finite
number of rounds; otherwise the robber wins.

Theorem 2.4.30 ([166]). A graph G has treewidth at most k if and only if k+ 1 cops can win
the omniscient-cops-and-robber-game on G.

Mixed-search. The search game corresponding to pathwidth is the mixed-search-game. In
such a game, the graph G represents a system of tunnels where all edges are contaminated
by gas. The objective is to clear all edges of this gas. An edge can be cleared by either
placing searchers at both of its endpoints or by moving a searcher along the edge. If there is
a path from an uncleared edge to a cleared edge without any searchers on the vertices or
edges of the path, then the cleared edge is recontaminated. A search strategy is a sequence
of operations of the following types: a searcher can be placed on or removed from a vertex,
and a searcher on a vertex can be moved along an incident edge and placed on the other
endpoint. A search strategy is winning if after its termination all edges are cleared. The
mixed-search-number of a graph G, denoted ms(G), is the minimum number of searchers
required for a winning strategy of the mixed-search-game on G.

Lemma 2.4.31 ([168]). We have that pw(G) ≤ ms(G) ≤ pw(G) + 1.

38 Chapter 2 Preliminaries

Techniques 3
In this chapter, we discuss two techniques that are central to this thesis. First, we give
an introduction to the cut-and-count technique, which is used to obtain parameterized
algorithms for connectivity problems, in Section 3.1. Secondly, we give in Section 3.2.1 an
overview of the construction principle of Lokshtanov et al. [126] for proving lower bounds
relative to width parameters assuming SETH. This exposition is mostly independent of the
considered width parameter and already gives an outlook on what considerations must be
done to obtain such lower bounds. As a simple example, we give a tight lower bound for
TOTAL DOMINATING SET[cutwidth] and show how this gives rise to a tight lower bound for
DOMINATING SET[twinclass-cutwidth].

3.1 Connectivity Problems and Cut-and-Count

3.1.1 Connectivity Problems
The natural approach to solving connectivity problems by dynamic programming relative to
a width parameter is to store the interaction of the connectivity pattern of partial solutions
with parameter-dependent separators. We expand on this for the case of pathwidth and
treewidth. Consider a connected undirected graph G = (V,E), a separation (A,B) of G,
and a vertex subset X ⊆ V . We want to store appropriate data about G[X ∩A] and G[X ∩B]
at the vertex separator A ∩ B and based on this data check if G[X ∩ A] and G[X ∩ B]
combine to a connected graph G[X]. Observe that even when G[X] is connected, G[X ∩A]
and G[X ∩ B] may consist of several connected components. Let CA1 , . . . , C

A
ℓ denote the

connected components of G[X ∩A]. The connectivity pattern of G[X ∩A] at A ∩B is the set
family CA = {CA1 ∩(A∩B), . . . , CAℓ ∩(A∩B)} which is a partition of X∩(A∩B). In the same
way, we obtain the connectivity pattern CB of G[X ∩B]. One can see that G[X] is connected
if and only if the bipartite graph (CA ∪ CB , {{CA, CB} : CA ∈ CA, CB ∈ CB , CA ∩ CB ̸= ∅})
is connected. If |X ∩ (A ∩B)| = k, then the number of possible connectivity patterns is at
most kk = 2k log k and at least 2Ω(k log k), therefore this approach only leads to algorithms
with running time 2O(k log k)nO(1) given a tree decomposition of width k, which was long
believed to be optimal.

3.1.2 Cut-and-Count-Technique
The cut-and-count-technique introduced by Cygan et al. [49, 51] reduces connectivity
problems to locally checkable counting problems. With this technique, Cygan et al. have for
the first time obtained single-exponential algorithms for connectivity problems parameterized

39

by treewidth, which in many cases even yield the optimal base in the running time assuming
SETH [50]. We will be applying the cut-and-count-technique for several other graph
parameters in this thesis to obtain single-exponential algorithms. We give a thorough
introduction to the cut-and-count technique. In this section G = (V,E) always refers to a
connected undirected graph.

Consistent Cuts. The main engine behind the cut-and-count-technique are the so-called
consistent cuts. A cut (VL, VR) of an undirected graph G = (V,E) is consistent if u ∈ VL

and v ∈ VR implies {u, v} /∈ E, i.e., E(VL, VR) = ∅. For any subset X ⊆ V , we define
cutsG(X) = {(XL, XR) : (XL, XR) is a consistent cut of G[X]}. Furthermore, a consis-
tently cut subgraph of G is a pair (X, (XL, XR)) with X ⊆ V and (XL, XR) ∈ cutsG(X).
The set of all consistently cut subgraphs of G is denoted by C(G). Any non-trivial consistent
cut (VL, VR), where non-trivial means VL ̸= ∅ ̸= VR, of G is a locally checkable certificate
that G is not connected. The following crucial lemma shows that the number of these
certificates behaves nicely, even when G is not connected.

Lemma 3.1.1 ([51]). For any X ⊆ V , it holds that |cutsG(X)| = 2cc(G[X]).

Proof. Consider an arbitrary (XL, XR) ∈ cutsG(X) and any connected component C of
G[X]. We must have C ⊆ XL or C ⊆ XR, as otherwise an edge would cross the cut
(XL, XR). Vice versa, any assignment of the connected components of G[X] to the left and
right side also yields a consistent cut of G[X]. Therefore, a consistent cut has two choices
for every connected component of G[X], which proves the lemma.

Lemma 3.1.1 shows that we can decide whether G[X] is connected or not by counting
the number of consistent cuts of G[X]. In particular, we see that the number of consistent
cuts of G[X] is not divisible by 4 if and only if G[X] is connected. Phrased more abstractly,
the checking of the connectivity constraint can be replaced by counting locally checkable
certificates (for non-connectivity), which is much simpler to implement in a dynamic
programming routine relative to a width parameter. We proceed by explaining in more detail
how we obtain a generic approach to solve connectivity problems in this way.

Overview. To solve a vertex selection problem on G involving a connectivity constraint,
we make the following general definitions. The solutions to our problem are vertex sets and
we denote the set of solutions by S ⊆ P(V). The task is to determine whether S is empty or
not. The cut-and-count-technique accomplishes this in two parts:
• The Cut part: By relaxing the connectivity constraint, we obtain a set S ⊆ R ⊆ P(V)

of possibly connected solutions, called candidates which captures the non-connectivity
related constraints of the problem. We pair up candidates X ∈ R with each of their
consistent cuts (XL, XR) of G[X] and obtain consistently cut subgraphs (X, (XL, XR))
which we collect in the set Q.

• The Count part: We compute |Q| modulo 4 using a subprocedure. By Lemma 3.1.1 all
disconnected candidates X ∈ R \ S cancel, because they are consistent with a number
of cuts that is divisible by 4. Hence, only connected candidates X ∈ S remain and we
have S ̸= ∅ if the count |Q| is nonzero modulo 4.

40 Chapter 3 Techniques

The following theorem formalizes this approach.

Theorem 3.1.2. Given families R,S ⊆ P(V), Q ⊆ P(C(G)) satisfying S = {X ∈ R :
G[X] is connected} and Q = {(X, (XL, XR)) ∈ C(G) : X ∈ R}, it holds that |Q| ≡4 2|S|.

Proof. Using Lemma 3.1.1, we compute

|Q| =
∑
X∈R

2cc(G[X]) =
∑

X∈R :
cc(G[X])=1

2cc(G[X]) +
∑

X∈R :
cc(G[X])≥2

2cc(G[X]) = 2|S| + 4 ·
∑

X∈R :
cc(G[X])≥2

2cc(G[X])−2

≡4 2|S|.

Isolation. Theorem 3.1.2 has the following issue: it may happen that S ̸= ∅, but |S| ≡2 0
and therefore |Q| ≡4 0, so the approach cannot distinguish S ̸= ∅ from S = ∅ in this case.
We avoid this issue at the cost of randomization by using the isolation lemma.

Definition 3.1.3. A function w : U → Z isolates a set family F ⊆ P(U) if there is a unique
S′ ∈ F with w(S′) = minS∈F w(S).

Lemma 3.1.4 (Isolation Lemma, [134]). Let F ⊆ P(U) be a nonempty set family over a
universe U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N] uniformly and
independently at random. Then P[w isolates F] ≥ 1 − |U |/N .

Setting U = V and given a weight function w : V → [N], we partition the considered
partial objects according to the total weight w ∈ [0, nN] of the contained objects, i.e., we
define the families Rw = {X ∈ R : w(X) = w}, Sw = {X ∈ S : w(X) = w}, and
Qw = {(X, (XL, XR)) ∈ Q : w(X) = w} for every w ∈ [0, nN]. If the sampled weight
function w : V → [N] isolates S, then there exists a total weight w ∈ [0, nN] such that
|Sw| = 1. Applying Theorem 3.1.2 to Rw, Sw, and Qw yields that |Qw| ≡4 2|Sw| ≡4 2 ̸≡4 0
in this case. Thus, computing |Qw| modulo 4 allows us to determine whether S is empty or
not when we have sampled an isolating weight function. As we do not know a priori which
total weight w leads to |Sw| = 1, we simply have to try all of them.

Algorithm given Counting Procedure. Given a counting procedure A, usually obtained
via dynamic programming along a parameter-dependent decomposition, that computes |Qw|
modulo 4 given a weight function w : V → [N] and total weight w ∈ [0, nN], we decide
whether S is nonempty as follows. We sample a weight function w : V → [N] uniformly at
random and compute |Qw| modulo 4 for all total weights w ∈ [0, nN]. If |Qw| ̸≡4 0 for some
w ∈ [0, nN], then we return that S is not empty, otherwise we return that S is empty.

Error. We choose N = 2|V | = 2n so that we obtain an error probability of at most 1/2 in
Lemma 3.1.4 (when U = V) and ensure that there is only a polynomial number of possible
total weights. We argue that the resulting Monte Carlo algorithms only have one-sided
errors in the sense that they cannot return false positives, but they can return false negatives
with probability at most 1/2. If S = ∅, then Sw = ∅ and, by Theorem 3.1.2, |Qw| ≡4 0 for
all w, so the algorithm correctly returns that S is empty. If S ̸= ∅, then the weight function
w isolates S with probability at least 1/2 by Lemma 3.1.4 and some w with |Sw| = 1 and
hence |Qw| ̸≡4 exists, so the algorithm correctly returns that S is nonempty.

3.1 Connectivity Problems and Cut-and-Count 41

Parity of Number of Solutions. We remark that Theorem 3.1.2 implies that the cut-and-
count-technique also allows us to determine the parity of |S| by simply computing |Q|/2
modulo two (without considering any weight function). So, the cut-and-count-technique
essentially reduces the decision problem to solving several instances of the parity problem.

Complicated Universes. For some problems, e.g., CONNECTED ODD CYCLE TRANSVERSAL,
the considered candidates and solutions are not simply vertex subsets, but carry additional
data such as an appropriate coloring of the graph G − X to facilitate the dynamic pro-
gramming. In such cases, Theorem 3.1.2 does not directly apply, but the general approach
remains the same. However, we need to adapt the universe U for the isolation lemma
accordingly, so that the weights also take the additional data into account. As a side effect,
S does not necessarily capture the kind of solutions described in the problem statement,
but rather "augmented solutions". This also means that the cut-and-count-technique does
not directly solve the standard parity variant of the problem as described in the previous
paragraph.

Counting Connected Components. The standard cut-and-count-approach filters all can-
didates inducing at least two connected components by counting modulo 4 = 22. Based
on Lemma 3.1.1, we can also adapt the cut-and-count-technique to keep all candidates
with at most ℓ connected components instead of only one by counting modulo 2ℓ+1 instead
of modulo 4, see Corollary 3.1.5. This variant will be used for FEEDBACK VERTEX SET to
determine whether a graph is acyclic based on the number of vertices, edges, and connected
components of the graph. In contrast, problems where the number of connected components
must be maximized, such as CYCLE PACKING, do not allow for single-exponential algorithms
relative to pathwidth under ETH as was shown by Cygan et al. [50].

Corollary 3.1.5. Given X ⊆ V and ℓ ∈ N>0. It holds that cc(G[X]) ≤ ℓ if and only if
|cutsG(X)| ̸≡2ℓ+1 0.

Proof. By Lemma 3.1.1, there are exactly 2cc(G[X]) consistent cuts of G[X]. Therefore, the
number of consistent cuts is divisible by 2ℓ+1 if cc(G[X]) > ℓ and not divisible by 2ℓ+1 if
cc(G[X]) ≤ ℓ.

Fixing Vertices and Markers. Another common variant of the cut-and-count-technique is
to fix some vertex v∗ ∈ V and only consider consistently cut subgraphs (X, (XL, XR)) ∈ C(G)
with v∗ ∈ XL, which also implies that v∗ ∈ X. To also consider solutions that do not contain
v∗, one can first branch over all possible choices for v∗. The benefit of this variant is that
for a fixed v∗ ∈ X ⊆ V there are exactly 2cc(G[X])−1 such consistent cuts and hence one can
work directly modulo two. The following lemma captures this approach.

Theorem 3.1.6 ([51]). Given a fixed vertex v∗ ∈ V and families R,S ⊆ {X ⊆ V : v∗ ∈ X},
Q ⊆ P(C(G)) satisfying S = {X ∈ R : G[X] is connected} and Q = {(X, (XL, XR)) ∈ C(G) :
X ∈ R, v∗ ∈ XL}, it holds that |Q| ≡2 |S|.

Proof. Due to fixing vertex v∗ to the left side of any consistent cut, the whole connected com-
ponent containing v∗ must be contained in the left side. Following the proof of Lemma 3.1.1,

42 Chapter 3 Techniques

we see that there are 2cc(G[X])−1 such consistent cuts of G[X] for X ∈ R. The statement
follows via the analogous computation as in the proof of Theorem 3.1.2.

Cygan et al. [51] pushed this technique further by considering candidate solutions with
a dynamic number of marked vertices that must always be contained in the left side of
the considered consistent cuts. In this way, the consistent cuts only count the connected
components that do not contain any marked vertices and this can be used to also bound the
number of connected components from above while still working modulo two. We prefer to
avoid these variants, as fixing a vertex creates some extra edge cases in the formal definitions
and dynamic programming recurrences. On top of that, the marker technique additionally
complicates the universe.

Obtaining a Solution Set. This presentation of the cut-and-count-technique only deter-
mines whether a solution exists or not for the sake of simplicity instead of actually computing
some solution X ∈ S. Usually, it is possible to adapt the technique to compute a solution
with polynomial overhead by repeatedly solving an annotated variant of the problem, where
vertices can be forced into the considered candidates or forbidden, and updating the annota-
tions between the iterations until X is completely given as an annotation. To keep the error
probability in check, the weight function is only sampled once at the beginning, before any
annotations are set, and used for all iterations.

Vertex Costs. To handle cardinality constraints or cost1 constraints, when given vertex
costs c : V → N>0, the dynamic programming algorithms to compute |Q| also partition the
candidates according to their attained cost, so all table entries are in particular indexed by
some cardinality/cost and some total weight. It is not sufficient to only consider candidates
of, say, minimum cost, because these might cancel later on during the execution of the
dynamic program and not lead to a connected solution. Consequently, the cut-and-count-
technique cannot handle superpolynomial vertex costs without increasing the running time
by a superpolynomial factor. Therefore, we will always only work with polynomially bounded
costs when using the cut-and-count-technique.

3.1.3 Related Work and Techniques
We discuss some shortcomings of the cut-and-count-technique and what approaches and
other techniques have been developed to deal with these shortcomings. As the cut-and-
count-technique is a mainstay throughout this thesis, we discuss further related work when
it is more appropriate in Part II and Part III.

Shortcomings of Cut-and-Count. The cut-and-count-technique has several shortcomings:
first, due to its reliance on the isolation lemma, it can only yield randomized algorithms.
Secondly, we must store separate counts for each possible size/cost of partial solutions
in the dynamic programming, therefore the cut-and-count-technique can only deal with

1Throughout this thesis, we distinguish between costs and weights; costs always refer to the objective function and
weights refer to the weight function used for the isolation lemma.

3.1 Connectivity Problems and Cut-and-Count 43

weighted problem variants at the cost of introducing a pseudo-polynomial dependence on
the weights in the running time. Thirdly, when using the isolation lemma, the counts must
also be separated according to the weights and since both size and weights can usually be at
least linear in the number of vertices n, the polynomial factor of the running time is at least
n2. Finally, as we cannot precisely distinguish which contributions come from unconnected
solutions and which from connected solutions, the cut-and-count-technique cannot solve
counting variants (with the exception of counting modulo 2 in many cases).

Improving Upon Quadratic Running Time. As explained, use of the isolation lemma leads
to at least a quadratic dependence on the number of vertices n. By relying on polynomial
identity testing instead, Ziobro and Pilipczuk [177] show how to adapt the cut-and-count-
technique for the case of HAMILTONIAN CYCLE[treewidth] so that the running time only
depends subquadratically on n. More precisely, they obtain a Monte Carlo algorithm for
HAMILTONIAN CYCLE[treewidth] with running time 4kn(k log n)O(1) by computing in a field
of characteristic 2 and using the Schwartz-Zippel lemma.

Rank-Based Approach. At the cost of increasing the base of the exponent in the running
time, the first three shortcomings can be dealt with by using the rank-based approach of
Bodlaender et al. [19]. Naive dynamic programming can usually be understood as separating
partial solutions into equivalence classes based on which other partial solutions they are
compatible with and building partial solutions based on this information in a bottom-up
fashion. For connectivity problems, this leads to the mentioned concept of connectivity
patterns, which leads to 2Ω(k log k) equivalence classes. The crucial observation of the rank-
based approach is that it is not necessary to store all such equivalence classes. Instead, it
suffices to keep a representative set F of partial solutions such that we have for every partial
solution Y that if there exists some partial solution X (among all partial solutions) that
is compatible with Y , then there also exists a partial solution X ′ ∈ F that is compatible
with Y . Such representative sets can be found by computing a basis of an appropriate
compatibility matrix, which is where the rank comes into play. However, the dimensions
of the considered compatibility matrix are exponential in the parameter, and the basis
computation is done via fast matrix multiplication, which is the bottleneck of the running
time of the obtained algorithms and makes the running time base dependent on the value of
the matrix multiplication exponent2 ω. Fomin et al. [76, 77] reformulate the computation of
a representative set in the rank-based approach for connectivity problems in matroid terms
and give faster algorithms for its computation in special cases, leading to an improvement in
the base of the running time, however the dependency on ω remains and the representative
set computation remains the bottleneck.

Let us make some additional remarks on the rank-based approach here. Variants of
the rank-based approach can also be used for problems without connectivity constraints,
for example, Jansen and Nederlof [111] and Groenland et al. [95] obtain algorithms for
coloring problems parameterized by cutwidth using similar methods. Moreover, if the slow
computation of a basis can be avoided and performed by other means, via e.g. problem-
specific tricks, then also tight upper bounds under SETH can be obtained with the rank-based

2The best currently known bound for ω is ω < 2.37286 by Alman and Vassilevska W. [3].

44 Chapter 3 Techniques

approach, examples are given by the two works on colorings [111, 95] and an algorithm for
HAMILTONIAN CYCLE[pathwidth] by Cygan et al. [48] and its counting variant by Curticapean
et al. [45]. For more information on rank-based methods, we direct the reader to the survey
of Nederlof [136].

Squared Determinant Approach. To deal with the final shortcoming of the cut-and-count-
technique, Bodlaender et al. [19] have also shown how counting variants of connectivity
problems parameterized by pathwidth or clique-width can be solved in single-exponential
time. These algorithms are obtained via the squared determinant approach, which uses a
reduction underlying Kirchhoff’s Matrix Tree Theorem that allows counting of connected
objects by computing appropriate determinants. The determinants are then squared so
that their sign can be ignored in the computation. By using the Leibniz formula for the
determinant, partial sums are obtained that can be evaluated by dynamic programming
along a path/tree decomposition. The squared determinant approach does not suffer
from a running time bottleneck like the rank-based approach, however the complexity of
counting variants of connectivity problems can simply be higher than the complexity of
the optimization or decision variant. For example, Curticapean et al. [45] have shown a
O∗((6 − ε)pw) lower bound for counting Hamiltonian Cycles parameterized by pathwidth,
which is tight as a O∗(6pw)-time algorithm is given by Bodlaender et al. [19] via the squared
determinant approach. In comparison, the decision version has optimal base 2 +

√
2 by

results of Cygan, Kratsch, and Nederlof [48].

Random Bits. The sampling of the weight function for the isolation lemma used in the
cut-and-count-technique uses O(n log n) random bits. Nederlof et al. [138] study isolation
schemes that use fewer random bits for problems on decomposable graphs, e.g., graphs
of low treewidth or low treedepth. For example, they prove that Hamiltonian Cycles in
graphs of treewidth at most t can be isolated with O(t log n+ log2(n)) random bits and that
maximum-size independent sets in graphs of treedepth at most d can be isolated using O(d)
random bits and polynomially bounded weights.

3.2 SETH-Lower Bounds Relative to Width Parameters

3.2.1 General Lower Bound Principle
In this section, we give an overview of the construction principle by Lokshtanov et al. [126]
for fine-grained lower bounds relative to width parameters. Lokshtanov et al. [126] first
obtained tight lower bounds for several benchmark problems parameterized by pathwidth
and treewidth, e.g., unless SETH fails, there is no ε > 0 such that VERTEX COVER[treewidth]
can be solved in time O∗((2 − ε)tw(G)) or such that DOMINATING SET[treewidth] can be
solved in time O∗((3−ε)tw(G)). A large number of lower bounds build upon this principle by
now, including lower bounds for other width parameters such as cutwidth or clique-width.
As we will apply this principle to several width parameters in this thesis, we give an overview
independent of the considered width parameter.

3.2 SETH-Lower Bounds Relative to Width Parameters 45

Reduction Objectives. Let w denote the considered width parameter and suppose that
we want to rule out running time O∗((α − ε)w(G)) for all ε > 0 for some target problem
parameterized by w, assuming SETH. To achieve such lower bounds, we want to reduce
q-SATISFIABILITY, where q is the maximum clause size, with n variables to an instance of the
target problem of width roughly n logα(2). Essentially, we must simulate 1/ logα(2) = log2(α)
variables per unit of width. Having achieved such a reduction, an improved algorithm for
the target problem with running time O∗((α − ε)w(G)) for some ε > 0 would imply that
there is some ε′ > 0 such that q-SATISFIABILITY can be solved in time O∗((2 − ε′)n) for all q,
thus violating SETH.

Grid-like Construction. The graphs obtained by the construction principle of Lokshtanov
et al. [126] can be interpreted as a matrix/grid of blocks, where each block spans several
rows and one column. Every row is a long path-like gadget that simulates a constant number
(log2(α)) of variables of the SATISFIABILITY instance and which contributes one unit of
width. For technical reasons, we consider bundles of rows simulating a variable group of
appropriate size when α is not a power of two. Every column corresponds to a clause and
consists of gadgets that decode the states on the path gadgets and check whether the resulting
assignment satisfies the clause via a clause gadget. Due to the grid-like construction, the
resulting graph has a linear structure instead of a tree-like structure, meaning that the lower
bounds already apply to a linear version of the width parameter, e.g., the lower bounds
already hold for pathwidth instead of treewidth or they hold for linear-clique-width instead
of clique-width. A schematic depiction of the grid-like construction is given in Figure 3.1.

· · ·

· · ·

· · · · · ·

· · ·· · ·

· · ·

· · ·

...
...

...
...

...
...

...
. . .

. . .
. . .

variable
clauses:

· · · · · ·

· · · · · ·

C1 C2 C3 Cm C1 C2 Cm

groups

Fig. 3.1.: A schematic depiction of the grid-like lower bound construction. Each bundle of rows
corresponds to a variable group, and each column to a clause. The connections between
the columns depend on the considered width parameter. Each clause gadget accesses a
subset of rows depending on which variable groups intersect the corresponding clause. We
highlight that multiple columns correspond to the same clause.

Path Gadgets. Usually, the most challenging part of this construction principle is to
construct appropriate path gadgets that lie at the intersection of each row and column. The
design of the decoding gadgets is simpler or can often be adapted from known constructions.
There is one path gadget at the intersection of each row and column. The goal is to construct
a path gadget admitting as many states as possible for the target problem, since the number
of such states corresponds to the base of the running time for which we obtain a lower bound,
i.e., α states rule out all running time bases below α. Since every row should contribute
one unit of width, adjacent path gadgets in a row must be connected by a separator of

46 Chapter 3 Techniques

size one where the type of separator depends on the considered width parameter, thus the
path gadget design greatly depends on the considered parameter. We continue by giving
a detailed explanation of the considerations that need to be made when designing a path
gadget.

State Transitions. When proving that a solution to the target problem yields a satisfying
assignment for SATISFIABILITY, we require that the path gadget state remains stable along
each row. Otherwise, if the states were allowed to change, one could pick a satisfying
assignment for each clause separately, which does not necessarily lead to an assignment
satisfying all clauses simultaneously. Unfortunately, it is often not possible to construct path
gadgets where the state remains stable. However, we can construct path gadgets where the
states can only transition in a controlled way.

Controlling the State Transitions. Suppose that there is some transition order on the
states, i.e., state i can transition to state j only if i ≤ j; this in particular implies that the
state can change only a finite number of times along each row as there is only a finite number
of possible states of the path gadget. By making the rows long enough and repeating clauses,
the pigeonhole principle allows us to find a region of columns spanning all clauses where
the states on all rows remain stable, hence obtaining the same assignment for every clause.
Therefore, our goal is to find a large set of states and an appropriate path gadget admitting
such a transition order.

Determining a Transition Order. As the connection between adjacent path gadgets de-
pends on the considered width parameter, so does the process of determining an appropriate
transition order. Indeed, some state transitions are forced upon us due to the parameter-
dependent separator connecting adjacent path gadgets. Here, we must start distinguishing
between a state at a separator and a state of a whole path gadget; a path gadget state is
usually an aggregate of separator states at the left and the right separator and an internal
state. For sparse width parameters such as pathwidth, determining a transition order is
simpler, because the number of possible separator states is very limited, and thus a less
systematic approach often suffices. However, for dense width parameters, the possible
set of separator states is much larger, and usually we need to select a specific subset of
separator states to obtain path gadget states admitting a transition ordering. Therefore, we
begin by analyzing the forced state transitions across a parameter-dependent separator. We
obtain a transition matrix capturing for each separator state which other separator states it
can transition into. The transition matrix can also be understood as a compatibility matrix
showing which pairs of separator states, one on the left side of the separator and one on the
right, can lead to a globally feasible solution and which cannot. After possibly reordering the
rows and columns of the compatibility matrix, a transition order must induce a triangular
submatrix with ones on the diagonal, where the ones on the diagonal later allow for the
path gadget state to remain stable.

From Triangular Submatrix to Path Gadget Behavior. Having determined a large tri-
angular submatrix, representing a transition ordering, of the compatibility matrix, we can

3.2 SETH-Lower Bounds Relative to Width Parameters 47

deduce the desired path gadget behavior as follows. We pair the separator states along the
main diagonal, which consists of only ones, of the triangular submatrix; these obtained state
pairs will model the path gadget states. A state pair is attainable by a path gadget, if there
exists a partial solution such that the first state of the pair is communicated to one boundary
of the path gadget and the second state to the other boundary. If there is a path gadget
such that exactly the state pairs induced by the triangular submatrix are attainable, then
the path gadget has the desired transition behavior: the ones on the diagonal show that the
path gadget state can remain stable and the triangularity of the submatrix shows that state
transitions can only occur in one direction, e.g., we can transition from path gadget state i
to path gadget state j only if i ≤ j.

Decoding and Clause Gadgets. We make some preliminary remarks on the decoding and
clause gadgets. Each column of the construction contains several decoding gadgets, one
for each row bundle corresponding to a variable group, which looks at the path gadgets in
its associated row bundle and decodes their states into a truth assignment for the variable
group. The clause gadget attaches to (some of) the decoding gadgets in its column and
checks whether the decoded truth assignments satisfy the clause associated with the column.
If the interface between the path and decoding gadgets is designed in a consistent way, then
the decoding and clause gadgets can often be designed independently of the considered
width parameter; we will see this later when proving various lower bounds for connectivity
problems. The clause gadget is where the restriction q on the clause size comes into play, as
it allows us to bound the size of the clause gadget by some function of q. However, there are
many cases, in particular in this thesis, where the clause gadget size does not scale with the
clause size, allowing us to prove the lower bounds even under the weaker assumption of
CNF-SETH instead of SETH.

3.2.2 Lower Bound for Total Dominating Set[cutwidth]
As a simple example of the lower bound technique, we give a tight lower bound for TOTAL

DOMINATING SET[cutwidth] which we then lift to a tight lower bound for DOMINATING SET[tc-
cutwidth]; these two lower bounds are based on joint work with Stefan Kratsch [102]. TOTAL

DOMINATING SET[treewidth] can be solved in time O∗(4tw(G)) by van Rooij et al. [164].
We will prove that there is no ε > 0 such that TOTAL DOMINATING SET[cutwidth] can be
solved in time O∗((4 − ε)ctw(G)) unless SETH fails; due to the mentioned algorithm and
Section 2.4.4 this result is tight. We show this by adapting the lower bound construction
for DOMINATING SET given by Lokshtanov et al. [126] and the observation of van Geffen
et al. [94] that slightly changing the construction already yields the same lower bound
parameterized by cutwidth. Since 4 is a power of two, we do not need to group several rows
to avoid rounding errors, hence several technicalities in the proof can be avoided. We begin
with a preliminary analysis of states in the TOTAL DOMINATING SET problem, which will
serve as our guide in the formal construction and proof of the lower bound.

Vertex States. We begin by studying the possible states of a vertex with respect to a partial
solution of TOTAL DOMINATING SET; we also refer to vertex states as atomic states or atoms. In

48 Chapter 3 Techniques

ax vs. by 11 10 01 00
11 1 1 1 1
10 1 1 0 0
01 1 0 1 0
00 1 0 0 0

ax vs. by 00 10 01 11
11 1 1 1 1
10 0 1 0 1
01 0 0 1 1
00 0 0 0 1

Tab. 3.1.: The compatibility matrix for TOTAL DOMINATING SET[cutwidth], describing which vertex
states are compatible across an edge. On the right, the columns of the compatibility matrix
are rearranged so that it induces a triangular matrix.

this case, a partial solution is simply some vertex subset X ⊆ V . For some vertex v ∈ V , we
should clearly distinguish whether v ∈ X or v /∈ X and for sake of the domination property
we should also distinguish whether v ∈ N(X) or v /∈ N(X). Combining these two choices
yields in total 4 possibilities, which we encode as Atoms = {11,10,01,00}, where the
bold number represents whether the vertex is contained in X and the subscript represents
whether the vertex is dominated by X. We denote the state of v with respect to X by
stateX(v) ∈ Atoms. So, X is a total dominating set ofG if and only if stateX(v) ∈ {01,11}
for all v ∈ V .

State Behavior Across Separators. Next, we consider the state behavior across the
parameter-defining separators, which are simply edge separators/cuts for cutwidth. It is often
sufficient to consider separators of size 1, so we simply consider a single edge. We define the
relation ∼ on States as follows: ax ∼ by if and only if (x = 1 ∨ b = 1) ∧ (y = 1 ∨ a = 1),
leading to the first compatibility matrix3 in Table 3.1. The relation ∼ captures the following
situation. Given two graphs Gi = (Vi, Ei), i ∈ [2], with a distinguished vertex v̂i ∈ Vi and
partial solution Xi ⊆ Vi such that stateXi

(Vi \ {v̂i}) ⊆ {01,11}, let G̃ denote the graph
obtained by adding the edge {v̂1, v̂2} in the (disjoint) union of G1 and G2. We want that
stateX1(v̂1) ∼ stateX2(v̂2) if and only if X1 ∪ X2 is a total dominating set of G̃. Since
all remaining vertices of G̃ are already dominated, it suffices to check that v̂i is already
dominated by Xi or newly dominated via the edge {v̂1, v̂2}, which is precisely implemented
by the relation ∼.

Transition Ordering. The compatibility matrix guides us in deciding which vertex states
should be implemented at the boundary of the path gadget to obtain path gadget states
that can only transition according to some appropriate transition ordering. Reordering the
columns in the compatibility matrix, we obtain the second matrix in Table 3.1 which is
triangular. By pairing the vertex states along the main diagonal, we obtain the ordered pairs
(first column state, then row state)

s1 = (00,11), s2 = (10,10), s3 = (01,01), s4 = (11,00) ∈ Atoms2.

We say that a path gadget P with entry vertex pentry and exit vertex pexit can attain state
(by,ax) ∈ Atoms2 if there is some X ⊆ V (P) such that (stateX(pentry), stateX(pexit)) =
(by,ax) and stateX(V (P) \ {pentry, pexit}) ⊆ {01,11}. If we can build a path gadget that
can attain the states s1, s2, s3, s4 and no other states, then the triangular compatibility matrix

3The compatibility matrices for larger separators often turn out to be Kronecker powers of the compatibility matrix
for separators of size 1, e.g., see Groenland et al. [95]. In such cases, the essential matrix structure is already
captured by the size-1 case, which hence serves as a good starting point.

3.2 SETH-Lower Bounds Relative to Width Parameters 49

tells us that between two consecutive path gadgets state si can only transition to sj with
i ≤ j, as the path gadgets are connected by adding an edge between the exit vertex of the
first gadget and the entry vertex of the second. Hence, we obtain the transition ordering
s1 ⪯ s2 ⪯ s3 ⪯ s4, which will allow us to obtain a satisfying assignment from a solution to
the TOTAL DOMINATING SET instance as discussed before.

From State Analysis to Construction. After the state analysis, we now have a concrete
guideline for the behavior that should be implemented by the path gadget. An additional
design constraint to consider for problems with a cardinality/cost constraint, in particular
TOTAL DOMINATING SET, is that all states attainable by the path gadget should have equal
cost. Otherwise, choosing a state with lower cost frees up budget that could be used for
other gadgets to achieve undesired behavior which could cause the reduction proof to fail.
Besides the path gadgets, we also need to design decoding and clause gadgets. However,
for the lower bounds in this thesis relative to width parameters, the design of the decoding
and clause gadgets is considerably simpler and can often be directly adapted from already-
known constructions. We now proceed with the formal construction and proof of the TOTAL

DOMINATING SET[cutwidth] lower bound.

Theorem 3.2.1. There is no algorithm solving TOTAL DOMINATING SET in time O∗((4 −
ε)ctw(G)) for some ε > 0, unless SETH is false.

Construction Setup. Let σ be a q-SATISFIABILITY instance with n variables and m clauses.
We construct a graph G = G(σ) of cutwidth n/2 + 4q + O(1). We assume without loss of
generality that σ has an even number of variables and partition the variables into pairs, so
that the i-th pair, i ∈ [n/2], consists of the variables x2i−1 and x2i.

pi,ℓ1 pi,ℓ2

pi,ℓ3 pi,ℓ4

qi,ℓ1qi,ℓ2

qi,ℓ4 qi,ℓ3

pi,ℓ+1
1 pi,ℓ+1

2

pi,ℓ+1
3 pi,ℓ+1

4

qi,ℓ+1
1qi,ℓ+1

2

qi,ℓ+1
4 qi,ℓ+1

3

· · · · · ·

Fig. 3.2.: Two path segments P i,ℓ, P i,ℓ+1 and guards Qi,ℓ, Qi,ℓ+1.

Path Gadgets. The design of the path gadget for TOTAL DOMINATING SET[cutwidth] is
relatively simple, one can observe that a reasonable total dominating set on a long path
should repeatedly take two consecutive vertices with a gap of two. Such a total dominating
set essentially cycles between the considered four vertex states, or atoms, on the path and
we design our path gadget based on this observation. For every pair i ∈ [n/2], we create a
path P i consisting of 4m(3n2 + 1) vertices and partition the path into m(3n2 + 1) segments
consisting of four vertices. Each segment corresponds to one path gadget and we have 3n2 +1
column regions which cover the m clauses each. Segment ℓ ∈ [m(3n2 + 1)] consists of the
vertices P i,ℓ = {pi,ℓ1 , pi,ℓ2 , pi,ℓ3 , pi,ℓ4 }; pi,ℓ1 is the entry vertex and pi,ℓ4 is the exit vertex. To each

50 Chapter 3 Techniques

segment ℓ, we attach four guard verticesQi,ℓ = {qi,ℓ1 , . . . , qi,ℓ4 } such thatN(qi,ℓj) = P i,ℓ\{pi,ℓj }
for all j ∈ [4], i.e., for every vertex on P i,ℓ there is one guard that avoids this vertex and is
only adjacent to all other vertices on P i,ℓ, see Figure 3.2. The guards Qi,ℓ ensure that a total
dominating set must contain at least two vertices of P i,ℓ.

Xi,ℓ
1 : Xi,ℓ

2 : Xi,ℓ
3 : Xi,ℓ

4 :

s1 = (00,11) s2 = (10,10) s3 = (01,01) s1 = (11,00)

Fig. 3.3.: The four path gadget states Xi,ℓ
1 , Xi,ℓ

2 , Xi,ℓ
3 , and Xi,ℓ

4 on the path segment P i,ℓ. The filled
vertices belong to the corresponding set.

States of the Path Gadget. Let Xi,ℓ
1 = {pi,ℓ3 , pi,ℓ4 }, Xi,ℓ

2 = {pi,ℓ1 , pi,ℓ4 }, Xi,ℓ
3 = {pi,ℓ2 , pi,ℓ3 },

Xi,ℓ
4 = {pi,ℓ1 , pi,ℓ2 }, see Figure 3.3 for a depiction of these sets. Note that these sets attain the

states s1, . . ., s4 as desired, e.g., Xi,ℓ
1 attains the path gadget state s1 = (00,11) as the entry

vertex pi,ℓ1 has vertex state 00 and the exit vertex pi,ℓ4 the vertex state 11 with respect to 1ℓi .

Decoding Gadget. For each segment P i,ℓ, we introduce four connector vertices ẑi,ℓj , j ∈ [4]
and four clique vertices zi,ℓj , j ∈ [4], together with two clique guards yi,ℓ1 and yi,ℓ2 . The
connector vertex ẑi,ℓj is adjacent to P i,ℓ \Xi,ℓ

j and the clique vertex zi,ℓj . The clique guards
yi,ℓ1 and yi,ℓ2 are adjacent and the clique vertices zi,ℓj , j ∈ [4], together with yi,ℓ1 form a clique.
The function of the decoding gadget is that the clique vertices decode which path gadget
state was chosen on P i,ℓ and serve as a simple interface for the clause gadget.

ẑi,ℓ1

ẑi,ℓ2

ẑi,ℓ3

ẑi,ℓ4

zi,ℓ1

zi,ℓ2

zi,ℓ3

zi,ℓ4

yi,ℓ1 yi,ℓ2

Fig. 3.4.: The block gadget Bℓ
i . The vertices in the dashed ellipse form a clique. The vertex ẑi,ℓ

3 is
adjacent to P i,ℓ \ Xi,ℓ

3 .

Blocks and Regions. We define Zi,ℓ = {zi,ℓj , ẑi,ℓj : j ∈ [4]} ∪ {yi,ℓ1 , yi,ℓ2 }, Bi,ℓ = P i,ℓ ∪Qi,ℓ ∪
Zi,ℓ, and Rγ =

⋃n/2
i=1

⋃γm
ℓ=(γ−1)m+1 B

i,ℓ for γ ∈ [3n2 + 1]. The Bi,ℓ are called blocks; the Rγ

are called regions. See Figure 3.4 for a depiction of a single block. Each region can be

3.2 SETH-Lower Bounds Relative to Width Parameters 51

B1
1

B1
2

B1
n/2

...

B2
1

B2
2

B2
n/2

...

· · ·

· · ·

· · ·

. . .

Bm1

Bm2

Bmn/2

...

Bm+1
1

Bm+1
2

Bm+1
n/2

...

Bm+2
1

Bm+2
2

Bm+2
n/2

...

· · ·

· · ·

· · ·

. . .

B2m
1

B2m
2

B2m
n/2

...

· · ·

· · ·

· · ·

. . .

Bncm
1

Bncm
2

Bncm
n/2

...

h1

h2

R1 R2

ĉ1
1 ĉ1

2 ĉ1
m ĉ2

1 ĉ2
2 ĉ2

m · · ·

h3

h4

h′
1

h′
2

h′
3

h′
4

· · · · · · ĉnc
m

nc = 3n2 + 1

Fig. 3.5.: G viewed as a matrix of block gadgets. The dashed rectangles delineate different regions.

visualized as a matrix of blocks with n/2 rows and m columns and we have 3n2 + 1 regions
in total, see Figure 3.5. Notice that there is a matching of size n/2 between the exit vertices
of column ℓ and the entry vertices of column ℓ+ 1.

Clause Gadgets. We fix a bijection κ : {0, 1}2 → [4] mapping truth assignments of a pair of
variables to a path gadget state, which is indicated by a number between 1 and 4. For each
clause Cℓ′ , ℓ′ ∈ [m], we introduce 3n2 + 1 clause vertices ĉγℓ′ , γ ∈ [3n2 + 1], one per region.
The vertex ĉγℓ′ is adjacent to some vertices in the blocks Bi,(γ−1)m+ℓ′

for every i ∈ [n/2].
Namely, for every variable pair i, we add an edge between ĉγℓ′ and zi,(γ−1)m+ℓ′

j if κ−1(j) is
a truth assignment for variable pair i that satisfies clause Cℓ′ . Hence, in a fixed column
(γ− 1)m+ ℓ′, all clique vertices that correspond, via κ, to truth assignments of some variable
pair i ∈ [n/2] satisfying clause Cℓ′ are adjacent to the clause vertex ĉγℓ′ .

Endpoint Guards. Finally, we introduce eight endpoint guards ht, h′
t, t ∈ [4], together with

the edges {h1, h2}, {h1, h3}, {h3, h4}, {h′
1, h

′
2}, {h′

1, h
′
3}, {h′

3, h
′
4} and h1 is made adjacent

to pi,11 for all i ∈ [n/2] and h′
1 is made adjacent to pi,m(3 n

2 +1)
4 for all i ∈ [n/2]. This concludes

the construction of G(σ). See Figure 3.5 for a depiction of the graph G as a matrix of blocks.

Lemma 3.2.2. If σ has a satisfying assignment, then G(σ) has a total dominating set of size at
most 4m(3n2 + 1)n2 + 4.

Proof. Let τ be a satisfying truth assignment of σ. Let τi be the restriction of τ to the i-th
variable pair. We construct a total dominating set X of the desired size as follows. For every
variable pair i ∈ [n2], we take in each block Bi,ℓ the vertices in Xi,ℓ

κ(τi), the vertex zi,ℓκ(τi), and

the clique guard yi,ℓ1 for all ℓ ∈ [m(3n2 + 1)]. Additionally, we take the endpoint guards h1,
h3, h′

1, h′
3. This concludes the description of X and we see that |X| = 4m(3n2 + 1)n2 + 4.

First, observe that X dominates all the endpoint guards ht, h′
t, t ∈ [4], and the endpoints

of all P i are dominated, since h1, h
′
1 ∈ X. Next, since X contains two vertices from each

path segment P i,ℓ, we see that X intersects the neighborhoods of all guard vertices in Qi,ℓ

and hence dominates them. On each path P i, we are repeatedly taking two consecutive

52 Chapter 3 Techniques

vertices with a gap of two, except for possibly the ends of P i. Hence, also all internal vertices
of P i are dominated.

Consider the vertices in the Zi,ℓ next. Since yi,ℓ1 ∈ X, we see that yi,ℓ2 and all zi,ℓj , j ∈ [4],
are dominated. Additionally, since zi,ℓκ(τi) ∈ X, also yi,ℓ1 and ẑi,ℓκ(τi) must be dominated. For

j ∈ [4]\{κ(τi)}, we see that ẑi,ℓj is dominated by some vertex on P i,ℓ, because N(ẑi,ℓj)∩X =
(P i,ℓ \Xi,ℓ

j) ∩Xi,ℓ
κ(τi) ̸= ∅ by construction.

Finally, consider the clause vertices ĉγℓ′ . Since clause Cℓ′ is satisfied by τ , there is
some variable pair i so that τi satisfies Cℓ′ . By construction of G(σ) and X, we have that
z
i,(γ−1)m+ℓ′

κ(τi) ∈ X and this vertex is adjacent to ĉγℓ′ , so ĉγℓ′ is dominated.

Usually, the reverse direction, i.e., showing that a solution to the target problem yields
a satisfying assignment, is more difficult, since the transition order comes into play here.
We start by studying the structure of total dominating sets in G(σ) and showing that they
behave as desired, i.e., assume one of the sets Xi,ℓ

j , j ∈ [4], on each path gadget.

Lemma 3.2.3. Let X be a total dominating set of G(σ), then for any block Bi,ℓ = P i,ℓ ∪Qi,ℓ ∪
Zi,ℓ, we have that |X∩P i,ℓ| ≥ 2, |X∩Zi,ℓ| ≥ 2, and yi,ℓ1 ∈ X. Moreover, if |X∩Bi,ℓ| ≤ 4, then
there is a unique j(i, ℓ) ∈ [4] such that X ∩ P i,ℓ = Xi,ℓ

j(i,ℓ) and X ∩ {zi,ℓj : j ∈ [4]} = {zi,ℓj(i,ℓ)}.

Proof. Suppose that |X ∩P i,ℓ| ≤ 1, then there is some j ∈ [4] so that N(qi,ℓj) ∩X = ∅, hence
X cannot be a total dominating set. Observe that yi,ℓ2 is a degree-1 vertex, so X must contain
its neighbor yi,ℓ1 . For yi,ℓ1 ∈ X ∩ Zi,ℓ to be dominated, X must contain another vertex from
N(yi,ℓ1) ⊆ Zi,ℓ, hence |X ∩ Zi,ℓ| ≥ 2.

Now, suppose that |X ∩ Bi,ℓ| ≤ 4 holds. Due to the first part of this lemma, we have
that |X ∩ Bi,ℓ| = 4, in particular |X ∩ P i,ℓ| = 2, X ∩Qi,ℓ = ∅, and X ∩ {ẑi,ℓj : j ∈ [4]} = ∅,
because N(yi,ℓ1) ⊆ Zi,ℓ \ {ẑi,ℓj : j ∈ [4]}. Suppose that X ∩ P i,ℓ /∈ {Xi,ℓ

1 , . . . , Xi,ℓ
4 }, then

X ∩ P i,ℓ = {pi,ℓ1 , pi,ℓ3 } or X ∩ P i,ℓ = {pi,ℓ2 , pi,ℓ4 }, but then pi,ℓ3 or respectively pi,ℓ2 is not
dominated. Hence, there is a unique j(i, ℓ) ∈ [4] such that X ∩ P i,ℓ = Xi,ℓ

j(i,ℓ). By the

established properties of X, the only neighbor of ẑi,ℓj(i,ℓ) that may be in X is zi,ℓj(i,ℓ), hence to

dominate ẑi,ℓj(i,ℓ) we must have zi,ℓj(i,ℓ) ∈ X. This concludes the proof.

Lemma 3.2.3 has established that total dominating sets behave on each path gadget as
desired. The next step is to show that the transition ordering is respected when sweeping
along the path gadgets of a row; recall that Xi,ℓ

1 = {pi,ℓ3 , pi,ℓ4 }, Xi,ℓ
2 = {pi,ℓ1 , pi,ℓ4 }, Xi,ℓ

3 =
{pi,ℓ2 , pi,ℓ3 }, Xi,ℓ

4 = {pi,ℓ1 , pi,ℓ2 } and s1 = (00,11), s2 = (10,10), s3 = (01,01), s4 = (11,00).

Lemma 3.2.4. Suppose that X is a total dominating set of G(σ) with |X ∩Bi,ℓ| ≤ 4 for all i
and ℓ. Using the notation from Lemma 3.2.3, it holds for every i ∈ [n/2] and j ∈ [m(3n2 +1)−1]
that j(i, ℓ) ≤ j(i, ℓ+ 1).

Proof. The inequality j(i, ℓ) ≤ j(i, ℓ + 1) is trivial if j(i, ℓ + 1) = 4. If j(i, ℓ + 1) ≤ 2, then
pi,ℓ+1

1 can only be dominated by pi,ℓ4 , which implies that j(i, ℓ) ≤ 2. It remains to rule out
the cases j(i, ℓ) = 2, j(i, ℓ+ 1) = 1, and j(i, ℓ) = 4, j(i, ℓ+ 1) = 3. In both cases the vertex
pi,ℓ4 is not dominated.

We can now prove the reverse direction of the reduction by deducing that a region Rγ

exists where the state on all paths P i, i ∈ [n/2], remains stable and arguing that we can
read off a satisfying assignment there.

3.2 SETH-Lower Bounds Relative to Width Parameters 53

Lemma 3.2.5. If G(σ) has a total dominating size X of size at most 4m(3n2 + 1)n2 + 4, then σ
is satisfiable.

Proof. Note that X contains the vertices h1, h3, h′
1, h′

3 due to the degree-1 neighbors. There
are in total m(3n2 + 1)n2 blocks Bi,ℓ and X has to contain at least four vertices in each block
due to Lemma 3.2.3. This completely uses the budget for X and thus we have |X ∩Bi,ℓ| = 4
for all i and ℓ. By Lemma 3.2.3, X assumes one of our desired states on each Bi,ℓ.

Using the notation of Lemma 3.2.4, we say that a cheat occurs if j(i, ℓ) < j(i, ℓ+ 1). Due
to Lemma 3.2.4, there can be at most 3 cheats on each P i. Since there are n

2 paths, at most
3n2 regions can be spoiled by cheats. Hence, there is at least one γ ∈ [3n2 + 1] so that Rγ

does not contain a cheat. Fix this γ for the remainder of the proof.
We will read off a satisfying truth assignment τ for σ from region Rγ . The truth

assignment for variable pair i is given by τi = κ−1(j(i, γm)); since Rγ is free of cheats, we
could have chosen any ℓ ∈ [(γ − 1)m+ 1, γm] instead of γm to define τi. The desired truth
assignment is given by τ = τ1 ∪ · · · ∪ τn/2.

Consider some clause Cℓ′ and its associated clause vertex ĉγℓ′ in region Rγ . Let ℓ =
(γ−1)m+ℓ′. Since X dominates the clause vertex, there is some i so that zi,ℓj(i,ℓ) ∈ X∩N(ĉγℓ′).
By construction, this means that the state of X on P i,ℓ corresponds to a satisfying truth
assignment of clause Cℓ′ . By the previous paragraph, this is the same state as the state of X
on P i,γm which in turn corresponds to τi, hence τ must satisfy clause Cℓ′ . Since the choice
of Cℓ′ was arbitrary, it follows that σ is satisfiable.

It remains to bound the cutwidth of the constructed graph G(σ) and then we finally have
all ingredients to prove Theorem 3.2.1.

Lemma 3.2.6. The cutwidth of G(σ) is at most n/2 + 4q + O(1).

Proof. Consider the linear layout of G(σ) starting with h4, h3, h2, h1. Then we go through
G(σ) column by column and for each column ℓ ∈ [m(3n2 + 1)], the linear layout first contains
the clause vertex of the ℓ-th column, and then the vertices of B1,ℓ, B2,ℓ, . . ., Bn/2,ℓ in this
order. The layout ends with the vertices h′

1, h
′
2, h

′
3, h

′
4.

Consider any vertex v∗ ∈ V (G(σ)) and the edges crossing the cut directly after v∗. If
v∗ ∈ {h4, h3, h2, h

′
1, h

′
2, h

′
3, h

′
4}, then at most two edges cross the cut. If v∗ = h1, then n/2

edges cross the cut, namely those from h1 to the block gadgets Bi,1 for all i ∈ [n/2]. Now,
suppose that v∗ is a vertex in column ℓ ∈ [m(3n2 + 1)].

If v∗ = ĉγℓ′ is the clause vertex in column ℓ = (γ − 1)m + ℓ′, then the cut consists of
the edges between v∗ and its neighbors and the n/2 matching edges between column ℓ− 1
and column ℓ (or the n/2 edges coming from h1 if ℓ = 1). Since each clause has size at
most q, the clause vertex ĉγℓ′ is adjacent to vertices in at most q different block gadgets. By
construction, v∗ = ĉγℓ′ is adjacent to at most 4 vertices in each block gadget. Hence, this cut
consists of at most n/2 + 4q edges.

If v∗ ̸= ĉγℓ′ is not the clause vertex in column ℓ = (γ− 1)m+ ℓ′, then v∗ lies in some block
gadget Bi,ℓ with i ∈ [n/2]. By construction, every other block gadget is completely contained
on one side of the cut, so the cut contains edges that are internal to at most one block
gadget. Since each block gadget consists of a constant number of vertices, this accounts for
a constant number of edges. Furthermore, the cut contains at most n/2 matching edges, one

54 Chapter 3 Techniques

for each group. More precisely, for the block gadgets of column ℓ that appear before Bi,ℓ

in the layout, the edge from the exit vertex to the entry vertex of the next column is in the
cut, and for the block gadgets of column ℓ that appear after Bi,ℓ, the edge to the previous
column is in the cut. The block gadget Bi,ℓ has two edges to other columns that can be in
the cut. Finally, the edges from block gadgets of column ℓ to ĉγℓ′ can be in the cut, but these
are bounded by 4q as before. In total, the cut contains at most n/2 + 4q + O(1) edges.

As seen in the proof of Lemma 3.2.6, the number of edges incident to ĉγℓ′ , which depends
on the clause size, affects the cutwidth of the construction, hence we assume SETH for this
lower bound instead of the weaker hypothesis CNF-SETH.

Proof of Theorem 3.2.1. Suppose there is an algorithm A that solves TOTAL DOMINATING

SET in time O∗((4 − ε)ctw(G)) for some ε > 0. We show how to solve q-SATISFIABILITY in
time O∗((2 − ε′)n) for some ε′ > 0 for all q, thus contradicting SETH by Theorem 2.1.2.
Given a q-SATISFIABILITY instance σ, we construct G(σ) in polynomial time and then run
A on G(σ) and return its answer. This is correct by Lemma 3.2.2 and Lemma 3.2.5. Due
to Lemma 3.2.6, the running time is O∗((4 − ε)ctw(G(σ))) ≤ O∗((4 − ε)n/2+4q+O(1)) ≤
O∗((4 − ε)n/2) ≤ O∗((2 − ε′)n) for some ε′ > 0, where we use q ∈ O(1) in the second
inequality.

3.2.3 Lower Bound for Dominating Set[tc-cutwidth]
The lower bound for TOTAL DOMINATING SET[cutwidth] can be lifted to a tight lower bound
for DOMINATING SET[tc-cutwidth]. We first survey the relevant known results. Bodlaender et
al. [23] have shown that DOMINATING SET[clique-width] can be solved in time O∗(4cw(G)).
A tight lower bound for DOMINATING SET[clique-width] was obtained by Katsikarelis et
al. [114], as a special case of the more general (k, r)-CENTER problem. The lower bound
of Katsikarelis et al. already applies to the more restrictive parameter linear-clique-width
as is usual. As twinclass-cutwidth is even more restrictive than linear-clique-width, cf.
Section 2.4.4, our lower bound extends the range of parameters where the optimal base of
DOMINATING SET is 4.

When solving DOMINATING SET on a graph G containing nontrivial twinclasses, we
observe that in true twinclasses C it suffices to pick a single vertex in C which will dominate
all vertices inside C and its neighboring twinclasses. However, for false twinclasses C, i.e.,
those inducing an independent set, we need to take all vertices in C or, preferably, take a
single vertex in a neighboring twinclass to dominate all vertices inside C. Hence, if G only
consists of false twinclasses, then we essentially need to solve TOTAL DOMINATING SET on
the quotient graph G/Πtc(G). By replacing every vertex of a graph with a false twinclass,
this idea gives rise to a reduction from TOTAL DOMINATING SET[cutwidth] to DOMINATING

SET[tc-cutwidth]. We make this reduction formal in the remainder of this subsection.

For the remainder of this subsection assume without loss of generality that G is connected
and consists of at least two vertices. We define the graph G′ by V (G′) = V (G) ∪ {v′ : v ∈
V (G)} and E(G′) = E(G) ∪ {{u, v′}, {u′, v}, {u′, v′} : {u, v} ∈ E(G)}, i.e., we obtain G′

from G by creating a false twin of each vertex, hence G′ has no twinclass of size 1.

3.2 SETH-Lower Bounds Relative to Width Parameters 55

Lemma 3.2.7. It holds that tc-ctw(G′) ≤ ctw(G).

Proof. We begin by showing that u ̸= v ∈ V (G) are twins in G′ if and only if u and v are
false twins in G. First, suppose that {u, v} ∈ E(G). By construction of G′, this implies that
u′ ∈ NG′(v) \NG′(u) and hence u and v cannot be twins in G′ in this case. If u and v are
false twins in G′, then NG(u) = NG′(u) ∩ V (G) = NG′(v) ∩ V (G) = NG(v), so u and v are
false twins in G as well. If u and v are false twins in G, then NG′(u) = NG(u) ∪ {w′ : w ∈
NG(u)} = NG(v) ∪ {w′ : w ∈ NG(v)} = NG′(v), so u and v are false twins in G′ as well.

By construction of G′, the two vertices v and v′ are false twins in G′ for all v ∈ V (G).
Together with the previous argument and since the twin relation is an equivalence relation,
this shows that every twinclass U ′ of G′ has the form U ′ = U ∪ {v′ : v ∈ U}, where U is
a false twinclass of G. For each false twinclass U of G, pick a vertex vU ∈ U and consider
the map Πtc(G′) ∋ U ′ = U ∪ {v′ : v ∈ U} 7→ vU ∈ U ⊆ V (G). If U ′ and W ′ are adjacent
twinclasses of G′, then the vertices vU and vW have to be adjacent in G. Hence, we can view
G′/Πtc(G′) as a subgraph of G and see that tc-ctw(G′) = ctw(G′/Πtc(G′)) ≤ ctw(G).

Lemma 3.2.8. G′ has a dominating set of size at most b if and only if G has a total dominating
set of size at most b.

Proof. ⇒: Let X ′ be a dominating set of G′. We want to show that X ′ can be transformed
into a dominating set X of G′ with X ⊆ V (G) and |X| ≤ |X ′|, we will then argue that
such X must be a total dominating set of G. If |X ′ ∩ {v, v′}| = 1 for some v ∈ V (G), then
we can assume without loss of generality that v ∈ X ′. Suppose that |X ′ ∩ {v, v′}| = 2 for
some v ∈ V (G). If X ′ ∩ NG′(v) = X ′ ∩ NG′(v′) = ∅, then choose some w ∈ NG′(v) ∩
V (G) = NG′(v′) ∩ V (G), which exists due to our assumptions about G, and consider
X ′′ = (X ′ \ {v′}) ∪ {w}. If instead X ′ ∩ NG′(v) = X ′ ∩ NG′(v′) ̸= ∅, then consider
X ′′ = X ′ \ {v′}. In either case, |X ′′| ≤ |X ′| and we claim that X ′′ is still a dominating set
of G′. Only vertices inside NG′ [v′] may not be dominated anymore. The vertex v′ is still
dominated, because there is some w ∈ X ′′ ∩NG′(v) = X ′′ ∩NG′(v′). The vertices in NG′(v′)
are still dominated, because v ∈ X ′′ and NG′(v) = NG′(v′). Hence, X ′′ is a dominating set
of G′.

By repeating this argument, we obtain a dominating set X of G′ with |X| ≤ |X ′| and
X ⊆ V (G). For every v ∈ V (G), we have that v′ /∈ X, and hence, there exists some
w ∈ X ∩NG′(v′) = X ∩NG′(v) = X ∩NG(v), where the last equality is due to X ⊆ V (G).
This shows that X is a total dominating set of G.

⇐: Let X be a total dominating set of G. We claim that X is also a dominating set of
G′. As G′[V (G)] = G, any vertex in V (G) is still dominated by X inside G′. Consider some
vertex v′ for some v ∈ V (G). Since X is a total dominating set of G, there exists some
w ∈ X ∩NG(v) = X ∩NG′(v) = X ∩NG′(v′) and hence v′ is dominated by X as well. So,
X must be a dominating set of G′.

Theorem 3.2.9. If there is an algorithm A solving DOMINATING SET in time O∗((4−ε)tc-ctw(G))
for some ε > 0, then there is an algorithm A′ solving TOTAL DOMINATING SET in time
O∗((4 − ε)ctw(G)).

Proof. Suppose A is such an algorithm. The algorithm A′ first constructs G′ in polynomial
time, then runs A on G′, which takes time O∗((4 − ε)tc-ctw(G′)) ≤ O∗((4 − ε)ctw(G)) by

56 Chapter 3 Techniques

Lemma 3.2.7. Finally, A′ returns the same answer as A. The correctness of A′ follows from
Lemma 3.2.8 and the running time of A′ is dominated by running A on G′.

3.2 SETH-Lower Bounds Relative to Width Parameters 57

Part II

Connectivity Problems on
Dense Width Parameters

Introduction 4
Connectivity constraints are a very natural form of global constraints in the realm of graph
problems, which are more challenging to handle than local constraints. In this part, we
investigate the fine-grained parameterized complexity of several benchmark connectivity
problems, such as CONNECTED VERTEX COVER, parameterized by dense width parameters.
As mentioned in Section 6.1.1, it was thought for a long time that running times of the
form 2O(k log k)nO(1) are unavoidable even when parameterized by a sparse width parameter
like treewidth. Cygan et al. [49, 51] broke this barrier by introducing the cut-and-count-
technique and obtained algorithms with single-exponential running time O∗(αtw) for many
connectivity problems parameterized by treewidth. The cut-and-count-technique reformu-
lates the global connectivity constraint via the counting of consistent cuts, which are locally
checkable and thus lead to more straightforward dynamic programming algorithms again.
From a fine-grained lens, we are interested in whether the obtained bases α in the running
time are optimal. Indeed, for multiple problems parameterized by pathwidth or treewidth
this was immediately settled by Cygan et al. [50] by providing appropriate lower bounds
under SETH.

A natural follow-up question is how the complexity changes when we move away
from treewidth to other parameters. Going to a more restrictive parameter, the base might
decrease or stay the same. A recent work by Bojikian et al. [24] gives a comprehensive answer
for the parameter cutwidth and indeed both phenomenons occur, e.g., for CONNECTED

VERTEX COVER the base decreases from 3 to 2 and for STEINER TREE the base stays at 3. In
the other direction, we can move to more expressive parameters, where the base might stay
the same, increase, or the problem becomes so difficult that no single-exponential algorithm
or even no FPT-algorithm exists anymore. This direction is particularly interesting, as dense
graphs cannot have small treewidth and therefore the treewidth results do not give any
indication of what the precise complexity of connectivity problems in the dense setting could
be. Following this direction, it is natural to consider the parameter clique-width, as it is one
of the most popular graph parameters to capture dense graphs. The following results on
connectivity problems parameterized by clique-width are based on joint work with Stefan
Kratsch [100].

61

4.1 Connectivity Problems Parameterized by
Clique-Width
Some results on connectivity problems parameterized by clique-width already exist, but the
resulting algorithms are not sufficiently optimized to obtain tight running times. Bergoug-
noux [9] has applied cut-and-count to several width parameters based on structured neigh-
borhoods with clique-width among these. Moreover, Bergougnoux and Kanté [11], building
upon the rank-based approach of Bodlaender et al. [19], obtain single-exponential running
times O∗(αcw) for a large class of connectivity problems parameterized by clique-width. As
both articles are aimed at obtaining a breadth of single-exponential algorithms for a large
class of problems, the CONNECTED (CO-)(σ, ρ)-DOMINATING SET problems, the obtained
bases for particular problems are far from being optimal. For example, the former arti-
cle implies an O∗(128cw)-time algorithm for CONNECTED DOMINATING SET and the latter
article yields an O∗((27 · 2ω+1)cw)-time algorithm for CONNECTED VERTEX COVER and an
O∗((8 · 2ω+1)cw)-time algorithm for CONNECTED DOMINATING SET, where ω is the matrix
multiplication exponent, see e.g. Alman and Vassilevska W. [3]. Even if ω = 2, this only
yields the very large bases 216 and 64 respectively.

We show that the running times for CONNECTED VERTEX COVER[clique-width] and
CONNECTED DOMINATING SET[clique-width] can be considerably improved by developing
faster algorithms relying on the cut-and-count-technique. The faster running times are
due to using the cut-and-count-technique, whose running times compare favorably to the
rank-based approach already when parameterizing by treewidth, and since the algorithms
are fine-tuned by precisely analyzing which cut-and-count states are necessary to consider.
This fine-tuning requires techniques such as fast subset convolution, inclusion-exclusion
states, and distinguishing between live and dead labels to obtain the improved running
times.

Theorem 4.1.1. There are one-sided-error Monte-Carlo algorithms that, given a k-expression
for a graph G, can solve
• CONNECTED VERTEX COVER in time O∗(6k),
• CONNECTED DOMINATING SET in time O∗(5k).

We show that these running times are essentially optimal by proving appropriate lower
bounds under SETH. These lower bounds are proved by following the by-now standard
construction principle of Lokshtanov et al. [126] for lower bounds relative to width parame-
ters. To apply this principle for clique-width, we closely investigate the problem behavior
across joins, i.e., the edge-structures via which clique-width is defined, and the results of
this investigation strongly guide us in designing appropriate gadgets. Precisely, we obtain
the following tight lower bounds:

Theorem 4.1.2. Assuming SETH, the following statements hold for all ε > 0:
• CONNECTED VERTEX COVER cannot be solved in time O∗((6 − ε)cw).
• CONNECTED DOMINATING SET cannot be solved in time O∗((5 − ε)cw).

The techniques behind the algorithms and lower bounds can also be applied to other con-
nectivity problems, but do not necessarily lead to tight results. Using the same approach, we

62 Chapter 4 Introduction

provide additional algorithms for STEINER TREE, CONNECTED ODD CYCLE TRANSVERSAL, and
a generalization of CONNECTED VERTEX COVER and CONNECTED ODD CYCLE TRANSVERSAL

to more colors.

Theorem 4.1.3. There are one-sided-error Monte-Carlo algorithms that, given a k-expression
for a graph G, can solve
• STEINER TREE in time O∗(4k),
• CONNECTED ODD CYCLE TRANSVERSAL in time O∗(14k),
• for every q ≥ 2, CONNECTED DELETION TO q-COLORABLE in time O∗((2q+2 − 2)k).

4.2 Connectivity Problems Parameterized by
Modular-Treewidth
Beyond the results for clique-width, we consider the parameters modular-pathwidth and
modular-treewidth, which can be seen as natural intermediate steps between pathwidth/treewidth
and clique-width1. While modular-treewidth is more restrictive than clique-width, we have
much better algorithms for computing modular-treewidth than for clique-width, as the
algorithms for treewidth transfer to modular-treewidth, see Theorem 2.4.8.

We obtain the first tight running times for connectivity problems parameterized by
modular-treewidth; these results are based on joint work with Stefan Kratsch [101]. These
results are achieved by the same general approach as for clique-width, where the finely-tuned
algorithms rely on the cut-and-count-technique and the lower bounds use the construction
principle of Lokshtanov et al. [126] together with a precise analysis of the problem behavior
on the characteristic separators for modular-treewidth. The used techniques seem better
suited to modular-treewidth, as they allow us to obtain tight results for a broader range
of problems compared to clique-width; in addition to CONNECTED VERTEX COVER and
CONNECTED DOMINATING SET, we also obtain tight results for STEINER TREE and FEEDBACK

VERTEX SET parameterized by modular-treewidth.
Whereas for both considered problems parameterized by clique-width the running time

strictly increases compared to treewidth, for modular-treewidth we will also see examples
where the complexity remains the same. Indeed, a central observation is that all vertices
inside a module must be connected already when a single vertex from a neighboring module
is chosen. In the case of STEINER TREE and CONNECTED DOMINATING SET, this observation
yields a reduction from the modular-treewidth case to treewidth, showing that we can deal
with a greater generality in the input structure at no cost in complexity for these problems.

Theorem 4.2.1. There are one-sided error Monte-Carlo algorithms that, given a tree decompo-
sition of width k for every2 prime quotient graph GqM ∈ Hp(G), can solve
• STEINER TREE in time O∗(3k),
• CONNECTED DOMINATING SET in time O∗(4k).

1For modular-pathwidth, we have cw ⪯ mod-pw ⪯ pw. However, for modular-treewidth such a relationship
cannot hold, as Corneil and Rotics [40] show that for every k there exists a graph Gk with treewidth k and
clique-width exponential in k. We also refer to Section 2.4.4

2For both problems, we actually only need a tree decomposition of a single quotient graph, however which
quotient graph is appropriate depends on the problem instance.

4.2 Connectivity Problems Parameterized by Modular-Treewidth 63

These bases are already optimal under SETH for parameterization by pathwidth by
known results of Cygan et al. [50]. Due to mod-tw ⪯ tw ⪯ pw, cf. Lemma 2.4.22, the bases
must be tight for modular-treewidth as well and we do not need to provide any new lower
bounds.

In contrast, for the problems CONNECTED VERTEX COVER and FEEDBACK VERTEX SET,
the interaction of the problem constraints with the modular structure yields additional
complications that are not present in the treewidth case. For both problems, we design
new cut-and-count algorithms solving a more involved variant of the problem by dynamic
programming along the tree decompositions of the quotient graphs. For CONNECTED VERTEX

COVER the simpler behavior of the connectivity constraint relative to modules allows us to
save one state compared to clique-width. For FEEDBACK VERTEX SET[clique-width], it is even
unclear how to obtain any reasonable algorithm using cut-and-count at all, since the standard
cut-and-count approach for FEEDBACK VERTEX SET only yields an XP-algorithm as already
observed by Bergougnoux and Kanté [11]. However, in the case of modular-treewidth,
the techniques for treewidth still transfer and we obtain an optimized single-exponential
algorithm with considerable technical effort.

Theorem 4.2.2. There are one-sided error Monte-Carlo algorithms that, given a tree decompo-
sition of width k for every prime quotient graph GqM ∈ Hp(G), can solve
• CONNECTED VERTEX COVER in time O∗(5k),
• FEEDBACK VERTEX SET in time O∗(5k).

We complement the algorithms for CONNECTED VERTEX COVER and FEEDBACK VERTEX

SET by providing new lower bounds which show that the obtained running times are optimal
under SETH. A notable feature of these lower bounds is that they also apply for the more
restrictive parameter twinclass-pathwidth3, so the recursive partitioning allowed by the
modular decomposition is not required, instead a single level of partitioning already brings
forth sufficient complexity. Compared to clique-width, while the lower bound proofs do
follow the same general structure, the restrictiveness of the parameter twinclass-pathwidth
makes the concrete gadget design more challenging.

Theorem 4.2.3. Unless SETH fails, the following statements hold for any ε > 0:
• CONNECTED VERTEX COVER cannot be solved in time O∗((5 − ε)tc-pw).
• FEEDBACK VERTEX SET cannot be solved in time O∗((5 − ε)tc-pw).

4.3 Fine-Grained Complexity Landscape
We summarize the main results obtained in this part and compare them with the tight
bounds obtained for cutwidth by Bojikian et al. [24] and treewidth by Cygan et al. [51] in
Table 4.1. The table precisely quantifies the price of generality for the considered connectivity
problems when moving from restrictive parameters to more expressive parameters.

All algorithms considered in the table use the cut-and-count-technique in some fashion
and are therefore randomized. For FEEDBACK VERTEX SET, the cut-and-count-technique

3By Corollary 2.4.27 and Lemma 2.4.22, we have cw ⪯ mod-pw ⪯ tc-pw.

64 Chapter 4 Introduction

Parameters cutwidth treewidth modular-tw clique-width
CONNECTED VERTEX COVER 2k 3k 5k 6k
CONNECTED DOMINATING SET 3k 4k 4k 5k
STEINER TREE 3k 3k 3k between 3k and 4k
FEEDBACK VERTEX SET 2k 3k 5k at least 5k
References [24] [50, 51] here ([101]) here ([100])

Tab. 4.1.: Optimal functions f(k) in the running time O∗(f(k)) of several connectivity problems
with respect to various width parameters listed in increasing generality. The results in
the last two columns are obtained in this thesis. Between modular-treewidth and clique-
width, we only have the relationship cw(G) ≤ 3 · 2mod-tw(G)−1, but the same results are
also tight for the more restrictive modular-pathwidth, where we have cw ⪯ mod-pw by
Corollary 2.4.27. For FEEDBACK VERTEX SET[clique-width] a single-exponential algorithm
is known by Bergougnoux and Kanté [11], but the obtained base in the running time is at
least 120.

is applied in all cases by using the fact that a graph G with n vertices and m edges is a
forest if and only if G has at most n − m connected components. The other considered
treewidth-algorithms are straightforward applications of cut-and-count, where for CON-
NECTED DOMINATING SET a fast subset convolution algorithm is used to keep the running
time small. The improved cutwidth-algorithms combine cut-and-count either with a generic
application of rank-based-methods for cutwidth that avoid Gaussian Elimination, which were
introduced by Groenland et al. [95], or for FEEDBACK VERTEX SET by essentially removing
one of the states from the treewidth-algorithm by using a special edge-subdivision trick.

All lower bounds use the construction principle of Lokshtanov et al. [126] and the
creation of a root vertex, or root path in the case of cutwidth, that allows the gadgets to
assume additional states which are crucial to obtain sufficiently strong lower bounds. The
complexity of the constructed gadgets roughly increases with the base of the running time,
as the base directly corresponds to how many states the so-called path gadgets must be
able to attain, which necessitates more expressive and varied gadgets for larger bases. A
noteworthy feature of the lower bounds for the dense width parameters is that we must
select appropriate states from a possibly much larger set of separator states, as not all such
choices lead to a transition ordering. We discuss this feature in much more detail when
developing the concrete lower bounds.

We remark upon two interesting phenomenons in Table 4.1. First, when comparing
the rows for CONNECTED VERTEX COVER and CONNECTED DOMINATING SET, we see that
while CONNECTED VERTEX COVER starts at a lower complexity for the sparse parameters
cutwidth and treewidth, the complexity of CONNECTED VERTEX COVER overtakes CONNECTED

DOMINATING SET when going to the dense width parameters. An intuitive explanation for
this phenomenon is that the considered states for the dense parameters describe the behavior
of groups of vertices and that connectivity constraints often supersede domination constraints
in this setting: both unconnected vertices and undominated vertices in a group require
that some vertex in an adjacent group is put into the solution. For CONNECTED VERTEX

COVER, the problem constraints and connectivity do not coalesce in this way and hence
keep contributing to different states. Secondly, we compare with the problem variants
without connectivity constraints, i.e., VERTEX COVER and DOMINATING SET. The optimal
base for VERTEX COVER is 2 for all considered parameters by results of van Geffen et al. [94],
Courcelle et al. [43], and the modular-treewidth algorithm in this thesis, cf. Theorem 6.2.2.

4.3 Fine-Grained Complexity Landscape 65

The optimal bases for DOMINATING SET are 3 for cutwidth and treewidth by van Geffen et
al. [94] and van Rooij et al. [164], and 4 for modular-pathwidth and clique-width by our
lower bound, cf. Section 3.2.3, and Bodlaender et al. [23]4. This shows that the impact of
introducing a connectivity constraint on the problem complexity greatly depends on the
considered problem and the considered parameter: for DOMINATING SET the complexity
increases by at most 1 in all considered cases and for VERTEX COVER the complexity increase
ranges between 0 and 4 going from the restrictive cutwidth to the expressive clique-width.
In particular, the phenomenon observed by Cygan et al. [51] that imposing a connectivity
constraint increases the complexity by at most 1 in the sparse setting does not extend to
dense width parameters.

4.4 Related Work
HAMILTONIAN CYCLE is a connectivity problem that we have not studied here, but for which
several tight results are known. Cygan et al. [51] show with the cut-and-count-technique
that HAMILTONIAN CYCLE[treewidth] can be solved in time O∗(4k), it is however unknown
whether this running time is optimal under SETH. Cygan, Kratsch, and Nederlof [48] refine
the rank-based approach for HAMILTONIAN CYCLE[pathwidth], in particular avoiding the
expensive basis computation using additional tricks, and obtain an O∗((2 +

√
2)k)-time

algorithm; surprisingly, they also show that this base is optimal under SETH. Bodlaender
et al. [19] show using the squared determinant approach that Hamiltonian cycles can
be counted in time O∗(6k) parameterized by pathwidth. Curticapean et al. [45] show
that this running time is tight under SETH and also consider counting modulo a prime:
the algorithm of Cygan, Kratsch, and Nederlof [48] also solves the counting modulo 2
variant and Curticapean et al. [45] show for all other primes that the running time base
must be at least 2 + 1.97 > 2 +

√
2 when parameterizing by pathwidth. By improving the

convolution algorithm used at the join node of a tree decomposition, Wlodarczyk [174]
shows that Hamiltonian cycles can also be counted in time O∗((2ω+2)k) when parameterized
by treewidth, which matches the running time of the pathwidth-algorithm if the matrix
multiplication exponent satisfies ω = 2. As an edge selection problem, HAMILTONIAN CYCLE

becomes much more difficult when considering dense width parameters; indeed, Fomin et
al. [73] show that HAMILTONIAN CYCLE[clique-width] is W[1]-hard, thus ruling out any
FPT-algorithm under the common assumption FPT ̸= W[1]. Bergougnoux et al. [13] provide
an XP-algorithm for HAMILTONIAN CYCLE[clique-width] whose running time is tight under
ETH.

Beyond the already mentioned results and the discussion in Section 3.1.3, the cut-and-
count-technique has also been used with the parameter branchwidth by Pino et al. [156]; it
is unknown whether their results are tight and the obtained running times depend on the
matrix multiplication exponent ω. Groenland et al. [95] use a variant of the cut-and-count-
technique to obtain a tight algorithm for counting the number of connected spanning edge

4As we only have cw ⪯ mod-pw and not cw ⪯ mod-tw, the algorithm for clique-width by Bodlaender et al. only
carries over to modular-pathwidth and not to modular-treewidth. We believe that an O∗(4k)-time algorithm
for DOMINATING SET[modular-treewidth] should also follow by the techniques in this thesis, but it is technically
not written down.

66 Chapter 4 Introduction

sets modulo a prime parameterized by cutwidth. Furthermore, there are applications of the
cut-and-count-technique relative to the parameter treedepth, but these will be discussed in
more detail in Part III.

In addition to the application of the cut-and-count-technique on graphs with structured
neighborhoods by Bergougnoux [9, Section 4.3], Bergougnoux and Kanté [12] also apply
the rank-based approach to connectivity problems on such graphs. Both articles capture
graphs with structured neighborhoods via the notion of d-neighbor equivalence introduced
by Bui-Xuan et al. [31]; two subsets X,Y of a fixed set A ⊆ V (G) are d-neighbor equivalent
if every vertex in V (G) \ A has the same number of neighbors in X and Y or at least
d neighbors in both sets. Informally, a graph has structured neighborhoods if it can be
decomposed by only considering sets A ⊆ V (G) such that the d-neighbor relation relative
to A has few equivalence classes. The width parameters clique-width, rank-width, and
mim-width (and more restrictive parameters) can be captured in this way. Therefore, their
results yield algorithms for a broad range of problems and parameters, but are consequently
not very optimized (in the SETH sense) for specific problem-parameter-combinations as
already discussed. Building upon these methods, Bergougnoux et al. [10] consider a special
logic that can handle connectivity constraints and they obtain a model-checking algorithm
for this logic. This model-checking algorithm yields XP running times for parameterization
by mim-width and single-exponential running times for treewidth and clique-width; the
resulting running times are tight under ETH for many cases.

Moving away from connectivity problems, we survey some more of the literature obtain-
ing tight fine-grained parameterized algorithms for dense parameters. Iwata and Yoshida
show that for any ε > 0 VERTEX COVER[treewidth] can be solved in time O∗((2 − ε)k) if
and only if VERTEX COVER[clique-width] can be solved in time O∗((2 − ε)k) [106]; as the
bases differ for treewidth and clique-width in our case, it seems difficult to transfer their
techniques to our setting. Lampis [123] obtains the tight running time of O∗((2q − 2)k) for
q-COLORING[clique-width] and a tight result for q-COLORING[twinclass-treewidth]. General-
izing to homomorphism problems, Ganian et al. [86] obtain tight results for parameterization
by clique-width, where the obtained base depends on a special measure of the target graph.
Katsikarelis et al. [114] obtain tight results for (t, r)-CENTER[clique-width] and, in particular,
the tight running time O∗(4cw) for DOMINATING SET. Jacob et al. [108] have, simultaneously
with us, shown that the running time O∗(4k) is tight for ODD CYCLE TRANSVERSAL[clique-
width], however our lower bound applies to a parameterization more restrictive than
twinclass-pathwidth and considers a generalization to more colors, see Chapter 13.

4.5 Organization
We first present the algorithmic results of this part. Chapter 5 contains the algorithms
parameterized by clique-width and Chapter 6 contains the algorithms parameterized by
modular-treewidth and the reductions to the treewidth case; both of these sections start
with an overview of dynamic programming for the respective parameter and a development
of appropriate tools, afterwards we go into the details of the concrete algorithms. Then, we
move on to the lower bounds, where Chapter 7 contains the lower bounds parameterized by

4.5 Organization 67

clique-width and Chapter 8 contains the lower bounds parameterized by modular-treewidth.
Each lower bound section begins with how the general lower bound principle, which we
presented in Section 3.2.1, applies to the considered parameter and we then proceed to
the concrete lower bounds. Every lower bound proof begins with an intuitive analysis
of the problem structure with respect to the parameter-dependent separators based on
compatibility matrices, which strongly guides the design process of the gadgets. We conclude
this part in Chapter 9 and present several avenues for further research together with possible
approaches in many cases.

68 Chapter 4 Introduction

Algorithms Parameterized By
Clique-Width

5
5.1 Dynamic Programming on Clique Expressions

We begin by giving the basic definitions and ideas for dynamic programming on clique-
expressions.

Basic Definitions. Let µ be a k-expression for G = (V,E); the associated syntax tree is
Tµ. Recall that for t ∈ V (Tµ), we denote by µt the subexpression induced by the subtree of
Tµ rooted at t. Whenever a clique-expression µ is fixed, we define Gt = Gµt , Vt = V (Gt),
Et = E(Gt), and labt = labµt

for any v ∈ V (Tµ). Furthermore, we write V ℓt = lab−1
t (ℓ)

for the set of all vertices with label ℓ at node t and we write Lt = {ℓ ∈ N : V ℓt ̸= ∅} for the
set of nonempty labels at node t.

Basic Dynamic Programming. To solve a graph problem given a clique-expression µ with
k labels, we first define a family At of sensible partial solutions associated with the subgraph
Gt; the family Ar̂ at the root-node r̂ of Tµ should essentially contain all solutions to the
problem. To compute these families, at least implicitly, we want to move bottom-up along the
syntax tree Tµ, computing At via recurrences based on the type of the operation associated
with t which combine or update the partial solution families at the child node(s) of t.
However, to formulate such recurrences, we need information on how the partial solutions
interact with the label classes V ℓt , also just referred to as labels. These interactions, also
called states, depend on the considered partial solution and we capture them by t-signatures
which are functions of the form f : Lt → States, where States is a problem-dependent
set, mapping each label to its state. Thus, we obtain subfamilies At(f) ⊆ At containing all
partial solutions at Gt that are compatible with the t-signature f . The desired recurrences
are then formulated by taking the t-signatures f into account. We will not directly compute
At(f), but a statistic associated with it, such as its cardinality or the minimum cost of a
contained partial solution; this statistic is usually denoted by At(f).

Number of Nodes. Courcelle and Olariu [44] show that we can assume that the associated
syntax tree Tµ contains at most O(k2n) = O∗(1) nodes. Via local swapping transformations,
one can assume that between any two union-operations at most O(k2) join-operations
and at most O(k) relabel operations occur. Since any clique-expression for G contains n
introduce-operations and n− 1 union-operations, the result follows.

69

5.1.1 Algorithmic Techniques
We survey some of the additional algorithmic techniques used to obtain the algorithms for
CONNECTED VERTEX COVER[clique-width] and CONNECTED DOMINATING SET[clique-width].

Lifting Vertex States to Label States. For dynamic programming along clique-expressions,
we have to characterize the relevant interactions of a partial solution with the labels which
govern which joins can be constructed by the expression. In the considered problems, a
single vertex v can take a constant number of different states with respect to a partial
solution which we capture with a problem-dependent set Ω; e.g., for CONNECTED VERTEX

COVER, we have Ω = {0,1L,1R}, representing v /∈ X (state 0), v ∈ XL (state 1L), and
v ∈ XR (state 1R), respectively. A clique-expression repeatedly adds joins between pairs
of vertex sets, say A and B, i.e., all possible edges between A and B are added, and the
algorithm must check whether a partial solution remains feasible after adding a join and
possibly update some states. A priori, each choice of vertex states in a label could yield
different behaviors for partial solutions. However, the crucial observation for the considered
problems is that the precise multiplicity of a vertex state in A or in B is irrelevant for a
join, rather it suffices to distinguish which vertex states appear on each side and which do
not. Therefore, the relevant label states are captured by the subsets of Ω. The next two
techniques will allow us to reduce the number of considered states further.

Nice Clique-Expressions. For both algorithms, we refine and augment standard clique-
expressions to distinguish between live and dead labels. When performing dynamic program-
ming along a clique-expression, we consider the induced subgraphs defined by subexpres-
sions of the given clique-expression. At a subexpression, we say that a label ℓ is live if in
the remaining expression the vertices with label ℓ receive further edges that are not present
in the current subexpression, otherwise we say that ℓ is dead. First, we observe that we
do not need to track the states of a partial solution at the dead labels, as they only have
trivial interactions with the other states in the remaining expression. Hence, we only need to
consider the states that can be attained at live labels which allows us to reduce the number
of considered states for CONNECTED VERTEX COVER. To simplify the description of the
algorithms and avoid handling edge cases, we transform the clique-expressions so that no
degenerate cases occur and add a dead-operation ⊥ℓ which handles label ℓ turning from live
to dead. The dead-operation is similar to forget vertex nodes in nice tree decompositions [116]
and to the delete-operation in multi-clique-expression [79]. Distinguishing live and dead
labels has been used before [86, 114, 123] to obtain improved running times, but handling
the label types explicitly via an additional operation is new to the best of the author’s
knowledge. We formally develop the nice clique-expressions in Section 5.1.2.

Inclusion-Exclusion States. For CONNECTED DOMINATING SET, we transform to a different
set of vertex states, called inclusion-exclusion states, which have proven helpful for domi-
nation problems before [99, 140, 155, 164]. With these states we do not track whether
a vertex is undominated or dominated by a partial solution, but rather allow a vertex to
be dominated or forbid it. A solution to the original problem can usually be recovered by

70 Chapter 5 Algorithms Parameterized By Clique-Width

an inclusion-exclusion argument, however when lifting to label states this argument does
not directly transfer. We show that the argument can be adapted for the label states when
working modulo two, whereas for vertex states the argument is known to also work for non-
modular counting. The advantage of the inclusion-exclusion states is that at join-operations
we do not have to update vertex states from undominated to dominated, thus simplifying
the algorithm and also allowing us to collapse several label states into a single one. The
dead-operations of nice clique-expressions serve as suitable time points in the algorithm to
apply the adapted inclusion-exclusion argument.

Fast Convolutions. To quickly compute the dynamic programming recurrences, we utilize
algorithms for fast subset convolution. In Section 5.2, we tailor the techniques developed
by Björklund et al. [15] on trimmed subset convolutions to obtain a fast algorithm for the
union-recurrence appearing in the CONNECTED VERTEX COVER algorithm. For CONNECTED

DOMINATING SET, the lattice-based results of Björklund et al. [16] provide the necessary
means to compute the union-recurrence quickly. In both cases, we obtain fast convolution
algorithms applicable in more general settings, so these results could be of independent
interest.

5.1.2 Nice Clique-Expressions
Irredundancy. A clique-expression µ is irredundant if for any join-operation ηi,j(Gt′) = t ∈
V (Tµ), it holds that EGt′ (V it′ , V

j
t′) = ∅, i.e., no edge added by the join existed before.

Theorem 5.1.1 ([44]). Any k-expression µ can be transformed into an equivalent, i.e., Gµ′ =
Gµ, irredundant k-expression µ′ in polynomial time.

Lemma 5.1.2 ([13]). If µ is an irredundant k-expression for the graph G = (V,E) and
t ∈ V (Tµ), then for all labels ℓ ∈ Lt and vertices u, v ∈ V ℓt we have thatNG(u)\Vt = NG(v)\Vt.
Furthermore, if u ∈ V it , v ∈ V jt with i ̸= j ∈ Lt and {u, v} ∈ E\Et, then EG(V it , V

j
t) ⊆ E\Et.

Henceforth, we will assume that the given k-expression µ is irredundant. Irredundancy
still allows several edge cases regarding empty labels to occur, which would require special
handling in the dynamic programming algorithms. To avoid this extra effort in the algorithms,
we show how to transform any clique-expression so that these edge cases do not occur.

Definition 5.1.3. We say that a clique-expression µ of a graph G = Gµ is nice if µ satisfies
the following properties:
• µ is irredundant,
• for every join-node ηi,j(Gt′) = t ∈ V (Tµ), where t′ is the child of t, we have that

Gt ̸= Gt′ , i.e., t adds at least one edge and V it′ ̸= ∅ and V jt′ ̸= ∅,
• for every relabel-node ρi→j(Gt′) = t ∈ V (Tµ), where t′ is the child of t, we have that

V it′ ̸= ∅ and V jt′ ̸= ∅.

The following lemma shows that preprocessing allows us to assume that we are given a
nice k-expression. A more involved proof that this can even be done in linear time was also
implicitly obtained by Ducoffe in the proof of Lemma 7 in [61].

5.1 Dynamic Programming on Clique Expressions 71

Lemma 5.1.4 ([61]). Any k-expression µ can be transformed into an equivalent, i.e.,Gµ′ = Gµ,
nice k-expression µ′ in polynomial time.

Proof. First running the algorithm of Theorem 5.1.1, we can assume that µ is already
irredundant. If a join node t = ηi,j(Gt′) does not add any edges, then we must have V it′ = ∅ or
V jt′ = ∅ by irredundancy. Clearly, we can simply remove such join-nodes from the expression.
The next step is to observe that any relabel node of the form ρi→j(Gt′) = t ∈ V (Tµ), where
t′ is the child of t and V it′ = ∅, can be removed from µ without changing the resulting graph,
as no label is changed by such a node.

Now, suppose that µ contains p > 0 relabel nodes of the form ρi→j(Gt′) = t ∈ V (Tµ),
where t′ is the child of t and V it′ ̸= ∅ and V jt′ = ∅; we call such relabels unnecessary. We
pick one such occurrence and show how to remove it. If t is the root of µ, then we can
simply remove t without changing the resulting graph. If t is not the root of µ, then let s
be the parent node of t. We swap the role of label i and j in every proper descendant of t
in Tµ and remove the node t letting t′ be a child of s in place of t. The correctness of the
transformation can be proved by straightforward bottom-up induction along Tµ and this
transformation does not create any new unnecessary relabels.

By repeating this transformation for every unnecessary relabel, we obtain an equivalent
nice k-expression µ′ in polynomial time.

Live and Dead Labels. When designing tight algorithms for problems parameterized by
clique-width, one often observes that there are states that cannot be attained by a label
unless the vertices with this label have already received all their incident edges by the
current subexpression. But for such labels, the dynamic programming algorithm does not
need to store the state as there will be no interesting interaction with other labels in the
remaining expression. So, to improve the running time, we only store the state for live labels,
i.e., labels that contain vertices that are still missing some incident edges; labels that are not
live are called dead. This idea has been used several times before for dynamic programming
on clique-expressions [86, 114, 123].

While one could precompute for a given clique-expression µ which labels at a node
t ∈ V (Tµ) are live, we choose to explicitly mark when a label is no longer live in the syntax
tree. To do so, we augment the syntax tree with dead nodes after join nodes that change
at least one label from live to dead. The function of these dead nodes is comparable to
that of forget vertex nodes in a nice tree decomposition [116]. Especially in the algorithm
for CONNECTED DOMINATING SET, this explicitness helps because it allows us to cleanly
separate two computations, namely the standard computation for join nodes and an extra
computation that has to be performed when a label turns dead. We now proceed with the
formal definitions.

For the remainder of this section, we assume that G is a connected graph with at least
two vertices.

Definition 5.1.5. Given a clique-expression µ for G = (V,E) and a node t ∈ V (Tµ), the set
of dead vertices at t is defined by Dt = {v ∈ Vt : δG(v) ⊆ Et}. A vertex v ∈ Vt \Dt is called
live at t.

72 Chapter 5 Algorithms Parameterized By Clique-Width

Lemma 5.1.6. Given an irredundant k-expression µ for G = (V,E), a node t ∈ V (Tµ), and a
nonempty label ℓ ∈ Lt, we have that either V ℓt ∩Dt = ∅ or V ℓt ⊆ Dt.

Proof. If x ∈ V ℓt \ Dt ̸= ∅, then there exists an edge {x, y} ∈ E \ Et. Let t̃ ∈ V (Tµ) be the
lowest ancestor of t such that x, y ∈ Vt̃; we either have t̃ = t or t̃ is some union node above
t. In either case, we can assume that there are i ̸= j ∈ Lt̃ with x ∈ V ℓt ⊆ V i

t̃
and y ∈ V j

t̃
. By

the second part of Lemma 5.1.2, we see that {x′, y} ∈ E \ Et̃ ⊆ E \ Et for all x′ ∈ V ℓt ⊆ V i
t̃

.
Hence, V ℓt \Dt ̸= ∅ implies that V ℓt ∩Dt = ∅ which proves the lemma.

If we do not require irredundancy, then it is easy to construct clique-expressions where
Lemma 5.1.6 fails, i.e., ∅ ≠ V ℓt ∩ Dt ̸= V ℓt . By considering only irredundant clique-
expressions, we can say that a whole label is dead or live which simplifies the handling of
dead vertices, as we can perform a single computation once a label turns dead. In particular,
without irredundancy a label containing only dead vertices at one node might get new live
vertices later on in the expression and it is often unclear how to handle such cases.

The following definition formalizes the handling of live and dead labels and the dead
nodes that are added when a label turns from live to dead.

Definition 5.1.7. Given an irredundant k-expression for G = (V,E), the augmented syntax
tree T̂µ of µ is obtained from the syntax tree Tµ by inserting up to two dead nodes directly
above every join node t = ηi,j(Gt′), where t′ is the child of t in Tµ, based on the following
criteria:
• if V it ⊆ Dt \Dt′ , then the node ⊥i is inserted,
• if V jt ⊆ Dt \Dt′ , then the node ⊥j is inserted,
• if both nodes ⊥i and ⊥j are inserted, then we insert them in any order.
We extend the notations Gt, Vt, Dt, V ℓt , for ℓ ∈ [k], to dead nodes by inheriting the values of
the child node.

For every node t ∈ V (T̂µ) of the augmented syntax tree, we inductively define the set of
live labels Llivet ⊆ Lt by

Llivet =

{ℓ} if t = ℓ(v),

Llivet′ \ {i} if t = ρi→j(Gt′),

Llivet′ if t = ηi,j(Gt′),

Llivet′ \ {ℓ} if t = ⊥ℓ(Gt′),

Llivet1 ∪ Llivet2 if t = Gt1 ⊕Gt2 .

Dually, the set of dead labels Ldeadt ⊆ Lt is given by Ldeadt = Lt \ Llivet .

See Figure 5.1 for an example of an augmented syntax tree. We now show that, up to
pending dead nodes, Llivet contains all nonempty labels that only consist of live vertices at
t. Due to Lemma 5.1.6, no label of an irredundant k-expression can contain both live and
dead vertices simultaneously.

Lemma 5.1.8. Let µ be a nice k-expression of G = (V,E) and T̂µ its augmented syntax tree.
For all t ∈ V (T̂µ) and ℓ ∈ Lt, we have that V ℓt ∩Dt = ∅ implies ℓ ∈ Llivet . If t is not the child
of a dead node, then we even have for every ℓ ∈ Lt that V ℓt ∩Dt = ∅ if and only if ℓ ∈ Llivet .

5.1 Dynamic Programming on Clique Expressions 73

a

d

bc

e

f

1(a)

⊕

1(d)

2(b)

2(c)

η1,2 ⊥1

3(e)
⊕ η2,3 ⊥2 ρ1→2

1(f)
⊕ η1,3 ⊥1 ⊥3

⊕

⊕

Fig. 5.1.: The left side depicts a graph G and the right side depicts the augmented syntax tree of a
nice 3-expression for G.

Proof. First, recall that V ℓt ∩Dt ∈ {∅, V ℓt } for every t ∈ V (T̂µ) and ℓ ∈ Lt by Lemma 5.1.6.
We prove the statement inductively along the augmented syntax tree T̂µ by making a case
distinction based on the current node type. Note that only join nodes and other dead nodes
can be children of a dead node.

• If t = ℓ(v), then Dt = ∅ as v cannot be isolated by assumption and the statement is
trivially true.

• If t = ρi→j(Gt′), then Dt = Dt′ and by induction we have Llivet′ = {ℓ ∈ Lt′ : V ℓt′ ∩Dt′ =
∅}. As all other labels stay the same, the only interesting labels are i and j. Since i /∈ Lt,
there is nothing to prove for label i. We have that V jt = V it′ ∪ V jt′ and, by niceness of µ,
we have i, j ∈ Lt′ and j ∈ Llivet′ ⇐⇒ i, j ∈ Llivet′ . Now,

j ∈ Llivet ⇐⇒ i, j ∈ Llivet′ ⇐⇒ V it′ ∩Dt′ = ∅ ∧ V jt′ ∩Dt′ = ∅ ⇐⇒ V jt ∩Dt = ∅

where the last equivalence follows from Dt = Dt′ and V jt = V it′ ∪ V jt′ .
• If t = ηi,j(Gt′), then V ℓt = V ℓt′ for all ℓ ∈ Lt = Lt′ and Dt′ ⊆ Dt and hence the forward

implication follows from the statement at t′. If t is not the child of a dead node, then we
even have Dt = Dt′ , so also the reverse implication follows from the statement at t′.

• If t is a dead node, then either the child or grandchild of t is the join node t∗ = ηi,j(Gt′)
that caused t to exist. By induction, Llivet′ = {ℓ ∈ Lt′ : V ℓt′ ∩ Dt′ = ∅}. We have
that V ℓt∗ = V ℓt = V ℓt′ for every ℓ ∈ Lt = Lt′ , Dt \ Dt′ = Dt∗ \ Dt′ ⊆ V it ∪ V jt and
Llivet = Llivet′ \X, where ∅ ̸= X ⊆ {i, j} is the set of labels that were removed from the
live labels between t∗ and t. Since Llivet \ {i, j} = Llivet′ \ {i, j}, the equivalence holds
for all ℓ ∈ Lt \ {i, j} by induction. For ℓ ∈ X = Llivet′ \ Llivet , we have V ℓt ⊆ Dt \Dt′ by
construction of dead nodes and hence V ℓt ∩Dt ̸= ∅, therefore the forward implication
holds for all labels ℓ ∈ Lt at node t. Finally, if t is not the child of a dead node, then
we have removed all labels ℓ ∈ Lt with V ℓt ⊆ Dt∗ \Dt′ = Dt \Dt′ , so, in this case, the
reverse implication holds for all labels ℓ ∈ Lt as well.

74 Chapter 5 Algorithms Parameterized By Clique-Width

• If t is a union node, then V ℓt = V ℓt1 ∪ V ℓt2 for all ℓ ∈ [k] and Dt = Dt1 ∪ Dt2 . If
ℓ ∈ Lt1 △ Lt2 ⊆ Lt, then suppose without loss of generality that ℓ ∈ Lt1 \ Lt2 , hence
V ℓt1 = V ℓt and V ℓt2 = ∅, so we see that

ℓ ∈ Llivet ⇐⇒ ℓ ∈ Llivet1 ⇐⇒ V ℓt1 ∩Dt1 = ∅ ⇐⇒ V ℓt1 ∩ (Dt1 ∪Dt2) = ∅

⇐⇒ V ℓt ∩Dt = ∅,

where the third equivalence uses V ℓt1 ∩Dt2 = ∅. If on the other hand ℓ ∈ Lt1 ∩ Lt2 ⊆ Lt,
then it follows from Lemma 5.1.6 that V ℓt1 ∩ Dt1 = ∅ if and only if V ℓt2 ∩ Dt2 = ∅.
Therefore,

ℓ ∈ Llivet ⇐⇒ ℓ ∈ Llivet1 ∪ Llivet2 ⇐⇒ V ℓt1 ∩Dt1 = ∅ ∧ V ℓt2 ∩Dt2 = ∅ ⇐⇒ V ℓt ∩Dt = ∅,

where the last equivalence follows from V ℓt1 ∩Dt2 = ∅ = V ℓt2 ∩Dt1 .

Lemma 5.1.9. Let µ be a nice k-expression of G = (V,E). For every node t ∈ V (T̂µ), the set of
dead labels Ldeadt satisfies the following recurrences:

Ldeadt =

∅ if t = ℓ(v),

Ldeadt′ \ {i} if t = ρi→j(Gt′),

Ldeadt′ if t = ηi,j(Gt′),

Ldeadt′ ∪ {ℓ} if t = ⊥ℓ(Gt′),

Ldeadt1 ∪ Ldeadt2 if t = Gt1 ⊕Gt2 .

Proof. For every t ∈ V (T̂µ), the set of nonempty labels Lt is the disjoint union of Llivet and
Ldeadt by definition of Ldeadt . For join and relabel nodes, we have that Lt = Lt′ , so the
recurrences directly follow from the recurrences for Llivet . For introduce nodes t = ℓ(v),
we have Lt = Llivet = {ℓ} and hence Ldeadt = ∅. For relabel nodes t = ρi→j(Gt′), we have
Lt = Lt′ \ {i} and hence the recurrence follows.

For a union node t = Gt1 ⊕Gt2 , we have by Lemma 5.1.8 that Lliveti = {ℓ ∈ Lti : V ℓti ∩
Dti = ∅} for i ∈ {1, 2}. Hence, for any ℓ ∈ Lt1 ∩ Lt2 ⊆ Lt, we have ℓ ∈ Llivet1 ⇐⇒ ℓ ∈ Llivet2

by irredundancy of µ. Therefore, we compute

Ldeadt = Lt \ Llivet = (Lt1 ∪ Lt2) \ (Llivet1 ∪ Llivet2)

= (Lt1 \ (Llivet1 ∪ Llivet2)) ∪ (Lt2 \ (Llivet1 ∪ Llivet2))

= (Ldeadt1 ∩ (Lt1 \ Llivet2)) ∪ (Ldeadt2 ∩ (Lt2 \ Llivet1))

= Ldeadt1 ∪ Ldeadt2 ,

since the preceding argumentation shows that Ldeadt1 ∩ Llivet2 = ∅ = Ldeadt2 ∩ Llivet1 .

Since the set Dt never shrinks when going up the augmented syntax tree T̂µ, a dead
vertex can never turn live again. Even though the relation between Dt and Llivet does not
always hold in both directions, cf. Lemma 5.1.8, the next lemma still shows that a vertex
can never switch from a dead label back to a live label.

5.1 Dynamic Programming on Clique Expressions 75

Lemma 5.1.10. Let µ be a nice k-expression of G = (V,E) and v ∈ V a vertex. For any node
t ∈ V (T̂µ) such that v ∈ V ℓt with ℓ ∈ Ldeadt , we have for any ancestor t∗ ∈ V (T̂µ) and ℓ∗ ∈ Lt∗

with v ∈ V ℓ
∗

t∗ that ℓ∗ ∈ Ldeadt∗ .

Proof. Consider the recurrences of Lemma 5.1.9 and note that for join nodes and dead nodes
t, we have that Ldeadt′ ⊆ Ldeadt , where t′ is the child of t. For union nodes t, we have that
Ldeadti ⊆ Ldeadt , where ti, i ∈ [2], are the children of t. It remains to consider relabel nodes
t = ρi→j(Gt′), where t′ is the child of t. Here we have that Ldeadt = Ldeadt′ \ {i}, because
label i is empty at t. If we have i ∈ Ldeadt′ , then also j ∈ Ldeadt′ and j ∈ Ldeadt by irredundancy
of µ and Lemma 5.1.8. Since V jt = V it′ ∪ V jt′ , this shows that also at relabel nodes no vertex
can switch from a dead label to a live label.

Handling Union Nodes. At a union node of a k-expression, one often has to efficiently
compute a convolution-like recurrence for the dynamic programming algorithm. The first
step is to handle the labels that are nonempty at only one of the children of the union
node. For these, the computation is usually trivial and the remaining part is to design a fast
convolution algorithm tailored to the problem for the labels which are nonempty at both
children. To encapsulate this splitting of the label set, we make the following definition.

Definition 5.1.11. Let µ be a nice k-expression of G = (V,E) and t ∈ V (T̂µ) be a union
node, i.e., t = Gt1 ⊕ Gt2 . The union-split at t of a function f : Llivet → States, where
States is some finite set, are the functions ft,1 = f

∣∣
L̃t,1

, ft,2 = f
∣∣
L̃t,2

, ft,12 = f
∣∣
L̃t,12

, where

L̃t,1 = Llivet1 \ Lt2 , L̃t,2 = Llivet2 \ Lt1 , L̃t,12 = Llivet1 ∩ Llivet2 .

Given this definition of the union-split, it is conceivable that nonempty labels that are live
at one child but dead at the other are not accounted for by any of the sets L̃t,1, L̃t,2, L̃t,12.
The next lemma shows that such labels cannot exist for nice clique-expressions.

Lemma 5.1.12. Let µ be a nice k-expression of G = (V,E) and t ∈ V (T̂µ) be a union node,
i.e., t = Gt1 ⊕Gt2 . We have that Llivet1 ∩Ldeadt2 = ∅ = Ldeadt1 ∩Llivet2 and the sets L̃t,1, L̃t,2, and
L̃t,12 partition Llivet .

Proof. The three sets are clearly disjoint by definition. Since Llivet = Llivet1 ∪ Llivet2 , it suffices
to argue that L̃t,1 = Llivet1 \ Llivet2 and L̃t,2 = Llivet2 \ Llivet1 . Note that L̃t,1 = Llivet1 \ Llivet2

is equivalent to Llivet1 ∩ Ldeadt2 = ∅ and similarly for the other equality. Without loss of
generality, we consider L̃t,1. We have that L̃t,1 = Llivet1 \Lt2 ⊆ Llivet1 \Llivet2 , since Llivet2 ⊆ Lt2 .
For the other direction, note that any label ℓ ∈ Llivet1 ∩ Lt2 must be contained in Llivet2 , as
otherwise we would have V ℓt1 ∩ Dt1 = ∅ and V ℓt2 ⊆ Dt2 by Lemma 5.1.8, which implies
V ℓt ∩Dt = V ℓt2 /∈ {∅, V ℓt } contradicting Lemma 5.1.6.

5.2 Fast Convolution Algorithms
In this section, we develop two fast convolution algorithms that we use to speed up the
computations at the union nodes in the clique-width algorithms. For many clique-width
algorithms the possible states of a label class are described by a set family. In such cases, we
have to update the label states by a set-union-like operation when combining two partial

76 Chapter 5 Algorithms Parameterized By Clique-Width

solutions at a union node. When the set family is simply the power set of some ground
set, then standard fast subset convolution algorithms are usually sufficient. However, after
optimizing the number of states, the remaining set family of label states does not have
such a nice structure anymore and we cannot directly apply the standard algorithms. Two
cases occur for the considered problems. The first case is that the remaining set family is a
trimmed power set, where we remove a superset-closed family from the top of the power set
and a subset-closed family from the bottom of the power set, so the remaining set family F
has no gaps in the sense that W,S ∈ F and W ⊆ T ⊆ S implies T ∈ F . In the second case,
the set family F can contain gaps, but forms a lattice, i.e., for every S, T ∈ F there exists a
join S ∨ T ∈ F with S ∪ T ⊆ S ∨ T and a meet S ∧ T ∈ F with S ∧ T ⊆ S ∩ T . We develop
fast convolution algorithms for both cases.

5.2.1 Trimmed Subset Convolution
In this subsection, we provide a convolution algorithm to quickly compute the cover product
which occurs at the union node for, e.g., the CONNECTED VERTEX COVER[clique-width]
and CONNECTED ODD CYCLE TRANSVERSAL[clique-width] algorithm. As an example, we
consider the states of the CONNECTED VERTEX COVER algorithm, which are given1 by
States = P(Ω) \ {∅,Ω}, where Ω = {0,1L,1R}. Essentially, we are given two tables
A,B : States[k] → Z2 and want to compute the following cover product A⊗cB : States[k] →
Z2 in time O∗(6k) = O∗(|States|k):

(A⊗c B)(f) =
∑

f1,f2∈States[k] :
f1∪f2=f

A(f1)B(f2),

where the union is componentwise, i.e., (f1 ∪ f2)(ℓ) = f1(ℓ) ∪ f2(ℓ) for all ℓ ∈ [k]. If not for
the exclusion of ∅ and Ω, a standard application of the fast Zeta and Möbius transform [47]
would be sufficient. However, this results only in a running time of O∗(8k). To obtain the
improved running time, we trim the computations of the fast Zeta and Möbius transform
from above and below. By ordering the subsets of Ω by their size and performing the
computation along this ordering, we can start only with the relevant subsets, i.e., exclude
∅, and can stop the computation before we reach Ω itself. All these ideas were used by
Björklund et al. [15], but their presentation is not suited to our setting, instead, we provide
a suitable self-contained presentation.

We first switch to a more standard notation and consider tables defined over some
set family F ⊆ P(U) and finite universe U instead of over functions from [k] to States.
A given function f : [k] → States is transformed to the set Sf = {(i, s) : i ∈ [k], s ∈
f(i)} =

⋃
i∈[k]{i} × f(i) ⊆

⋃
i∈[k]{i} × Ω =: U and the resulting set family is given by

F = {S ⊆ U : 1 ≤ |S ∩ ({i} × Ω)| ≤ 2 ∀i ∈ [k]}. We will see that this set family can be
written in a special form that allows us to provide trimmed algorithms for the Zeta and
Möbius transform.

For now, we return to the general setting. Let U be some fixed universe and let F ⊆ P(U)
be some set family over U . The upward closure ↑(F) ⊆ P(U) of F is given by ↑(F) = {S ⊆

1Their precise meaning is irrelevant here and will be discussed in Section 5.3.

5.2 Fast Convolution Algorithms 77

U : there is a T ∈ F s.t. T ⊆ S}; a set family F is closed under supersets if and only if
F = ↑(F). We say that a set family F is a closure difference if there are set families F+ and
F− such that F = ↑(F+) \ ↑(F−). Observe that ↑(∅) = ∅ and hence ↑(F+) is also a closure
difference. Closure differences are precisely the set families that contain no holes in the
sense of the following lemma, which will be important to prove the properties of the various
transforms.

Lemma 5.2.1. A set family F ⊆ P(U) is a closure difference if and only if it satisfies the
following interval property: for all sets W,T, S ⊆ U with W ⊆ T ⊆ S and W,S ∈ F , we must
also have T ∈ F .

Proof. We first show that the interval property holds when F is a closure difference. So, let
F = ↑(F+) \ ↑(F−) and W ⊆ T ⊆ S with W ∈ F and S ∈ F . There exists a set X ∈ F+

with X ⊆ W , since W ∈ ↑(F+), and for all sets Y ∈ F− we have Y ̸⊆ S, since S /∈ ↑(F−).
Hence, we have T ∈ ↑(F+) due to X ⊆ W ⊆ T and no Y ∈ F− can satisfy Y ⊆ T , else we
would also have Y ⊆ S. Therefore, T ∈ ↑(F+) \ ↑(F−) = F .

For the other direction, we first show that ↑(F) \ F is an upward closure, i.e., closed
under taking supersets. Suppose, for sake of contradiction, that T ∈ ↑(F) \ F and T ⊆ S,
but S /∈ ↑(F) \ F . Since T ∈ ↑(F), there exists some W ∈ F with W ⊆ T ⊆ S, hence
also S ∈ ↑(F). From S /∈ ↑(F) \ F , it then follows that S ∈ F . Finally, since F satisfies
the interval property, we must then have T ∈ F , thus contradicting that T ∈ ↑(F) \ F . So,
↑(F)\F = ↑(F−) for some family F− and we obtain F = ↑(F)\(↑(F)\F) = ↑(F)\↑(F−).

Given a table A : F → R, where R is some commutative ring with unit, the Zeta transform
ζA : F → R, the Möbius transform µA : F → R, and the odd-negation transform σA : F → R

are given by

(ζA)(S) =
∑
T∈F :
T⊆S

A(T), (µA)(S) =
∑
T∈F :
T⊆S

(−1)|S\T |A(T), (σA)(S) = (−1)|S|A(S).

All of these transforms can be viewed as operators on the space of functions from F to R.
Given two tables A,B : F → R, their cover product A⊗c B : F → R is given by

(A⊗c B)(S) =
∑

T1,T2∈F :
T1∪T2=S

A(T1)B(T2).

Moreover, we let A ·B : F → R denote the pointwise multiplication of the two tables A and
B, i.e., (A ·B)(S) = A(S)B(S). We will now prove several properties of these transforms
that allow us to design a fast algorithm for computing the cover product.

Lemma 5.2.2. Let F be a closure difference and R a commutative ring with unit. The following
statements are true:
1. σζσ = µ, σµσ = ζ,
2. µζ = ζµ = id, where id is the identity transform,
3. ζ(A⊗c B) = (ζA) · (ζB), for any two tables A,B : F → R.

Proof. We adapt the proofs of Cygan et al. [47] to our setting and make note of the proof
steps where we use that F is a closure difference.

78 Chapter 5 Algorithms Parameterized By Clique-Width

1. We compute for every table A : F → R and set S ∈ F :

(σζσA)(S) = (−1)|S|
∑
T∈F :
T⊆S

(−1)|T |A(T) =
∑
T∈F :
T⊆S

(−1)|S|+|T |A(T) =
∑
T∈F :
T⊆S

(−1)|S\T |A(T)

= (µA)(S),

where the third equality follows from |S| + |T | = 2|S ∩ T | + |S \ T |. Since σσ = id, it
also follows that σµσ = σσζσσ = ζ.

2. From the previous statement it follows that µζ = σζσζ. Again, we compute for every
table A : F → R and set S ∈ F :

(σζσζA)(S) = (−1)|S|
∑
T∈F :
T⊆S

(σζA)(T) = (−1)|S|
∑
T∈F :
T⊆S

(−1)|T |
∑

W∈F :
W⊆T

A(W)

= (−1)|S|
∑

W∈F :
W⊆S

A(W)
∑
T∈F :
W⊆T⊆S

(−1)|T | = A(S) + (−1)|S|
∑

W∈F :
W⊊S

A(W)
∑
T∈F :
W⊆T⊆S

(−1)|T |

= A(S),

where the last equality follows from the fact that
∑
T∈F : W⊆T⊆S(−1)|T | = 0 whenever

W ⊊ S, since we can pick some x ∈ S \W and pair every T with T △ {x} which yields a
fixpoint-free sign-reversing involution. Note that this step relies on Lemma 5.2.1 (applied
to W ⊆ T △ {x} ⊆ S). For an arbitrary set family F ′, it does not necessarily hold that
T △ {x} ∈ F ′.
The remaining equality follows from ζµ = ζσζσ = σµσσζσ = σµζσ = σσ = id.

3. We compute for every two tables A,B : F → R and set S ∈ F :

(ζ(A⊗c B))(S) =
∑

W∈F :
W⊆S

∑
T1,T2∈F :
T1∪T2=W

A(T1)B(T2) =
∑

T1,T2∈F :
T1∪T2⊆S

A(T1)B(T2)

=
∑

T1∈F :
T1⊆S

∑
T2∈F :
T2⊆S

A(T1)B(T2) =

 ∑
T∈F :
T⊆S

A(T)

 ∑
T∈F :
T⊆S

B(T)

= ((ζA) · (ζB))(S),

where the second equality again relies on Lemma 5.2.1 (applied to T1 ⊆ T1 ∪ T2 ⊆ S).
For an arbitrary set family F ′, we might have T1 ∪ T2 /∈ F ′ which would therefore not be
summed over on the left-hand side.

To proceed with the algorithmic part, we require that F satisfies some algorithmic
requirements. We say that F ⊆ P(U) is efficiently listable if there is an algorithm that
outputs all members of F in time O∗(|F|) = |F||U |O(1). Each member of F is represented
as a bitstring and we can assume that the output of the listing algorithm is in sorted order.
Hence, after listing F , we can decide for a set S ⊆ U whether S ∈ F or not by binary search
in time O(log |F|) = O(|U |). A table A : F → R is given by listing the values A(S), S ∈ F ,
in the same order as the listing of F .

5.2 Fast Convolution Algorithms 79

In the following time analysis, we separate the impact of the ring operations from the
rest of the algorithms, i.e., we only count the number of performed ring operations and
bound the time spent on the remainder of the algorithm.

Corollary 5.2.3. Let F be an efficiently listable closure difference and R be a commutative ring
with unit. If the Zeta transform ζA and the Möbius transform µA of a table A : F → R can be
computed in O(|F||U |) ring operations and additional time O∗(|F|), then the cover product
A⊗c B can be computed in O(|F||U |) ring operations and additional time O∗(|F|).

Proof. We make use of Lemma 5.2.2. Given tables A and B, we first compute ζA and ζB
and then the pointwise multiplication (ζA) · (ζB). By definition, the pointwise multiplication
can be computed in O(|F|) ring operations and additional time O∗(|F|) for listing all
members of F . Finally, we compute the Möbius transform of the pointwise multiplication.
By Lemma 5.2.2, we have µ((ζA) · (ζB)) = µζ(A ⊗c B) = A ⊗c B. By assumption, every
step takes O(|F||U |) ring operations and additional time O∗(|F|), hence the statement
follows.

Theorem 5.2.4. Let F = ↑(F+) \ ↑(F−) be an efficiently listable closure difference and R be a
commutative ring with unit. Given a table A : F → R, the Zeta transform ζA and the Möbius
transform µA can be computed in O(|F||U |) ring operations and additional time O∗(|F|).

Proof. We modify the algorithm of Björklund et al. [15, Algorithm Z] for the Zeta transform
to make it suitable for our setting. Let n = |U | be the size of the universe and without loss of
generality assume U = [n]. The algorithm maintains n+ 1 set families 0, . . . ,Ln ⊆ F , where
each Li only contains sets of size i. For all j ∈ [0, n] and S ∈ F , we will compute auxiliary
values

Aj(S) =
∑

T∈F : T∩[j]⊆S∩[j],
T∩[j+1,n]=S∩[j+1,n]

A(T).

Clearly, A0(S) = A(S) and An(S) = ζA(S). Also, one can verify that the recurrence
Aj(S) = [(j ∈ S) ∧ (S \ {j} ∈ F)]Aj−1(S \ {j}) + Aj−1(S) holds for all j ∈ [n] and S ∈ F .
We highlight the case that j ∈ S but S \ {j} /∈ F ; here every T ∈ F with T ⊆ S must satisfy
j ∈ T , otherwise we would obtain S \ {j} ∈ F by Lemma 5.2.1, hence Aj(S) = Aj−1(S).

Algorithm 1: Fast Zeta transform

1 for S ∈ F do insert S into L|S|;
2 for r = 0, 1, . . . , n do
3 while Lr is not empty do
4 Select any S ∈ Lr and remove it from Lr;
5 A0(S) := A(S);
6 for j = 1, . . . , n do
7 Aj(S) := [(j ∈ S) ∧ (S \ {j} ∈ F)]Aj−1(S \ {j}) +Aj−1(S);

8 return An;

Clearly, Algorithm 1 considers every set S ∈ F exactly once and due to the ordering by
cardinality only accesses already computed values. Algorithm 1 correctly computes the Zeta

80 Chapter 5 Algorithms Parameterized By Clique-Width

transform ζA = An by the previous considerations. Ring operations are only performed
in line 7, namely at most two per execution of line 7. Line 7 is executed exactly n times
for every element of F , hence Algorithm 1 performs in total O(|F|n) ring operations. The
additional time is dominated by the listing of F in line 1 and the O(|F|n) membership
queries incurred by line 7, thus leading to additional time O∗(|F|).

To compute the Möbius transform µA, we use the equation µ = σζσ from Lemma 5.2.2.
Hence, we first compute σA, then apply Algorithm 1 to σA to obtain ζσA, and finally we
apply σ again. Since (−1)k = 1 if k is even and (−1)k = −1 if k is odd, we can apply σ in
O(|F|) ring operations and additional time O∗(|F|) due to listing, therefore the statement
follows.

Componentwise Union to Set Union. Fix a natural number k and universe U . We define
the projection πU : [k] × U → U , (i, u) 7→ u, and for any i ∈ [k] and set S ⊆ U , we define
πiU (S) := πU (S ∩ ({i} × U)). Given a set family F ⊆ P(U), we construct the set family
kF := {S ⊆ [k] × U : πiU (S) ∈ F for all i ∈ [k]}. Given a function f : [k] → F , we construct
the set kF ∋ Sf :=

⋃
i∈[k]{i} × f(i) = {(i, x) ∈ [k] × U : x ∈ f(i)}. This is a bijection and

the construction turns componentwise union of functions [k] → F into union of sets in kF ,
i.e., for functions f, f1, f2 : [k] → F , we have f(i) = f1(i) ∪ f2(i) for all i ∈ [k] if and only if
Sf = Sf1 ∪ Sf2 . Hence, given two tables A,B : F [k] → R, the componentwise cover product
A⊗comp B : F [k] → R can be reduced to a standard cover product, i.e.,

(A⊗comp B)(f) :=
∑

f1,f2∈F [k] :
f1(i)∪f2(i)=f(i) ∀i∈[k]

A(f1)B(f2) =
∑

Sf1 ,Sf2 ∈kF :
Sf1 ∪Sf2 =Sf

A(f1)B(f2) = (A′ ⊗c B
′)(Sf),

where A′, B′ : kF → R with A′(Sf) := A(f) and B′(Sf) := B(f), which is well-defined
since f 7→ Sf is a bijection. Furthermore, the following lemma shows that we can apply the
fast convolution algorithms to kF if F is a closure difference.

Lemma 5.2.5. Let F ⊆ P(U) be a set family and k be some natural number. If F is a closure
difference, then also the set family kF ⊆ P([k] × U) is a closure difference.

Proof. We first argue that k↑(F) = ↑(kF) for all set families F and natural numbers k. We
have S ∈ k↑(F) if and only if there exist Ti ∈ F such that {i} × Ti ⊆ S ∩ ({i} × U) for all
i ∈ [k]. Setting T =

⋃
i∈[k]{i} × Ti ∈ kF , we see that this is equivalent to the existence of

some T ⊆ S which holds if and only if S ∈ ↑(kF).
Let F = ↑(F+) \ ↑(F−) be a closure difference. We compute

kF = {S ⊆ [k] × U : πiU (S) ∈ F for all i ∈ [k]}

= {S ⊆ [k] × U : πiU (S) ∈ (↑(F+) \ ↑(F−)) for all i ∈ [k]}

= k↑(F+) \ {S ⊆ [k] × U : there is an i ∈ [k] s.t. πiU (S) ∈ ↑(F−)}

= ↑(kF+) \ {S ⊆ [k] × U : there is an i ∈ [k] s.t. πiU (S) ∈ ↑(F−)}

and notice that the second set in the last line is clearly closed under taking supersets and
hence kF is a closure difference, too.

5.2 Fast Convolution Algorithms 81

Theorem 5.2.6. Let F ⊆ P(U) be a fixed efficiently listable closure difference and R be a
commutative ring with unit. Given tables A,B : F [k] → R, their componentwise cover product
A⊗comp B can be computed in O(k|F|k|U |) ring operations and additional time O∗(|F|k).

Proof. We construct the set family kF ⊆ P([k] × U) which is a closure difference by
Lemma 5.2.5. Since F is efficiently listable, also kF can be efficiently listed in lexico-
graphic order. We invoke Theorem 5.2.4 and Corollary 5.2.3 with kF to compute the
cover product over kF in O(k|F|k|U |) ring operations and additional time O∗(|F|k). By the
preceding discussion, the cover product over kF yields the componentwise cover product
A⊗comp B over F .

5.2.2 Lattice-based Convolution
A poset is a pair (L,⪯) consisting of a set L and a binary relation ⪯ on L that is reflexive,
transitive, and anti-symmetric. A lattice is a poset (L,⪯) such that every pair a, b ∈ L has a
greatest lower bound (meet) a ∧ b ∈ L and a least upper bound (join) a ∨ b ∈ L. Any finite
lattice (L,⪯) contains a ⪯-minimum element 0̂ ∈ L, which is obtained by taking the meet of
all elements in L and satisfies 0̂ ∨ a = a ∨ 0̂ = a for all a ∈ L.

In the algorithm for CONNECTED DOMINATING SET[clique-width], the family of possible
states forms a lattice and at union-nodes in the clique-expression, we must compute a
convolution-like product. To obtain an efficient algorithm, we will observe some lattice-
theoretic properties.

The product that we are interested in can be formulated in the lattice setting as follows.
Given a lattice (L,⪯) and tables A,B : L → F, where F is some field, the ∨-product A ⊗L

B : L → F is given by (A⊗L B)(x) =
∑
y,z∈L : x=y∨z A(y)B(z) for every x ∈ L.

Björklund et al. [16] develop an efficient algorithm for the ∨-product for specific lattices
by designing small arithmetic circuits for the Zeta and Möbius transform, whose precise
definitions we do not need here. The relevant concept is as follows; we say that an element
x ∈ L of a lattice (L,⪯) is join-irreducible if x = a ∨ b implies x = a or x = b for all a, b ∈ L,
otherwise x is called join-reducible. We denote the set of join-irreducible elements in L by
L∨. Observe that 0̂ is always join-irreducible, as otherwise 0̂ would not be the ⪯-minimum.
We even have the stronger property that 0̂ = a ∨ b implies a = b = 0̂.

We assume that a finite lattice (L,⪯) is algorithmically given to us in the join represen-
tation [16]; we are given the set L, where the elements of L represented as O(log |L|)-bit
strings, the set of join-irreducible elements L∨ ⊆ L, and an algorithm AL that computes the
join a ∨ x given an element a ∈ L and a join-irreducible element x ∈ L∨.

Theorem 5.2.7 ([16]). Let (L,⪯) be a finite lattice given in join-representation andA,B : L →
F be two tables, where F is some field. The ∨-product A⊗L B can be computed in O(|L||L∨|)
field operations and calls to algorithm AL and further time O(|L||L∨|2).

Next, we analyze the lattice that occurs in the algorithm for CONNECTED DOMINATING

SET and derive a bound on the number of join-irreducible elements in this lattice, so that we
can apply Theorem 5.2.7. The relevant lattice can be written as a power of a smaller lattice
and we give a general bound for such lattices. We proceed with the relevant definitions.

82 Chapter 5 Algorithms Parameterized By Clique-Width

Given finitely many lattices (Li,⪯i), i ∈ I, their direct product (
∏
i∈I Li,⪯), with

(ai)i∈I ⪯ (bi)i∈I if and only if ai ⪯i bi for all i ∈ I, is again a lattice; the join- and
meet-operations in the direct product lattice are given by componentwise application of the
corresponding operation in the constituent lattices. Given a lattice (L,⪯) and k ∈ N, the
kth-power (Lk,⪯k) of L is the direct product of k copies of L.

Lemma 5.2.8. Let (L,⪯) be a finite lattice and k ∈ N. In the k-th power (Lk,⪯k) of L,
an element x ∈ Lk is join-irreducible if and only if x = (0̂, . . . , 0̂) or there is exactly one
component that is not 0̂ and this component is join-irreducible in L. In particular, there are
exactly 1 + k(|L∨| − 1) ≤ k|L| join-irreducible elements in Lk.

Proof. First, we prove that every join-irreducible element x of Lk must have the stated form.
Suppose to the contrary that x = (x1, . . . , xk) has at least two components that are not
0̂; without loss of generality we can assume that x1 ̸= 0̂ and x2 ̸= 0̂. We compute that
x = (x1, . . . , xk) = (0̂, x2, x3, . . . , xk)∨(x1, 0̂, x3, . . . , xk) and note that x ̸= (0̂, x2, x3, . . . , xk)
and x ̸= (x1, 0̂, x3, . . . , xk) by assumption. Therefore, x is join-reducible in this case. Fur-
thermore, if x contains a join-reducible component, say x1 = a1 ∨ b1 with a1 ̸= x1 ̸= b1, then
x is join-reducible, since x = (a1, x2, . . . , xk) ∨ (b1, x2, . . . , xk).

For the other direction, we have x = (0̂, . . . , 0̂) which is the ⪯k-minimum element in Lk

and hence join-irreducible. Now, let x = (x1, . . . , xk) ∈ Lk have exactly one component
that is not 0̂ and let this component be join-irreducible, say x1 ∈ L∨ \ {0̂} and xi = 0̂ for
all i ∈ [2, k]. Suppose that x = y ∨ z with y, z ∈ Lk, then we have 0̂ = xi = yi ∨ zi for all
i ∈ [2, k] which implies xi = yi = zi = 0̂ for all i ∈ [2, k]. For i = 1, we see that x1 = y1 ∨ z1

implies x1 = y1 or x1 = z1 by irreducibility of x1, and hence x = y or x = z.

Corollary 5.2.9. Let (L,⪯) be a finite lattice given in join-representation and k be a natural
number. There is an algorithm ALk that computes the join a ∨ x, where a ∈ Lk and x ∈ (Lk)∨,
using one call to AL and further time O(k log |L|).

Proof. Every element of L is represented by a O(log |L|)-bit string, hence every element
of Lk can be represented by a O(k log |L|)-bit string. By Lemma 5.2.8, we know that the
join-irreducible element x ∈ Lk has at most one component that is not 0̂. We search for this
component and the corresponding component in a in time O(k log |L|), afterwards we call
A∨ to obtain the result for this component and all other components of a remain unchanged
due to ai ∨ 0̂ = ai for all i ∈ [k].

Corollary 5.2.10. Let (L,⪯) be a finite lattice given in join-representation and k be a natural
number. Given two tables A,B : Lk → Z2, the ∨-product A⊗Lk B in Lk can be computed in
time O(k2|L|k+2) and O(k|L|k+1) calls to algorithm AL.

Proof. We pipeline Theorem 5.2.7 with Lemma 5.2.8 and Corollary 5.2.9. First, observe that
the field operations in Z2 can be performed in constant time. Secondly, every call to ALk

can be simulated by one call to AL and further time O(k log |L|) and hence these calls lead
to in total O(|Lk||(Lk)∨|(k log |L|)) = O(k2|L|k+1 log |L|) further running time, which will
be dominated by the rest of the algorithm. Finally, the algorithm of Theorem 5.2.7 needs
further time O(|Lk||(Lk)∨|2) = O(|L|k(k|L|)2) = O(k2|L|k+2) which dominates all other
computations.

5.2 Fast Convolution Algorithms 83

5.3 Connected Vertex Cover Algorithm

When solving CONNECTED VERTEX COVER, we only consider CONNECTED VERTEX COVER

instances where the costs are polynomially bounded in the input size. Furthermore, we
assume without loss of generality that G is connected and contains at least two vertices.

Given a k-expression µ for G = (V,E), we can assume, after polynomial-time prepro-
cessing, that µ is a nice k-expression by Lemma 5.1.4. We want to apply the cut-and-count-
technique to solve CONNECTED VERTEX COVER in time O∗(6k). Here, we use the technique
of fixing a vertex2, where we first pick an edge in G, branch on one of its endpoints v∗,
and in this branch only consider solutions containing v∗. Furthermore, we sample a weight
function w : V → [2|V |] for the isolation lemma, cf. Lemma 3.1.4. We perform bottom-up
dynamic programming along the augmented syntax tree T̂µ. At every node t ∈ V (T̂µ), we
consider the following family of partial solutions

At = {(X, (XL, XR)) ∈ C(Gt) : Gt −X contains no edges and v∗ ∈ Vt → v∗ ∈ XL}.

In other words, At contains all consistently cut vertex covers of Gt such that v∗ is on the
left side of the cut if possible. For every t ∈ V (T̂µ), c ∈ [0, c(V)], w ∈ [0,w(V)], we define
Ac,w
t = {(X, (XL, XR)) ∈ At : c(X) = c,w(X) = w}. Let r̂ denote the root node of the

augmented syntax tree T̂µ. By Theorem 3.1.6, it follows that there exists a connected vertex
cover X of G with c(X) ≤ b if there exist c ∈ [0, b] and w ∈ [0,w(V)] such that Ac,w

r̂ has
odd cardinality.

To facilitate the dynamic programming algorithm, we need to analyze the behavior of
a partial solution (X, (XL, XR)) ∈ At with respect to a label V ℓt , ℓ ∈ Lt. A single vertex
v ∈ V ℓt can take one of the states Ω = {0,1L,1R}, meaning respectively v /∈ X, or v ∈ XL,
or v ∈ XR. To check the feasibility of (X, (XL, XR)), it is sufficient to store for each label
which vertex states appear and which do not, as the constraints implied by At are "CSP-like"
and they can be evaluated for every join by considering all pairs of involved vertex states.
This idea yields the power set P(Ω) of Ω as the set of possible states for each label.

The power set P(Ω) a priori yields eight different states per label. However, we can
exclude the state ∅ and the state Ω = {0,1L,1R} from consideration. The former can be
excluded since we only need to store the state for nonempty labels. The exclusion of the
state Ω = {0,1L,1R} is more subtle: any additional incident join would lead to an infeasible
solution for this state, hence only dead labels, cf. Definition 5.1.7, may take this state. We
return to this issue in a moment. Since it suffices to store the states of live labels, we set
States = P(Ω) \ {∅,Ω} = {{0}, {1L}, {1R}, {0,1L}, {0,1R}, {1L,1R}}.

2Although it can be preferable to avoid fixing a vertex as discussed in Section 3.1, the algorithm for CONNECTED
DOMINATING SET[clique-width] is simplified by fixing a vertex. Hence, we decide to use technique for all
clique-width algorithms for sake of consistency.

84 Chapter 5 Algorithms Parameterized By Clique-Width

Given a node t ∈ V (T̂µ), a t-signature is a function f : Llivet → States. For every node
t ∈ V (T̂µ), c ∈ [0, c(V)], w ∈ [0,w(V)], and t-signature f , we define

Ac,w
t (f) = {(X, (XL, XR)) ∈ Ac,w

t : 0 ∈ f(ℓ) ↔ V ℓt ̸⊆ X for all ℓ ∈ Llivet ,

1L ∈ f(ℓ) ↔ XL ∩ V ℓt ̸= ∅ for all ℓ ∈ Llivet ,

1R ∈ f(ℓ) ↔ XR ∩ V ℓt ̸= ∅ for all ℓ ∈ Llivet }.

Instead of computing the sets Ac,w
t (f) directly, we compute only the parity of their cardinality,

i.e., Ac,wt (f) = |Ac,w
t (f)| mod 2.

We can now argue more formally that the exclusion of the states ∅ and Ω does not cause
issues. First, for any nonempty V ℓt at least one of the three cases V ℓt ̸⊆ X, XL ∩ V ℓt ̸=
∅, or XR ∩ V ℓt ̸= ∅ has to occur, hence the state ∅ cannot be attained by any V ℓt with
ℓ ∈ Llivet . Secondly, consider some node t that is not the child of a dead node, and
(X, (XL, XR)) ∈ Ac,w

t such that there is some live label ℓ ∈ Llivet for which the three cases
V ℓt ̸⊆ X, XL ∩ V ℓt ̸= ∅, and XR ∩ V ℓt ̸= ∅ simultaneously occur. Since ℓ is a live label, there
is some v ∈ NG(V ℓt) \ NGt

(V ℓt) by Lemma 5.1.8. We claim that (X, (XL, XR)) cannot be
extended to a consistently cut vertex cover (X ′, (X ′

L, X
′
R)) of G′ = G[Vt ∪ {v}] (and hence

also not of G). If v /∈ X ′, then there is an uncovered edge in G′ between V ℓt and v. If v ∈ X ′,
then there is an edge in G′ crossing the cut (X ′

L, X
′
R) and so the cut cannot be consistent.

Hence, we can safely discard any partial solutions that attain the state {0,1L,1R} with a
live label, as they can never be extended to a global solution.

The state Ω = {0,1L,1R} can be obtained when two sets of vertices become united
under a common label, i.e., by a relabel-operation or union-operation. We give recurrences
for the quantities Ac,w

t (f), where f is a t-signature which cannot attain Ω for any label,
hence such situations are implicitly filtered out in the algorithm as the recurrences simply
do not consider state combinations that lead to Ω.

We proceed to give recurrences for computing Ac,wt (f), for every t ∈ V (T̂µ), t-signature
f , c ∈ [0, c(V)], w ∈ [0,w(V)] depending on the type of the node t.

Introduce Node. If t = ℓ(v) for some ℓ ∈ [k], then Llivet = {ℓ} and

Ac,wt (f) = [v ̸= v∗ ∨ f(ℓ) = {1L}]

· [(f(ℓ) = {0} ∧ c = w = 0) ∨ (f(ℓ) ∈ {{1L}, {1R}} ∧ c = c(v) ∧ w = w(v))],

since in a singleton graph any choice of singleton state leads to a valid solution, but if v = v∗

then only the solution with v∗ on the left side of the cut is allowed.

Relabel Node. If t = ρi→j(Gt′), where t′ is the child of t, for some i, j ∈ [k], then i ∈ Lt′ ,
j ∈ Lt′ , Lt = Lt′ \ {i} and either i, j ∈ Llivet′ or i, j ∈ Ldeadt′ , since µ is nice.

• If labels i and j are live at t′, then j is live at t and the recurrence is given by

Ac,wt (f) =
∑

S1,S2∈States :
S1∪S2=f(j)

Ac,wt′ (f [i 7→ S1, j 7→ S2]),

5.3 Connected Vertex Cover Algorithm 85

since V jt = V it′ ∪ V jt′ and we simply have to iterate over all possible combinations of
previous states at labels i and j that yield the desired state f(j).

• If labels i and j are dead at t′, then label j is dead at t and since we do not track the
state of dead labels, we can simply copy the previous table, i.e.,

Ac,wt (f) = Ac,wt′ (f).

Join Node. To check whether two states can lead to a feasible solution after adding a
join between their labels, we introduce a helper function feas : States × States → {0, 1}
defined by feas(S1,S2) = [0 /∈ S1 ∨ 0 /∈ S2][1L ∈ S1 → 1R /∈ S2][1R ∈ S1 → 1L /∈ S2], or
equivalently by the following table:

feas {0} {1L} {1R} {0,1L} {0,1R} {1L,1R}
{0} 0 1 1 0 0 1

{1L} 1 1 0 1 0 0
{1R} 1 0 1 0 1 0

{0,1L} 0 1 0 0 0 0
{0,1R} 0 0 1 0 0 0

{1L,1R} 1 0 0 0 0 0

There are two reasons for infeasibility: a join edge is not covered, i.e., 0 appears on both
sides, or a join edge connects both sides of the cut, i.e., 1L appears on one side and 1R on
the other. Using this helper function, we can now state the recurrence.

We have that t = ηi,j(Gt′) for some i ̸= j ∈ Lt′ and where t′ is the child of t. We must
have i, j ∈ Llivet′ and if the set of dead vertices changes, i.e., Dt ̸= Dt′ , then this will be
handled by future dead nodes. Hence, we simply have to filter out all partial solutions that
became infeasible due to the new join:

Ac,wt (f) = feas(f(i), f(j))Ac,wt′ (f).

Dead Node. We have that t = ⊥ℓ(Gt′), where t′ is the child of t, ℓ /∈ Llivet , and Llivet =
Llivet′ \{ℓ}. Since the only change is that t-signatures do not track the state of label ℓ anymore,
we have to add up the contributions of all previous states of label ℓ. Hence, the recurrence is
given by

Ac,wt (f) =
∑

S∈States

Ac,wt′ (f [ℓ 7→ S]).

Since States ̸= P(Ω), this recurrence could a priori fail to account for some partial solutions,
e.g., those where all three vertex states simultaneously appear at label ℓ, however the
previous argument on the exclusion of label state Ω essentially shows that such partial
solutions cannot exist at this dead node. So, although the recurrence looks simple, its
correctness proof is nontrivial.

Union Node. We have that t = Gt1 ⊕ Gt2 , where t1 and t2 are the children of t and we
have Llivet = Llivet1 ∪ Llivet2 . Given a t-signature f , we consider the union-split ft,1, ft,2, ft,12

of f at t, cf. Definition 5.1.11. For every label ℓ ∈ L̃t,12 = Llivet1 ∩ Llivet2 , we need to consider

86 Chapter 5 Algorithms Parameterized By Clique-Width

all states S1,S2 ∈ States such that S1 ∪ S2 = f(ℓ), where Si is the state of label ℓ at ti.
Furthermore, we have to distribute c and w among the partial solutions at t1 and the partial
solutions at t2. Hence, we obtain the recurrence

Ac,wt (f) =
∑

c1+c2=c
w1+w2=w

∑
g1,g2 : L̃t,12→States :

g1(ℓ)∪g2(ℓ)=ft,12(ℓ) ∀ℓ∈L̃t,12

Ac1,w1
t1 (g1 ∪ ft,1)Ac2,w2

t2 (g2 ∪ ft,2),

where we interpret gi and ft,i as sets in the expression gi ∪ ft,i for i ∈ [2].
We compute this recurrence in time O∗(6|Llive

t |) for fixed c ∈ [0, c(V)], w ∈ [0,w(V)],
and for all t-signatures f simultaneously as follows. We branch on all possibilities for
(c1, c2, w1, w2); these are nO(1) possibilities as c(V) ≤ nO(1) and w(V) ≤ 2n2. Fixing one
of these possibilities, we branch on ft,1 and ft,2, this leads to 6|L̃t,1|+|L̃t,2| choices. The
quantities Ac1,w1

t1 (g1 ∪ ft,1) and Ac2,w2
t2 (g2 ∪ ft,2) can be considered as functions of g1 and g2

and the inner sum over these in the recurrence is their componentwise cover product over
States evaluated at ft,12.

Since the set States is clearly a closure difference, we can apply Theorem 5.2.6 to
compute this componentwise cover product in time O∗(6|L̃t,12|) for all possible ft,12. Since
Llivet is partitioned into L̃t,1, L̃t,2, and L̃t,12 by Lemma 5.1.12, we need in total time
O∗(6|Llive

t |) to compute Ac,wt (f) for all choices of c, w, and f .

Lemma 5.3.1. Given a nice k-expression µ of G = (V,E), there is an algorithm that computes
the quantities Ac,wt (f) for all nodes t ∈ V (T̂µ), all t-signatures f , and all c ∈ [0, c(V)],
w ∈ [0, 2n2], in time O∗(6k).

Proof. The algorithm proceeds by bottom-up dynamic programming along the augmented
syntax tree T̂µ of the nice k-expression µ and computes the quantities Ac,wt (f) via the given
recurrences. For an introduce node, relabel node, or join node, the recurrence for Ac,wt (f)
for fixed f , c, and w, can clearly be computed in polynomial time, since additions and
multiplications in Z2 take constant time. For a union node t, we have argued how to
compute the recurrences for all f , c, and w simultaneously in time O∗(6|Llive

t |). As µ is a
k-expression, we have |Llivet | ≤ k for all t ∈ V (T̂µ) and in particular at most 6k t-signatures
for any node t ∈ V (Tµ). Hence, the running time follows as µ consists of a polynomial
number of operations.

It remains to prove the correctness of the recurrences. The proof of correctness for
introduce nodes, relabel nodes, join nodes, and union nodes is straightforward and hence
omitted. Consider a dead node t = ⊥ℓ(Gt′), where t′ is the child of t. We claim that
Ac,w
t (f) =

⋃
S∈States Ac,w

t′ (f [ℓ 7→ S]) for all t-signatures f , c, and w. Since the union on
the right-hand side is clearly disjoint, this claim immediately proves the correctness of
the recurrence for dead nodes. We proceed with proving the claim. The right-hand side
is contained in the left-hand side, since the set on the left-hand side is defined by fewer
constraints.

For the other direction, suppose there is some partial solution (X, (XL, XR)) ∈ Ac,w
t (f) \(⋃

S∈States Ac,w
t′ (f [ℓ 7→ S])

)
and consider V ℓt . Since V ℓt ̸= ∅, at least one of V ℓt ̸⊆ X,

XL ∩ V ℓt ̸= ∅, XR ∩ V ℓt ̸= ∅ has to be satisfied. Indeed, all three statements are satisfied
simultaneously, because all remaining cases are covered by States. Consider the join node

5.3 Connected Vertex Cover Algorithm 87

t∗ that caused the dead node t to exist. The node t∗ adds the final join incident to V ℓt = V ℓt∗ ,
say between V ℓt and some V it = V it∗ , i ̸= ℓ, and by niceness of µ we have V it ̸= ∅. Hence, at
least one of V it ̸⊆ X, XL ∩ V it ̸= ∅, XR ∩ V it ̸= ∅ has to be satisfied. Therefore, there is an
uncovered edge between V ℓt and V it or an edge crossing the cut (XL, XR), contradicting
that (X, (XL, XR)) ∈ Ac,w

t (f). Hence, Ac,w
t (f) ⊆

⋃
S∈States Ac,w

t′ (f [ℓ 7→ S]), proving the
claim.

Theorem 5.3.2. There is a randomized algorithm that given a nice k-expression µ for a graph
G = (V,E) can solve CONNECTED VERTEX COVER in time O∗(6k). The algorithm does not
return false positives and returns false negatives with probability at most 1/2.

Proof. We begin by sampling a weight function w : V → [2n] uniformly at random. Then,
we pick an edge in G and branch on its endpoints; the chosen endpoint takes the role
of v∗ in the current branch. We then run the algorithm of Lemma 5.3.1 to compute the
quantities Ac,wt (f). Let r̂ denote the root node of the expression µ. At the root, we have that
Lliver̂ = ∅. The algorithm returns true if in one of the branches there is some choice of c ≤ b,
w ∈ [0, 2n2], such that Ac,wr̂ (∅) ̸= 0, otherwise the algorithm returns false.

The running time directly follows from Lemma 5.3.1. For the correctness, first note that
at the root, we have Ac,w

r̂ (∅) = Ac,w
r̂ . The algorithm only returns true, if there are some

c ∈ [0, b], w ∈ [0, 2n2] such that Ac,w
r̂ has odd cardinality. By Theorem 3.1.6, this implies that

there is a connected vertex cover X of G with c(X) = c ≤ b, hence the algorithm does not
return false positives.

For the error probability, suppose that the weight function w isolates an optimum
connected vertex cover X∗ of G and that c(X∗) ≤ b; by Lemma 3.1.4, the isolation happens
with probability greater than or equal to 1/2. Furthermore, consider a branch with v∗ ∈ X∗.
Set c = c(X∗) ≤ b and w = w(X∗). By Lemma 3.1.1, the connected vertex cover X∗

contributes once to |Ac,w
r̂ | and all other contributing sets cannot be connected due to isolation

and hence contribute an even number to |Ac,w
r̂ |. Therefore Ac,wr̂ (∅) ≡2 |Ac,w

r̂ | = 1 ̸= 0 and
hence the algorithm returns true with probability at least 1/2 given a positive instance.

5.4 Connected Dominating Set Algorithm
When solving CONNECTED DOMINATING SET, we only consider instances where the costs are
polynomially bounded in the input size. Furthermore, we assume without loss of generality
that G is connected and contains at least two vertices.

We begin by motivating our algorithmic approach for CONNECTED DOMINATING SET.
Following the approach for CONNECTED VERTEX COVER, we would consider partial solutions
(X, (XL, XR)) consisting of a partial dominating set X and a consistent cut (XL, XR) of the
subgraph induced by X. A single vertex v can take four states with respect to (X, (XL, XR)):
01, 00, 1L, 1R, where the former two indicate that v /∈ X and the subscript denotes whether
v is dominated by X or not, and the latter two indicate that v ∈ X and the subscript denotes
which cut side contains v. We can again store for each label which vertex states appear,
yielding as possible label states all subsets of {01,00,1L,1R}. By observing that the state 01

does not impose any constraint for future joins, we can even argue that it suffices to only

88 Chapter 5 Algorithms Parameterized By Clique-Width

consider the subsets of {00,1L,1R}. Furthermore, similar to CONNECTED VERTEX COVER,
the label state {00,1L,1R} cannot be sensibly attained by live labels, hence we are down to
seven states per live label. This approach yields a running time of O∗(7cw(G)), but we can
obtain an even faster algorithm.

To obtain the improved running time of O∗(5cw(G)), we instead work with a different set
of vertex states common for domination problems [140, 155, 164] and which will appear
again in Part III. Instead of considering partial solutions with dominated and undominated
vertices, we consider allowed vertices (state A) and forbidden vertices (state F). As their
names imply, allowed vertices may be dominated or undominated, but forbidden vertices
may not be dominated. When lifting the vertex states to label states, the state A can be
ignored, because it imposes no constraint on joins, therefore we obtain the subsets of
{F,L,R} as label states. The advantage of this set of states is that all subsets of size at least
two behave the same with respect to joins. This allows us to collapse them to a single state
and ensures that we do not have to update states from undominated to dominated when
handling joins.

However, recovering the solutions to the original problem from this set of states usually
requires some type of inclusion-exclusion argument. The application of this step is non-
standard for clique-width. For sparse graph parameters, such as treewidth, the inclusion-
exclusion argument can be applied to single vertices, i.e., if we subtract the partial solutions
where a vertex v has state F from those where v has state A, then only partial solutions
dominating v remain. For clique-width however, we have to apply the argument to groups
of vertices and such a subtraction would only yield that some vertices in the label must be
dominated and not, as is desired, all of them. Moreover, the collapsing of several label states
into a single one complicates the inclusion-exclusion argument further. Surprisingly, working
modulo 2 resolves all of these problems simultaneously and it is also a natural setting for the
cut-and-count-technique. Lastly, the inclusion-exclusion argument should only be applied
when all edges incident to a label are already constructed, i.e., the considered label is dead,
hence we again use augmented syntax trees.

We proceed by giving the formal details of the algorithm. Given a k-expression µ for G =
(V,E), we can assume that µ is nice after polynomial-time preprocessing, see Lemma 5.1.4.
We sample a weight function w : V → [2n] for the isolation lemma, cf. Lemma 3.1.4. To
solve CONNECTED DOMINATING SET, we perform bottom-up dynamic programming along the
augmented syntax tree T̂µ of µ. We pick some v∗ ∈ V and only consider solutions containing
v∗ on the left side of the cut. This allows us to work modulo 2 for the cut-and-count-technique
which synergizes with the inclusion-exclusion approach in this case.

To implement the inclusion-exclusion and cut-and-count approach, we consider the
following family of partial solutions at a node t ∈ V (T̂µ).

Definition 5.4.1. At a node t ∈ V (T̂µ), the family At of partial solutions consists of all
ordered subpartitions (XL, XR, F) of Vt satisfying the following properties:
• X = XL ∪XR, (XL, XR) is a consistent cut of Gt[X],
• v∗ ∈ XL if v∗ ∈ Vt,
• NGt

[X] ∩ F = ∅,
• V ℓt ⊆ NGt

[X] for all ℓ ∈ Ldeadt .

5.4 Connected Dominating Set Algorithm 89

Furthermore, for every node t ∈ V (T̂µ), c ∈ [0, c(V)], and w ∈ [0,w(V)], we define
Ac,w
t = {(XL, XR, F) ∈ At : c(XL ∪XR) = c,w(XL ∪XR) = w}.

Essentially, every (XL, XR, F) ∈ At consists of a consistently cut partial dominating set
X = XL ∪ XR of Gt that dominates all vertices with dead labels and does not dominate
the vertices in F . To any (XL, XR, F) ∈ At, there is also an associated set of vertices
A = Vt \ (XL ∪XR ∪ F) that are allowed to be dominated.

Notice that for any (XL, XR, F) ∈ At, we must have that F ∩
(⋃

ℓ∈Ldead
t

V ℓt

)
= ∅ as

otherwise the third and fourth property in the definition of At cannot be simultaneously
satisfied. In particular, for the root node r̂ we must have F = ∅ and Ldeadr̂ = Lr̂, so that Ar̂

only contains consistently cut dominating sets of G. Hence, if there are c ∈ [0, b], w ∈ [0, 2n2],
such that Ac,w

r̂ has odd cardinality, then there exists a connected dominating set X of G
with c(X) ≤ b by Theorem 3.1.6.

To compute the sets Ac,w
t via dynamic programming, we partition the partial solutions

according to their states on the live labels Llivet . The state of a partial solution (XL, XR, F) ∈
At at a label ℓ ∈ Llivet is based on which of the sets XL, XR, and F are intersected by V ℓt .
To capture this, we make the following definition.

Definition 5.4.2. Let t ∈ V (T̂µ) be a node of T̂µ and ℓ ∈ Lt be a nonempty label. Given an
ordered subpartition (XL, XR, F) of Vt, we define the set Sℓt(XL, XR, F) ⊆ {F,L,R} by
• F ∈ Sℓt(XL, XR, F) ⇐⇒ F ∩ V ℓt ̸= ∅,
• L ∈ Sℓt(XL, XR, F) ⇐⇒ XL ∩ V ℓt ̸= ∅,
• R ∈ Sℓt(XL, XR, F) ⇐⇒ XR ∩ V ℓt ̸= ∅.

Naively, using the sets Sℓt(XL, XR, F) would yield 23 = 8 states per label. Note that also
Sℓt(XL, XR, F) = ∅ is sensible for (XL, XR, F) ∈ At and nonempty label ℓ ∈ Lt, because
this simply means V ℓt ⊆ A = Vt \ (XL ∪XR ∪ F), i.e., all vertices in V ℓt are allowed to be
dominated and not part of the partial dominating set XL∪XR. Surprisingly, it turns out that
all S ⊆ {F,L,R} with |S| ≥ 2 can be handled in the same way, since all such S can only be
feasibly joined to the state ∅. This enables us to solve CONNECTED DOMINATING SET with 5
states per label instead of 8. We define the set States = {∅, {F}, {L}, {R},2+}, where 2+

is not a subset of {F,L,R} but a formal symbol representing the subsets of size at least 2.

Definition 5.4.3. Given a node t ∈ V (T̂µ), a t-signature is a function f : Llivet → States.
A subpartition (XL, XR, F) of Vt is compatible with a t-signature f if for all ℓ ∈ Llivet the
following two properties hold:
• Sℓt(XL, XR, F) = f(ℓ) if f(ℓ) ̸= 2+,
• |Sℓt(XL, XR, F)| ≥ 2 if f(ℓ) = 2+.
Furthermore, for every node t ∈ V (T̂µ), t-signature f , c ∈ [0, c(V)], and w ∈ [0,w(V)], we
define Ac,w

t (f) = {(XL, XR, F) ∈ Ac,w
t : (XL, XR, F) is compatible with f}.

Unlike CONNECTED VERTEX COVER, there are no states in CONNECTED DOMINATING SET

that can only appear at dead labels, since the state ∅ can be joined to any state without
making the partial solution infeasible. Regardless, distinguishing live and dead labels
remains useful, as we only want to require the domination of vertices with dead labels;
vertices with live labels may be dominated by an edge that is missing at the current node.
Hence, the dead nodes of T̂µ serve as natural nodes to apply the inclusion-exclusion step.

90 Chapter 5 Algorithms Parameterized By Clique-Width

As usual, we do not compute the sets Ac,w
t (f) directly, but the parity of their cardinality,

i.e., Ac,wt (f) = |Ac,w
t (f)| mod 2. We now proceed by presenting the various recurrences for

Ac,wt (f), given node t ∈ V (T̂µ), t-signature f , c ∈ [0, c(V)], w ∈ [0,w(V)], based on the type
of the node t.

Introduce Node. If t = ℓ(v) for some ℓ ∈ [k] and v ∈ V , then Llivet = {ℓ} as v cannot be
an isolated vertex by assumption and

Ac,wt (f) = [v ̸= v∗ ∨ f(ℓ) = {L}]

· [(c = w = 0 ∧ f(ℓ) ∈ {∅, {F}}) ∨ (c = c(v) ∧ w = w(v) ∧ f(ℓ) ∈ {{L}, {R}})],

first checking for the edge case that v = v∗ and then that c and w agree with the chosen
state. Note that the state 2+ cannot be achieved here.

Relabel Node. If t = ρi→j(Gt′), where t′ is the only child of t, then label i and j are
nonempty at node t′, since µ is a nice expression. By irredundancy of the expression µ,
either {i, j} ⊆ Ldeadt′ or {i, j} ∩ Ldeadt′ = ∅. In the first case, we have that j ∈ Ldeadt and the
recurrence is simply Ac,wt (f) = Ac,wt′ (f), since we do not store the state of dead labels and
the domination requirement for dead labels remains satisfied.

In the second case, we have j ∈ Llivet and we iterate through all pairs of states that
combine to the current state at label j. Since V jt = V it′ ∪ V jt′ , the recurrence is

Ac,wt (f) =
∑

S1,S2∈States :
merge(S1,S2)=f(j)

Ac,wt′ (f [i 7→ S1, j 7→ S2]),

where merge: States × States → States is given by:

merge ∅ {F} {L} {R} 2+

∅ ∅ {F} {L} {R} 2+

{F} {F} {F} 2+ 2+ 2+

{L} {L} 2+ {L} 2+ 2+

{R} {R} 2+ 2+ {R} 2+

2+ 2+ 2+ 2+ 2+ 2+

Note that Sjt (XL, XR, F) = Sit′(XL, XR, F) ∪ Sjt′(XL, XR, F) and if label i had state S1 at
t′ and label j state S2 at t′, then label j has state merge(S1,S2) at node t.

Join Node. If t = ηi,j(Gt′), i ̸= j, where t′ is the only child of t, then we know that
i, j ∈ Llivet′ since the expression µ is nice. Due to this join, the vertices with label i or j could
receive their final incident edges, possibly leading to V it ⊆ Dt or V jt ⊆ Dt. If this happens,
this join will be followed by up to two dead nodes. At this join, we filter out the partial
solutions that are invalidated by the newly added edges, hence the recurrence is given by

Ac,wt (f) = feas(f(i), f(j))Ac,wt′ (f),

5.4 Connected Dominating Set Algorithm 91

where feas : States × States → {0, 1} is given by the following table:

feas ∅ {F} {L} {R} 2+

∅ 1 1 1 1 1
{F} 1 1 0 0 0
{L} 1 0 1 0 0
{R} 1 0 0 1 0
2+ 1 0 0 0 0

There are two reasons why a partial solution (XL, XR, F) might be invalidated; a new edge
connects F and X = XL ∪XR or a new edge connects XL and XR.

Dead Node. Suppose that t = ⊥ℓ(Gt′), where ℓ ∈ L′
t and t′ is the child of t. We have that

Llivet = Llivet′ \ {ℓ} and ℓ ∈ Ldeadt . Due to the definition of At, we only want to count the
partial solutions from At′ that dominate V ℓt completely. If V ℓt contains only a single vertex,
then this is easy to check with the given states: we could simply compute for a t-signature f

Ac,wt′ (f [ℓ 7→ {L}]) +Ac,wt′ (f [ℓ 7→ {R}]) + (Ac,wt′ (f [ℓ 7→ ∅]) −Ac,wt′ (f [ℓ 7→ {F}])),

where the last part is the inclusion-exclusion argument checking that the vertex in V ℓt is
dominated. However, if |V ℓt | ≥ 2 then we also need to handle the state 2+ for which it
is unclear how to incorporate it into an inclusion-exclusion argument as we do not know
the value of Sℓt′(XL, XR, F) in this case. Furthermore, the previous inclusion-exclusion
argument is invalid over Z if |V ℓt | ≥ 2 as partial solutions with multiple undominated
vertices in V ℓt are counted several times by Ac,wt′ (f [ℓ 7→ {F}]).

Surprisingly, there is a very simple recurrence that avoids all these issues modulo 2. If f
is a t-signature, and c ∈ [0, n], w ∈ [0, 2n2], then the recurrence is given by

Ac,wt (f) =
∑

S∈States

Ac,wt′ (f [ℓ 7→ S]).

This recurrence works because any partial dominating set containing exactly u undominated
vertices in V ℓt is counted 2u times by the right-hand side of the recurrence and hence cancels
modulo 2 for u > 0. We proceed by giving the formal proof of correctness for this recurrence.

Proof. Fix f , c, and w. The left side counts the cardinality of Ac,w
t (f) modulo 2 and the right

side clearly computes
∑

S∈States |Ac,w
t′ (f [ℓ 7→ S])| modulo 2. We have to prove that these

terms agree. For readability, set ALHS := Ac,w
t (f) and ARHS :=

⋃
S∈States Ac,w

t′ (f [ℓ 7→ S]).
Recall that Gt = Gt′ , V it = V it′ for all i ∈ Lt, and Ldeadt = Ldeadt′ ∪ {ℓ} with ℓ /∈ Ldeadt′ .

First, notice that ALHS ⊆ ARHS , since for every possibility of Sℓt′(XL, XR, F), there is an
S ∈ States such that (XL, XR, F) is compatible with f [ℓ 7→ S] at node t′. Also note that the
sets Ac,w

t′ (f [ℓ 7→ S]) are disjoint for distinct S ∈ States and hence every element of ARHS

is counted exactly once on the right side of the equation.
Next, we see that for any (XL, XR, F) ∈ ARHS that (XL, XR, F) ∈ ALHS holds if and

only if V ℓt ⊆ NGt
[X], where X = XL ∪XR, since the only requirements that change are the

92 Chapter 5 Algorithms Parameterized By Clique-Width

compatibility with f , which is easier to satisfy at t than at t′, and the requirement that all
dead labels are dominated which requires V ℓt ⊆ NGt

[X] in addition to (XL, XR, F) ∈ ARHS .
It remains to show that ARHS \ ALHS contains an even number of elements and hence

cancels modulo 2. Consider (XL, XR, F) ∈ ARHS \ ALHS , let X = XL ∪ XR and let
U ℓt := U ℓt (XL, XR) := V ℓt \NGt

[X] be the set of undominated vertices with label ℓ at node t.
From (XL, XR, F) ∈ ARHS \ ALHS it follows that U ℓt ̸= ∅, as otherwise V ℓt ⊆ NGt

[X] which
contradicts (XL, XR, F) /∈ ALHS by the previous paragraph. For any F ′ ⊆ U ℓt , we see that
(XL, XR, (F \ V ℓt) ∪ F ′) ∈ ARHS \ ALHS , since U ℓt remains unchanged but we only change
which vertices are declared forbidden. Since U ℓt ̸= ∅, there is an even number of choices,
i.e., 2|Uℓ

t | many, for F ′.
Fixing some ∅ ≠ U ⊆ V ℓt , this shows there are an even number of elements (XL, XR, F) ∈

ARHS \ ALHS with U ℓt (XL, XR) = U . Since every element of ARHS \ ALHS is covered by
some choice of U , it follows that the cardinality of ARHS \ ALHS is even.

Union Node. We have that t = Gt1 ⊕Gt2 , where t1 and t2 are the children of t and we have
Llivet = Llivet1 ∪Llivet2 . Given a t-signature f , we consider the union-split ft,1, ft,2, ft,12 of f at
t, cf. Definition 5.1.11. For every label ℓ ∈ L̃t,12 = Llivet1 ∩Llivet2 , we need to consider all states
S1,S2 ∈ States such that merge(S1,S2) = f(ℓ), where Si is the state of label ℓ at ti. For two
functions g, h : B → States, where B is some set, we write merge(g, h) : B → States for
the componentwise application of merge, i.e. merge(g, h)(ℓ) = merge(g(ℓ), h(ℓ)) for all ℓ ∈ B.
Furthermore, we distribute c and w among the partial solutions at t1 and at t2, leading to
the recurrence

Ac,wt (f) =
∑

c1+c2=c
w1+w2=w

∑
g1,g2 : L̃t,12→States :

merge(g1,g2)=f

Ac1,w1
t1 (g1 ∪ ft,1)Ac2,w2

t2 (g2 ∪ ft,2),

where we consider gi and ft,i as sets in gi ∪ ft,i for i ∈ [2]. Here, we simply fix the state for
the labels that are live at only one child by using the parts ft,1 and ft,2 and for the labels
that are live at both children we sum over all valid state combinations.

We now argue how this recurrence can be computed in time O∗(5|Llive
t |) for fixed

c ∈ [0, c(V)], w ∈ [0,w(V)], and for all t-signatures f . First, we branch on the numbers
c1, c2 ∈ [0, c(V)], w1, w2 ∈ [0,w(V)], and functions h1 : L̃t,1 → States, h2 : L̃t,2 → States.
Having fixed these choices, we calculate the inner sum of the recurrence for all t-signatures
f with ft,1 = h1 and ft,2 = h2, by setting Bi(g) := Aci,wi

ti (g ∪ hi), for i ∈ [2] and g : L̃t,12 →
States, and computing the CDS-product

(B1 ⊗CDS B2)(g) :=
∑

g1,g2 : L̃t,12→States :
merge(g1,g2)=g

B1(g1)B2(g2)

for all g : L̃t,12 → States. By the forthcoming Lemma 5.4.4, we can compute the CDS-
product in time O∗(5|L̃t,12|). Since there are O∗(5|L̃t,1|+|L̃t,2|) branches and Llivet is parti-
tioned into the three sets L̃t,1, L̃t,2, L̃t,12 by Lemma 5.1.12, we need time O∗(5|Llive

t |) to
compute the recurrence for all choices of c, w, and f .

5.4 Connected Dominating Set Algorithm 93

Lemma 5.4.4. Given two tables B1, B2 : StatesI → Z2, where I is some index set, their
CDS-product B1 ⊗CDS B2 can be computed in time O∗(|States||I|) = O∗(5|I|).

Proof. Consider the set family L = {∅, {F}, {L}, {R}, {F,L,R}} ⊆ P(U) over U = {F,L,R}
and the partial order on L induced by set inclusion ⊆. It is easy to verify that this forms a
lattice, since every pair of elements has a greatest lower bound (meet/∧) and a least upper
bound (join/∨). In particular, the least upper bounds are given by:

∨ ∅ {F} {L} {R} U

∅ ∅ {F} {L} {R} U

{F} {F} {F} U U U

{L} {L} U {L} U U

{R} {R} U U {R} U

U U U U U U

The bijection κ : States → L, with κ(S) = S for S ̸= 2+ and κ(2+) = U = {F,L,R}, turns
merge on States into ∨ on L, i.e., κ(merge(S1,S2)) = κ(S1) ∨κ(S2) for all S1,S2 ∈ States.
Hence, we can write

(B1 ⊗CDS B2)(g) =
∑

g1,g2 : I→States :
merge(g1,g2)=g

B1(g1)B2(g2)

=
∑

h1,h2 : I→L :
h1(i)∨h2(i)=κ(g(i)) ∀i∈I

B1(κ−1 ◦ h1)B2(κ−1 ◦ h2)

=
∑

h1,h2∈LI :
h1∨h2=κ◦g

B1(κ−1 ◦ h1)B2(κ−1 ◦ h2) =
∑

h1,h2∈LI :
h1∨h2=κ◦g

B′
1(h1)B′

2(h2)

= (B′
1 ⊗LI B′

2)(κ ◦ g),

where B′
j(h) = Bj(κ−1 ◦ h) for h ∈ LI , j = 1, 2, and ∨ is the join in L or LI depending

on the context. By identifying LI with L|I| in the natural way, we can therefore apply
Corollary 5.2.10 to compute the CDS-product in time O∗(|L||I|) = O∗(5|I|) as the calls to
AL can be answered in constant time.

Lemma 5.4.5. Given a nice k-expression µ of a graph G, there is an algorithm that computes
the quantities Ac,wt (f) for all nodes t ∈ V (Tµ), all t-signatures f , and all c ∈ [0, c(V)],
w ∈ [0, 2n2], in time O∗(5k).

Proof. The algorithm proceeds by bottom-up dynamic programming along the augmented
syntax tree T̂µ of the nice clique-expression µ and computes the quantities Ac,wt (f) via
the given recurrences. For an introduce node, relabel node, join node, or dead node, the
recurrence for Ac,wt (f) for fixed f , c, and w, can clearly be computed in polynomial time,
since additions and multiplications in Z2 take constant time. For a union node t, we have
argued how to compute the recurrences for all f , c, and w simultaneously in time O∗(5|Llive

t |).
As µ is a k-expression, we have |Llivet | ≤ |Lt| ≤ k for all t ∈ V (Tµ) and in particular at most
5k t-signatures for any node t ∈ V (Tµ). Hence, the running time follows.

94 Chapter 5 Algorithms Parameterized By Clique-Width

It remains to prove the correctness of the recurrences. We have already proven the
correctness of the recurrence for the dead nodes. For the other node types, the proofs are
straightforward.

For the join node, we highlight that the function feas : States × States → {0, 1} satisfies
feas(S1,S2) = 1 − [S1 ̸= ∅][S2 ̸= ∅][S1 = S2 = 2+ ∨ S1 ̸= S2] which characterizes the
state pairs where adding a join between their underlying labels results in an edge between
X = XL ∪ XR and F or an edge across the cut (XL, XR), hence yielding an infeasible
solution.

For relabel and union nodes, we highlight that for any two subsets S1,S2 ⊆ {F,L,R}
we have ρ(S1 ∪ S2) = merge(ρ(S1), ρ(S2)), where ρ : P({F,L,R}) → States with ρ(S) = S
if |S| ≤ 1 and ρ(S) = 2+ if |S| ≥ 2. Hence, merge correctly updates the state for relabel and
union nodes.

Theorem 5.4.6. There is a randomized algorithm that given a nice k-expression µ for a graph
G = (V,E) can solve CONNECTED DOMINATING SET in time O∗(5k). The algorithm does not
return false positives and returns false negatives with probability at most 1/2.

Proof. We begin by sampling a weight function w : V → [2n] uniformly at random. Then,
we pick an arbitrary vertex v and branch on its closed neighborhood NG[v], since every
dominating set intersects NG[v] in at least one vertex; the chosen vertex takes the role of v∗

in the current branch. We then run the algorithm of Lemma 5.4.5 to compute the quantities
Ac,wt (f). At the root, we have that Lliver̂ = ∅. The algorithm returns true if there is some
branch and choice of c ≤ b, w ∈ [0, 2n2], such that Ac,wr̂ (∅) ̸= 0, otherwise the algorithm
returns false.

The running time directly follows from Lemma 5.4.5. For the correctness, first note
that at the root, we have Ac,w

r̂ (∅) = Ac,w
r̂ . Since all labels are dead at r̂, we have for any

(XL, XR, F) ∈ Ar̂ that (X, (XL, XR)) ∈ C(G), v∗ ∈ XL, V ⊆ NG[X] and hence F = ∅,
where X = XL ∪ XR. So, X is a dominating set of G that contains v∗ and vice versa
Ar̂ contains all consistent cuts of such dominating sets. The algorithm only returns true,
if there are some c ∈ [0, b], w ∈ [0, 2n2] such that Ac,w

r̂ has odd cardinality. Defining
R = {X ⊆ V : V ⊆ NG[X], v∗ ∈ X} and Rc,w = {X ∈ R : |X| = c,w(X) = w},
this implies that there exists a connected dominating set X of G with c(X) = c ≤ b by
Theorem 3.1.6, hence the algorithm does not return false positives.

For the error probability, suppose that the weight function w isolates an optimum
connected dominating set X∗ and that c(X∗) ≤ b; by Lemma 3.1.4, this happens with
probability ≥ 1/2. In a branch with v∗ ∈ X∗, we have that X∗ ∈ Rc,w, where c = |X∗| and
w = w(X∗). By Lemma 3.1.1, the connected dominating set contributes an odd number to
|Ac,w

r̂ | and all other contributing sets Y ∈ Rc,w cannot be connected due to isolation and
therefore contribute an even number to |Ac,w

r̂ |. Therefore Ac,wr̂ (∅) ≡2 |Ac,w
r̂ | = 1 ̸= 0 and

hence the algorithm returns true with probability at least 1/2 given a positive instance.

5.4 Connected Dominating Set Algorithm 95

5.5 Connected Deletion to q-Colorable Algorithm
We only consider CONNECTED DELETION TO q-COLORABLE instances where the costs are
polynomially bounded in the input size. Furthermore, we assume without loss of generality
that G is connected and contains at least two vertices.

CONNECTED DELETION TO q-COLORABLE generalizes the problems CONNECTED VER-
TEX COVER (q = 1) and CONNECTED ODD CYCLE TRANSVERSAL (q = 2). We show how
CONNECTED DELETION TO q-COLORABLE can be solved in time O∗((2q+2 − 2)k) given a
k-expression for G. To verify that the remaining graph G − X is q-colorable, the objects
(X,φ) considered by the dynamic programming algorithm consist of a deletion set X and a
q-coloring φ of the remainder G−X. However, for a fixed X there might be multiple valid
q-colorings φ. Therefore, to avoid unwanted cancellations due to multiple valid φ, the weight
function used for the isolation lemma should also take φ into account. An additional side
effect of considering the pairs (X,φ) is that our application of the cut-and-count-technique
does not solve the modulo-2 counting variant of CONNECTED DELETION TO q-COLORABLE,
whereas for many other problems, the essentially same cut-and-count-algorithm solves the
decision version and the modulo-2 counting version.

Given a k-expression µ for G = (V,E), we can assume, after polynomial-time prepro-
cessing, that µ is a nice k-expression by Lemma 5.1.4. Fix q for this section. We want
to apply the cut-and-count-technique to solve CONNECTED DELETION TO q-COLORABLE in
time O∗((2q+2 − 2)k). To do so, we first branch on the vertices of G, picking one vertex v∗,
and in this branch only consider solutions containing v∗. We perform bottom-up dynamic
programming along the augmented syntax tree T̂µ. At every node t ∈ V (T̂µ), we consider
the following family of partial solutions

At = {((X,φ), (XL, XR)) : (X, (XL, XR)) ∈ C(Gt),

φ is a q-coloring of Gt −X and

v∗ ∈ Vt → v∗ ∈ XL}.

In other words, At contains all pairs of consistently cut deletion sets of Gt, with v∗ on the
left side of the cut if possible, together with a witnessing q-coloring of the remaining graph.

For the isolation lemma, cf. Lemma 3.1.4, we set the universe to U = V × ({0} ∪ [q]),
where 0 is a formal symbol representing the deletion of a vertex and the numbers in [q]
represent the colors. So, we sample a weight function w : U → [N] with N = 2(q + 1)n
to guarantee an error probability of less than 1/2 in the isolation lemma. The weight
of a pair (X,φ) consisting of a deletion set X and q-coloring φ is given by w(X,φ) =∑
v∈X w(v,0) +

∑
v∈dom(φ) w(v, φ(v)). For every t ∈ V (T̂µ), c ∈ [0, c(V)], w ∈ [0,w(U)], we

define Ac,w
t = {((X,φ), (XL, XR)) ∈ At : c(X) = c,w(X,φ) = w}. Let r̂ denote the root

node of the augmented syntax tree T̂µ. By Theorem 3.1.6, it follows that there exists a
connected deletion set X of G such that G − X is q-colorable and with c(X) ≤ b if there
exist c ∈ [0, b] and w ∈ [0,w(U)] such that Ac,w

r̂ has odd cardinality.
We proceed by analyzing the possible label states. A single vertex v can take one of the

states Ω = {0L,0R} ∪ [q], where 0L and 0R represent deleted vertices on the left side or
the right side of the cut respectively and the states in [q] represent the colors of undeleted

96 Chapter 5 Algorithms Parameterized By Clique-Width

vertices3. The state of a label V ℓt , ℓ ∈ Lt, is given by which vertex states appear in the label,
thus the power set P(Ω) captures all possible label states. However, we can exclude the state
∅, as we only save the state for nonempty labels. Moreover, we can exclude the state Ω at
live labels, cf. Definition 5.1.7, as partial solutions assuming state Ω at a live label can never
be extended to a solution of the whole graph. Therefore, we set States = P(Ω) \ {∅,Ω} and
note that |States| = 2q+2 − 2.

Given a node t ∈ V (T̂µ), a t-signature is a function f : Llivet → States. For every node
t ∈ V (T̂µ), c ∈ [0, c(V)], w ∈ [0,w(U)], and t-signature f , we define

Ac,w
t (f) = {((X,φ), (XL, XR)) ∈ Ac,w

t : f(ℓ) ∩ [q] = φ(V ℓt \X) for all ℓ ∈ Llivet ,

0L ∈ f(ℓ) ↔ XL ∩ V ℓt ̸= ∅ for all ℓ ∈ Llivet ,

0R ∈ f(ℓ) ↔ XR ∩ V ℓt ̸= ∅ for all ℓ ∈ Llivet }.

We proceed by giving the dynamic programming recurrences to compute the values
Ac,wt (f) = |Ac,w

t (f)| mod 2, for every t ∈ V (T̂µ), t-signature f , c ∈ [0, c(V)], w ∈ [0,w(U)]
depending on the type of the considered node t. The recurrences for relabel nodes, dead
nodes, and union nodes are essentially the same as for CONNECTED VERTEX COVER, hence
we keep their explanation brief.

Introduce Node. If t = ℓ(v) for some ℓ ∈ [k], then Llivet = {ℓ}. We define the helper
function check : V × States × [0, c(V)] × [0,w(U)] → {0, 1} defined by

check(v,S, c, w) =

1, if S ∈ {{0L}, {0R}} ∧ c = c(v) ∧ w = w(v,0),

1, if S = {i} ∧ c = 0 ∧ w = w(v, i) for some i ∈ [q],

0, else,

which checks that vertex v gets assigned a singleton state S ∈ States, |S| = 1, and
appropriate cost c and weight w. Adding edge case handling for v∗, we can formulate the
recurrence for the introduce node as follows:

Ac,wt (f) = [v ̸= v∗ ∨ f(ℓ) = {0L}] · check(v, f(ℓ), c, w).

Relabel Node. If t = ρi→j(Gt′), where t′ is the child of t, for some i, j ∈ [k], then i ∈ Lt′ ,
j ∈ Lt′ , Lt = Lt′ \ {i} and either i, j ∈ Llivet′ or i, j ∈ Ldeadt′ .
• If labels i and j are live at t′, then j is live at t and the recurrence is given by

Ac,wt (f) =
∑

S1,S2∈States :
S1∪S2=f(j)

Ac,wt′ (f [i 7→ S1, j 7→ S2]).

• If i and j are dead at t′, then j is dead at t and we copy the previous table, i.e.,

Ac,wt (f) = Ac,wt′ (f).
3These names diverge a little from our usual state naming scheme, but they simplify some notation regarding the

handling of q-coloring. We emphasize that the deleted vertices determine the cost of a solution, even though
their states are denoted 0L or 0R.

5.5 Connected Deletion to q-Colorable Algorithm 97

Join Node. To check which solutions remain feasible after adding a join between two labels,
we introduce a helper function feas : States × States → {0, 1} defined by feas(S1,S2) =
[0L ∈ S1 → 0R /∈ S2][0R ∈ S1 → 0L /∈ S2]

∏
i∈[q][i /∈ S1 ∨ i /∈ S2]. There are two reasons for

infeasibility: a join edge connects both sides of the cut, i.e., 1L appears on one side and 1R
on the other, or a join edge connects two undeleted vertices of the same color. We have that
t = ηi,j(Gt′) for some i ̸= j ∈ Lt′ and where t′ is the child of t. We must have i, j ∈ Llivet′

and if the set of dead vertices changes a future dead node will handle it. Therefore, we only
filter partial solutions that became infeasible:

Ac,wt (f) = feas(f(i), f(j))Ac,wt′ (f).

Dead Node. We have that t = ⊥ℓ(Gt′), where t′ is the child of t, ℓ /∈ Llivet , and Llivet =
Llivet′ \ {ℓ}. The recurrence is given by

Ac,wt (f) =
∑

S∈States

Ac,wt′ (f [ℓ 7→ S]).

Due to States ̸= P(Ω), similar to the dead node recurrence of CONNECTED VERTEX COVER,
this recurrence is again somewhat subtle as it relies on the fact that no partial solution can
attain label state Ω at label class V ℓt .

Union Node. We have that t = Gt1 ⊕ Gt2 , where t1 and t2 are the children of t and we
have Llivet = Llivet1 ∪ Llivet2 . Given a t-signature f , we consider the union-split ft,1, ft,2, ft,12

of f at t, cf. Definition 5.1.11. For every label ℓ ∈ L̃t,12 = Llivet1 ∩Llivet2 , we consider all states
S1,S2 ∈ States such that S1 ∪ S2 = f(ℓ), where Si is the state of label ℓ at ti. Furthermore,
we have to distribute c and w among the partial solutions at t1 and the partial solutions at
t2. Hence, we obtain the recurrence

Ac,wt (f) =
∑

c1+c2=c
w1+w2=w

∑
g1,g2 : L̃t,12→States :

g1(ℓ)∪g2(ℓ)=ft,12(ℓ) ∀ℓ∈L̃t,12

Ac1,w1
t1 (g1 ∪ ft,1)Ac2,w2

t2 (g2 ∪ ft,2),

where we interpret gi and ft,i as sets in the expression gi ∪ ft,i for i ∈ [2].
Since the set States is a closure difference, we can apply Theorem 5.2.6 after a few

branching steps like for CONNECTED VERTEX COVER to compute the recurrence simultane-
ously for all c ∈ [0, c(V)], w ∈ [0,w(V)], and t-signatures f in time O∗(|States||Llive

t |).

Lemma 5.5.1. Given a nice k-expression µ of G = (V,E), there is an algorithm that computes
the quantities Ac,wt (f) for all nodes t ∈ V (T̂µ), all t-signatures f , and all c ∈ [0, c(V)],
w ∈ [0,w(U)], in time O∗(|States|k) = O∗((2q+2 − 2)k).

Proof. The algorithm proceeds by bottom-up dynamic programming along the augmented
syntax tree T̂µ of the nice k-expression µ and computes the quantities Ac,wt (f) via the given
recurrences. For an introduce node, relabel node, or join node, the recurrence for Ac,wt (f)
for fixed f , c, and w, can clearly be computed in polynomial time, since additions and
multiplications in Z2 take constant time. For a union node t, we have argued how to
compute the recurrences for all f , c, and w simultaneously in time O∗(|States||Llive

t |). As µ

98 Chapter 5 Algorithms Parameterized By Clique-Width

is a k-expression, we have |Llivet | ≤ k for all t ∈ V (T̂µ) and in particular at most |States|k

t-signatures for any node t ∈ V (Tµ). Since c(V) is assumed to be polynomial in n and
w(U) ≤ |U |N ≤ (q + 1)nN = 2(q + 1)2n = O(n), the running time follows as µ consists of
a polynomial number of operations.

It remains to prove the correctness of the recurrences. We omit the straightforward
correctness proofs for introduce nodes, relabel nodes, join nodes, and union nodes. The
correctness proof for the dead nodes follows the same idea as for CONNECTED VERTEX

COVER. Consider a dead node t = ⊥ℓ(Gt′), where t′ is the child of t. We claim that
Ac,w
t (f) =

⋃
S∈States Ac,w

t′ (f [ℓ 7→ S]) for all t-signatures f , c, and w. Since the union on
the right-hand side is disjoint, this implies the correctness of the recurrence. We continue
with proving the claim. As the set on the left-hand side is defined by fewer constraints, the
right-hand side is contained in the left-hand side.

For the other direction, suppose there exists some ((X,φ), (XL, XR)) ∈ Ac,w
t (f) \(⋃

S∈States Ac,w
t′ (f [ℓ 7→ S])

)
and consider V ℓt . We must have that XL∩V ℓt ̸= ∅, XR∩V ℓt ̸= ∅,

and φ(V ℓt \ X) = [q] as V ℓt ̸= ∅ and all other cases are covered by States. Let t∗ be the
join node that caused the dead node t to exist. The node t∗ adds the final join incident to
V ℓt = V ℓt∗ , say between V ℓt and some V it = V it∗ , i ̸= ℓ. Since we have V it ̸= ∅, at least one of
the statements φ(V it \X) ̸= ∅, XL ∩V it ̸= ∅, XR ∩V it ̸= ∅ has to be satisfied. In the first case,
φ cannot be a q-coloring of Gt − X as φ(V it \ X) ⊆ [q] and hence some join edge has the
same color at both endpoints. In the remaining two cases, there is a join edge crossing the
cut (XL, XR). Therefore, we have derived a contradiction to ((X,φ), (XL, XR)) ∈ Ac,w

t (f)
in all cases. Hence, Ac,w

t (f) ⊆
⋃

S∈States Ac,w
t′ (f [ℓ 7→ S]) which proves the claim.

Theorem 5.5.2. There is a randomized algorithm that given a nice k-expression µ for a graph
G = (V,E) can solve CONNECTED DELETION TO q-COLORABLE in time O∗(|States|k) =
O∗((2q+2 − 2)k). The algorithm does not return false positives and returns false negatives with
probability at most 1/2.

Proof. We begin by sampling a weight function w : V → [2N] uniformly at random. We
branch over the vertices of G, picking one to take the role of v∗ in the current branch. We
then run the algorithm of Lemma 5.5.1 to compute the quantities Ac,wt (f). Let r̂ denote
the root node of the expression µ. At the root, we have that Lliver̂ = ∅. The algorithm
returns true if in one of the branches there is some choice of c ≤ b, w ∈ [0,w(U)], such that
Ac,wr̂ (∅) ̸= 0, otherwise the algorithm returns false.

The running time directly follows from Lemma 5.5.1. For the correctness, first note that
at the root, we have Ac,w

r̂ (∅) = Ac,w
r̂ . The algorithm only returns true, if there are some

c ∈ [0, b], w ∈ [0,w(U)] such that Ac,w
r̂ has odd cardinality. By Theorem 3.1.6, this implies

the existence of an appropriate solution to CONNECTED DELETION TO q-COLORABLE, hence
the algorithm does not return false positives.

For the error probability, suppose that the weight function w isolates the family F
consisting of all (X,φ) such that X is a smallest connected deletion set such that G − X

is q-colorable and φ is a q-coloring of G − X. By Lemma 3.1.4, the isolation happens
with probability greater than or equal to |U |/N = 1/2. Let (X∗, φ∗) denote the isolated
element. Suppose that the considered problem instance has a positive answer, hence we
have that c(X∗) ≤ b. Furthermore, consider a branch with v∗ ∈ X∗. Set c = c(X∗) ≤ b and

5.5 Connected Deletion to q-Colorable Algorithm 99

w = w(X∗, φ∗). By Lemma 3.1.1, the pair (X∗, φ∗) contributes once to |Ac,w
r̂ | and for every

other contributing pair (X,φ) the graph G[X] cannot be connected by isolation of (X∗, φ∗)
and hence (X,φ) contributes an even number to |Ac,w

r̂ |. ThereforeAc,wr̂ (∅) ≡2 |Ac,w
r̂ | = 1 ̸= 0

and the algorithm returns true with probability at least 1/2 given a positive instance.

5.6 Steiner Tree Algorithm
We only consider STEINER TREE instances where the costs are polynomially bounded in the
input size. Moreover, we assume without loss of generality that G is connected and contains
at least two vertices.

By Lemma 5.1.4, we can assume that we are given a nice k-expression µ of G. We show
how to solve STEINER TREE in time O∗(4k) by dynamic programming along the syntax tree
Tµ using the cut-and-count-technique. We use nice expressions to avoid some edge cases,
but we do not distinguish live and dead labels for the STEINER TREE algorithm, hence it
suffices to use the (unaugmented) syntax tree Tµ. We fix some terminal v∗ ∈ K and sample
a weight function w : V → [2|V |] for the isolation lemma, cf. Lemma 3.1.4. At every node
t ∈ V (Tµ), we consider the following family of partial solutions

At = {(X, (XL, XR)) ∈ C(Gt) : K ∩ Vt ⊆ X and v∗ ∈ Vt → v∗ ∈ XL}.

So, At contains all consistently cut vertex sets of Gt containing the terminals in Vt and
such that v∗ is on the left side of the cut if possible. For every t ∈ V (Tµ), c ∈ [0, c(V)],
w ∈ [0,w(V)], we define Ac,w

t = {(X, (XL, XR)) ∈ At : c(X) = c,w(X) = w}. Let r̂ denote
the root node of the syntax tree Tµ. By Theorem 3.1.6, it follows that there exists a Steiner
tree X of G with c(X) ≤ b if there exist c ∈ [0, b] and w ∈ [0,w(V)] such that Ac,w

r̂ has odd
cardinality.

The vertex states of the treewidth-algorithm for STEINER TREE are 0,1L,1R, meaning
respectively that the vertex is not in the solution, on the left side of the solution, or on
the right side of the solution. For STEINER TREE the basic state 0 does not impose any
constraints on the neighboring vertices. Hence, it is sufficient to store for each label only
which of the vertex states 1L and 1R occur. We do not exclude any further states and
thus set Ω = {1L,1R} and States = P(Ω) = {∅, {1L}, {1R}, {1L,1R}}. Note that ∅ is a
sensible label state for STEINER TREE, unless the considered label contains a terminal, as
this represents that no vertex inside the considered label belongs to the partial solution.

Given a node t ∈ V (Tµ), a t-signature is a function f : Lt → States. For every node
t ∈ V (Tµ), c ∈ [0, c(V)], w ∈ [0,w(V)], and t-signature f , we define

Ac,w
t (f) = {(X, (XL, XR)) ∈ Ac,w

t : 1L ∈ f(ℓ) ↔ XL ∩ V ℓt ̸= ∅ for all ℓ ∈ Lt,

1R ∈ f(ℓ) ↔ XR ∩ V ℓt ̸= ∅ for all ℓ ∈ Lt}.

Instead of computing the sets Ac,w
t (f) directly, we compute only the parity of their cardinality,

i.e., Ac,wt (f) = |Ac,w
t (f)| mod 2. We proceed to give recurrences for computing Ac,wt (f),

for every t ∈ V (Tµ), t-signature f , c ∈ [0, c(V)], w ∈ [0,w(V)] depending on the type of the
considered node t.

100 Chapter 5 Algorithms Parameterized By Clique-Width

Introduce Node. If t = ℓ(v) for some ℓ ∈ [k], then Ac,wt (f) can be computed by

Ac,wt (f) = [v ̸= v∗ ∨ f(ℓ) = {1L}] · [v /∈ K ∨ f(ℓ) ∈ {{1L}, {1R}}]

· [(f(ℓ) = ∅ ∧ c = w = 0) ∨ (f(ℓ) ∈ {{1L}, {1R}} ∧ c = c(v) ∧ w = w(v))],

since Ac,w
t (f) ⊆ {(∅, (∅, ∅)), ({v}, ({v}, ∅)), ({v}, (∅, {v}))} with some of these partial solu-

tions removed if v = v∗ or v ∈ K.

Relabel Node. If t = ρi→j(Gt′), where t′ is the child of t, for some i, j ∈ [k], then by
niceness of µ it follows that i ∈ Lt′ , j ∈ Lt′ , Lt = Lt′ \ {i}. Since V jt = V it′ ∪ V jt′ , we simply
need to iterate over all possible state combinations yielding state f(j) when combined:

Ac,wt (f) =
∑

S1,S2∈States :
S1∪S2=f(j)

Ac,wt′ (f [i 7→ S1, j 7→ S2]).

Join Node. To check whether two states can lead to a feasible solution after adding a
join between their labels, we introduce a helper function feas : States × States → {0, 1}
defined by feas(S1,S2) = [1L ∈ S1 → 1R /∈ S2][1R ∈ S1 → 1L /∈ S2], or equivalently by the
following table:

feas ∅ {1L} {1R} {1L,1R}
∅ 1 1 1 1

{1L} 1 1 0 0
{1R} 1 0 1 0

{1L,1R} 1 0 0 0

The only reason for infeasibility is that a join edge connects both sides of the cut, i.e., 1L
appears on one side and 1R on the other. If we have that t = ηi,j(Gt′) for some i ̸= j ∈ Lt′

and where t′ is the child of t, then we can simply filter out all partial solutions that became
infeasible due to the new join:

Ac,wt (f) = feas(f(i), f(j))Ac,wt′ (f).

Union Node. We have that t = Gt1 ⊕ Gt2 , where t1 and t2 are the children of t and we
have Lt = Lt1 ∪ Lt2 . Given a t-signature f , we split f into three parts f̂t,1 = f

∣∣
Lt1 \Lt2

,

f̂t,2 = f
∣∣
Lt2 \Lt1

, and f̂t,12 = f
∣∣
Lt1 ∩Lt2

, similar to the union-split, cf. Definition 5.1.11. For
every label ℓ ∈ Lt1 ∩Lt2 , we must consider all states S1,S2 ∈ States such that S1∪S2 = f(ℓ),
where Si is the state of label ℓ at ti. For the remaining labels, we essentially copy the previous
state from the appropriate child of t. Furthermore, we need to distribute c and w among the
partial solutions at t1 and the partial solutions at t2. Hence, we obtain the recurrence

Ac,wt (f) =
∑

c1+c2=c
w1+w2=w

∑
g1,g2 : Lt1 ∩Lt2 →States :

g1(ℓ)∪g2(ℓ)=f̂t,12(ℓ) ∀ℓ∈Lt1 ∩Lt2

Ac1,w1
t1 (g1 ∪ f̂t,1)Ac2,w2

t2 (g2 ∪ f̂t,2),

where we interpret gi and f̂t,i as sets in the expression gi ∪ f̂t,i for i ∈ [2].

5.6 Steiner Tree Algorithm 101

Similar to CONNECTED VERTEX COVER, this recurrence can be computed in time O∗(4|Lt|)
for fixed c ∈ [0, c(V)], w ∈ [0,w(V)], and for all t-signatures f . We first branch on all
possibilities for (c1, c2, w1, w2); these are nO(1) possibilities as c(V) ≤ nO(1) by assumption
and w(V) ≤ 2n2. Fixing one of these possibilities, we further branch on f̂t,1 and f̂t,2, this
leads to 4|Lt1 \Lt2 |+|Lt2 \Lt1 | choices. Now, the quantities Ac1,w1

t1 (g1 ∪ f̂t,1) and Ac2,w2
t2 (g2 ∪ f̂t,2)

can be viewed as functions of g1 and g2 respectively and the inner sum over these in the
recurrence is their componentwise cover product over States evaluated at f̂t,12.

Since the set States is a power set and hence trivially a closure difference, we can apply
Theorem 5.2.6 to compute this componentwise cover product in time O∗(4|Lt1 ∩Lt2 |) for all
possible f̂t,12. Therefore, we need in total time O∗(4|Lt|) to compute Ac,wt (f) for all choices
of c, w, and f .

Lemma 5.6.1. Given a nice k-expression µ of G = (V,E), there is an algorithm that computes
the quantities Ac,wt (f) for all nodes t ∈ V (Tµ), all t-signatures f , and all c ∈ [0, c(V)],
w ∈ [0, 2n2], in time O∗(4k).

Proof. The algorithm proceeds by bottom-up dynamic programming along the syntax tree
Tµ of the nice k-expression µ and computes the quantities Ac,wt (f) via the given recurrences.
For an introduce node, relabel node, or join node, the recurrence for Ac,wt (f) for fixed f , c,
and w, can clearly be computed in polynomial time, since additions and multiplications in
Z2 take constant time. For a union node t, we have argued how to compute the recurrences
for all f , c, and w simultaneously in time O∗(4|Lt|). As µ is a k-expression, we have |Lt| ≤ k

for all t ∈ V (Tµ) and in particular at most 6k t-signatures for any node t ∈ V (Tµ). Therefore,
the running time follows as µ consists of a polynomial number of operations. The proofs of
correctness for the recurrences are straightforward and hence omitted.

Theorem 5.6.2. There is a randomized algorithm that given a nice k-expression µ for a graph
G = (V,E) can solve STEINER TREE in time O∗(4k). The algorithm does not return false
positives and returns false negatives with probability at most 1/2.

Proof. We sample a weight function w : V → [2n] uniformly at random. We fix some terminal
v∗ ∈ K and run the algorithm of Lemma 5.6.1 to compute the quantities Ac,wt (f). Let r̂
denote the root node of the expression µ. The algorithm returns true if in one of the branches
there is some choice of r̂-signature f , costs c ≤ b, and weights w ∈ [0,w(V)], such that
Ac,wr̂ (∅) ̸= 0, otherwise the algorithm returns false.

The running time directly follows from Lemma 5.6.1. For the correctness, first note
that the sets Ac,w

r̂ (f), ranging over f , partition Ac,w
r̂ . The algorithm only returns true, if

there are some r̂-signature, c ∈ [0, b], w ∈ [0, 2n2] such that Ac,w
r̂ has odd cardinality. By

Theorem 3.1.6, this implies that there is a Steiner tree X of G with c(X) = c ≤ b, hence the
algorithm does not return false positives.

For the error probability, suppose that the weight function w isolates an optimum
connected vertex cover X∗ of G and that c(X∗) ≤ b; by Lemma 3.1.4, the isolation happens
with probability greater than or equal to 1/2. Set c = c(X∗) ≤ b and w = w(X∗). By
Lemma 3.1.1, the Steiner treeX∗ contributes once to |Ac,w

r̂ (f)| for an appropriate r̂-signature
f . All other contributing sets cannot be connected due to isolation and hence contribute an
even number to |Ac,w

r̂ (f)|. Therefore Ac,wr̂ (f) ≡2 |Ac,w
r̂ (f)| = 1 ̸= 0 and hence the algorithm

returns true with probability at least 1/2 given a positive instance.

102 Chapter 5 Algorithms Parameterized By Clique-Width

Algorithms Parameterized By
Modular-Treewidth

6
6.1 Dynamic Programming for Modular-Treewidth

Consider a graph G = (V,E) of modular-treewidth k in this subsection. We are given a
tree decomposition of width k for every prime quotient graph GqM ∈ Hp(G). This allows
for a dynamic programming scheme that works roughly as follows. We proceed bottom-up
along the modular decomposition tree solving a subproblem for each node corresponding to
an induced subgraph G[M] for some M ∈ Mtree(G); this is also called the outer dynamic
program. At internal nodes of the modular decomposition tree, we distinguish based on the
three types given by Theorem 2.4.7 and solve the subproblem based on the results of the
child nodes. If the node is a parallel or series node, then there often is a simple polynomial-
time algorithm for this computation. On the other hand, if the node is a prime node, then we
can use the given tree decomposition of the associated quotient graph and perform dynamic
programming along this tree decomposition to solve the subproblem for the considered node
of the modular decomposition tree; this is called the inner dynamic program. In several
cases, the modular structure has such strong implications on the problem structure that we
do not need to perform this thorough dynamic programming scheme. Instead, it can suffice
to just consider the topmost quotient graph of the modular decomposition and just perform
a single dynamic program along its tree decomposition. We now go into some more detail
and give the basic definitions needed for the dynamic programming algorithms with respect
to modular-treewidth.

Canonical Projection. When solving a subproblem at a nontrivial module M↑ ∈ M∗
tree(G),

we need to understand how subsets X ⊆ M↑ interact with the quotient graph Gq
M↑ . We

formalize this as follows. To each quotient graph Gq
M↑ = G[M↑]/Πmod(G[M↑]), M↑ ∈

M∗
tree(G), appearing in the modular decomposition, we associate a canonical projection

πM↑ : M↑ → V (Gq
M↑) with πM↑(v) = vqM whenever v ∈ M ∈ Πmod(G[M↑]). Given a

subset X ⊆ M↑, the set πM↑(X) = {vqM : M ∈ children(M↑), X ∩ M ̸= ∅} describes the
interaction of X with the quotient graph Gq

M↑ . For a fixed module M↑ ∈ M∗
tree(G), we will

often use the shorthand Xq = πM↑(X).

Associated Subgraphs for Modular-Treewidth. To define the set of considered partial
solutions in the inner dynamic program along the tree decomposition, we must explain
which subgraph corresponds to each node of the tree decomposition. Given a very nice tree
decomposition (T q

M↑ , (Bqt)t∈V (T q

M↑)) of the quotient graph Gq
M↑ , we associate with every

node t ∈ V (T q
M↑) a subgraph Gqt = (V qt , E

q
t) of Gq

M↑ as follows:

103

• V qt contains all vqM ∈ V (Gq
M↑) such that there is a descendant t′ of t in T q

M↑ with
vqM ∈ Bqt′ ,

• Eqt contains all {vqM1
, vqM2

} ∈ E(Gq
M↑) that were introduced by a descendant of t in T q

M↑ .
At the root node r̂ of T q

M↑ , we have that Gqr̂ = Gq
M↑ . By expanding the vertices of the

quotient graph back into modules, we can lift the bags Bqt to vertex subsets of M↑ and the
subgraphs Gqt to subgraphs of G[M↑] as follows. We define Bt = π−1

M↑(Bqt) =
⋃
vq

M
∈Bq

t
M

and Vt = π−1
M↑(V qt) =

⋃
vq

M
∈V q

t
M . We also transfer the edge set Eqt by using all edges inside

modulesM with vqM ∈ V qt and expanding each edge {vqM1
, vqM2

} ∈ Eqt into the corresponding
join between M1 and M2, i.e., we define

Et =
⋃

vq
M

∈V q
t

E(G[M]) ∪
⋃

{vq
M1

,vq
M2

}∈Eq
t

{{u1, u2} : u1 ∈ M1 ∧ u2 ∈ M2},

allowing us to define the graph Gt = (Vt, Et) associated to any node t ∈ V (T q
M↑).

Signatures. Given a tree decomposition (T q
M↑ , (Bqt)t∈V (T q

M↑)) of the quotient graph Gq
M↑

for some M ∈ M∗
tree(G), the inner dynamic program distinguishes partial solutions at node

t ∈ V (T q) based on their state at the current bag. We encode this state by signatures of the
form f : Bqt → States, for some finite set States of module states. Note that Bqt consists
of vertices from the quotient graph, but the intended meaning of f(vqM) = s for some
s ∈ States is that the corresponding module M ∈ children(M↑) has state s.

6.1.1 Cut and Count for Modular-Treewidth
To apply the cut-and-count-technique for modular-treewidth, we first study how connectivity
interacts with the modular structure. Typically, we consider vertex sets X contained in some
module M↑ ∈ M∗

tree(G) that intersect at least two child modules of M↑, i.e., |πM↑(X)| ≥ 2.
When |πM↑(X)| = 1, we can recurse in the modular decomposition tree until at least two
child modules are intersected or we arrive at an easily solvable special case. The following
exchange argument shows that the connectivity of G[X] is not affected by the precise
intersection X ∩M , M ∈ children(M↑), but only whether X ∩M is empty or not.

Lemma 6.1.1. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑ be a subset with |πM↑(X)| ≥ 2 and such that

G[X] is connected. For any module M ∈ children(M↑) with X ∩ M ̸= ∅ and ∅ ̸= Y ⊆ M ,
the graph G[(X \M) ∪ Y] is connected.

Proof. Since G[X] is connected and intersects at least two modules, there has to be a module
M ′ ∈ children(M↑) adjacent to M such that X ∩ M ′ ̸= ∅. The edges between Y and
X ∩M ′ induce a biclique and hence all incident vertices must be connected to each other.
Fix a vertex u ∈ X ∩M and consider any w ∈ X \M , then G[X] contains an u,w-path P
such that the vertex v after u on P is in X \M . For any y ∈ Y , we obtain an y, w-path Py
in G[(X \M) ∪ Y] by replacing u with y in P . Finally, consider two vertices u,w ∈ X \M ,
then there is an u,w-path P in G[X]. If P does not intersect M , then P is also a path in
G[(X \ M) ∪ Y]. Otherwise, we can assume that P contains exactly one vertex v of M
and simply replace v with some y ∈ Y to obtain a u,w-path P ′ in G[(X \M) ∪ Y]. Hence,
G[(X \M) ∪ Y] is connected as claimed.

104 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Building upon Lemma 6.1.1 allows us to reduce checking the connectivity of G[X] to
the quotient graph at M↑, as Gq

M↑ is isomorphic to the induced subgraph of G obtained by
picking one vertex from each child module of M↑.

Lemma 6.1.2. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑ with |πM↑(X)| ≥ 2, i.e., X intersects at least

two modules in children(M↑). It holds that G[X] is connected if and only if Gq
M↑ [πM↑(X)] is

connected.

Proof. For every module M ∈ children(M↑) with X ∩M ̸= ∅, pick a vertex vM ∈ X ∩M

and define X ′ = {vM : X ∩ M ̸= ∅,M ∈ children(M↑)} ⊆ X. Note that G[X ′] is
isomorphic to Gq

M↑ [πM↑(X)]. Hence, we are done if we can show that G[X] is connected if
and only if G[X ′] is connected. If G[X] is connected, then so is G[X ′] by repeatedly applying
Lemma 6.1.1.

For the converse, suppose that G[X ′] is connected. We argue that every v ∈ X \ X ′

is adjacent to some w ∈ X ′ and then it follows that G[X] is connected as well. There is
some M ∈ children(M↑) with v ∈ M and vM ∈ X ′ by definition of X ′. Since |X ′| ≥ 2
and G[X ′] is connected, there is a neighbor w ∈ X ′ of vM in G[X ′] and w = vM ′ for some
M ′ ∈ children(M↑) \ {M}. The vertex w has to be a neighbor of v because M is a module
and w /∈ M .

Lemma 6.1.2 tells us that heterogeneous cuts, i.e., (X, (XL, XR)) ∈ C(G) withXL∩M ̸= ∅
and XR ∩M ̸= ∅ for some module M ∈ Πmod(G), do not need to be considered, as checking
connectivity can be reduced to a set that contains at most one vertex per module.

Definition 6.1.3. Let M↑ ∈ M∗
tree(G). We say that a cut (XL, XR), with XL ∪XR ⊆ M↑, is

M↑-homogeneous if XL ∩M = ∅ or XR ∩M = ∅ for every M ∈ children(M↑). We may just
say that (XL, XR) is homogeneous whenM↑ is clear from the context. We define for every sub-
graphG′ ofG the set ChomM↑ (G′) = {(X, (XL, XR)) ∈ C(G′) : (XL, XR) is M↑-homogeneous}.

Combining Lemma 3.1.1 with Lemma 6.1.2, the connectivity of G[X] can be determined
by counting M↑-homogeneous consistent cuts of G[X] modulo 4.

Lemma 6.1.4. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑ with |πM↑(X)| ≥ 2. It holds that

|{(XL, XR) : (X, (XL, XR)) ∈ ChomM↑ (G)}| = 2cc(Gq

M↑ [π
M↑ (X)]) and G[X] is connected if and

only if |{(XL, XR) : (X, (XL, XR)) ∈ ChomM↑ (G)}| ̸= 0 mod 4.

Proof. Fix M↑ ∈ M∗
tree(G) and X ⊆ M↑ with |πM↑(X)| ≥ 2. For any set S ⊆ M↑, we

write Sq = πM↑(S) in this proof. We will argue that the map (XL, XR) 7→ (Xq
L, X

q
R) is a

bijection between {(XL, XR) : (X, (XL, XR)) ∈ ChomM↑ (G)} and {(YL, YR) : (Xq, (YL, YR)) ∈
C(Gq

M↑)}. First of all, notice that (Xq
L, X

q
R) is a cut of Gq

M↑ [Xq] because (XL, XR) is
homogeneous. Furthermore, (Xq

L, X
q
R) is a consistent cut, since any edge {vqM1

, vqM2
}

crossing (Xq
L, X

q
R) would give rise to an edge {u1, u2}, ui ∈ Mi, i ∈ [2], crossing (XL, XR)

which would therefore contradict the assumption that (XL, XR) is a consistent cut.
For injectivity, consider (X, (XL, XR)), (X, (ZL, ZR)) ∈ ChomM↑ (G) with (Xq

L, X
q
R) =

(ZqL, Z
q
R). Since they are homogeneous cuts, we can compute

XL =
⋃

vq
M

∈Xq
L

X ∩M =
⋃

vq
M

∈Zq
L

X ∩M = ZL

6.1 Dynamic Programming for Modular-Treewidth 105

and similarly for XR = ZR. For surjectivity, note that (YL, YR) with (Xq, (YL, YR)) ∈ C(Gq
M↑)

is hit by the homogeneous cut (X, (
⋃
vq

M
∈YL

X ∩M,
⋃
vq

M
∈YR

X ∩M)).
Finally, we can apply Lemma 3.1.1 to Xq ⊆ V (Gq

M↑) to obtain, via the bijection, that

|{(X, (XL, XR)) ∈ ChomM↑ (G)}| = 2cc(Gq

M↑ [Xq]). Hence, Gq
M↑ [Xq] is connected if and only if

|{(X, (XL, XR)) ∈ ChomM↑ (G)}| ̸= 0 mod 4. The statement then follows by Lemma 6.1.2.

6.2 Independent Set Algorithm
We consider INDEPENDENT SET[modular-treewidth] or, dually, VERTEX COVER[modular-
treewidth] and design an O∗(2k)-time algorithm. This algorithm serves as an easy example
for dynamic programming along the tree decomposition of the quotient graphs and the
algorithms for CONNECTED VERTEX COVER[modular-treewidth] and FEEDBACK VERTEX

SET[modular-treewidth] will use this algorithm as a subroutine. Let G = (V,E) be a graph
with a cost function c : V → N \ {0}. We show how to compute for every M ∈ Mtree(G)
an independent set XM ⊆ M of G[M] of maximum cost1 in time O∗(2k) given a tree
decomposition of width at most k for every prime quotient graph GqM ∈ Hp(G) of G.
We remark that for the problem variant without costs, this result already follows by the
algorithm for INDEPENDENT SET[multi-clique-width] of Fürer [79] and Lemma 2.4.20. We
first deal with the edge cases of the outer dynamic program, i.e., the leaf nodes of the
modular decomposition tree, parallel nodes, and series nodes. Following that, we consider
prime nodes and present the inner dynamic program along the tree decomposition of the
corresponding quotient graph. Afterwards, we can bring all cases together and the algorithm
follows.

Leaf Nodes. The leaf nodes of the modular decomposition tree are the base cases of the
outer dynamic program. Here, we have some M ∈ Mtree(G) with |M | = 1 and therefore
M = {v} for some v ∈ V . Clearly, X{v} = {v} is an independent set of maximum cost of
G[{v}] in this case, which already concludes the base case.

Problem Structure Relative to Modules. Having solved the base case, we can proceed with
computing XM for internal nodes M ∈ M∗

tree(G) = Mtree(G) \ {{v} : v ∈ V }. Fixing some
M↑ ∈ M∗

tree(G), we can assume that we have already solved the subproblems corresponding
to the child nodes M ∈ children(M↑) = Πmod(G[M↑]) of M↑, i.e., XM is computed for
all M ∈ children(M↑). Our task is to compute XM↑ based on this data. The next lemma
shows how an independent set interacts with the child nodes M ∈ children(M↑), which
confirms that the XM , M ∈ children(M↑), are indeed useful to compute XM↑ . For the rest
of the algorithm description, we assume without loss of generality that M↑ = V is the root
node and hence children(M↑) = children(V) = Πmod(G) to simplify the notation. We
denote the quotient graph at the root node by Gq := GqV = G/Πmod(G).

1Even though we are considering a maximization problem, we still refer to the weights of the objective as costs for
the sake of consistency.

106 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Lemma 6.2.1. If X is an independent set of G, then for every module M ∈ Πmod(G) either
X ∩M = ∅ or X ∩M is a nonempty independent set of G[M]. Furthermore, Xq := πV (X) =
{vqM : X ∩M ̸= ∅} is an independent set of Gq.

Proof. If G[X ∩M] contains an edge, then so does G[X], hence the first part is trivially true.
If Gq[Xq] contains an edge {vqM , v

q
M ′}, then M and M ′ are adjacent modules and X∩M ̸= ∅

and X ∩M ′ ̸= ∅, so G[X] cannot be an independent set.

Parallel and Series Nodes. If V is a parallel or series node in the modular decomposition
tree, i.e., Gq is an independent set or clique respectively, then we give special polynomial time
algorithms to compute XV without relying on a tree decomposition. If Gq is a parallel node,
then we simply set XV =

⋃
M∈Πmod(G) XM . If Gq is a series node, then any independent set

may intersect at most one module M ∈ Πmod(G), else the set would immediately induce
an edge. Thus, we set in this case XV = arg maxXM

c(XM), where the maximum ranges
over all XM with M ∈ Πmod(G). Since each XM is an independent set of maximum cost of
G[M], it is easy to see by using Lemma 6.2.1 that XV must be an independent set of G of
maximum cost in both cases.

Prime Nodes. If V is a prime node, i.e., the quotient graph Gq = (V q, Eq) is prime, then
we are given a tree decomposition (T q, (Bqt)t∈V (T q)) of Gq of width at most k, which we
can assume to be very nice by Lemma 2.4.2. We perform dynamic programming along this
tree decomposition, yielding the inner dynamic program. By Lemma 6.2.1, it is natural that
every module in the currently considered bag has two possible states; it can be empty (state
0), or nonempty (state 1) and in the latter case we take an independent set of maximum
cost inside. Given that we have already computed the maximum independent sets XM for
each M ∈ Πmod(G), we define the partial solutions of the dynamic programming as follows.

For each node t ∈ V (T q) of the tree decomposition, we define the family of partial
solutions at t, denoted At, as the family consisting of all X ⊆ Vt = π−1

V (V qt) such that the
following properties hold for all M ∈ Πmod(G):
• X ∩M ∈ {∅, XM},
• if X ∩M ̸= ∅, then X ∩M ′ = ∅ for all {vqM , v

q
M ′} ∈ E(Gqt).

We emphasize that while the tree decomposition is of the quotient graph Gq, the defined
partial solutions live inside the original graph G. Using the already computed data XM ,
M ∈ Πmod(G), and Lemma 6.2.1, the quotient graph structure is sufficient for constructing
solutions of the whole graph G. Note that at the root node r̂ of the tree decomposition
T q, the family Ar̂ consists of all independent sets X of G with X ∩ M ∈ {∅, XM} for all
M ∈ Πmod(G), which must in particular contain at least one independent set of maximum
cost of G by Lemma 6.2.1 and the definition of XM , M ∈ Πmod(G).

To set up the dynamic programming recurrences, we need to partition the partial solutions
according to their interaction with the current bag. Given a t-signature f : Bqt → States :=
{0,1}, the subfamily At(f) ⊆ At of partial solutions at t compatible with f consists of all
X ∈ At such that the following properties hold for all vqM ∈ Bqt :
• f(vqM) = 0 implies that X ∩M = ∅,
• f(vqM) = 1 implies that X ∩M = XM .

6.2 Independent Set Algorithm 107

For each t ∈ V (T q) and t-signature f : Bqt → States, we compute the quantity At(f) :=
maxX∈At(f) c(X) by dynamic programming along the tree decomposition. The quantity
Ar̂(∅) at the root node r̂ of the tree decomposition is the maximum cost of an independent
set of G. By standard dynamic programming techniques, which we do not expand on here,
we can also compute an explicit independent set XV of G of maximum cost. The dynamic
programming recurrences depend on the bag type of node t and are as follows.

Leaf Bag. Leaf bags are the base case of the inner dynamic program. We have Bt = Bqt = ∅
and t is a leaf node of the tree decomposition, i.e., t has no children. Here, we simply have
At = ∅ and hence At(∅) = 0.

Introduce Vertex Bag. We have that Bqt = Bqs ∪ {vqM} and vqM /∈ Bqs , where s is the only
child node of t. We extend every s-signature by one of the two possible states for vqM and
update the cost if necessary. Note that no edges incident to vqM are introduced yet. Hence,
the recurrence is given by

At(f [vqM 7→ 0]) = As(f),

At(f [vqM 7→ 1]) = As(f) + c(XM),

where f is an s-signature.

Introduce Edge Bag. Let the introduced edge be denoted by {vqM , v
q
M ′}. We have that

{vqM , v
q
M ′} ⊆ Bqt = Bqs , where s is the only child node of t. The recurrence only needs to

filter all partial solutions X that intersect both M and M ′, since these cannot be independent
sets. Hence, the recurrence is given by

At(f) = [f(vqM) = 0 ∨ f(vqM ′) = 0]As(f),

where f is a t-signature.

Forget Vertex Bag. We have that Bqt = Bqs \ {vqM} and vqM ∈ Bqs , where s is the only child
node of t. We simply try both states for the forgotten module M and take the maximum, so
the recurrence is given by

At(f) = max(As(f [vqM 7→ 0]), As(f [vqM 7→ 1])),

where f is a t-signature.

Join Bag. We have that Bqt = Bqs1
= Bqs2

, where s1 and s2 are the two children of t. For
each t-signature f , we can simply combine a best partial solution compatible with f at
s1 with one at s2, but we do have to account for overcounting in the cost. We have that

108 Chapter 6 Algorithms Parameterized By Modular-Treewidth

V qs1
∩ V qs2

= Bqt , so these partial solutions can only overlap in the current bag. Hence, the
recurrence is given by

At(f) = As1
(f) +As2

(f) −
∑

vq
M

∈f−1(1)

c(XM),

where f is a t-signature.

Theorem 6.2.2. There exists an algorithm that given a tree decomposition of width at most k
for every prime quotient graph GqM ∈ Hp(G), solves INDEPENDENT SET in time O∗(2k logNc),
where Nc is the maximum value attained by the cost function c.

Proof. We first compute the modular decomposition tree in time O(n+m) using the algorithm
of Tedder et al. [169]. We perform the outer dynamic programming algorithm, solving the
subproblems for leaf nodes, parallel nodes, and series nodes as described. For a prime node
M↑, we use the given (very nice) tree decomposition of Gq

M↑ = G[M↑]/Πmod(G[M↑]) of
width at most k and perform the inner dynamic programming algorithm as described, which
computes a set XM↑ by standard augmentation of the dynamic program. The algorithm
returns true if c(XV) ≥ b and false otherwise.

The correctness proofs of the recurrences for the inner dynamic program are straightfor-
ward and hence omitted. We have already argued the correctness of the algorithms for leaf,
parallel, and series nodes, therefore it follows that XV is an independent set of maximum
cost of G and that the algorithm is correct.

It remains to consider the running time of the algorithm. Since c(V) ≤ n · Nc and we
only add, subtract, or compare numbers, all number operations can be performed in time
O(log n + logNc). The modular decomposition tree contains O(n) nodes, as there are n
leaves and every internal node has at least two child nodes. By standard arguments, we can
also assume that each very nice tree decomposition has at most O(kn) nodes. Since every
bag of the considered tree decompositions contains at most k + 1 vertices, there are at most
2k+1 signatures at each node. Finally, the running time follows because every recurrence of
the inner dynamic program only uses a polynomial number of operations.

Lexicographic Maximum Independent Set. When using this algorithm as a subroutine,
we want to find an independent set X that lexicographically maximizes (c̃(X), w̃(X)),
where c̃ : V → [1, Nc] and w̃ : V → [1, Nw] are some given cost and weight function with
maximum value Nc and Nw respectively. Setting c(v) = (|V | + 1)Nwc̃(v) + w̃(v) for all
v ∈ V , we can simulate this setting with a single cost function c and recover w̃(X) = c(X)
mod (|V |+1)Nw and c̃(X) = (c(X)−w̃(X))/((|V |+1)Nw). Alternatively, we may augment
the dynamic programming to remember which arguments in the recurrences lead to the
maximum to construct the independent set X and simply compute the values c̃(X) and
w̃(X) directly.

Theorem 6.2.3. Let G = (V,E) be a graph, c̃ : V → [1, Nc] be a cost function, and w̃ : V →
[1, Nw] be a weight function. If Nc, Nw ≤ |V |O(1), then there exists an algorithm that given
a tree decomposition of width k for every prime quotient graph GqM ∈ Hp(G), computes an
independent set X of G lexicographically maximizing (c̃(X), w̃(X)) in time O∗(2k).

6.2 Independent Set Algorithm 109

Proof. We first transform c̃ and w̃ into a single cost function c as described and then run the
algorithm of Theorem 6.2.2, obtaining the independent set X as described. The running
time follows, since by the polynomial bounds on Nc and Nw, also the maximum value of c
must be polynomially bounded.

6.3 Steiner Tree Reduction
When solving the STEINER TREE problem, we assume that G is a connected graph, otherwise
the answer is trivially no if the terminals are distributed across several connected components,
or we can just look at the connected component containing all terminals. We also assume
thatG[K] is not connected, as otherwiseX = K is trivially an optimal solution. Furthermore,
we assume that the costs c(v), v ∈ V , are at most polynomial in |V |.

For STEINER TREE, it is sufficient to consider the topmost quotient graph Gq := GqV =
G/Πmod(G), unless there is a single module M ∈ Πmod(G) = children(V) containing all
terminals. In this edge case, we find a solution of size |K| + 1, by taking a vertex in a module
adjacent to M , or we consider the graph G[M], allowing us to recurse into the module M .

We first consider the case that all terminals are contained in a single module M ∈
Πmod(G). The next lemma shows that we can either find a solution of size |K| + 1, which
can be computed in polynomial time, or it suffices to consider the graph G[M].

Lemma 6.3.1. If there is a module M ∈ Πmod(G) of G such that K ⊆ M , then there is an
optimum Steiner tree X satisfying X ⊆ M , or there is an optimum Steiner tree X satisfying
|X| = |K| + 1.

Proof. Consider a Steiner tree X such that X ̸⊆ M , then X has to contain at least one
vertex v inside a module M ′ ∈ Πmod(G) adjacent to M . We claim that X ′ = K ∪ {v} is a
Steiner tree with c(X ′) ≤ c(X). Clearly, X ′ ⊆ X, and since the costs are positive we have
that c(X ′) ≤ c(X). Since K ⊆ M , the vertex v is adjacent to all terminals K and G[X ′] is
connected, hence X ′ is a Steiner tree.

If there is no optimum Steiner tree X satisfying X ⊆ M , then by applying the previous
argument to an optimum Steiner tree, we obtain an optimum Steiner tree X satisfying
|X| = |K| + 1.

After recursing until no module M ∈ Πmod(G) contains all terminals (and updating G
accordingly), we can apply the following reduction to solve the problem if the quotient
graph is prime. Let (G,K, c, b) be a STEINER TREE instance such that |πV (K)| ≥ 2 and
Gq = G/Πmod(G) is prime. We consider the STEINER TREE instance (Gq,Kq, cq, bq) where
Kq = πV (K), cq(vqM) = c(K∩M) =

∑
v∈K∩M c(v) ifK∩M ̸= ∅ and cq(vqM) = minv∈M c(v)

otherwise, and b
q = b.

Lemma 6.3.2. Suppose that (G,K, c, b) is a STEINER TREE instance such that no module
M ∈ Πmod(G) contains all terminals K and Gq is prime.

Then, the answer to the STEINER TREE instance (G,K, c, b) is positive if and only if the
answer to the STEINER TREE instance (Gq,Kq, cq, bq) is positive.

110 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Proof. If X is an optimum Steiner tree of (G,K, c, b), then we claim that Xq = πV (X)
is a Steiner tree of (Gq,Kq, cq, bq) with cq(Xq) ≤ c(X). We have that Kq = πV (K), so
K ⊆ X implies that Kq ⊆ Xq. By Lemma 6.1.2, we see that Gq[Xq] is connected as well.
By definition of Xq and cq, we have for all vqM ∈ Xq that cq(vqM) ≤ c(X ∩ M) and hence
cq(Xq) ≤ c(X) ≤ b = b

q
.

If Xq is an optimum Steiner tree of (Gq,Kq, cq, bq), then we claim that X = K ∪ {vM :
vqM ∈ Xq,K ∩ M = ∅}, where vM = arg minv∈M c(v), is a Steiner tree of (G,K, c, b) with
c(X) ≤ cq(Xq). We have that K ⊆ X by definition of X and for the costs we compute that
c(X) = c(K)+c(X \K) = cq(Kq)+cq(Xq \Kq) = cq(Xq) ≤ b

q = b. Note that Xq satisfies
Xq = πV (X) by definition of X. Therefore, Lemma 6.1.2 implies that G[X] is connected
and X is a Steiner tree of G.

Proposition 6.3.3 ([51]). There exists a Monte-Carlo algorithm that given a tree decomposition
of width at most k for G solves STEINER TREE in time O∗(3k). The algorithm cannot give false
positives and may give false negatives with probability at most 1/2.

Proof. The algorithm presented by Cygan et al. [51] can be easily augmented to handle
positive vertex costs in this running time under the assumption that the costs c(v), v ∈ V ,
are at most polynomial in |V |.

By recursing, applying Proposition 6.3.3 to solve the reduced instance from Lemma 6.3.2,
and handling parallel and series nodes, we obtain the following.

Theorem 6.3.4. There exists a Monte-Carlo algorithm that given a tree decomposition of width
at most k for every prime node in the modular decomposition of G solves STEINER TREE in time
O∗(3k). The algorithm cannot give false positives and may give false negatives with probability
at most 1/2.

Proof. If no module M ∈ Πmod(G) contains all terminals K, then we want to invoke
Lemma 6.3.2. If Gq is a parallel node, then the answer is trivially no. If Gq is a series node,
then G[K] is already connected, but we have assumed that this is not the case. Hence,
by Theorem 2.4.7 Gq must be a prime node and we can indeed invoke Lemma 6.3.2, so
it suffices to solve the STEINER TREE instance (Gq,Kq, cq, bq). By definition of modular-
treewidth, we have tw(Gq) ≤ mod-tw(G) ≤ k and we are given a corresponding tree
decomposition of Gq. Hence, we can simply run the algorithm of Proposition 6.3.3 and
return its result.

If some module M ∈ Πmod(G) contains all terminals v, then due to Lemma 6.3.1 we
first compute in polynomial time an optimum Steiner tree X1 of G subject to |X1| = |K| + 1
by brute force. If c(X1) ≤ b, then we answer yes. Otherwise, we repeatedly recurse into
the module M until we reach a node Gq∗ = G∗/Πmod(G∗) in the modular decomposition of
G such that no M∗ ∈ Πmod(G∗) contains all terminals K. We can then solve the STEINER

TREE instance (G∗,K, c
∣∣
V (G∗), b) like in the first paragraph and return its answer. Note that

this recursion can never lead to a G∗ with |V (G∗)| = 1 as that would imply |K| = 1, which
contradicts the assumption that G[K] is not connected.

As we call Proposition 6.3.3 at most once, we obtain the same error bound.

6.3 Steiner Tree Reduction 111

Cygan et al. [50] have shown that STEINER TREE cannot be solved in time O∗((3−ε)pw(G))
for some ε > 0, unless SETH fails. Since mod-tw(G) ≤ tw(G) ≤ pw(G), this shows that the
running time of Theorem 6.3.4 is tight.

6.4 Connected Dominating Set Reduction
When solving CONNECTED DOMINATING SET, we assume that G is connected, otherwise
the answer is trivially no, and that the costs c(v), v ∈ V , are at most polynomial in |V |.
CONNECTED DOMINATING SET can be solved by essentially considering only the first quotient
graph. First, we will have to handle some edge cases though. If the first quotient graph
Gq = GqV = G/Πmod(G) contains a universal vertex vqM ∈ V (Gq), i.e., NGq [vqM] = V (Gq),
then there could be a connected dominating set X of G that is fully contained in M . We
search for such a connected dominating set by recursively solving CONNECTED DOMINATING

SET on G[M]. At some point, we arrive at a graph, where the first quotient graph does not
contain a universal vertex, or at the one-vertex graph. In the latter case, the answer is trivial.
Otherwise, the structure of connected dominating sets allows us to solve the problem on the
quotient graph Gq.

Lemma 6.4.1. If G contains at least two vertices, then Gq = G/Πmod(G) contains a universal
vertex if and only if Gq is a clique.

Proof. The reverse direction is simple: every vertex of a clique is a universal vertex.
For the forward direction, first notice that Gq cannot be a parallel node if Gq contains

a universal vertex. Suppose that Gq contains a universal vertex vqM0
. Consider the set

M = V (G)\M0 and notice that M has to be a module of G, because vqM0
is a universal vertex

in Gq. If Gq were a prime node, then all modules in Πmod(G) are maximal proper modules
by Theorem 2.4.7, but V (G) = M0 ∪M implies that |Πmod(G)| ≤ 2 which contradicts that
Gq is prime. Therefore, the only remaining possibility is that Gq is a series node, i.e., Gq is a
clique.

Lemma 6.4.2. If Gq is a prime node, then no connected dominating set X of G is contained in
a single module M ∈ Πmod(G). Furthermore, for any optimum connected dominating set X of
G and module M ∈ Πmod(G) it holds that either X ∩M = ∅ or X ∩M = {vM}, where vM is
some vertex of minimum cost in M .

Proof. By Lemma 6.4.1, Gq cannot contain a universal vertex. Suppose that X ⊆ M for
some M ∈ Πmod(G). Since vqM ∈ V (Gq) is not a universal vertex, there exists a module
M ′ ∈ Πmod(G) \ {M} that is not adjacent to M , hence X cannot dominate the vertices in
M ′ and thus cannot be a connected dominating set.

For the statement about optimum connected dominating sets, suppose that X is a
connected dominating set of G and c(X ∩ M) > c(vM) > 0, where vM is some vertex
of minimum cost in M , for some M ∈ Πmod(G). The set X ′ = (X \ M) ∪ {vM} satisfies
c(X ′) < c(X) and Lemma 6.1.1 shows that G[X ′] is connected. Since X is a connected
dominating set intersecting at least two modules, there has to be a module M ′ ∈ Πmod(G)
that is adjacent toM and satisfiesX∩M ′ ̸= ∅. SinceM ̸= M ′, there is some v ∈ X ′∩M ′ ̸= ∅
which dominates all vertices in M . Hence, X ′ is a dominating set as well.

112 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Repeatedly applying this argument shows the statement about optimum connected
dominating sets.

Proposition 6.4.3 ([51]). There exists an algorithm that given a tree decomposition of width
at most k for G and a weight function w isolating the optimum connected dominating sets
solves CONNECTED DOMINATING SET in time O∗(4k). If w is not isolating, then the algorithm
may return false negatives.

Proof. The algorithm presented by Cygan et al. [51] can be easily augmented to handle
positive vertex costs in this running time under the assumption that the costs c(v), v ∈ V ,
are at most polynomial in |V |. Notice that the only source of randomness in the algorithm of
Cygan et al. is the sampling of a weight function. Given an isolating weight function, the
algorithm will always succeed.

As for STEINER TREE, the strategy is again to essentially just call the known algorithm for
CONNECTED DOMINATING SET[treewidth] on the quotient graphs. However, a single call will
not be sufficient in the case of CONNECTED DOMINATING SET; to still obtain the same success
probability, we will analyze the behavior of isolating weight functions under the following
reduction.

Let (G, c, b) be a CONNECTED DOMINATING SET instance such that Gq is a prime node
and let w : V → N be a weight function. In each M ∈ Πmod(G) pick a vertex vc,w

M that
lexicographically minimizes (c(v),w(v)) among all vertices v ∈ M . We construct the
CONNECTED DOMINATING SET instance (Gq, cq, b) with cq(vqM) = c(vc,w

M) for all vqM ∈ V (Gq)
and define the weight function wq(vqM) = w(vc,w

M) for all vqM ∈ V (Gq). The following
lemma shows how the two CONNECTED DOMINATING SET instances are related.

Lemma 6.4.4. Let (G, c, b) be a CONNECTED DOMINATING SET instance such that Gq is a
prime node, let w : V → N be a weight function, and let (Gq, cq, b) and wq be defined as above.
The following statements hold:
1. If X is an optimum connected dominating set of (G, c), then Xq = πV (X) is a connected

dominating set of Gq with cq(Xq) = c(X).
2. If Xq is an optimum connected dominating set of (Gq, cq), then X = {vc,w

M : vqM ∈ Xq} is
a connected dominating set of G with c(X) = cq(Xq).

3. If w isolates the optimum connected dominating sets of (G, c), then wq isolates the optimum
connected dominating sets of (Gq, cq).

Proof. First, notice that the subgraph G′ = (V ′, E′) of G induced by {vc,w
M : M ∈ Πmod(G)}

is isomorphic to Gq.
1. Let X be an optimum connected dominating set of (G, c) and set Xq = πV (X). We

compute

cq(Xq) =
∑

vq
M

∈Xq

cq(vqM) =
∑

M∈Πmod(G):
X∩M ̸=∅

c(vc,w
M) =

∑
M∈Πmod(G):
X∩M ̸=∅

c(X ∩M) = c(X),

where the penultimate equality follows from Lemma 6.4.2 and the choice of vc,w
M .

Furthermore, we can assume X ∩M = {vc,w
M } whenever X ∩M ̸= ∅ by Lemma 6.4.2.

6.4 Connected Dominating Set Reduction 113

Then, the isomorphism between Gq and G′ also maps Xq to X, and hence Xq has to be
a connected dominating set of Gq.

2. Suppose that Xq is an optimum connected dominating set of (Gq, cq). Defining X

as above, we see that Xq satisfies Xq = πV (X). By Lemma 6.4.1, Gq contains no
universal vertex, hence |Xq| ≥ 2 and X must intersect at least two modules. Therefore,
Lemma 6.1.2 shows that G[X] is connected. The isomorphism between Gq and G′ shows
that X must dominate all vertices in V ′.
For any vertex v ∈ V \ (X ∪ V ′) and its module v ∈ M ∈ Πmod(G), we claim that there
exists a module M ′ ∈ Πmod(G) such that vc,w

M ′ ∈ X dominates v. If X ∩ M = ∅, then
there exists an adjacent module M ′ with X ∩ M ′ ̸= ∅, because the vertex vc,w

M ∈ V ′

must be dominated by X. If X ∩M ̸= ∅, a module M ′ with the same properties exists,
because X intersects at least two modules and G[X] is connected. In either case, vc,w

M ′

must dominate the vertex v by the module property, hence X is a connected dominating
set of G. It remains to compute

c(X) =
∑

vc,w
M

∈X

c(vc,w
M) =

∑
vq

M
∈Xq

cq(vqM) = cq(Xq).

3. The first two statements show that connected dominating sets in (G, c) and (Gq, cq) have
the same optimum cost. Suppose that w is a weight function that isolates the optimum
connected dominating sets of (G, c) and let X be the optimum connected dominating
set that is isolated by w. Therefore, X lexicographically minimizes (c(X),w(X)) among
all connected dominating sets of G. By Lemma 6.4.2, we know that X ∩ M = {v′

M}
whenever X ∩M ̸= ∅, where v′

M is a vertex of minimum cost in M .
We claim that v′

M = vc,w
M for all modules M ∈ Πmod(G) with X ∩M ̸= ∅. By definition

of vc,w
M , we must have w(v′

M) ≥ w(vc,w
M). If w(v′

M) > w(vc,w
M), then we could reduce the

weight of X by exchanging v′
M with vc,w

M , contradicting the minimality of (c(X),w(X)).
If w(v′

M) = w(vc,w
M) and v′

M ̸= vc,w
M , thenX cannot be the isolated connected dominating

set, as exchanging v′
M and vc,w

M yields a connected dominating set of the same cost and
weight. This proves the claim.
Using the claim, we compute

wq(Xq) =
∑

vq
M

∈Xq

wq(vqM) =
∑

M∈Πmod(G):
X∩M ̸=∅

w(vc,w
M) = w(X).

Finally, consider any other optimum connected dominating set Y q ̸= Xq of Gq. Setting
Y = {vc,w

M : vqM ∈ Y q} ̸= X, we obtain Y q = πV (Y) and c(Y) = cq(Y q) = cq(Xq) =
c(X), hence wq(Y q) = w(Y) > w(X) = wq(Xq), where the inequality follows since w
isolates the optimum connected dominating sets of (G, c). Thus, wq isolates the optimum
connected dominating sets of (Gq, cq).

Theorem 6.4.5. There exists a Monte-Carlo algorithm that given a tree decomposition of
width at most k for every prime node in the modular decomposition of G solves CONNECTED

DOMINATING SET in time O∗(4k). The algorithm cannot give false positives and may give false
negatives with probability at most 1/2.

114 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Proof. We begin by sampling a weight function w : V → [2|V |]. By Lemma 3.1.4, w isolates
the optimum connected dominating sets of (G, c) with probability at least 1/2. The algorithm
proceeds top-down through the modular decomposition tree of G, but we only recurse
further if the current node is a series node. Each recursive call is determined by some
M↑ ∈ Mtree(G) and we have to determine in this call if a connected dominating set
X of G[M↑] with c(X) ≤ b exists, i.e., solve the CONNECTED DOMINATING SET instance
(G[M↑], c

∣∣
M↑ , b). The weight function w is passed along by considering its restriction, i.e.,

w
∣∣
M↑ .
Let Atw denote the algorithm from Proposition 6.4.3. Our algorithm may perform

several calls to Atw, where each call may return false negatives when the considered weight
function is not isolating. We return to the error analysis after finishing the description of the
modular-treewidth algorithm.

We begin by explaining the three base cases. If |M↑| = 1, then we let M↑ = {vM↑} and
check whether c(vM↑) ≤ b and return yes or no accordingly. Otherwise, we have |M↑| ≥ 2
and can consider Gq

M↑ . If Gq
M↑ is a parallel node, then the answer is trivially no. If Gq

M↑ is a
prime node, then we can invoke Lemma 6.4.4 to reduce the CONNECTED DOMINATING SET

instance (G[M↑], c
∣∣
M↑ , b) to a CONNECTED DOMINATING SET instance on the quotient graph

Gq
M↑ . We are given a tree decomposition of Gq

M↑ of width at most k by assumption. We
run Atw on the quotient instance together with the weight function from Lemma 6.4.4 and
return its result.

Finally, suppose that Gq
M↑ is a series node. In this case, any set X of size 2 that

intersects two different modules M ∈ children(M↑) = Πmod(G[M↑]) is a connected
dominating set of G[M↑]. We compute all those sets by brute force in polynomial time
and return yes if any of them satisfies c(X) ≤ b. Otherwise, we need to recurse into the
modules M ∈ children(M↑), because any connected dominating set of G[M] will also be a
connected dominating set of G[M↑]. We return true if at least one of these recursive calls
returns true. This concludes the description of the algorithm and we proceed with the error
analysis now.

The only source of errors is that we may call Atw with a non-isolating weight function,
but this can only yield false negatives and hence the modular-treewidth algorithm cannot
give false positives either. Even if the sampled weight function is isolating, this may not
be the case for the restrictions w

∣∣
M↑ , M↑ ∈ Mtree(G). Nonetheless, we show that if w is

isolating, then the modular-treewidth algorithm does not return an erroneous result. To do
so, we show that if w

∣∣
M↑ is isolating at a series node, then the weight function in the branch

containing the isolated optimum connected dominating set must be isolating as well.
To be precise, suppose that Gq

M↑ is a series node and that w
∣∣
M↑ isolates X∗ among

the optimum connected dominating sets of (G[M↑], c
∣∣
M↑). We claim that w

∣∣
M

, M ∈
children(M↑), isolates X∗ among the optimum connected dominating sets of (G[M], c

∣∣
M

)
if X∗ ⊆ M . This follows by a simple exchange argument: if w

∣∣
M

is not isolating, i.e., there
is some optimum connected dominating set X ̸= X∗ of (G[M], c

∣∣
M

) with w(X) = w(X∗),
then X is also an optimum connected dominating set of (G[M↑], c

∣∣
M↑), contradicting that

w
∣∣
M↑ is isolating X∗. If X∗ intersects multiple modules M ∈ children(M↑), then X∗ is

found deterministically among the sets of size 2.

6.4 Connected Dominating Set Reduction 115

As w is isolating with probability at least 1/2 this concludes the error analysis. Fur-
thermore, for every module M ∈ Mtree(G), we need at most time O∗(4k). Therefore, the
theorem statement follows.

Cygan et al. [50] have shown that CONNECTED DOMINATING SET cannot be solved in time
O∗((4 − ε)pw(G)) for some ε > 0, unless SETH fails. Since mod-tw(G) ≤ tw(G) ≤ pw(G),
this shows that the running time of Theorem 6.4.5 is tight.

6.5 Connected Vertex Cover Algorithm
In the CONNECTED VERTEX COVER problem, we are given a graph G = (V,E), a cost function
c : V → N \ {0}, and an integer b and we have to decide whether there exists a subset of
vertices X ⊆ V with c(X) ≤ b such that G−X contains no edges and G[X] is connected.
We will assume that the values of the cost function c are polynomially bounded in the size of
the graph G. We also assume that G is connected and contains at least two vertices, hence
|Πmod(G)| ≥ 2 and Gq := GqV = G/Πmod(G) cannot be edgeless.

To solve CONNECTED VERTEX COVER, we begin by computing some optimum (possibly
non-connected) vertex cover YM with respect to c

∣∣
M

for every module M ∈ Πmod(G) that
G[M] contains at least one edge. If G[M] contains no edges, then we set YM = {v∗

M}, where
v∗
M ∈ M is a vertex minimizing the cost inside M , i.e., v∗

M := arg minv∈M c(v). The vertex
covers can be computed in time O∗(2mod-tw(G)) by using the algorithm from Theorem 6.2.3.

Definition 6.5.1. Let X ⊆ V be a vertex subset. We say that X is nice if for every module
M ∈ Πmod(G) it holds that X ∩M ∈ {∅, YM ,M}.

We will show that it is sufficient to only consider nice vertex covers via some exchange
arguments. This allows us to only consider a constant number of states per module in the
dynamic programming algorithm.

Lemma 6.5.2. If there exists a connected vertex cover X of G that intersects at least two
modules in Πmod(G), then there exists a connected vertex cover X ′ of G that is nice and
intersects at least two modules in Πmod(G) with c(X ′) ≤ c(X).

Proof. Let X be the given connected vertex cover. Via exchange arguments, we will see
that we can find a nice connected vertex cover with the same cost. Suppose that there is
a module M ∈ Πmod(G) such that G[M] contains no edges and 1 ≤ |X ∩ M | < |M |. We
claim that X ′ = (X \M) ∪ {v∗

M} is a connected vertex cover with c(X ′) ≤ c(X). For any
module M ′ ∈ Πmod(G) adjacent to M , we must have that X ′ ∩ M ′ = X ∩ M ′ = M ′, else
there would be an edge between M and M ′ that is not covered by X. In particular, all edges
incident to M are already covered by X \M = X ′ \M . By Lemma 6.1.1, X ′ is connected
and we have that c(X ′) ≤ c(X) due to the choice of v∗

M .
If M ∈ Πmod(G) is a module such that G[M] contains at least one edge, then we consider

two cases. If c(X ∩M) < c(YM), then X ∩M cannot be a vertex cover of G[M] and hence
X would not be a vertex cover of G. If c(YM) ≤ c(X ∩ M) < c(M), then we claim that
X ′ = (X \ M) ∪ YM is a connected vertex cover with c(X ′) ≤ c(X). By assumption, we
have c(X ′) ≤ c(X). We must have that X ∩M ̸= M , therefore, as before, X and X ′ must

116 Chapter 6 Algorithms Parameterized By Modular-Treewidth

fully contain all modules adjacent to M to cover all edges leaving M . Since G[M] contains
at least one edge, we have that YM ̸= ∅ and G[X ′] must be connected by Lemma 6.1.1.

By repeatedly applying these arguments to X, we obtain the claim.

The next lemma enables us to handle connected vertex covers that are contained in a
single module with polynomial-time preprocessing.

Lemma 6.5.3. A vertex set X ⊆ V is a connected vertex cover of G with X ⊆ M for some
module M ∈ Πmod(G) if and only if X = M , all edges of G are incident to M , and G[M] is
connected.

Proof. The reverse direction is trivial. We will show the forward direction. Since G is
connected and |Πmod(G)| ≥ 2, there exists a module M ′ ∈ Πmod(G) adjacent to M . If
X ̸= M , then there exists an edge between M and M ′ that is not covered by X. If there is an
edge in G not incident to M , then clearly X cannot cover all edges. Clearly, G[X] = G[M]
must be connected.

Before going into the main algorithm, we handle the edge case of series nodes. The
following lemma shows that there are only a polynomial number of interesting cases for
series nodes, hence we can check them by brute force in polynomial time.

Lemma 6.5.4. If Gq is a clique of size at least two, then for any vertex cover X there is some
M ′ ∈ Πmod(G) such that for all other modules M ′ ̸= M ∈ Πmod(G), we have X ∩M = M .

Proof. Suppose there are two modules M1 ̸= M2 ∈ Πmod(G) such that X ∩M1 ̸= M1 and
X ∩M2 ̸= M2. These modules are adjacent, because Gq is a clique and thus X cannot be a
vertex cover, since there exists an uncovered edge between M1 \X and M2 \X.

6.5.1 Dynamic Programming for Prime Nodes
It remains to handle the case that G is a prime node. Due to Lemma 6.5.3, we only
need to look for connected vertex covers that intersect at least two modules in Πmod(G)
now. Hence, we can make use of Lemma 6.5.2 and Lemma 6.1.4. We are given a tree
decomposition (T q, (Bqt)t∈V (T q)) of the quotient graph Gq := GqV = G/Πmod(G) of width k
and by Lemma 2.4.2, we can assume that it is a very nice tree decomposition.

To solve CONNECTED VERTEX COVER on G, we perform dynamic programming along
the tree decomposition T q using the cut-and-count-technique. Lemma 6.1.4 will allow
us to work directly on the quotient graph. We begin by presenting the cut-and-count-
formulation of the problem. For any subgraph G′ of G, we define the relaxed solutions
R(G′) = {X ⊆ V (G′) : X is a nice vertex cover of G′} and the cut solutions Q(G′) =
{(X, (XL, XR)) ∈ ChomV (G′) : X ∈ R(G′)}.

For the isolation lemma, cf. Lemma 3.1.4, we sample a weight function w : V → [2n]
uniformly at random. We will need to track the cost c(X), the weight w(X), and the number
of intersected modules |πV (X)| of each partial solution (X, (XL, XR)). Accordingly, we
define Rc,w,m(G′) = {X ∈ R(G′) : c(X) = c,w(X) = w, |πV (X)| = m} and Qc,w,m(G′) =
{(X, (XL, XR)) ∈ Q(G′) : X ∈ Rc,w,m(G′)} for all subgraphs G′ of G, c ∈ [0, c(V)], w ∈
[0,w(V)],m ∈ [0, |Πmod(G)|].

6.5 Connected Vertex Cover Algorithm 117

As discussed, to every node t ∈ V (T q) we associate a subgraph Gqt = (V qt , E
q
t) of Gq in

the standard way, which in turn gives rise to a subgraph Gt = (Vt, Et) of G. The subgraphs
Gt grow module by module and are considered by the dynamic program, hence we define
Rc,w,m
t = Rc,w,m(Gt) and Qc,w,m

t = Qc,w,m(Gt) for all c, w, and m. We will compute the
sizes of the sets Qc,w,m

t by dynamic programming over the tree decomposition T q, but to do
so we need to parameterize the partial solutions by their state on the current bag.

Disregarding the side of the cut, Lemma 6.5.2 tells us that each module M ∈ Πmod(G)
has one of three possible states for some X ∈ Rc,w,m

t , namely X ∩M ∈ {∅, YM ,M}. Since
we are considering homogeneous cuts there are two possibilities if X ∩M ̸= ∅; X ∩M is
contained in the left side of the cut or in the right side. Thus, there are five total choices. We
define States = {0,1L,1R,AL,AR} with 1 denoting that the partial solution contains at
least one vertex, but not all, from the module and with A denoting that the partial solution
contains all vertices of the module; the subscript denotes the side of the cut.

A function of the form f : Bqt → States is called t-signature. For every node t ∈ V (T q),
cost c ∈ [0, c(V)], weight w ∈ [0,w(V)], number of modules m ∈ [0, |Πmod(G)|], and t-
signature f , the family Ac,w,m

t (f) consists of all (X, (XL, XR)) ∈ Qc,w,m
t that satisfy for all

vqM ∈ Bqt :

f(vqM) = 0 ↔ X ∩M = ∅,

f(vqM) = 1L ↔ XL ∩M = YM ̸= M, f(vqM) = 1R ↔ XR ∩M = YM ̸= M,

f(vqM) = AL ↔ XL ∩M = M, f(vqM) = AR ↔ XR ∩M = M.

Recall that by considering homogeneous cuts, we have that XL ∩ M = ∅ or XR ∩ M = ∅
for every module M ∈ Πmod(G). We use the condition YM ̸= M for the states 1L and 1R to
ensure a well-defined state for modules of size 1. Note that the sets Ac,w,m

t (f), ranging over
f , partition Qc,w,m

t due to considering nice vertex covers and homogeneous cuts.
Our goal is to compute the size of Ac,w,m

r̂ (∅) = Qc,w,m
r̂ = Qc,w,m(G), where r̂ is the root

vertex of the tree decomposition T q, modulo 4 for all c, w, m. By Lemma 6.1.4, there is a
connected vertex cover X of G with c(X) = c and w(X) = w if the result is nonzero.

We present the recurrences for the various bag types to computeAc,w,mt (f) = |Ac,w,m
t (f)|;

if not stated otherwise, then t ∈ V (T q), c ∈ [0, c(V)], w ∈ [0,w(V)], m ∈ [0, |Πmod(G)|],
and f is a t-signature. We set Ac,w,mt (f) = 0 whenever at least one of c, w, or m is negative.

Leaf Bag. We have that Bqt = Bt = ∅ and t has no children. The only possible t-signature
is ∅ and the only possible partial solution is (∅, (∅, ∅)). Hence, we only need to check the
tracker values:

Ac,w,mt (∅) = [c = 0][w = 0][m = 0].

Introduce Vertex Bag. We have Bqt = Bqs ∪ {vqM}, where s ∈ V (T q) is the only child
of t and vqM /∈ Bqs . Hence, Bt = Bs ∪ M . We have to consider all possible interactions of
a partial solution with M , since we are considering nice vertex covers these interactions
are quite restricted. To formulate the recurrence, we let, as an exceptional case, f be an
s-signature here and not a t-signature. Since no edges of the quotient graph Gq incident

118 Chapter 6 Algorithms Parameterized By Modular-Treewidth

to vqM are introduced yet, we only have to check some edge cases and update the trackers
when introducing vqM :

Ac,w,mt (f [vqM 7→ 0]) = [G[M] is edgeless] Ac,w,ms (f),
Ac,w,mt (f [vqM 7→ 1L]) = [|M | > 1] A

c−c(YM),w−w(YM),m−1
s (f),

Ac,w,mt (f [vqM 7→ 1R]) = [|M | > 1] A
c−c(YM),w−w(YM),m−1
s (f),

Ac,w,mt (f [vqM 7→ AL]) = A
c−c(M),w−w(M),m−1
s (f),

Ac,w,mt (f [vqM 7→ AR]) = A
c−c(M),w−w(M),m−1
s (f).

Introduce Edge Bag. Let {vqM1
, vqM2

} denote the introduced edge. We have that {vqM1
, vqM2

} ⊆
Bqt = Bqs . The edge {vqM1

, vqM2
} corresponds to adding a join between the modules M1 and

M2. We need to filter all solutions whose states at M1 and M2 are not consistent with M1

and M2 being adjacent. There are essentially two possible reasons: either not all edges
between M1 and M2 are covered, or the introduced edges go across the homogeneous
cut. We implement this via the helper function feas : States × States → {0, 1} which is
defined by feas(s1, s2) = [{s1, s2} ∩ {AL,AR} ≠ ∅][s1 ∈ {1L,AL} → s2 /∈ {1R,AR}][s1 ∈
{1R,AR} → s2 /∈ {1L,AL}] or, equivalently, the following table:

feas 0 1L 1R AL AR

0 0 0 0 1 1
1L 0 0 0 1 0
1R 0 0 0 0 1
AL 1 1 0 1 0
AR 1 0 1 0 1

The recurrence is then simply given by

Ac,w,mt (f) = feas(f(vqM1
), f(vqM2

))Ac,w,ms (f).

Forget Vertex Bag. We have that Bqt = Bqs \ {vqM}, where vqM ∈ Bqs and s ∈ V (T q) is the
only child of t. Here, we only need to forget the state at vqM and accumulate the contributions
from the different states vqM could assume, as the states are disjoint no overcounting happens:

Ac,w,mt (f) =
∑

s∈States

Ac,w,ms (f [v 7→ s]).

Join Bag. We have Bqt = Bqs1
= Bqs2

, where s1, s2 ∈ V (T q) are the children of t. Two
partial solutions, one at s1, and the other at s2, can be combined when the states agree on
all vqM ∈ Bqt . Since we update the trackers already at introduce vertex bags, we need to take
care that the values of the modules in the bag are not counted twice. For this sake, define
Sf =

⋃
vq

M
∈f−1({1L,1R}) YM ∪

⋃
vq

M
∈f−1({AL,AR}) M for all t-signatures f . This definition

satisfies X ∩Bt = Sf for all (X, (XL, XR)) ∈ Ac,w,m
t (f). Then, the recurrence is given by

Ac,w,mt (f) =
∑

c1+c2=c+c(Sf)
w1+w2=w+w(Sf)

∑
m1+m2=m+(|Bq

t |−f−1(0))

Ac1,w1,m1
s1

(f)Ac2,w2,m2
s2

(f).

6.5 Connected Vertex Cover Algorithm 119

Lemma 6.5.5. If Gq is prime, then there exists a Monte-Carlo algorithm that, given a tree
decomposition for Gq of width at most k and the sets YM for all M ∈ Πmod(G), determines
whether there is a connected vertex cover X of G with c(X) ≤ b intersecting at least two
modules of Πmod(G) in time O∗(5k). The algorithm cannot give false positives and may give
false negatives with probability at most 1/2.

Proof. The algorithm samples a weight function w : V → [2n] uniformly at random. Using
the recurrences, we compute the values Ac,w,mr̂ (∅) modulo 4 for all c ∈ [0, c(V)], w ∈
[0,w(V)], m ∈ [2, |Πmod(G)|]. Setting Sc,w,m = {X ∈ Rc,w,m(G) : G[X] is connected}, we
have that

|Qc,w,m(G)| = |Qc,w,m
r̂ | = Ac,w,mr̂ (∅) =

∑
X∈Rc,w,m(G)

2cc(G[X]) ≡4 2|Sc,w,m|

by Lemma 6.1.4. By Lemma 3.1.4, w isolates the set of optimum nice connected vertex
covers intersecting at least two modules of Πmod(G) with probability at least 1/2. If c
denotes the optimum value, then there exist choices of w and m such that |Sc,w,m| = 1
and hence Ac,w,mr̂ (∅) ̸≡4 0. The algorithm searches for the smallest such c and returns true
if c ≤ b. Note that if a connected vertex cover X intersecting at least two modules with
c(X) ≤ b exists, then so does a nice one by Lemma 6.5.2. If c > b, the algorithm returns
false.

Next, we argue that the running time is O∗(5k). Since a very nice tree decomposition
has polynomially many nodes and since the cost function c is assumed to be polynomially
bounded, there are O∗(5k) table entries to compute. Furthermore, it is easy to see that every
recurrence can be computed in polynomial time. It remains to prove the correctness of the
provided recurrences.

If t is a leaf node, then Vt = ∅ and hence Qc,w,m
t can contain at most (∅, (∅, ∅)), and we

have that c(∅) = w(∅) = |πV (∅)| = 0, which is checked by the recurrence.
If t is an introduce vertex node introducing vqM , consider (X, (XL, XR)) ∈ Ac,w,m

t (f [vqM 7→
s]), where f is some s-signature and s ∈ States. We have that (X \M, (XL \M,XR \M)) ∈
Ac′,w′,m′

s (f) for c′ = c(X \ M), w′ = w(X \ M), m′ = |πV (X \ M)|. Depending on s,
we argue that this sets up a bijection between Ac,w,m

t (f [vqM 7→ s]) and Ac′,w′,m′

s (f). The
injectivity of this map follows in general by observing that s completely determines the
interaction of (X, (XL, XR)) with M .
• s = 0: We have X ∩ M = ∅, which implies that G[M] does not contain an edge, as X

cannot be a vertex cover of Gt otherwise. In this case, the mapping is essentially the
identity mapping, so it is bijective and the trackers do not change.

• s = 1L: We have X ∩M = XL ∩M = YM ̸= M and XR ∩M = ∅. Due to ∅ ≠ YM ̸= M ,
we have that |M | > 1. As X ∩ M = YM , we update the trackers according to YM .
Note that any (X ′, (X ′

L, X
′
R)) ∈ Ac′,w′,m′

s (f) is hit by (X ′ ∪ YM , (X ′
L ∪ YM , X

′
R)) ∈

Ac,w,m
t (f [vqM 7→ s]), which relies on the fact that no edges incident to vqM have been

introduced yet, so that neither the vertex cover property nor consistent cut property can
be violated when extending by YM .

• s = 1R: analogous to the previous case.

120 Chapter 6 Algorithms Parameterized By Modular-Treewidth

• s = AL: We have X ∩ M = XL ∩ M = M and XR ∩ M = ∅. Hence, we update the
trackers according to M . For surjectivity, we see that (X ′, (X ′

L, X
′
R)) ∈ Ac′,w′,m′

s (f) is hit
by (X ′ ∪M, (X ′

L ∪M,X ′
R)) ∈ Ac,w,m

t (f [vqM 7→ s]), which again relies on the fact that no
edges incident to vqM have been introduced yet.

• s = AR: analogous to the previous case.
If t is an introduce edge bag introducing edge {vqM1

, vqM2
}, then Qc,w,m

t ⊆ Qc,w,m
s and we

filter out all (X, (XL, XR)) ∈ Qc,w,m
s \ Qc,w,m

t . A partial solution (X, (XL, XR)) ∈ Qc,w,m
s

must be filtered if and only if an edge between M1 and M2 is not covered or an edge
between X ∩M1 and X ∩M2 connects both sides of the homogeneous cut. These criteria are
implemented by feas; the first case corresponds to feas(s1, s2) = 0 for all s1, s2 ∈ {0,1L,1R}
and the second corresponds to feas(s1, s2) = 0 whenever s1 ̸= 0 ̸= s2 and the cut subscript
of s1 and s2 disagrees.

If t is a forget vertex bag forgetting vqM , then Qc,w,m
t = Qc,w,m

s and every (X, (XL, XR)) ∈
Qc,w,m
t is counted by some Ac,w,ms (f [vqM 7→ s]) with s being the appropriate state and the

states are disjoint as already noted.
If t is a join bag, then Vt = Vs1 ∪ Vs2 and Bt = Bs1 = Bs2 = Vs1 ∩ Vs2 . Since Gs1

and Gs2 are subgraphs of Gt, any (X, (XL, XR)) ∈ Ac,w,m
t (f) splits into (X1, (X1

L, X
1
R)) ∈

Ac1,w1,m1
s1

(f) and (X2, (X2
L, X

2
R)) ∈ Ac2,w2,m2

s2
(f), where Xi = X ∩ Vsi

, Xi
L = XL ∩ Vsi

,
Xi
R = XR ∩ Vsi

for i ∈ [2]. Since Sf = X ∩ Bt = X1 ∩ Bt = X2 ∩ Bt, some overcounting
occurs when adding up e.g. the costs c1 and c2. This is accounted for by the equation
c1 + c2 = c + c(Sf) and similarly for the weights and the number of modules hit by
X. Vice versa, the union of the graphs Gs1 and Gs2 yields Gt, and any (X1, (X1

L, X
1
R)) ∈

Ac1,w1,m1
s1

(f) and (X2, (X2
L, X

2
R)) ∈ Ac2,w2,m2

s2
(f) must agree on Bt, since the behavior on Bt

is completely specified by f . Therefore, one can argue that (X1 ∪X2, (X1
L∪X2

L, X
1
R∪X2

R)) ∈
Ac,w,m
t (f).

Putting everything together, we obtain the following algorithm.

Theorem 6.5.6. There exists a Monte-Carlo algorithm that given a tree decomposition of width
at most k for every prime quotient graph H ∈ Hp(G), solves CONNECTED VERTEX COVER

in time O∗(5k). The algorithm cannot give false positives and may give false negatives with
probability at most 1/2.

Proof. If |V (G)| = 1, then ∅ is a connected vertex cover and we can always answer true.
Otherwise, we first compute the sets YM for all M ∈ Πmod(G) in time O∗(2k) using Theo-
rem 6.2.3. Using Lemma 6.5.3, we first check in polynomial time if there is any connected
vertex cover X of G contained in a single module with c(X) ≤ b. If yes, then we return true.
Otherwise, we will proceed based on the node type of V (G) in the modular decomposition
of G.

If V (G) is a parallel node, i.e., Gq is an independent set of size at least two, then G

cannot be connected, contradicting our assumption. If V (G) is a series node, i.e., Gq is a
clique of size at least two, then we solve the problem in polynomial time using Lemma 6.5.2
and Lemma 6.5.4, which tell us that there only 3|Πmod(G)| possible solutions to consider.

If Gq is prime, then it remains to search for connected vertex covers intersecting at least
two modules and hence we can invoke Lemma 6.5.5.

6.5 Connected Vertex Cover Algorithm 121

Note that Theorem 6.5.6 gets a tree decomposition for every quotient graph as input,
whereas Lemma 6.5.5 only requires a tree decomposition for the topmost quotient graph.
This is due to the fact that the algorithm in Theorem 6.2.3 to compute the vertex cover YM
of G[M] for every M ∈ Mtree(G), requires a decomposition for every quotient graph, but
the vertex covers are enough information to enable us to solve CONNECTED VERTEX COVER

by just considering the topmost quotient graph.

6.6 Feedback Vertex Set Algorithm
The cut-and-count-technique applies more naturally to the dual problem INDUCED FOREST

instead of FEEDBACK VERTEX SET, so we choose to study the dual problem. An instance
of INDUCED FOREST consists of a graph G = (V,E), and a budget b ∈ N, and the task is to
decide whether there exists a vertex set X ⊆ V with |X| ≥ b such that G[X] is a forest. As
our algorithm is quite technical, we only consider the case of unit costs here to reduce the
number of technical details.

For CONNECTED VERTEX COVER, it was sufficient to essentially only look at the first
quotient graph, because we did not have to compute connected vertex covers for the sub-
problems, only usual vertex covers. However, for INDUCED FOREST this is not the case; here,
we do need to compute an induced forest in each module M ∈ Mtree(G). This essentially
means that we need a nested dynamic programming algorithm; one outer dynamic program
(outer DP) along the modular decomposition tree and one inner dynamic program (inner DP)
along the tree decompositions of the quotient graphs solving the subproblems of the outer
DP.

The inner dynamic programming algorithm will again be using the cut-and-count-
technique and can therefore produce erroneous results due to the randomization. We
will carefully analyze where errors can occur and see that a single global sampling of an
isolating weight function will be sufficient, even though some subproblems corresponding to
nodes of the modular decomposition tree might be solved incorrectly2. For this reason, the
notation in this section will more closely track which node of the modular decomposition
we are working on, as the setup in the CONNECTED VERTEX COVER algorithm would be too
obfuscating here.

Notation. M↑ ∈ M∗
tree(G) will denote the parent module and represents the current

subproblem to be solved by the inner DP. The inner DP works on the quotient graph
Gq
M↑ = G[M↑]/Πmod(G[M↑]) whose vertices correspond to modules M ∈ children(M↑) =

Πmod(G[M↑]); associated to the quotient graph Gq
M↑ is the projection πM↑ : M↑ → V (Gq

M↑).
By vqM ∈ Gq

M↑ we refer to the vertex in the quotient graph corresponding to M . At times,
it will be useful to not have to specify the parent module and we say that two modules
M1,M2 ∈ Mtree(G) are siblings if there is some M↑ ∈ Mtree(G) such that M1,M2 ∈
children(M↑), i.e., they have the same parent. For a module M ∈ Mtree(G), let Nsib(M)

2This more involved analysis can be avoided by using larger weights for the isolation lemma, but this will lead to
an additional factor of O(n) in the running time: by using weights of size O(n2) each subproblem is solved
correctly with probability Ω(1/n) and, since there are O(n) subproblems, a simple union bound shows that all
subproblems are solved correctly with constant error probability.

122 Chapter 6 Algorithms Parameterized By Modular-Treewidth

denote the family of sibling modules of M that are adjacent to M and we define Nall(M) =
{M ′ ∈ Mtree(G) : M ∩M ′ = ∅, EG(M,M ′) ̸= ∅}, i.e., the family of all strong modules that
are adjacent to M .

6.6.1 Structure of Optimum Induced Forests
We begin by studying the structure of optimum induced forests with respect to the modular
decomposition. Let Fopt(G) be the family of maximum induced forests of G. We start
by giving some definitions to capture the structure of induced forests with respect to the
modular decomposition.

Definition 6.6.1. Let X ⊆ V (G) be a vertex subset. We associate with X a module-marking
φX : Mtree(G) → {0,1,2I ,2E} defined by

φX(M) =

0, if |X ∩M | = 0,

1, if |X ∩M | = 1,

2I , if |X ∩M | ≥ 2 and G[X ∩M] contains no edge,

2E , if |X ∩M | ≥ 2 and G[X ∩M] contains at least one edge.

We use module-markings to describe the states taken by an induced forest X on the
modules M ∈ Mtree(G). Ordering 0 < 1 < 2I < 2E , note that every module-marking φX is
monotone in the following sense: for all M1,M2 ∈ Mtree(G) the inclusion M1 ⊆ M2 implies
that φX(M1) ≤ φX(M2).

Any induced forest has to satisfy some local properties relative to the modules which are
captured by the following definition.

Definition 6.6.2. Let X ⊆ V (G) be a vertex subset. We say that X is forest-nice if for every
M ∈ Mtree(G) the following properties hold:
• If φX(M) = 2I , then φX(Nall(M)) ⊆ {0,1} and |Nsib(M) ∩ φ−1

X (1)| ≤ 1.
• If φX(M) = 2E , then φX(Nall(M)) ⊆ {0}.

The “degree-condition” |Nsib(M) ∩ φ−1
X (1)| ≤ 1 deliberately only talks about the sibling

modules, as we can have arbitrarily long chains of modules with v ∈ M1 ⊆ M2 ⊆ · · · ⊆ Mℓ,
so no useful statement is possible if we would instead consider all modules.

Lemma 6.6.3. Every induced forest X ⊆ V (G) of G is forest-nice.

Proof. Consider any M ∈ Mtree(G) with |X ∩ M | ≥ 2. If there were some module M ′ ∈
Nall(M) with |X ∩M ′| ≥ 2, then G[X ∩ (M ∪M ′)] contains a cycle of size 4 as all edges
betweenM andM ′ exist inG, hence suchM ′ cannot exist. If, additionally,G[X∩M] contains
an edge, then any M ′ ∈ Nall(M) with X ∩M ′ ̸= ∅ would necessarily lead to a cycle of size 3
in G[X∩(M ∪M ′)], hence such M ′ cannot exist. Finally, suppose that φX(M) = 2I and two
neighboring sibling modules M1 ̸= M2 ∈ Nsib(M) with φX(M1) = φX(M2) = 1 exist. We
must have M1 ∩M2 = ∅ and therefore a cycle of size 4 would exist in G[X ∩ (M ∪M1 ∪M2)],
which is again not possible.

The modular structure allows us to perform the following exchange arguments.

6.6 Feedback Vertex Set Algorithm 123

Lemma 6.6.4. Let X be an induced forest of G and M ∈ Mtree(G).
1. If φX(M) = 2I and Y is an independent set of G[M], then (X \ M) ∪ Y is an induced

forest of G.
2. If φX(M) = 2E and Y is an induced forest of G[M], then (X \M) ∪ Y is an induced forest

of G.

Proof. We set X ′ = (X \M) ∪ Y in both cases. Since X ′ \M = X \M , there cannot be any
cycle in G[X ′ \M]. Also there cannot be any cycle in G[X ∩M] = G[Y] by assumption.
1. Suppose there is a cycleC ′ inG[X ′]. By the previous arguments, we must haveC ′∩M ̸= ∅

and C ′ \ M ̸= ∅. We will argue that such a cycle would give rise to a cycle C in G[X],
contradicting the assumption that X is an induced forest. Let v1, . . . , vℓ, v1 be the
sequence of vertices visited by C ′ and let vi1 , . . . , vir with 1 ≤ i1 < · · · < ir ≤ ℓ

denote the vertices of C ′ that are in M . If some edge of C ′, say {v1, v2} without loss of
generality, is contained in G[X ′ \ M], pick some u ∈ X ∩ M and consider the cycle C
given by the vertex sequence v1, v2, . . . , vi1−1, u, vir+1, . . . , vℓ, v1; C is a cycle of G[X] as
the edges {vi1−1, u} and {u, vir+1} exist in G, because u, vi1−1, vir+1 ∈ M . If no such
edge exists in C ′, then C ′ is a cycle in the biclique with parts X ′ ∩M and NG(X ′ ∩M),
in particular |C ′ ∩ M | ≥ 2 and |C ′ \ M | ≥ 2. Since |X ∩ M | ≥ 2 by assumption and
|X ∩M | = |X ′ ∩M | ≥ |C ′ \M | ≥ 2, it follows that G[X] contains a biclique with parts
of size at least two and hence G[X] must contain a cycle.

2. SinceX is forest-nice by Lemma 6.6.3, φX(M) = 2E implies the inclusion φX′(Nall(M)) =
φX(Nall(M)) ⊆ {0}, and therefore (X ′ ∩M,X ′ \M) is a consistent cut of G[X ′]. There-
fore any cycle C in G[X ′] must be fully contained in either X ′ ∩M or X ′ \M , but we
ruled out each of these cases previously. Hence, G[X ′] contains no cycle.

Lemma 6.6.4 allows us to see that maximum induced forests must make locally opti-
mal choices inside each module. We capture these local choices with the following two
definitions.

Definition 6.6.5. Let X ⊆ V (G) be a vertex subset. We say that X has optimal substructure
if for every M ∈ Mtree(G) the following properties hold:
• If φX(M) = 2I , then X ∩M is a maximum independent set of G[M].
• If φX(M) = 2E , then X ∩M is a maximum induced forest of G[M].

Definition 6.6.6. Let X ⊆ V (G) be a vertex subset. We say that X has the promotion
property if for every M ∈ Mtree(G) with |X ∩ M | ≥ 2 and φX(Nall(M)) = {0}, we have
that X ∩M is a maximum induced forest of G[M].

While we could have subsumed the promotion property as part of the definition of
optimal substructure, we define it separately as it has more involved implications on the
dynamic program and deserves separate care.

Lemma 6.6.7. Every maximum induced forest ofG, i.e.,X ∈ Fopt(G), has optimal substructure
and the promotion property.

Proof. Lemma 6.6.3 already shows that X is forest-nice. If X would not have optimal
substructure, then we can invoke Lemma 6.6.4 to obtain a larger induced forest X ′, hence
X would not be a maximum induced forest.

124 Chapter 6 Algorithms Parameterized By Modular-Treewidth

We prove a strengthened exchange argument to show the promotion property. We claim
that for any induced forest X of G, module M ∈ Mtree(G) with φX(M) ∈ {2I ,2E} and
φX(Nall(M)) ⊆ {0}, and induced forest Y of G[M], the set X ′ = (X \ M) ∪ Y is again
an induced forest of G. Suppose that G[X ′] contains a cycle C ′. By assumption on X, C ′

cannot be contained in G[X ′ \M] = G[X \M]. By assumption on Y , C ′ cannot be contained
in G[X ′ ∩ M] = G[Y]. Therefore, C ′ must intersect X ′ ∩ M and X ′ \ M simultaneously.
However, φX′(Nall(M)) = φX(Nall(M)) ⊆ {0} implies that (X ′∩M,X ′\M) is a consistent
cut of G[X ′] and hence such a cycle C ′ cannot exist. Therefore X ′ is also an induced forest.
If an induced forest X violates the promotion property, then we can invoke this exchange
argument to see that X cannot be a maximum induced forest.

Since any induced forest X is forest-nice, the condition φX(M) = 2E implies that
φX(Nall(M)) ⊆ {0} and therefore the second condition of optimal substructure also follows
from the promotion property.

The requirement |X∩M | ≥ 2 in the promotion property could also be removed. However,
the dynamic programming on quotient graphs will only apply the underlying exchange
argument when |X ∩M | ≥ 2 holds, therefore we already add this requirement here.

Note that a forest-nice vertex subset X does not necessarily induce a forest as a cycle
could be induced by the modules M ∈ Πmod(G) with φX(M) = 1.

6.6.2 Application of Isolation Lemma
We will again use the cut-and-count-technique and the isolation lemma to solve INDUCED

FOREST[modular-treewidth]. However, since INDUCED FOREST is a maximization problem,
we feel it is more natural to use a maximization version of the isolation lemma as we must
closely investigate when isolation transfers to subproblems. Let us define the appropriate
terminology.

Definition 6.6.8. A function w : U → Z max-isolates a set family F ⊆ 2U if there is a
unique S′ ∈ F with w(S′) = maxS∈F w(S), where for subsets X of U we define w(X) =∑
u∈X w(u).

Lemma 6.6.9 (Adapt proof of [134] or [167]). Let F ⊆ 2U be a nonempty set family over
a universe U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N] uniformly and
independently at random. Then P[w max-isolates F] ≥ 1 − |U |/N .

Due to Lemma 6.6.3 and Lemma 6.6.7, we want our algorithm to compute maximum
independent sets and maximum induced forests of G[M] for every M ∈ Mtree(G). The
computation of the maximum independent sets can be done deterministically quickly enough
using Theorem 6.2.3. To compute the maximum induced forests however, we essentially
want to recursively call our algorithm again, but the algorithm is randomized. Doing this
naively and sampling a weight function for each call would exponentially decrease the
success probability depending on the depth of the modular decomposition tree.

To circumvent this issue, we sample a global weight function only once and let the
subproblems inherit this weight function, observing that for all “important” subproblems the

6.6 Feedback Vertex Set Algorithm 125

inherited weight function is max-isolating if the global weight function is (for appropriate
choices of set families).

We define Fopt(G, s), where s ∈ {0,1,2I ,2E}, as the family of maximum sets X subject
to G[X] being a forest and φX(V (G)) ≤ s. Hence, we have that Fopt(G,2E) = Fopt(G) and
Fopt(G,2I) is the family of maximum independent sets of G and Fopt(G,1) is the family of
singleton sets.

Lemma 6.6.10. Let N ∈ N and assume that w : V (G) → [N] is a weight function that
max-isolates Fopt(G). Let X ∈ Fopt(G) be the set that is max-isolated by w. For every
M ∈ Mtree(G), we have that w

∣∣
M

max-isolates X ∩M in Fopt(G[M], φX(M)).

Proof. X has optimal substructure due to Lemma 6.6.7, therefore we have X ∩ M ∈
Fopt(G[M], φX(M)) for all M ∈ Mtree(G). Suppose there is some M ∈ Mtree(G) such
that w

∣∣
M

does not max-isolate Fopt(G[M], φX(M)), then there is some X ∩ M ̸= Y ∈
Fopt(G[M], φX(M)) with w(Y) ≥ w(X ∩ M). By Lemma 6.6.4, X ′ = (X \ M) ∪ Y must
satisfy X ′ ∈ Fopt(G), X ′ ̸= X, and w(X ′) ≥ w(X). However, then w cannot max-isolate X
in Fopt(G).

We remark that the previous lemma allows for the possibility that, e.g. w
∣∣
M

max-isolates
Fopt(G[M],2I), but w

∣∣
M

does not max-isolate Fopt(G[M],2E) = Fopt(G[M]), which can
lead to our algorithm not finding an optimum induced forest for this subinstance.

6.6.3 Detecting Acyclicness
Let us describe how to check whether a forest-nice subset X induces a forest. The property
of being forest-nice essentially allows us to only consider the induced subset on a quotient
graph which we then handle by lifting cut-and-count. The property of being forest-nice is a
global property in the sense that it considers the whole modular decomposition tree. We first
introduce a local version of forest-nice that only considers the children of a parent module
M↑ ∈ M∗

tree(G):

Definition 6.6.11. Let M↑ ∈ M∗
tree(G), G̃q be a subgraph of Gq

M↑ , and X ⊆ M↑ with
Xq := πM↑(X) ⊆ V (G̃q), we say that X is M↑-forest-nice with respect to G̃q, if the following
properties hold for all vqM ∈ V (G̃q):
• If φX(M) = 2I , then deg

G̃q [Xq](v
q
M) ≤ 1 and φX(M ′) ∈ {0,1} for all vqM ′ ∈ N

G̃q (vqM).
• If φX(M) = 2E , then φX(M ′) = 0 for all vqM ′ ∈ N

G̃q (vqM).
In the case G̃q = Gq

M↑ , we simply say that X is M↑-forest-nice.

As the (very nice) tree decomposition of Gq
M↑ adds edges one-by-one, we need to account

for changes in the neighborhoods of vertices in the local definition of forest-niceness via
G̃q. Otherwise, Definition 6.6.11 is essentially the same definition as Definition 6.6.2, but
only considering the child modules of M↑. In particular, if X is forest-nice, then X ∩M↑ is
M↑-forest-nice for all M↑ ∈ M∗

tree(G).
The next lemma essentially shows that in a M↑-forest-nice set X no cycles intersecting

some module M ∈ children(M↑) in more than one vertex exist, hence all possible cycles
can already be seen in the quotient graph.

126 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Lemma 6.6.12. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑ be M↑-forest-nice and suppose that

G[X ∩ M] is a forest for all modules M ∈ children(M↑) and define Xq = πM↑(X). Then,
G[X] is a forest if and only if Gq

M↑ [Xq] is a forest.

Proof. The graph Gq
M↑ [Xq] can be considered a subgraph of G[X], so if Gq

M↑ [Xq] is not a
forest, then neither is G[X].

For the other direction, suppose that G[X] contains a cycle C. It cannot be that C ⊆
X ∩ M for some M ∈ children(M↑), since G[X ∩ M] contains no cycle by assumption.
It also cannot be that G[C ∩ M] contains an edge for some M ∈ children(M↑), since
M↑-forest-nice would then imply that C is contained in M , which we just ruled out. If
|C ∩ M | ≥ 2 for some M ∈ children(M↑), then M↑-forest-nice implies that at most one
neighboring sibling module M ′ is intersected by C and |C ∩M ′| ≥ 1, but since G[C ∩M]
cannot contain an edge, this means that the vertices in C ∩M must have degree one in C,
so C cannot be a cycle. Finally, we must have |C ∩M | ≤ 1 for all M ∈ children(M↑), but
any such cycle C clearly gives rise to a cycle Cq = πM↑(C) in Gq[Xq], too.

Lemma 6.6.13 (Lemma 4.5 in [51]). Let G be a graph with n vertices and m edges. Then, G
is a forest if and only if cc(G) ≤ n−m if and only if cc(G) = n−m.

· One could use the marker technique already used by Cygan et al. [51] for the treewidth-
parameterization together with Lemma 6.6.13 to obtain a cut-and-count algorithm, but the
marker technique results in several further technical details to take care of. The marker
technique can be avoided by working modulo higher powers of two instead of only modulo
two, which was also done by Nederlof et al. [137] when applying cut-and-count to edge-
based problems parameterized by treedepth. We also do so, to obtain a cleaner presentation
of our algorithm.

Lemma 6.6.14. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑ be M↑-forest-nice and suppose that

G[X ∩M] is a forest for all modules M ∈ children(M↑). Let Xq = πM↑(X) and let v = |Xq|
and e = |E(Gq

M↑ [Xq])|. Then, G[X] is a forest if and only if |{(XL, XR) : (X, (XL, XR)) ∈
ChomM↑ (G)}| ̸≡2v−e+1 0.

Proof. By Lemma 6.1.4, we have that |{(XL, XR) : (X, (XL, XR)) ∈ ChomM↑ (G)}| = 2cc(Gq

M↑ [Xq]).
By Lemma 6.6.13, we see thatGq

M↑ [Xq] is a forest if and only if |{(XL, XR) : (X, (XL, XR)) ∈
ChomM↑ (G)}| ̸= 0 mod 2vq−eq+1. The lemma then follows via Lemma 6.6.12.

6.6.4 Outer Dynamic Programming Algorithm
Fix an INDUCED FOREST instance (G = (V,E), b) and a weight function w : V → [N]
throughout this section. To solve INDUCED FOREST[modular-treewidth], we perform dy-
namic programming in two ways: we proceed bottom-up along the modular decompo-
sition tree of G and to compute the table entries for the node corresponding to module
M↑ ∈ M∗

tree(G), we use the tables of the children children(M↑) = Πmod(G[M↑]) and per-
form dynamic programming along the tree decomposition of the associated quotient graph
Gq
M↑ = G[M↑]/Πmod(G[M↑]). For every module M ∈ Mtree(G), we have the following

data precomputed:

6.6 Feedback Vertex Set Algorithm 127

• a singleton set Y 1
M in M that maximizes w(Y 1

M) and its weight w1
M = w(Y 1

M),
• a maximum independent set Y 2I

M of G[M] that maximizes w(Y 2I
M), the size c2I

M = |Y 2I
M |

and the weight w2I
M = w(Y 2I

M) of such an independent set.
The vertex data can clearly be precomputed in polynomial time and the independent set data
can be precomputed in time O∗(2mod-tw(G)) by running the INDEPENDENT SET algorithm
from Theorem 6.2.3.

Candidate Forests. We will recursively define for each module M↑ ∈ Mtree(G), the M↑-
candidate forest Y 2E

M↑ (which depends on the fixed weight function w). Among all induced
forests X of G[M↑] found by the algorithm, the forest Y 2E

M↑ lexicographically maximizes
(|X|,w(X)). Due to the randomization in the cut-and-count-technique however, it can
happen that Y 2E

M↑ is not necessarily a maximum induced forest of G[M↑]. We will see that if
we sampled an isolating weight function w, then no errors will occur for the “important”
subproblems, hence still allowing us to find a maximum induced forest of the whole graph.
The definition of Y 2E

M↑ is mutually recursive with the definition of the solution family that
will be defined afterwards.

Properties of Candidate Forests. We highlight several properties of the candidate forests
that are important for the algorithm.
• The base case is given by Y 2E

{v} = {v} for all v ∈ V (G).
• Y 2E

M↑ is an induced forest of G[M↑].
• If G[M↑] contains no edge, then Y 2E

M↑ = Y 2I
M↑ .

• If G[M↑] contains an edge, then |Y 2E
M↑ | > |Y 2I

M↑ |.
Given Y 2E

M for all M ∈ children(M↑), we can describe how to compute Y 2E
M↑ . This step

depends on which kind of node M↑ corresponds to in the modular decomposition. We first
handle the degenerate cases of a parallel or series node and then proceed with the much
more challenging case of a prime node.

Computing Candidate Forests in Parallel and Series Nodes

If M↑ ∈ M∗
tree(G) is a parallel node, i.e., Gq

M↑ is an independent set, then Lemma 6.6.3 and
Lemma 6.6.7 tell us to simply take a maximum induced forest inside each child module
M ∈ children(M↑). Hence, we set Y 2E

M↑ =
⋃
M∈children(M↑) Y

2E
M and accordingly c2E

M↑ =∑
M∈children(M↑) c

2E
M and w2E

M↑ =
∑
M∈children(M↑) w

2E
M .

If M↑ ∈ M∗
tree(G) is a series node, then we first analyze the structure of maximum

induced forests with respect to a series node.

Lemma 6.6.15. Let M↑ ∈ M∗
tree(G) and X be a maximum induced forest of G[M↑]. If M↑ is

a series module, i.e., the quotient graph Gq
M↑ is a clique, then one of the following statements

holds:
• X ⊆ M for some M ∈ children(M↑) and X is a maximum induced forest of G[M].
• X ⊆ M1∪M2 for someM1 ̸= M2 ∈ children(M↑) andX∩M1 is a maximum independent

set of G[M1] and |X ∩M2| = 1.

Proof. Suppose that X intersects three different modules in children(M↑), since they are
all adjacent X would induce a triangle. Hence, X can intersect at most two different

128 Chapter 6 Algorithms Parameterized By Modular-Treewidth

modules. By Lemma 6.6.3 and Lemma 6.6.7, X is forest-nice, has optimal substructure
and satisfies the promotion property. If X intersects only a single module M , then the first
statement follows due to the promotion property. If X intersects two modules, then the
second statement follows due to X being forest-nice and optimal substructure.

Given the maximum independent sets Y 2I
M for all M ∈ children(M↑), we can in

polynomial time compute an optimum induced forest ỸM↑ of G[M↑] subject to the second
condition in Lemma 6.6.15. We compare the induced forests ỸM↑ and all Y 2E

M for all M ∈
children(M↑) lexicographically by their cost and weight and, motivated by Lemma 6.6.15,
we let Y 2E

M↑ be the winner of this comparison.

Computing Candidate Forests in Prime Nodes

To compute the M↑-candidate forest Y 2E
M↑ when M↑ is a prime node, we will use the cut-

and-count-technique and dynamic programming along the given tree decomposition of
the quotient graph Gq

M↑ . Before going into the details of the dynamic programming, we
will give the necessary formal definitions to describe the partial solutions of the dynamic
programming and the subproblem that has to be solved. This will already allow us to
define the induced forest Y 2E

M↑ and prove the correctness of the outer loop involving the
modular decomposition. We first introduce some “local” versions of Definition 6.6.5 and
Definition 6.6.6.

Definition 6.6.16. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑, we say that X has M↑-substructure if

for all M ∈ children(M↑) we have that φX(M) ̸= 0 implies X ∩M = Y
φX (M)
M .

Comparing the definition of M↑-substructure to optimal substructure, we see that in
M↑-substructure we only consider the child modules and require the choice of a specified
vertex, maximum independent set, or induced forest, respectively. Note that due to the
previously discussed issue, Y 2E

M does not necessarily need to be a maximum induced forest.

Definition 6.6.17. Let M↑ ∈ M∗
tree(G) and X ⊆ M↑. We say that X satisfies the M↑-

promotion property if for all modules M ∈ children(M↑) that satisfy |X ∩ M | ≥ 2 and
φX(Nsib(M)) = {0}, it holds that X ∩M = Y 2E

M .

Definition 6.6.17, unlike Definition 6.6.11, does not need to account for the current
subgraph of Gq

M↑ as promotion is only checked for modules that have already been forgotten
by the tree decomposition, i.e., all incident edges have already been added, and for non-
introduced modules M , we simply have X ∩M = ∅.

We can now define the solution family considered by our algorithm.

Definition 6.6.18. The family RM↑ consists of allX ⊆ M↑ such thatX isM↑-forest-nice wrt.
Gq
M↑ , has M↑-substructure, and satisfies the M↑-promotion property. Given c ∈ [0, |M↑|],

w ∈ [0,w(M↑)], v ∈ [0, |children(M↑)|], e ∈ [0, v − 1], the family Rc,w,v,e
M↑ consists of all

X ∈ RM↑ with
• |X| = c and w(X) = w,
• |Xq| = v and |E(Gq

M↑ [Xq])| = e, where Xq = πM↑(X).
We also define Sc,w,v,e

M↑ = {X ∈ Rc,w,v,e
M↑ : G[X] is a forest}.

6.6 Feedback Vertex Set Algorithm 129

By pairing elements of Rc,w,v,e
M↑ with homogeneous cuts, we can use the cut-and-count-

technique to decide whether Sc,w,v,e
M↑ is empty or not.

Definition 6.6.19. The family QM↑ consists of all (X, (XL, XR)) ∈ ChomM↑ (G) with X ∈ RM↑ .
Similarly, Qc,w,v,e

M↑ consists of all (X, (XL, XR)) ∈ ChomM↑ (G) with X ∈ Rc,w,v,e
M↑ .

The crucial property of Qc,w,v,e
M↑ is given by the following lemma.

Lemma 6.6.20. Let M↑ ∈ M∗
tree(G). It holds that |Qc,w,v,e

M↑ | ≡2v−e+1 2v−e|Sc,w,v,e
M↑ |.

Proof. Consider any X ∈ Rc,w,v,e
M↑ and let Xq = πM↑(X). If G[X] is a forest, then so is

Gq
M↑ [Xq] by Lemma 6.6.12 and we have that X contributes exactly 2v−e objects to Qc,w,v,e

M↑

by Lemma 6.1.4 and Lemma 6.6.13. By Lemma 6.6.14, we see that if G[X] is not a forest,
then X contributes a multiple of 2v−e+1 objects to Qc,w,v,e

M↑ , which therefore cancel.

From the sets Qc,w,v,e
M↑ for a fixed M↑ ∈ M∗

tree(G), we can finally give the recursive
definition of the M↑-candidate forest Y 2E

M↑ .

Definition 6.6.21. Let M↑ ∈ M∗
tree(G) such that Gq

M↑ is prime. The set of attained cost-
weight-pairs PM↑ consists of all pairs (c, w) such that there exist v and ewith |Qc,w,v,e

M↑ | ̸≡2v−e+1

0. We denote the lexicographic maximum pair in PM↑ by (cmax, wmax). Lemma 6.6.20 guar-
antees the existence of an induced forest Y of G[M↑] with |Y | = cmax and w(Y) = wmax. If
cmax > |Y 2I

M↑ |, then the M↑-candidate forest Y 2E
M↑ is an arbitrary induced forest among these,

else we greedily extend Y 2I
M↑ by some vertices, without introducing cycles, to obtain Y 2E

M↑ .
We set c2E

M↑ = |Y 2E
M↑ | and w2E

M↑ = w(Y 2E
M↑).

The algorithm does not know the exact set Y 2E
M↑ , hence no issue is caused by the arbitrary

choice, but the algorithm knows the values c2E
M↑ and w2E

M↑ . The set Y 2E
M↑ is only used for the

analysis of the algorithm. We will see that the choice of Y 2E
M↑ is unique when w

∣∣
M↑ isolates

the optimum induced forests of G[M↑], else the choice might not be unique. Only in the
latter case can c∗ ≤ |Y 2I

M↑ | occur, but since Gq
M↑ is prime, the graph G[M↑] must contain

some edges and hence there exists a larger induced forest that is not an independent set.
Note that Y 2E

M↑ is always an induced forest, but G[Y 2E
M↑] does not necessarily contain an

edge, i.e., Y 2E
M↑ may be an independent set or even a single vertex if Gq

M↑ is a parallel node
or singleton node. This means that for some X ⊆ V (G) with X ∩M↑ = Y 2E

M↑ , we only know
φX(M↑) ≤ 2E and not necessarily φX(M↑) = 2E .

The complete outer DP is summarized in Algorithm 2.

Correctness of Outer DP

Assuming an algorithm that computes the values |Qc,w,v,e
M↑ | for all prime Gq

M↑ and all c, w, v, e,
we obtain an algorithm that implicitly computes Y 2E

M↑ for all M↑ ∈ Mtree(G) by starting
with Y 2E

{v} = {v} for all v ∈ V and performs bottom-up dynamic programming along the
modular decomposition tree using the appropriate algorithm based on the node type. While
the precise set Y 2E

M↑ is not known to the algorithm, it knows the value c2E
M↑ = |Y 2E

M↑ |. The
algorithm returns positively if c2E

V ≥ b and negatively otherwise. As we ensure that Y 2E
M↑ is

an induced forest for all M↑ ∈ Mtree(G), the algorithm does not return false positives. The
next lemma concludes the discussion of the outer DP and implies that the algorithm answers
correctly assuming that the weight function w isolates the maximum induced forests of G.

130 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Algorithm 2: Outer DP to compute Y 2E
M↑ .

1 if M↑ is a parallel node then
2 Y 2E

M↑ :=
⋃
M∈children(M↑) Y

2E
M ;

3 else if M↑ is a series node then
4 pick Y1 among all Y 2E

M , M ∈ children(M↑), to lex. maximize (|Y1|,w(Y1));
5 pick Y2 ∈ {Y 2I

M1
∪ Y 1

M2
: M1 ̸= M2 ∈ children(M↑)} to lex. max. (|Y2|,w(Y2));

6 pick Y 2E
M↑ as a winner of the lex. comparison (|Y1|,w(Y1)) vs (|Y2|,w(Y2));

7 else
8 compute |Qc,w,v,e

M↑ | for all c, w, v, e using treewidth-based DP;

9 construct PM↑ =
{

(c, w) : there are v, e such that |Qc,w,v,e
M↑ | ̸≡2v−e+1 0

}
;

10 let (cmax, wmax) ∈ PM↑ be the lexicographic maximum;
11 if cmax > |Y 2I

M↑ | then
12 pick any Y 2E

M↑ among induced forests Y of G[M↑] with |Y | = cmax and
w(Y) = wmax;

13 else
14 obtain Y 2E

M↑ by greedily extending Y 2I
M↑ by vertices without creating cycles;

Lemma 6.6.22 (Main Correctness Lemma). Suppose that w max-isolates X∗ in Fopt(G). The
following properties hold for all M↑ ∈ Mtree(G):
1. s(M↑) := φX∗(M↑) ̸= 0 implies that X∗ ∩M↑ = Y

s(M↑)
M↑ , (M↑-substructure for all M↑)

2. s(M↑) = φX∗(M↑) = 2E implies that Y 2E
M↑ is a maximum induced forest of G[M↑],

3. s(M↑) = φX∗(M↑) = 2E implies that X∗ ∩M↑ ∈ RM↑ .

Proof. Notice that for singleton modules only the first property is relevant and is trivially
true. By Lemma 6.6.3 and Lemma 6.6.7, X∗ is forest-nice, has optimal substructure and
the promotion property. By Lemma 6.6.10, it follows that w

∣∣
M↑ max-isolates X∗ ∩M↑ in

Fopt(G, s(M↑)) for all M↑ ∈ Mtree(G). Since X∗ is forest-nice, X∗ ∩M↑ must be M↑-forest-
nice for all M↑ ∈ M∗

tree(G) as the quotient graph Gq
M↑ captures when two sibling modules

M,M ′ ∈ children(M↑) are adjacent.
We proceed by proving the first property whenever s(M↑) ̸= 2E . Fix some M↑ with

s(M↑) ∈ {1,2I}. We have X∗ ∩M↑, Y
s(M↑)
M↑ ∈ Fopt(G[M↑], s(M↑)) by optimal substructure

and definition. By choice of Y s(M↑)
M↑ , we have that w(X∗ ∩ M↑) ≤ w(Y s(M↑)

M↑). By max-

isolation of X∗ ∩M↑ it follows that w(X∗ ∩M↑) = w(Y s(M↑)
M↑) and even X∗ ∩M↑ = Y

s(M↑)
M↑ .

The remainder of the proof is an induction along the modular decomposition tree, as
the base case we consider modules M↑ ∈ M∗

tree(G) with s(M↑) = 2E and s(M) ̸= 2E for all
M ∈ children(M↑). For the base case, we have already shown that X∗ ∩M = Y

s(M)
M for

all M ∈ children(M↑), hence X∗ ∩M↑ has M↑-substructure in this case.
We continue with the M↑-promotion property in the base case. Suppose it is violated

for some M ∈ children(M↑), i.e., s(Nsib(M)) ⊆ {0} and X∗ ∩ M = Y 2I
M ̸= Y 2E

M (using
M↑-substructure). By definition of Y 2E

M , we have that Y 2E
M is an induced forest of G[M]

and Y 2E
M ̸= Y 2I

M if and only if |Y 2E
M | > |Y 2I

M |. We claim that M must also violate the
promotion property of X∗. For this it remains to establish that s(Nall(M)) ⊆ {0}. We have
s(Nsib(M)) ⊆ {0} by assumption, this shows that s(M ′) = 0 for all M ′ ∈ Nall(M) with

6.6 Feedback Vertex Set Algorithm 131

M ′ ⊆ M↑. Every module M ′ ∈ Nall(M) with M ′ ̸⊆ M↑ must be disjoint from M↑ and
hence M ′ ∈ Nall(M↑) which implies that s(M ′) = 0 since X∗ is forest-nice.

For the base case, we have now established that X∗ ∩M↑ ∈ RM↑ , as we have verified
that X∗ ∩M↑ is M↑-forest-nice wrt. Gq

M↑ , has M↑-substructure, and has the M↑-promotion
property. We can now proceed by showing the first and second property for the base case
when s(M↑) = 2E . Note that the second property follows from the first one by optimal
substructure of X∗, so we only have to prove the first property.

If Gq
M↑ is a parallel or series node, then the analysis in Section 6.6.4 shows that Y 2E

M↑ ∈
Fopt(G[M↑]). Since also X∗ ∩ M↑ ∈ Fopt(G[M↑]) and both maximize their weight (by
definition and max-isolation), the isolation of X∗ ∩ M↑ implies X∗ ∩ M↑ = Y 2E

M↑ . If Gq
M↑

is a prime node, then we set Xq
∗ = πM↑(X∗ ∩ M↑) and c∗ = |X∗ ∩ M↑|, w∗ = w(X∗ ∩

M↑), v∗ = |Xq
∗ |, e∗ = |E(Gq

M↑ [Xq
∗])|. Hence, we have that X∗ ∩ M↑ ∈ Rc∗,w∗,v∗,e∗

M↑ and
X∗ ∩M↑ ∈ Sc∗,w∗,v∗,e∗

M↑ . By max-isolation of X∗ ∩M↑, we therefore have |Sc∗,w∗,v∗,e∗
M↑ | = 1

and Lemma 6.6.20 shows that |Qc∗,w∗,v∗,e∗
M↑ | ̸≡2v∗−e∗+1 0, so (c∗, w∗) ∈ PM↑ . Also, (c∗, w∗)

must be the lexicographic maximum in PM↑ . Therefore, Definition 6.6.21 must pick Y 2E
M↑ =

X∗ ∩M↑; we must have |X∗ ∩M↑| > |Y 2I
M↑ |, since G[M↑] contains an edge and X∗ ∩M↑ ∈

Fopt(G[M↑]). This concludes the proof of the base case.
Now, when proving the three properties for some M↑ ∈ M∗

tree(G), we can inductively
assume that they hold for all M ∈ children(M↑). The argument for the inductive step
is essentially the same as for the base case, however s(M) = 2E can occur now, but for
this case we can apply the already proven properties. The first two properties for the child
modules allow us to establish X∗ ∩M↑ ∈ RM↑ even in the inductive step. From that point
on, the same argument considering the sets Qc,w,v,e

M↑ can be followed to also obtain the first
and second property for M↑.

6.6.5 Inner Dynamic Programming Algorithm
We now need to show how to compute the values |Qc,w,v,e

M↑ | modulo 2v−e+1 for all c, w, v, e
when Gq

M↑ is prime, from which we can then obtain the M↑-candidate forest Y 2E
M↑ and

proceed through the modular decomposition. We will compute these values by perform-
ing dynamic programming along the tree decomposition of the quotient graph Gq

M↑ =
G[M↑]/children(M↑).

Precomputed Data. Let us fix some M↑ ∈ M∗
tree(G) and recap the data that is available

from solving the previous subproblems. For every M ∈ children(M↑), we know the values
• c1

M = |Y 1
M | = 1, w1

M = w(Y 1
M),

• c2I
M = |Y 2I

M |, w2I
M = w(Y 2I

M),
• c2E

M = |Y 2E
M |, w2E

M = w(Y 2E
M).

The algorithm also knows the sets Y 1
M and Y 2I

M , but not the sets Y 2E
M , they will be used in

the analysis however. Furthermore, we are given a tree decomposition (T q
M↑ , (Bqt)t∈V (T q

M↑))
of the quotient graph Gq

M↑ of width k which can be assumed to be very nice by Lemma 2.4.2.
To lighten the notation, we do not annotate the bags Bqt with M↑, but keep in mind that
there is a different tree decomposition for each quotient graph.

132 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Definition 6.6.23. Let t ∈ V (T q
M↑) be a node of the tree decomposition T q

M↑ . The set of
relaxed solutions Rt,M↑ consists of the vertex subsets X ⊆ Vt = π−1

M↑(V qt) that satisfy the
following properties:
• X is M↑-forest-nice with respect to Gqt ,
• X has M↑-substructure,
• ∀M ∈ children(M↑) :

φX(M) = 2E → (M ⊆ Vt \Bt or G[M] is a clique of size at least 2),
• ∀vqM ∈ V qt \Bqt : (|X ∩M | ≥ 2 ∧ degGq

t [π
M↑ (X)](v

q
M) = 0) → X ∩M = Y 2E

M .

Let r̂ be the root node of the tree decomposition T q
M↑ , we want this definition to achieve

Rr̂,M↑ = RM↑ . Hence, the first two properties are a natural requirement. The third and
fourth property lead to the M↑-promotion property at the root node r̂ and are more intricate
to facilitate the dynamic program. To be precise, since the the bag Bqr̂ at the root node
r̂ is empty, the third property is trivially satisfied and the fourth property turns into the
M↑-promotion property.

We exclude the current bag from consideration, because we only want to check whether
a module M is isolated in X once all incident edges have been introduced. This is certainly
the case when M leaves the current bag, i.e., it is forgotten. If M is isolated at this point,
we can safely replace the independent set Y 2I

M inside M by the induced forest Y 2E
M , which

cannot decrease the size of X. This means, with the exception of modules inducing a clique,
that no module M in the current bag satisfies φX(M) = 2E .

The naive dynamic programming routine would not use promotion and track in which
modules of the current bag the solution chooses an induced forest (and not just an indepen-
dent set). By using promotion, we can save this state and only handle the remaining states,
namely choosing no vertex, a single vertex, or an independent set. Thereby, we obtain an
improved running time.

Due to Lemma 6.6.20, we want to count for each X ∈ Rt,M↑ the number of consistent
homogeneous cuts. Before considering cuts, each module M in the considered bag has four
possible states. The intersection with X can be empty, contain a single vertex, or contain at
least two vertices, and in the latter case we distinguish whether X intersects a neighboring
module or not. To count the homogeneous cuts naively, we would split all states except
the empty state into two states, one for each side of a cut, thus obtaining seven total states.
However, it turns out that tracking the cut side is not necessary when X intersects M in
at least two vertices. When M is isolated, we can simply count it twice, and otherwise
M inherits the cut side from the unique neighboring module that is also intersected by X.
Hence, five states suffice and we define the cut solutions accordingly.

Definition 6.6.24. Let t ∈ V (T q
M↑) be a node of the tree decomposition T q

M↑ . The set of
cut solutions Qt,M↑ consists of pairs (X, (XL, XR)) such that X ∈ Rt,M↑ and (XL, XR) is
M↑-homogeneous and a consistent cut of Gt[X \ (isot(X) ∩Bt)], where isot(X) =

⋃
{M ∈

children(M↑) : |X ∩M | ≥ 2, degGq
t [π

M↑ (X)](v
q
M) = 0}.

In the case of isolated modules, we consider it easier to account for the cut side when
forgetting the module. Hence, the cuts considered in the definition of Qt,M↑ do not cover
such modules that belong to the current bag Bt. Again, for the root node r̂ of the tree

6.6 Feedback Vertex Set Algorithm 133

decomposition T q
M↑ , this extra property will be trivially satisfied as the associated bag is

empty, hence the definition again achieves that Qr̂,M↑ = QM↑

Our dynamic programming algorithm has to track certain additional data of a solution
X, namely its size c = |X|, its weight w = w(X) for the isolation lemma, the number
v = |πM↑(X)| of intersected modules, and the number e = |E(Gqt [πM↑(X)])| of induced
edges in the currently considered subgraph Gqt of the quotient graph Gq

M↑ . We need v and e
to apply Lemma 6.6.14. Accordingly, we define Rc,w,v,e

t,M↑ = {X ∈ Rt,M↑ : c = |X \Bt|, w =
w(X \ Bt), v = |πM↑(X) \ Bqt |, e = |E(Gqt [πM↑(X)])|} and Qc,w,v,e

t,M↑ = {(X, (XL, XR)) ∈
Qt,M↑ : X ∈ Rc,w,v,e

t,M↑ }. Note that we exclude the current bag in these counts, except for e,
hence we have to update these counts when we forget a module. This choice simplifies some
recurrences in the algorithm, otherwise updating the counts would be a bit cumbersome
due to promotion.

Finally, we can define the table that is computed at each node t ∈ V (T q
M↑) by our

dynamic programming algorithm. Every module M in the current bag has one of five states
for a given solution X, these states are denoted by States = {0,1L,1R,20,21}. The bold
number refers to the size of the intersection X ∩M , i.e., 0 if X ∩M = ∅, 1 if |X ∩M | = 1,
and 2 if |X ∩M | ≥ 2. For 1, we additionally track whether the module belongs to the left
(1L) or right side (1R) of the considered homogeneous cut. For 2, we additionally track how
many neighboring modules are intersected by X, due to the definition of M↑-forest-nice this
number is either zero (20) or one (21). As argued before, we will not have any modules M
with φX(M) = 2E in the current bag unless M induces a clique.

We remark that there is an edge case when the graph G[M] is a clique of size at least
2, as in that case the maximum independent sets of G[M] are simply singletons which are
captured by the states 1L and 1R. As we do not track the degree of such states, we cannot
safely perform promotion for them. Instead we directly introduce induced forests inside M
in this exceptional case with the state 21.

Definition 6.6.25. Let t ∈ V (T q
M↑) be a node of the tree decomposition T q

M↑ . A function
f : Bqt → States is called a t-signature. Let (X, (XL, XR)) ∈ Qt,M↑ and Xq = πM↑(X). We
say that (X, (XL, XR)) is compatible with a t-signature f if the following properties hold for
every vqM ∈ Bqt :
• f(vqM) = 0 → φX(M) = 0,
• f(vqM) = 1L → φX(M) = 1 and X ∩M ⊆ XL,
• f(vqM) = 1R → φX(M) = 1 and X ∩M ⊆ XR,
• f(vqM) = 20 → φX(M) = 2I and degGq

t [Xq](v
q
M) = 0,

• (f(vqM) = 21 and G[M] is not a clique) → (φX(M) = 2I and degGq
t [Xq](v

q
M) = 1),

• (f(vqM) = 21 and G[M] is a clique) → φX(M) = 2E .
For a t-signature f , we let At,M↑(f) denote the set of all (X, (XL, XR)) ∈ Qt,M↑ that are

compatible with f . Similarly, we define Ac,w,v,e
t,M↑ (f) for given c ∈ [0, c(M↑)], w ∈ [0,w(M↑)],

v ∈ [0, |M↑|], and e ∈ [0, v − 1].

Fix a parent module M↑ ∈ M∗
tree(G) and for every node t ∈ V (T q

M↑), t-signature f ,
and appropriate c, w, v, e, define the value Ac,w,v,et (f) = |Ac,w,v,e

t,M↑ (f)|. Whenever at least

one of c, w, v, e is negative, we assume that Ac,w,v,et (f) = 0. We now describe the dynamic

134 Chapter 6 Algorithms Parameterized By Modular-Treewidth

programming recurrences to compute Ac,w,v,et (f) for all choices of t, f , c, w, v, e based on
the type of the node t in the very nice tree decomposition T q

M↑ .

Leaf Bag. We have that V qt = Bqt = ∅ and t has no child. Therefore, the only candidate is
(∅, (∅, ∅)) and we simply need to check if the trackers c, w, v, e agree with that:

Ac,w,v,et (f) = [c = w = e = v = 0]

Introduce Vertex Bag. We have that Bqt = Bqs ∪ {vqM}, where vqM /∈ Bqs and s is the
only child of t. For the sake of the write-up, we assume that f is an s-signature here. The
recurrence is straightforward with the exception of handling the clique case:

Ac,w,v,et (f [vqM 7→ s]) =

Ac,w,v,es (f), if s ∈ {0,1L,1R},

[G[M] is not a clique]Ac,w,v,es (f), if s = 20,

[|M | > 1 and G[M] is a clique]Ac,w,v,es (f), if s = 21.

If G[M] is a clique, then φX(M) = 2I can never be satisfied. So, we will directly generate
solutions with φX(M) = 2E in this case. If G[M] is not a clique, such solutions will only
be generated at forget nodes by promotion. Recall that no edges incident to M have been
introduced yet, which in particular rules out the case that f(vqM) = 21 when G[M] is not a
clique, and the trackers are only updated when we forget a module.

Introduce Edge Bag. We have that {vqM1
, vqM2

} ⊆ Bqt = Bqs , where {vqM1
, vqM2

} denotes
the introduced edge and s is the only child of t. Define helper functions edge, feas : States ×
States → {0, 1} by edge(s1, s2) = [s1 ̸= 0 ∧ s2 ̸= 0] and feas is given by the following table:

feas 0 1L 1R 20 21

0 1 1 1 1 1
1L 1 1 0 0 1
1R 1 0 1 0 1
20 1 0 0 0 0
21 1 1 1 0 0

The feas-function is used to filter partial solutions that have incompatible states at the newly
introduced edge. There are three reasons why states might be incompatible: they belong to
different sides of the cut, they directly induce a cycle, or they do not correctly account for
the degree in the graph induced by the partial solution.

Furthermore, given a t-signature f , we define the s-signature f̃ as follows. We set
f̃ := f if feas(f(vqM1

), f(vqM2
)) = 0 or edge(f(vqM1

), f(vqM2
)) = 0 or 21 /∈ {f(vqM1

), f(vqM2
)}.

Otherwise, the introduced edge changes the state from 20 to 21 at one of its endpoints, i.e.,
without loss of generality f(vqM1

) = 21 and f(vqM2
) ∈ {1L,1R} (else, swap role of M1 and

M2) and we set f̃ := f [vqM1
7→ 20]. Finally, the recurrence is given by

Ac,w,v,et (f) = feas(f(vqM1
), f(vqM2

))A
c,w,v,e−edge(f(vq

M1
),f(vq

M2
))

s (f̃).

6.6 Feedback Vertex Set Algorithm 135

Observe that we update the edge count, if necessary, in this recurrence. We remark that if
f(vqM1

) = 21 and f(vqM2
) ∈ {1L,1R} and G[M1] is a clique, we should filter as well, because

this means φX(M1) = 2E and hence vqM1
should not receive incident edges in Gqt [πM↑(X)].

One could explicitly adapt the recurrence for this case or instead, as we do, observe that
since φX(M1) = 2I is impossible, all entries Ac,w,v,es (f̃) will be zero due to f̃(vqM1

) = 20

and hence we do not generate any partial solutions for this case anyway.

Forget Vertex Bag. We have that Bqt = Bqs \ {vqM}, where vqM ∈ Bqs and s is the only
child of t. Recall that c2I

M , c2E
M , w1

M , w2I
M , w2E

M denote the size or weight of a singleton set,
maximum independent set, or the candidate forest inside M , respectively. The recurrence is
given by:

Ac,w,v,et (f) = Ac,w,v,es (f [vqM 7→ 0])
+ A

c−1,w−w1
M ,v−1,e

s (f [vqM 7→ 1L])
+ A

c−1,w−w1
M ,v−1,e

s (f [vqM 7→ 1R])

+ 2 A
c−c2E

M
,w−w2E

M
,v−1,e

s (f [vqM 7→ 20])

+ [G[M] is not a clique] A
c−c2I

M
,w−w2I

M
,v−1,e

s (f [vqM 7→ 21])

+ 2[|M | > 1 and G[M] is a clique] A
c−c2E

M
,w−w2E

M
,v−1,e

s (f [vqM 7→ 21])

As M leaves the current bag, we need to update the trackers c, w, and v. The first three cases
are straightforward, but the latter three deserve an explanation. If M had state 20 before,
then M ⊆ isos(X) and G[M] cannot be a clique, so we want to promote the independent set
in M to an induced forest and also track the cut side now. Since M remains isolated, both
cut sides are possible, explaining the factor 2. If G[M] is not a clique and M had state 21

before, then we keep the independent set in M and its cut side is already tracked. If instead
G[M] is a clique and had state 21 before, then M ⊆ isos(X) and we are taking an edge (=
maximum induced forest) inside M and we need to track its cut side now.

Join Bag. We have that Bqt = Bqs1
= Bqs2

= V qs1
∩V qs2

, where s1 and s2 are the two children
of t. To state the recurrence for the join bag, we first introduce the induced forest join
⊕if : States × States → States ∪ {⊥}, where ⊥ stands for an undefined value, which is
defined by the following table:

⊕if 0 1L 1R 20 21

0 0 ⊥ ⊥ ⊥ ⊥
1L ⊥ 1L ⊥ ⊥ ⊥
1R ⊥ ⊥ 1R ⊥ ⊥
20 ⊥ ⊥ ⊥ 20 21

21 ⊥ ⊥ ⊥ 21 ⊥

When combining two partial solutions, one coming from child s1 and the other one coming
from s2, we want to ensure that they have essentially the same states on Bqt = V qs1

∩ V qs2
.

However for the state 21 (if the considered modules does not induce a clique), we need
to decide which child contributes the incident edge in the quotient graph and ensure

136 Chapter 6 Algorithms Parameterized By Modular-Treewidth

that the other child does not contribute an additional edge. This is implemented by the
operation ⊕if . Given some set S and functions f, g : S → States, we abuse notation and
let f ⊕if g : S → States ∪ {⊥} denote the function obtained from f and g by pointwise
application of ⊕if . We also define ⊕2 = ⊕if

∣∣
{20,21}×{20,21} and similarly extend it to

functions.
For any module M with vqM ∈ Bqt that induces a clique, the state 21 behaves differently

and should agree on both children. Hence, we define the following set B̃qt = {vqM ∈ Bqt :
G[M] is a clique}. We state a first version of the recurrence, which will be transformed
further to enable efficient computation:

Ac,w,v,et (f) =
∑

c1+c2=c
w1+w2=w

∑
v1+v2=v
e1+e2=e

∑
f1,f2 : Bq

t \B̃q
t →States :

f1⊕iff2=f

Ac1,w1,v1,e1
s1

(f1 ∪ f
∣∣
B̃q

t

)Ac2,w2,v2,e2
s2

(f2 ∪ f
∣∣
B̃q

t

),

where we ensure that all states agree for modules inducing cliques and otherwise apply the
induced forest join ⊕if .

To compute this recurrence quickly, we separately handle the part of ⊕if that essentially
checks for equality and reduce the remaining part to already known the results. Given
a t-signature f : Bqt → States, we define D=

t (f) := B̃qt ∪ f−1({0,1L,1R}) and D ̸=
t (f) :=

Bqt \D=
t (f). We decompose f into f= := f

∣∣
D=

t (f) and f ̸= := f
∣∣
D ̸=

t (f).

We fix the values c, w, v, e and a function g : S → States where B̃qt ⊆ S ⊆ Bqt is
some subset of the current bag containing the clique modules. We claim that the entries
Ac,w,v,et (f) for all t-signatures f with f= = g (including D=

t (f) = S) can be computed
in time O∗(2|Bq

t \S|). We branch on x⃗1 = (c1, w1, v1, e1), which determines the values
x⃗2 = (c2, w2, v2, e2), and define the auxiliary table T x⃗1,x⃗2

g indexed by h : Bqt \ S → {20,21}
as follows

T x⃗1,x⃗2
g (h) =

∑
h1,h2 : Bq

t \S→{20,21} :
h1⊕2h2=h

Ac1,w1,v1,e1
s1

(g ∪ h1)Ac2,w2,v2,e2
s2

(g ∪ h2).

Since ⊕2 is essentially the same as addition over {0, 1} with 1 + 1 being undefined, we
can compute all entries of T x⃗1,x⃗2

g in time O∗(2|Bq
t \S|) by the work of, e.g., van Rooij [162,

Theorem 2] using fast subset convolution and the fast fourier transform. Then, for every
t-signature f with f= = g, we obtain Ac,w,v,et (f) by summing T x⃗1,x⃗2

g (f ̸=) over all x⃗1 + x⃗2 =
(c, w, v, e). Since there are only polynomially many choices for x⃗1 and x⃗2, this proves the
claim.

In conclusion, to compute Ac,w,v,et (f) for all c, w, v, e, f , we need time

∑
B̃q

t ⊆S⊆Bq
t

∑
g : S→{0,1L,1R}

O∗(2|Bq
t \S|) ≤

∑
S⊆Bq

t

O∗(3|S|2|Bq
t \S|) = O∗

|Bq
t |∑

i=0

(
|Bqt |
i

)
3i2|Bq

t |−i

= O∗((3 + 2)|Bq

t |) = O∗(5k).

6.6 Feedback Vertex Set Algorithm 137

Lemma 6.6.26. Let M↑ ∈ M∗
tree(G) be a prime node and w : V → [2|V |] a weight function.

Given a tree decomposition of Gq
M↑ of width k and the sets Y 1

M , Y 2I
M and values c2E

M , w2E
M for

all M ∈ children(M↑), the values |Qc,w,v,e
M↑ | can be computed in time O∗(5k) for all c, w, v, e.

Proof. From the sets Y 1
M and Y 2I

M , we directly obtain the values w1
M , c2I

M , w2I
M for all

M ∈ children(M↑). We then transform the given tree decomposition into a very nice
tree decomposition (T q

M↑ , (Bqt)t∈V (T q

M↑)) using Lemma 2.4.2 and run the described dynamic

programming algorithm described before to compute the values Ac,w,v,er̂ (∅), where r̂ is
the root of T q

M↑ , for all appropriate values of c, w, v, e. Assuming the correctness of the
recurrences, we have that Ac,w,v,er̂ (∅) = |Ac,w,v,e

r̂ (∅)| = |Qc,w,v,e
M↑ | by definition and the

degeneration of the conditions at r̂.
For the running time, note that for every t ∈ V (T q

M↑), there are at most O∗(5k) table
entries Ac,w,v,et (f) and the recurrences can be computed in polynomial time except for the
case of join bags. In the case of a join bag, all table entries can be computed simultaneously
in time O∗(5k). By Lemma 2.4.2 the tree decomposition T q

M↑ has a polynomial number
of nodes, hence the running time follows and it remains to sketch the correctness of the
dynamic programming recurrences.

For leaf bags, the correctness follows by observing that At(∅) = Qt,M↑ = {(∅, (∅, ∅))}. So,
we start by considering introduce vertex bags. We set up a bijection between At(f [vqM 7→ s])
and As(f) depending on s ∈ States. We map (X, (XL, XR)) ∈ As(f) to
• (X, (XL, XR)) if s = 0,
• (X ∪ Y 1

M , (XL ∪ Y 1
M , XR)) if s = 1L (1R is analogous),

• (X ∪ Y 2I
M , (XL, XR)) if s = 20 and G[M] is not a clique,

• (X ∪ Y 2E
M , (XL, XR)) if s = 21 and G[M] is a clique of size at least 2.

In the last two cases, we have M ⊆ isot(X), so we do not need to track the cut side. Using
M↑-substructure it is possible to verify that these mappings constitute bijections. The case
that s = 21 and G[M] is not a clique is impossible, since no edges incident to vqM are
introduced yet. The case that s = 20 and G[M] is a clique is impossible, since any subset of
M of size at least two has to induce an edge.

For introduce edge bags, we highlight the case that f̃(vqM1
) = 20 and f(vqM1

) = 21, where
M1 needs to inherit the cut side from M2. Formally, a partial solution (X, (XL, XR)) ∈
Ac,w,v,e−1
s (f̃) with f(vqM2

) = 1L is bijectively mapped to (X, (XL ∪ (X ∩ M), XR)) ∈
Ac,w,v,et (f) and analogously when f(vqM2

) = 1R. We have already argued the correct
handling of the clique case when presenting the recurrence. The remaining cases are
straightforward.

We proceed with forget vertex bags. First, we observe that all considered cases are
disjoint, hence no overcounting occurs. The handling of the cases 0, 1L, and 1R is standard
and we omit further explanation. For isolated modules, we need to track the cut side when
we forget them, since both sides are possible, we multiply with the factor 2. Furthermore, we
need to perform the promotion when we forget a module with state 20. The most involved
case is Y 2E

M ̸= Y 2I
M and G[M] is not a clique, then we perform promotion on the isolated

module M , swapping Y 2I
M with Y 2E

M , and now have to track the cut side of M , again yielding
the factor 2. Formally, if f is a t-signature and (X, (XL, XR)) ∈ As(f [vqM 7→ 20]), then G[M]

138 Chapter 6 Algorithms Parameterized By Modular-Treewidth

is not a clique and we obtain the solutions ((X \M) ∪ Y 2E
M , (XL ∪ Y 2E

M , XR)) ∈ At(f) and
((X \M) ∪ Y 2E

M , (XL, XR ∪ Y 2E
M)) ∈ At(f).

For the join bags, we have that V qs1
∩ V qs2

= Bqt , so the behavior on the intersection is
completely described by the signature f . Every (X, (XL, XR)) ∈ At(f) splits into a solution
(X1, (X1

L, X
2
L)) ∈ As1

(f1) at s1 and a solution (X2, (X2
L, X

2
R)) ∈ As2

(f2) at s2, where for i ∈
[2] we setXi = X∩Vsi

,Xi
L = (XL∩Vsi

)\(isosi
(Xi)∩Bsi

),Xi
R = (XR∩Vsi

)\(isosi
(Xi)∩Bsi

)
and

fi(vqM) =

f(vqM), if f(vqM) ̸= 21,

21, if f(vqM) = 21 ∧G[M] is clique of size ≥ 2,

2d, if f(vqM) = 21 ∧G[M] is not a clique ∧ degGq
si

[π
M↑ (Xi)](v

q
M) = d.

For a non-clique module with state 21, the edge leading to degree 1 is present at one of
the child nodes s1 or s2, but not at the other one. At the child, where the edge is not
present, the module has state 20 and is isolated, therefore we do not track the cut side
and hence have to account for this in the definitions of Xi

L and Xi
R. This map can be seen

to be a bijection between At(f) and
⋃
f1,f2

As1
(f1) × As2

(f2), where the union is over all
f1, f2 : Bqt → States such that f

∣∣
B̃q

t

= f1
∣∣
B̃q

t

= f2
∣∣
B̃q

t

and f
∣∣
Bq

t \B̃q
t

= f1
∣∣
Bq

t \B̃q
t

⊕if f2
∣∣
Bq

t \B̃q
t

,
which is implemented by the join-recurrence once we account for the trackers c, w, v, and
e; as every edge is introduced exactly once and the other trackers are only computed for
forgotten modules, no overcounting happens here and we only have to distribute the trackers
between s1 and s2. We remark that the correctness here requires that the promotion property
is only applied to forgotten modules which have received all incident edges already.

Finally, we have assembled all ingredients for the FEEDBACK VERTEX SET algorithm; the
only remaining step is to combine them all.

Theorem 6.6.27. There exists a Monte-Carlo algorithm that, given a tree decomposition of
width k for every prime quotient graph in the modular decomposition of G, solves FEEDBACK

VERTEX SET in time O∗(5k). The algorithm cannot give false positives and may give false
negatives with probability at most 1/2.

Proof. Solving the complementary problem INDUCED FOREST, we begin by computing the
sets Y 1

M↑ and Y 2I
M↑ for all M↑ ∈ Mtree(G) in time O∗(2k) using Theorem 6.2.3. We sample

a weight function w : V → [2n] uniformly at random, which max-isolates Fopt(G) with
probability at least 1/2 by Lemma 6.6.9. We generate the sets Y 2E

M↑ for the base cases
M↑ = {v}, v ∈ V .

By bottom-up dynamic programming along the modular decomposition, we inductively
compute the values c2E

M↑ and w2E
M↑ , M↑ ∈ M∗

tree(G), given the values c2E
M and w2E

M for
all M ∈ children(M↑). To do so, we distinguish whether M↑ is a parallel, series, or
prime node. In the first two cases, we can compute these values in polynomial time by
Section 6.6.4.

In the prime case, we can compute the values |Qc,w,v,e
M↑ | in time O∗(5k) by using

Lemma 6.6.26. From these values, we can obtain the values c2E
M↑ and w2E

M↑ by the description
in Section 6.6.4 in polynomial time. As the modular decomposition has a polynomial number
of nodes, the running time follows.

6.6 Feedback Vertex Set Algorithm 139

If c2E
V ≥ b, then the algorithm returns true and otherwise the algorithm returns false.

It remains to prove the correctness of this step, assuming that the weight function w is
isolating. By Lemma 6.6.22, we have that Y 2E

V is a maximum induced forest of G[V] = G

if w is isolating and since c2E
V = |Y 2E

V | this shows that the algorithm is correct in this case.
Since we always ensure that Y 2E

V is an induced forest, but not necessarily maximum, even if
w is not isolating, the algorithm cannot return false positives.

140 Chapter 6 Algorithms Parameterized By Modular-Treewidth

Lower Bounds Parameterized
By Clique-Width

7
7.1 General Approach

In this section, we prove the tight lower bounds for CONNECTED VERTEX COVER and CON-
NECTED DOMINATING SET parameterized by linear-clique-width. The high-level construction
principle follows the style of Lokshtanov et al. [126] as discussed before. For linear-clique-
width, the considered separators of size one are simply joins, i.e., all edges between the two
sides of the separator are present, each side representing a label of the clique-expression.
So, adjacent path gadgets are connected via a join and we study the state behavior across a
join to determine appropriate transition orders.

Determining a Transition Order. Due to the joins, we will have to study the label states
that can be taken by a label with respect to a partial solution of the target problem. As the
number of label states can be exponential in the number of vertex states, determining a
transition order ad hoc quickly becomes infeasible. Hence, the generic approach of first
finding a large triangular submatrix of an appropriate compatibility matrix, which allows us
to deduce a transition order, will serve us very well here.

Anatomy of a Path Gadget. Our path gadget design follows a quite generic approach that
allows us to easily implement the path gadget states deduced from the triangular submatrix
and simple communication with the decoding gadgets. The path gadgets consist of three
parts: a central clique that communicates with the decoding gadgets, and two boundary parts,
i.e., the left and right parts that connect to the previous and following join, respectively. In
the central clique, each solution will avoid exactly one vertex representing the state of the
path gadget. To implement the transition order, the left and right parts have to communicate
appropriate states to the two adjacent path gadgets. The appropriate states are deduced by
pairing the states along the main diagonal of the triangular submatrix.

Designing the Boundary of a Path Gadget. The state of a vertex in a partial solution
consists of several properties: whether it is contained in the partial solution, a connectivity
property, and possibly whether it is dominated (for CONNECTED DOMINATING SET). Our
strategy for designing the boundary parts is to isolate these properties for the vertices
incident to the joins and represent by pairs of indicator vertices whether each property is
satisfied or not. We ensure that a solution can only pick one vertex per indicator pair. This
allows us to generically connect the clique vertices to appropriate indicator vertices, which

141

then forces the desired states at the boundaries depending on which clique vertex is avoided.
This concludes the description of the high-level ideas for constructing the path gadgets.

Decoding and Clause Gadgets. By designing the path gadgets with the central clique
as an interface for the decoding gadgets, we can reuse already-known constructions for
the decoding and clause gadgets. For the decoding gadget, we use the construction of the
CONNECTED VERTEX COVER[pathwidth] lower bound by Cygan et al. [50]. The clause gadget
only consists of a vertex that is forced into every solution by a simple problem-dependent
construction.

Root-Connectivity. To capture the connectivity constraint of CONNECTED VERTEX COVER

and CONNECTED DOMINATING SET, we reuse a construction present in the lower bound
proofs of Cygan et al. [50] for connectivity problems parameterized by pathwidth. We create
a distinguished vertex r̂ called the root and by attaching a vertex of degree 1 to r̂ we ensure
that every connected vertex cover or connected dominating set has to contain r̂. Given a
vertex subset X ⊆ V (G) with r̂ ∈ X, we say that a vertex v ∈ X is root-connected in X if
there is a v, r̂-path in G[X]. We will just say root-connected if X is clear from the context.
The graph G[X] is connected if and only if all vertices of X are root-connected in X. For the
state of a partial solution X, it is important to consider which vertices are root-connected in
X and which are not.

7.2 Connected Vertex Cover Lower Bound
This subsection is devoted to proving that CONNECTED VERTEX COVER (with unit costs)
cannot be solved in time O∗((6 − ε)lin-cw(G)) for some ε > 0 unless the CNF-SETH, Conjec-
ture 2.1.1, fails. We first design the path gadget, approaching the design as discussed, and
analyze it in isolation and afterwards we present the complete construction and correctness
proofs. Afterwards we present the complete construction, where the decoding gadgets are
directly adapted from the lower bound for CONNECTED VERTEX COVER[pathwidth] given by
Cygan et al. [50].

7.2.1 Path Gadget
To rule out the running time O∗((6 − ε)lin-cw(G)) for any ε > 0, we build a path gadget
that admits 6 distinct states and narrows down to a single label, so that each row of the
construction contributes one unit of linear-clique-width. As discussed previously, we begin
by analyzing the behavior of a partial solution on a label.

Every single vertex v has one of 3 states with respect to a partial solution X: v /∈ X (state
0), v ∈ X and v is root-connected (state 11) or not (state 10). First, we observe that it is
irrelevant how often each vertex state appears inside a label, rather we only care whether a
vertex state appears in a label or not. Hence, we can describe the state of a label as a subset
of {0,10,11}, where the empty subset is excluded, as we do not consider empty labels.

142 Chapter 7 Lower Bounds Parameterized By Clique-Width

0 1= = =0 10 11

1 1 1

0

1 1 0
0
0

0

1

1 1

0
0
0 0 1

0

0
0
0

0

X1 vs. X2 X1 vs. X2 X1 vs. X2

1 1 1

0

1 1 0
0
0

0

1

1 1

0
0
0 0 1

0

0
0
0

0

compatible incompatible: uncovered edges incompatible: not connected

1
1
11

1
1
1 1

1

r̂ r̂ r̂

r̂r̂r̂

Fig. 7.1.: Several cases of partial solution compatibility across a join. The first row depicts the vertex
states in X1 and X2, separated by the dashed line. The second row depicts the vertex states
in X1 ∪ X2 and highlights, from left to right, the induced edges, the uncovered edges, and
a connected component not containing the root r̂.

X1 vs. X2 {0} {10} {11} {10,0} {11,0} {11,10} {11,10,0}
{0} 0 0 1 0 0 0 0
{10} 0 0 1 0 1 1 1
{11} 1 1 1 1 1 1 1
{10,0} 0 0 1 0 0 1 0
{11,0} 0 1 1 0 0 1 0
{11,10} 0 1 1 1 1 1 1
{11,10,0} 0 1 1 0 0 1 0

Tab. 7.1.: The compatibility matrix for CONNECTED VERTEX COVER. The rows describe the label
state of the partial solution X1 and the columns the label state of X2. Ones correspond to
compatible pairs of label states and zeroes to incompatible pairs.

We proceed by studying the compatibility of these label states across a join, but we will
only give an informal description here. Essentially, we assume that the considered join is the
final opportunity for two partial solutions X1, X2 ⊆ V with r̂ ∈ Xi, i ∈ [2], living on separate
sides of the join (with the exception of r̂) to connect. Hence, the partial solutions X1 and
X2 are considered to be compatible when in X1 ∪X2 every vertex incident to the considered
join has state 0 or 11 and every edge of the join is covered by X1 ∪X2; see Figure 7.1. If X1

and X2 are compatible, then X1 ∪X2 can be a global solution, if outside of the considered
join all constraints are satisfied. Since the interaction of Xi, i ∈ [2], with the respective side
of the join is captured by the aforementioned states, we obtain the compatibility matrix in
Table 7.1.

To determine a transition order and which states should be implemented by a path
gadget, we find the triangular submatrix in Table 7.2, after reordering rows and columns.
Note that the triangular submatrix only involves states consisting of at most two vertex
states, hence labels consisting of two vertices should be sufficient to generate these states.
Indeed, in the forthcoming construction, the labels incident to the join are independent
sets of size two and the state sets will be represented by the following ordered pairs of

7.2 Connected Vertex Cover Lower Bound 143

X1 vs. X2 {0} {10,0} {10} {11,0} {11,10} {11}
{11} 1 1 1 1 1 1
{11,10} 0 1 1 1 1 1
{11,0} 0 0 1 0 1 1
{10} 0 0 0 1 1 1
{10,0} 0 0 0 0 1 1
{0} 0 0 0 0 0 1

Tab. 7.2.: A large triangular submatrix in the compatibility matrix of CONNECTED VERTEX COVER.
The rows and columns have been reordered.

vertex states: (0,0), (10,0), (10,10), (11,0), (11,10), (11,11). Pairing the states along the
diagonal then tells us for each case which states the path gadget should communicate to the
left and right boundary respectively. For example, for the third position of the diagonal, we
pair (10,10) with (11,0), meaning that for the third state of the transition order, the path
gadget should communicate the states (10,10) to the left boundary and the states (11,0) to
the right boundary.

Formal Definition of States. We define the three atomic states Atoms = {0,10,11}
and define the two predicates sol, conn : Atoms → {0, 1} by sol(a) = [a ∈ {10,11}] and
conn(a) = [a = 11]. The atom 0 means that a vertex is not inside the partial solution; 11

and 10 indicate that a vertex is inside the partial solution and the subscript indicates whether
it is root-connected or not. Building on these atomic states, we define six (gadget) states
consisting of four atomic states each:

s1 = (0 ,0 ,11,11),

s2 = (10,0 ,11,10),

s3 = (10,10,11,0),

s4 = (11,0 ,10,10),

s5 = (11,10,10,0),

s6 = (11,11,0 ,0).

The gadget states are numbered in the transition order. We collect the six gadget states in the
set States = {s1, . . . , s6} and use the notation sℓi ∈ Atoms, i ∈ [4], ℓ ∈ [6], to refer to the
i-th atomic component of state sℓ. Observe that sℓ can be obtained from s7−ℓ by swapping
the first and second components with the third and fourth components, i.e., sℓ1 = s7−ℓ

3 and
sℓ2 = s7−ℓ

4 for all ℓ ∈ [6].
Given a partial solution Y ⊆ V (G), we formally associate to each vertex its state in Y

with the map stateY : V (G) \ {r̂} → Atoms, which is defined by

stateY (v) =

0 if v /∈ Y,

10 if v ∈ Y and v is not root-connected in Y ∪ {r̂},

11 if v ∈ Y and v is root-connected in Y ∪ {r̂}.

Formal Construction. We proceed by describing how to construct the path gadget P . We
create the following sets of vertices:

144 Chapter 7 Lower Bounds Parameterized By Clique-Width

u1

u2

a1,3 b1,1
a2,3 b2,1

b2,0
a2,1

a2,2

c2,1

c2,0

a1,1

a1,2

b1,0

c1,1

c1,0

v1

v2

v3

v4

v5

v6

clique K6

u3

u4

a3,3

b3,1

a4,3b4,1

b4,0
a4,1

a4,2

c4,1

c4,0

a3,1

a3,2

b3,0

c3,1

c3,0

= adjacent to root r̂

Fig. 7.2.: The path gadget P with the join vertices u1, u2 and u3, u4 already joined to further vertices.
All vertices that are depicted with a rectangle are adjacent to the root vertex r̂. The vertices
inside the cyan dashed rectangle induce a clique. For sake of understanding, we have
highlighted the edges incident to v2 as one example.

• 4 join vertices u1, . . . , u4,
• 12 auxiliary vertices a1,1, a1,2, a1,3, a2,1, . . . , a4,3,
• 8 solution indicator vertices b1,0, b1,1, b2,0, b2,1, . . . , b4,1,
• 8 connectivity indicator vertices c1,0, c1,1, c2,0, c2,1, . . . , c4,1, and
• 6 clique vertices v1, . . . , v6.
For every i ∈ [4], we add the edges {ui, ai,1}, {ui, ai,3}, {ui, bi,0}, {ai,1, ai,2}, {ai,1, bi,0},
{ai,1, ci,1}, {ai,3, bi,1}, and {bi,0, bi,1} and {ci,0, ci,1}. Furthermore, we make ai,3 for all
i ∈ [4], all solution indicator vertices, all connectivity indicator vertices, and all clique
vertices adjacent to the root vertex r̂. We add all possible edges between the clique vertices
vℓ, ℓ ∈ [6], so that they induce a clique of size 6.

Finally, we explain how to connect the indicator vertices to the clique vertices. The clique
vertex vℓ corresponds to choosing state sℓ on the join vertices (u1, u2, u3, u4). The desired
behavior of P is that a partial solution X of P + r̂ contains bi,1 if and only if X contains ui
and for the connectivity indicators, that X contains ci,1 if and only if X contains ui and ui is
root-connected in X. Accordingly, for all i ∈ [4] and ℓ ∈ [6], we add the edges {vℓ, bi,sol(sℓ

i
)}

and {vℓ, ci,conn(sℓ
i
)}. This concludes the construction of P , see Figure 7.2.

Behavior of a Single Path Gadget. We can now begin with the analysis of the path gadget.
To do so, we assume that G is a graph that contains P + r̂ as an induced subgraph and
that only the join vertices ui, i ∈ [4], and clique vertices vℓ, ℓ ∈ [6], have neighbors outside
this copy of P + r̂. Furthermore, let X be a connected vertex cover of G with r̂ ∈ X. We
study the behavior of such connected vertex covers on P ; we will abuse notation and write

7.2 Connected Vertex Cover Lower Bound 145

X ∩ P instead of X ∩ V (P). The assumption on how P connects to the remaining graph
implies that any vertex v ∈ V (P) with stateX∩P (v) = 10 has to be root-connected in X

through some path that leaves P + r̂ via one of the join vertices ui, i ∈ [4]. Note that any
path leaving P + r̂ through some clique vertex vℓ, ℓ ∈ [6], immediately yields a path to r̂ in
P + r̂ as {vℓ : ℓ ∈ [6]} ⊆ N(r̂).

We obtain a lower bound for |X ∩ P | via a vertex-disjoint packing of subgraphs.

Lemma 7.2.1. We have |X ∩P | ≥ 21 = 4 · 4 + 5 and |X ∩ {v1, . . . , v6}| ≥ 5 and for all i ∈ [4]
that ai,1 ∈ X, |X ∩ {ui, ai,3, bi,1, bi,0}| ≥ 2, |X ∩ {ci,0, ci,1}| ≥ 1.

Proof. For all i ∈ [4], the vertex ai,2 has degree 1 in G with unique neighbor ai,1, hence we
must have ai,1 ∈ X to either connect ai,2 to r̂ or to cover the edge {ai,1, ai,2} if ai,2 /∈ X.
The vertices ui, ai,3, bi,1, bi,0 induce a cycle of length 4 for all i ∈ [4] and any vertex
cover has to contain at least 2 vertices of every such cycle. The edge {ci,0, ci,1} has to
be covered for all i ∈ [4]. Finally, the clique formed by the vertices v1, . . . , v6 has size 6
and any vertex cover has to contain at least 5 vertices of such a clique. Since we only
considered pairwise disjoint sets of vertices, these lower bounds simply add up and we
obtain |X ∩ P | ≥ 4(1 + 2 + 1) + 5 = 21.

Using Lemma 7.2.1, we precisely analyze the solutions matching the lower bound of
21 on P and show that such solutions have the desired state behavior. We define for any
Y ⊆ V (P) the 4-tuple

state(Y) = (stateY (u1), stateY (u2), stateY (u3), stateY (u4))

and the following lemma shows that the states communicated to the boundary depend on
the state of the central clique as desired.

Lemma 7.2.2. If |X ∩ P | ≤ 21, then |X ∩ P | = 21 and ai,1 ∈ X, X ∩ {ui, ai,3, bi,1, bi,0} ∈
{{ui, bi,1}, {ai,3, bi,0}}, |X ∩ {ci,0, ci,1}| = 1 for all i ∈ [4] and |X ∩ {v1, . . . , v6}| = 5. Fur-
thermore, we have state(X ∩ P) = sℓ for the unique integer ℓ ∈ [6] with vℓ /∈ X.

Proof. Due to |X ∩ P | ≤ 21, all the inequalities of Lemma 7.2.1 have to be tight. Since
|X ∩ {ui, ai,3, bi,1, bi,0}| = 2 and {ui, ai,3, bi,1, bi,0} induces a cycle of length 4, X has to
contain a pair of antipodal vertices of this cycle, so either the pair {ui, bi,1} or the pair
{ai,3, bi,0}. It remains to prove the last property regarding the states of the join vertices.

Consider any i ∈ [4], we will show that stateX∩P (ui) = sℓi . Since X is a vertex cover
and vℓ /∈ X, we must have that N(vℓ) ⊆ X. By construction, this means that X must in
particular contain the vertices bi,sol(sℓ

i
) and ci,conn(sℓ

i
) and due to the previous equations

X cannot contain the other vertex of each of these indicator pairs. Due to the choice of
an antipodal pair we have ui ∈ X if and only if bi,1 ∈ X if and only if sol(sℓi) = 1 if
and only if sℓi ∈ {10,11}. If ui ∈ X, then ai,3 /∈ X and bi,0 /∈ X, so ui is root-connected
in X ∩ (P + r̂) if and only if ci,1 ∈ X, i.e., via the path ui, ai,1, ci,1, r̂. Furthermore,
ci,1 ∈ X ⇔ conn(sℓi) = 1 ⇔ sℓi = 11. This shows that stateX∩P (ui) = sℓi and since this
argument applies to all i ∈ [4], we obtain that state(X ∩ Y) = sℓ.

Moving on, we establish that for every state sℓ ∈ States a partial solution attaining this
state actually exists, which we use to prove that every satisfying gives rise to a sufficiently

146 Chapter 7 Lower Bounds Parameterized By Clique-Width

small connected vertex cover of the constructed graph. Furthermore, for these partial
solutions, it is sufficient to check for root-connectivity at the join vertices.

Lemma 7.2.3. For every ℓ ∈ [6], there exists a vertex cover Xℓ
P of P such that |Xℓ

P | = 21,
Xℓ
P ∩ {v1, . . . , v6} = {v1, . . . , v6} \ {vℓ}, and state(Xℓ

P) = sℓ. If X is a vertex cover of G with
r̂ ∈ X and X ∩ P = Xℓ

P and for every i ∈ [4] either ui /∈ X or ui is root-connected in X, then
every vertex of Xℓ

P is root-connected in X.

Proof. We define

Xℓ
P = ({v1, . . . , v6} \ {vℓ}) ∪ {ai,1 : i ∈ [4]}

∪ {ui : i ∈ [4] and sol(sℓi) = 1} ∪ {ai,3 : i ∈ [4] and sol(sℓi) = 0}

∪ {bi,sol(sℓ
i
) : i ∈ [4]} ∪ {ci,conn(sℓ

i
) : i ∈ [4]}

and claim that Xℓ
P is a vertex cover with the desired properties. We clearly have that

|Xℓ
P | = 21 and vℓ /∈ Xℓ

P . We proceed by showing that Xℓ
P is a vertex cover of P . For every

i ∈ [4], all four edges incident to ai,1 are covered and Xℓ
P contains at least one vertex from

the edge {ci,0, ci,1}. For every i ∈ [4], all edges of the C4 induced by {ui, ai,3, bi,0, bi,1} are
covered by Xℓ

P , since Xℓ
P picks one of the two antipodal pairs depending on sol(sℓi). The

clique induced by v1, . . . , v6 is fully covered by Xℓ
P , since it picks five out of six vertices. The

edges between vℓ and the indicator vertices are covered, because by construction of P , we
have that N(vℓ) = ({v1, . . . , v6} \ {vℓ}) ∪ {bi,sol(sℓ

i
) : i ∈ [4]} ∪ {ci,conn(sℓ

i
) : i ∈ [4]} ⊆ Xℓ

P .
This shows that Xℓ

P is a vertex cover of P . Very similar to the proof of Lemma 7.2.2, we see
that state(Xℓ

P) = sℓ.
It remains to show the property regarding connectivity. By assumption, only the join

vertices u1, . . . , u4 and clique vertices v1, . . . , v6 can be adjacent to vertices outside of P + r̂.
However, as the clique vertices are neighbors of the root r̂, their other connections to the
outside of P cannot provide any new root-connectivity. If we have stateXℓ

P
(ui) = 10 for

some i ∈ [4], then ui is root-connected in X via some path that leaves P + r̂. Note that all
vertices in Xℓ

P \ {ui, ai,1 : i ∈ [4]} are directly adjacent to the root r̂, hence it just remains
to handle the root-connectivity of ai,1. If stateXℓ

P
(ui) = 0, then ai,1 is root-connected via

the path ai,1, bi,0, r̂ in X. If stateXℓ
P

(ui) = 10, then we can extend the path that leaves P
and connects ui to r̂ by ai,1. Finally, if stateXℓ

P
(ui) = 11, then the path ai,1, ci,1, r̂ exists in

Xℓ
P + r̂. This concludes the proof.

State Transitions. In the lower bound construction, we will create long paths by repeat-
edly concatenating the path gadgets P . To study how the state can change between two
consecutive path gadgets, suppose that we have two copies P 1 and P 2 of P such that the
vertices u3 and u4 in P 1 are joined to the vertices u1 and u2 in P 2. We denote the vertices
of P 1 with a superscript 1 and the vertices of P 2 with a superscript 2, e.g., u1

3 refers to the
vertex u3 of P 1. Again, suppose that P 1 and P 2 are embedded as induced subgraphs in a
larger graph G with a root vertex r̂ and that only the vertices u1

1, u
1
2, u

2
3, u

2
4 and the clique

vertices v1
ℓ , v

2
ℓ , ℓ ∈ [6], have neighbors outside of P 1 + P 2 + r̂. Furthermore, X denotes a

connected vertex cover with r̂ ∈ X.

7.2 Connected Vertex Cover Lower Bound 147

Using the previous lemmas, we now show that states can only transition from one path
gadget to the next according to the transition order and that it is also feasible for the state
to remain stable.

Lemma 7.2.4. Suppose that |X ∩ P 1| ≤ 21 and |X ∩ P 2| ≤ 21, then state(X ∩ P 1) = sℓ1

and state(X ∩ P 2) = sℓ2 with ℓ1 ≤ ℓ2.
Additionally, for each ℓ ∈ [6], the set Xℓ = Xℓ

P 1 ∪ Xℓ
P 2 is a vertex cover of P 1 + P 2 with

stateXℓ({u1
3, u

1
4, u

2
1, u

2
2}) ⊆ {0,11}.

Proof. By Lemma 7.2.2, we have that state(X ∩ P 1) = sℓ1 and state(X ∩ P 2) = sℓ2 for
some ℓ1 ∈ [6] and ℓ2 ∈ [6]. It remains to show that ℓ1 ≤ ℓ2.

Define U1 = {u1
3, u

1
4}, U2 = {u2

1, u
2
2}, and U = U1 ∪ U2. By assumption only the clique

vertices of P 1 and P 2 and the vertices u1
1, u

1
2, u

2
3, u

2
4 are allowed to have neighbors outside of

P 1 + P 2 + r̂, hence {viℓ : i ∈ [2], ℓ ∈ [6]} ⊆ N(r̂) separates the vertices in U from the root r̂
in the whole graph G. Hence, we can see whether the vertices of X ∩ U are root-connected
in X by just considering the graph P 1 + P 2 + r̂.

0
1

=
=
=

0
10

11
×××××

××

×

×

×

×

×

s1
s2

0

0
0

0

1

1

1
1

0 0
0 0

1 1 1
1

×

×

×

×

×

×

× ×

Fig. 7.3.: A matrix depicting the possible state transitions between two consecutive path gadgets.
The rows are labeled with s̄1 = (sℓ1

3 , sℓ1
4), ℓ1 ∈ [6], and the columns are labeled with

s̄2 = (sℓ2
1 , sℓ2

2), ℓ2 ∈ [6]. An × marks possible state transitions in a connected vertex cover.

Define the atomic state pairs s̄1 = (sℓ1
3 , s

ℓ1
4) = (stateX∩P 1(u1

3), stateX∩P 1(u1
4)) and

s̄2 = (sℓ2
1 , s

ℓ2
2) = (stateX∩P 2(u2

1), stateX∩P 2(u2
2)). We claim that X does not cover some

edge in G[U] or some vertex in X ∩U is not root-connected in X whenever ℓ1 > ℓ2, see also
Figure 7.3. Some edge in G[U] is not covered by X if and only if both s̄1 and s̄2 contain a
0. Hence, we have that (ℓ1, ℓ2) /∈ {(3, 1), (3, 2), (5, 1), (5, 2), (5, 4), (6, 1), (6, 2), (6, 4)}. Some
vertex in X ∩ U is not root-connected in X if and only if both s̄1 and s̄2 contain no 11s at
all or one consists of two 0s and the other one contains a 10. This additionally shows that
(ℓ1, ℓ2) /∈ {(2, 1), (4, 1), (4, 2), (4, 3), (5, 3), (6, 3), (6, 5)} and concludes the proof of the first
part.

For the second part, notice that state(Xℓ
P 1) = state(Xℓ

P 2) = sℓ by Lemma 7.2.3 and by
the same approach as in the last paragraph, we see that for ℓ = ℓ1 = ℓ2 all edges in G[U] are

148 Chapter 7 Lower Bounds Parameterized By Clique-Width

0 1= = =0 10 11

u1
3

u1
4

u2
1

u2
2

Case 1: Case 2: Case 3: Case 4: Case 5:

u1
3

u1
4

u2
1

u2
2

u1
3

u1
4

u2
1

u2
2

u1
3

u1
4

u2
1

u2
2

u1
3

u1
4

u2
1

u2
2

Case 6:

u1
3

u1
4

u2
1

u2
2

0 0

0 00 0

0 01

1 1

11111

Fig. 7.4.: Case distinction to show stateXℓ ({u1
3, u1

4, u2
1, u2

2}) ⊆ {0, 11}. The left side in each case
depicts s̄1 and the right side depicts s̄2.

covered and all vertices in Xℓ ∩ U are root-connected in Xℓ ∪ {r̂}, see Figure 7.4 for the
different cases.

We say that a cheat occurs if ℓ1 < ℓ2. Creating arbitrarily long paths of the path gadgets
P , Lemma 7.2.4 shows that at most |States| − 1 = 5 = O(1) cheats occur on such a path
which allows us to find a cheat-free region as outlined previously.

7.2.2 Complete Construction
Setup. Assume that CONNECTED VERTEX COVER can be solved in time O∗((6 − ε)lin-cw(G))
for some ε > 0. Given a SATISFIABILITY-instance σ with n variables and m clauses, we
construct an equivalent CONNECTED VERTEX COVER instance with linear-clique-width ap-
proximately n log6(2) so that the existence of such an algorithm for CONNECTED VERTEX

COVER would imply that SETH is false.
We pick an integer β only depending on ε; the precise choice of β will be discussed at

a later point. The variables of σ are partitioned into groups of size at most β, resulting in
t = ⌈n/β⌉ groups. Furthermore, we pick the smallest integer p that satisfies 6p ≥ 2β , i.e.,
p = ⌈log6(2β)⌉. We now begin with the construction of the CONNECTED VERTEX COVER

instance (G = G(σ, β), b).
We create the root vertex r̂ and attach a leaf r̂′ which forces r̂ into any connected

vertex cover. For every group i ∈ [t], we create p long path-like gadgets P i,j , j ∈ [p],
where each P i,j consists of m(5tp+ 1) copies P i,j,ℓ, ℓ ∈ [m(5tp+ 1)], of the path gadget
P and consecutive copies are connected by a join. More precisely, the vertices in some
P i,j,ℓ inherit their names from P and the superscript of P i,j,ℓ and for every i ∈ [t], j ∈ [p],
ℓ ∈ [m(5tp+ 1) − 1], the vertices {ui,j,ℓ3 , ui,j,ℓ4 } are joined to the vertices {ui,j,ℓ+1

1 , ui,j,ℓ+1
2 }.

The ends of each path P i,j , i.e. the vertices ui,j,11 , ui,j,12 , u
i,j,m(5tp+1)
3 , u

i,j,m(5tp+1)
4 , are made

adjacent to the root r̂.
For every group i ∈ [t] and column ℓ ∈ [m(5tp+ 1)], we create a decoding gadget Di,ℓ

in the same style as Cygan et al. [49] for CONNECTED VERTEX COVER[pathwidth]. Every
variable group i has at most 2β possible truth assignments and by choice of p we have that
6p ≥ 2β , so there is an injective mapping κ : {0, 1}β → [6]p which assigns to each truth
assignment τ ∈ {0, 1}β a sequence κ(τ) ∈ [6]p. For each sequence h = (h1, . . . , hp) ∈ [6]p,
we create vertices xi,ℓh , x̄i,ℓh , yi,ℓh and edges {xi,ℓh , x̄i,ℓh }, {xi,ℓh , yi,ℓh }, {yi,ℓh , r̂}. We add the
edge {xi,ℓh , vi,j,ℓhj

} for all h = (h1, . . . , hp) ∈ [6]p and j ∈ [p]. Finally, we create two adjacent

vertices zi,ℓ and z̄i,ℓ and edges {zi,ℓ, yi,ℓh } for all h ∈ [6]p. Each decoding gadget Di,ℓ together

7.2 Connected Vertex Cover Lower Bound 149

B1,1 B1,2... · · ·... B1,m...
... B1,m+1 B1,m+2... · · ·... B1,2m...

B2,1 B2,2... · · ·... B2,m...
... B2,m+1 B2,m+2... · · ·... B2,2m...

Bt,1 Bt,2... · · ·... Bt,m...
... Bt,m+1 Bt,m+2... · · ·... Bt,2m...

...
...

...
...

...
...

...
...

...
...

...

· · ·... B1,#co...

· · ·... B2,#co...

· · ·... Bt,#co...

...
...

R1 R2

· · · · · · · · ·o1

ō1
o2

ō2
om

ōm
om+1

ōm+1
om+2

ōm+2
o2m

ō2m
o#co

ō#co

P 1,1

P 1,2

P 1,p

P 2,1

P 2,2

P 2,p

P t,1

P t,2

P t,p

= adjacent to root r̂ #co = (5tp+ 1)m

· · ·

· · ·

R#co

Fig. 7.5.: High-level construction for CONNECTED VERTEX COVER[linear-clique-width]. Every edge
between two blocks Bi,ℓ and Bi,ℓ+1 represents a join. The regions Rγ , highlighted by the
dashed cyan rectangles, are important for the proof of Lemma 7.2.6.

with the adjacent path gadgets P i,j,ℓ, j ∈ [p], forms the block Bi,ℓ, see Figure 7.5 for a
high-level depiction of the connections between different blocks.

Lastly, we construct the clause gadgets. We number the clauses of σ by C0, . . . , Cm−1.
For every column ℓ ∈ [m(5tp+ 1)], we create an adjacent pair of vertices oℓ and ōℓ. Let
ℓ′ ∈ [0,m − 1] be the remainder of (ℓ − 1) modulo m; for all i ∈ [t], h ∈ κ({0, 1}β) such
that κ−1(h) is a truth assignment for variable group i satisfying clause Cℓ′ , we add the
edge {oℓ, yi,ℓh }. See Figure 7.6 for a depiction of the decoding and clause gadgets and the
connections to the path gadgets.

Lemma 7.2.5. If σ is satisfiable, then there exists a connected vertex cover X of G = G(σ, β)
of size |X| ≤ (21tp+ (6p + 2)t+ 1)m(5tp+ 1) + 1 = b.

Proof. Let τ be a satisfying truth assignment of σ and let τ i denote the restriction of τ to
the i-th variable group for every i ∈ [t] and let κ(τ i) = hi = (hi1, . . . , hip) ∈ [6]p be the
corresponding sequence. The connected vertex cover is given by

X = {r̂} ∪
⋃

ℓ∈[m(5tp+1)]

{oℓ} ∪
⋃
i∈[t]

{yi,ℓhi , z
i,ℓ} ∪

⋃
h∈[6]p

{xi,ℓh } ∪
⋃
j∈[p]

X
hi

j

P i,j,ℓ

 ,

where X
hi

j

P i,j,ℓ refers to the sets given by Lemma 7.2.3.
Clearly, |X| = b, so it remains to prove thatX is a connected vertex cover. By Lemma 7.2.3

and the second part of Lemma 7.2.4 all edges induced by the path gadgets are covered by X
and all vertices on the path gadgets that belong to X are root-connected, except for possibly
the vertices at the ends, i.e.

⋃
i∈[t]

⋃
j∈[p]{u

i,j,1
1 , ui,j,12 , u

i,j,m(5tp+1)
3 , u

i,j,m(5tp+1)
4 }, but these

are contained in the neighborhood of r̂ by construction of G.

150 Chapter 7 Lower Bounds Parameterized By Clique-Width

...

zi,ℓ z̄i,ℓ

xi,ℓ(6,6,...)

x̄i,ℓ(6,6,...)

xi,ℓ(2,1,...)

x̄i,ℓ(2,1,...)

xi,ℓ(1,1,...)

x̄i,ℓ(1,1,...)
yi,ℓ(1,1,...)

yi,ℓ(2,1,...)

yi,ℓ(6,6,...)

vi,1,ℓ1
vi,1,ℓ2
vi,1,ℓ3
vi,1,ℓ4

vi,1,ℓ6

vi,2,ℓ1
vi,2,ℓ2
vi,2,ℓ3
vi,2,ℓ4
vi,2,ℓ5

...

...

oℓ ōℓ

vi,1,ℓ5

vi,2,ℓ6

= adjacent to r̂

clique K6

Fig. 7.6.: Decoding and clause gadget for CONNECTED VERTEX COVER[linear-clique-width].

Fix i ∈ [t], ℓ ∈ [m(5tp+ 1)], and consider the corresponding decoding gadget. Since
zi,ℓ ∈ X and xi,ℓh ∈ X for all h ∈ [6]p, all edges induced by the decoding gadget and all
edges between the decoding gadget and the path gadgets are covered by X. Furthermore,
since oℓ ∈ X, all edges inside the clause gadget and all edges between the clause gadget
and the decoding gadgets are covered by X. Hence, X has to be a vertex cover of G.

It remains to prove that the vertices in the decoding and clause gadgets that belong to X
are also root-connected. Again, fix i ∈ [t], ℓ ∈ [m(5tp+ 1)], and h = (h1, . . . , hp) ∈ [6]p\{hi}.
Since h ̸= hi, there is some j ∈ [p] such that hj ̸= hij and hence vi,j,ℓhj

∈ X by Lemma 7.2.3

which connects xi,ℓh to the root r̂. The vertices xi,ℓhi and zi,ℓ are root-connected via yi,ℓhi ∈ X.
We conclude by showing that oℓ is root-connected for all ℓ ∈ [m(5tp+ 1)]. Since τ is a

satisfying truth assignment of σ, there is some variable group i ∈ [t] such that τ i already
satisfies clause Cℓ′ , where ℓ′ is the remainder of (ℓ− 1) modulo m. By construction of G and
X, the vertex yi,ℓhi ∈ X is adjacent to oℓ, since κ(τ i) = hi, and connects oℓ to the root r̂. This
shows that all vertices of X are root-connected, so G[X] has to be connected.

Lemma 7.2.6. If there exists a connected vertex cover X of G = G(σ, β) of size |X| ≤
(21tp+ (6p + 2)t+ 1)m(5tp+ 1) + 1 = b, then σ is satisfiable.

Proof. We begin by arguing that X has to satisfy |X| = b. First, we must have that r̂ ∈ X,
because r̂ has a neighbor of degree 1. By Lemma 7.2.1, we have that |X ∩ P i,j,ℓ| ≥ 21 for
all i ∈ [t], j ∈ [p], ℓ ∈ [m(5tp+ 1)]. In every decoding gadget, i.e. one for every i ∈ [t] and
ℓ ∈ [m(5tp+ 1)], the set {zi,ℓ} ∪

⋃
h∈[6]p x

i,ℓ
h has to be contained in X, since every vertex

in this set has a neighbor of degree 1. Furthermore, to connect zi,ℓ to r̂, at least one of
the vertices yi,ℓh , h ∈ [6]p, has to be contained in X. Hence, X must contain at least 6p + 2
vertices per decoding gadget. Lastly, oℓ ∈ X for all ℓ ∈ [m(5tp+ 1)], since oℓ has a neighbor

7.2 Connected Vertex Cover Lower Bound 151

of degree 1. Since we have only considered disjoint vertex sets, this shows that |X| = b and
all of the previous inequalities have to be tight.

By Lemma 7.2.2, we know that X assumes one of the six possible states on each P i,j,ℓ.
Fix some P i,j =

⋃
ℓ∈[m(5tp+1)] P

i,j,ℓ and note that due to Lemma 7.2.4 the state can change
at most five times along P i,j . Such a state change is called a cheat. Let γ ∈ [0, 5tp] and
define the γ-th region Rγ =

⋃
i∈[t]

⋃
j∈[p]

⋃(γ+1)m
ℓ=γm+1 P

i,j,ℓ. Since there are 5tp+ 1 regions,
there is at least one region Rγ such that no cheat occurs in Rγ . We will consider this region
for the remainder of the proof and read off a satisfying truth assignment from this region.

For i ∈ [t], define hi = (hi1, . . . , hip) ∈ [6]p such that vi,j,γm+1
hi

j

/∈ X for all j ∈ [p]; this

is well-defined by Lemma 7.2.2. Since Rγ does not contain any cheats, the definition of
hi is independent of which column ℓ ∈ [γm + 1, (γ + 1)m] we consider. For every i ∈ [t]
and ℓ ∈ [γm+ 1, (γ + 1)m], we claim that yi,ℓh ∈ X if and only if h = hi. We have already
established that for every i and ℓ, there is exactly one h such that yi,ℓh ∈ X. Consider the
vertex xi,ℓhi ∈ X, its neighbors in G are vi,1,ℓ

hi
1
, vi,2,ℓ
hi

2
, . . . , vi,p,ℓhi

p
, x̄i,ℓhi , and yi,ℓhi . By construction

of hi and the tight allocation of the budget, we have (NG(xi,ℓhi) \ {yi,ℓhi }) ∩X = ∅. Therefore,
X has to include yi,ℓhi to connect xi,ℓhi to the root r̂. This shows the claim.

For i ∈ [t], we define the truth assignment τ i for variable group i by taking an arbitrary
truth assignment if hi /∈ κ({0, 1}β) and setting τ i = κ−1(hi) otherwise. By setting τ =⋃
i∈[t] τ

i we obtain a truth assignment for all variables and we claim that τ satisfies σ.
Consider some clause Cℓ′ , ℓ′ ∈ [0,m− 1], and let ℓ = γm+ ℓ′ + 1. We have already argued
that oℓ ∈ X and to connect oℓ to the root r̂, there has to be some yi,ℓh ∈ NG(oℓ) ∩X. By the
previous claim, h = hi and therefore τ i, and also τ , satisfy clause Cℓ′ due to the construction
of G. Because the choice of Cℓ′ was arbitrary, τ has to be a satisfying assignment of σ.

Lemma 7.2.7. The constructed graph G = G(σ, β) has lin-cw(G) ≤ tp+ 3 · 6p + O(1) and a
linear clique-expression of this width can be constructed in polynomial time.

Proof. We will describe how to construct a linear clique-expression for G of width tp+ 3 ·
6p+O(1). The clique-expression will use one path label (i, j) for every long path P i,j , i ∈ [t],
j ∈ [p], temporary decoding labels for every vertex of a decoding gadget, i.e. 3 · 6p + 2 many,
temporary gadget labels for every vertex of a path gadget, i.e. 38 many, two temporary
clause labels for the clause gadget, one label for the root vertex and a trash label.

The construction of the clique-expression is described in Algorithm 3 and the central
idea is to proceed column by column and group by group in each column. By reusing the
temporary labels, we keep the total number of labels small. The maximum number of labels
used simultaneously occurs in line 7 and is tp+ (3 · 6p + 2) + 38 + 2 + 1 + 1. This concludes
the proof.

Theorem 7.2.8. There is no algorithm that solves CONNECTED VERTEX COVER, given a linear
k-expression, in time O∗((6 − ε)k) for some ε > 0, unless CNF-SETH fails.

Proof. Assume that there exists an algorithm A that solves CONNECTED VERTEX COVER in
time O∗((6 − ε)k) for some ε > 0 given a linear k-expression. Given β, we define δ1 < 1
such that (6 − ε)log6(2) = 2δ1 and δ2 such that (6 − ε)1/β = 2δ2 . By picking β large enough,
we can ensure that δ = δ1 + δ2 < 1. We will show how to solve SATISFIABILITY using A in

152 Chapter 7 Lower Bounds Parameterized By Clique-Width

Algorithm 3: Constructing a linear clique-expression for G.

1 Introduce r̂ with root label and r̂′ with trash label and add the edge {r̂, r̂′};
2 for ℓ ∈ [m(5tp+ 1)] do
3 Introduce oℓ and ōℓ and the edge {oℓ, ōℓ} with the clause labels;
4 for i ∈ [t] do
5 Build Di,ℓ using decoding labels and add edges to oℓ;
6 for j ∈ [p] do
7 Build P i,j,ℓ using gadget labels and add edges to Di,j;
8 Join ui,j,ℓ1 and ui,j,ℓ2 to path label (i, j) if ℓ > 1 and to root label otherwise;
9 Relabel path label (i, j) to trash label;

10 Relabel ui,j,ℓ3 and ui,j,ℓ4 to path label (i, j);
11 Relabel all other gadget labels to the trash label;

12 Relabel all decoding labels to the trash label;

13 Relabel all clause labels to the trash label;

time O∗(2δn poly(m)) = O∗(2δn), where n is the number of variables, thus contradicting
CNF-SETH, Conjecture 2.1.1.

Given a SATISFIABILITY instance σ, we construct the graph G = G(σ, β) and the linear
clique-expression from Lemma 7.2.7 in polynomial time, note that we have β = O(1) and
hence p = O(1); recall p = ⌈log6(2β)⌉. We then run the assumed algorithm A on G and
return its answer. This is correct by Lemma 7.2.5 and Lemma 7.2.6. Due to Lemma 7.2.7,
the running time is

O∗
(

(6 − ε)tp+3·6p+O(1)
)

≤ O∗ (
(6 − ε)tp

)
≤ O∗

(
(6 − ε)⌈ n

β ⌉p
)

≤ O∗
(

(6 − ε)
n
β p

)
≤ O∗

(
(6 − ε)

n
β ⌈log6(2β)⌉

)
≤ O∗

(
(6 − ε)

n
β log6(2β)(6 − ε)

n
β

)
≤ O∗

(
2δ1β

n
β 2δ2n

)
≤ O∗

(
2(δ1+δ2)n

)
≤ O∗ (

2δn
)
,

hence completing the proof.

7.3 Connected Dominating Set Lower Bound
This subsection is devoted to proving that CONNECTED DOMINATING SET (with unit costs)
cannot be solved in time O∗((5 − ε)lin-cw(G)) for some ε > 0 unless the CNF-SETH, Con-
jecture 2.1.1, fails. We briefly outline the intuition behind the design of the path gadget,
which largely follows the same approach as for CONNECTED VERTEX COVER. Afterwards, we
present the construction of the path gadget and analyze it, then we move on to the complete
construction and correctness proofs. The decoding gadgets are again directly adapted from
the lower bound for CONNECTED VERTEX COVER[pathwidth] given by Cygan et al. [49].

Root. We create a distinguished vertex r̂ called the root and by attaching a vertex of degree
1 to r̂ we ensure that every connected dominating set has to contain r̂.

7.3 Connected Dominating Set Lower Bound 153

{01,00} {01} {10,00} {11,00} {11}
{11} 1 1 1 1 1
{01} 0 1 0 0 1
{11,00} 0 0 1 1 1
{10,00} 0 0 0 1 1
{01,00} 0 0 0 0 1

Tab. 7.3.: A largest triangular submatrix, after reordering rows and columns, of the compatibility
matrix for CONNECTED DOMINATING SET.

7.3.1 Path Gadget
To rule out the running time O∗((5 − ε)lin-cw(G)) for any ε > 0, we have to build a path
gadget that admits 5 distinct states and narrows down to a single label, so that each row
of the construction contributes one unit of linear-clique-width. We begin by analyzing the
possible behaviors of a partial solution on a label.

First, we consider the possible states of a single vertex v with respect to a partial solution
X. Compared to CONNECTED VERTEX COVER, there is one more state, as the state 0 splits
into the states 01 and 00, which denote that v /∈ X and whether v is dominated by X or not,
and we keep the states 11 and 10. Hence, the state of a label can be represented by a subset
of {00,01,10,11}.

Similar to before, we study the compatibility of these label states across a join. The result
is a matrix of size 15 × 15, as we can exclude the empty subset. However, many states lead
to the same compatibility pattern, e.g. for any subset ∅ ≠ S ⊆ {00,01,10,11} the states S
and S ∪ {01} yield the same compatibility pattern, since the vertex state 01 does not add any
additional constraint. It turns out that the compatibility matrix contains only five distinct
rows, which give rise to the triangular submatrix Table 7.3 of size 5 × 5 after reordering.
Surprisingly, the number of redundancies is so large that, although CONNECTED DOMINATING

SET has four vertex states compared to only three for CONNECTED VERTEX COVER, we end
up with fewer label states than for CONNECTED VERTEX COVER.

Again, it is sufficient to take independent sets of size two as labels incident to the join.
The relevant label states will be represented by the following ordered pairs of vertex states:
(01,00), (01,01), (10,00), (11,00), (11,11). By pairing these states along the diagonal of the
triangular submatrix, we then obtain the desired states for the path gadget in the transition
order.

Formal Definition of States. To capture the vertex states, we define the four atomic
states Atoms = {00,01,10,11} and the predicates sol, conn, dom : Atoms → {0, 1} by
sol(a) = [a ∈ {10,11}], conn(a) = [a = 11], and dom(a) = [a = 01]. The atoms 01 and 00

mean that a vertex is not inside the partial solution and the subscript denotes whether the
vertex is dominated by the partial solution or not; 11 and 10 indicate that a vertex is inside

154 Chapter 7 Lower Bounds Parameterized By Clique-Width

the partial solution and the subscript indicates whether it is root-connected or not. Building
on these atomic states, we define five states consisting of four atomic states each:

s1 = (01,00,11,01)

s2 = (01,01,01,01)

s3 = (10,00,11,00)

s4 = (11,00,10,00)

s5 = (11,01,01,00)

We collect these states into the set States = {s1, . . . , s5} and use the notation sℓi ∈ Atoms,
ℓ ∈ [5], i ∈ [4], to refer to the i-th atomic component of state sℓ. Note that s5 can be obtained
from s1 by swapping the first two components with the last two components; in the same
way, s4 can be obtained from s3.

Given a partial solution Y ⊆ V (G), we associate to each vertex its state in Y with the
map stateY : V (G) \ {r̂} → Atoms, which is defined by

stateY (v) =

00 if v /∈ N [Y ∪ {r̂}],

01 if v ∈ N [Y ∪ {r̂}] \ Y,

10 if v ∈ Y and v is not root-connected in Y ∪ {r̂},

11 if v ∈ Y and v is root-connected in Y ∪ {r̂}.

Subdivided Edges. In the graph construction, we frequently need subdivided edges. Given
two vertices u and v, adding a subdivided edge between u and v means adding a new vertex
w{u,v} and the edges {u,w{u,v}} and {w{u,v}, v}. The crucial property of a subdivided edge
between u and v is that any connected dominating set X has to contain at least one of u
and v, since u and v remain the only neighbors of w{u,v} throughout the entire construction.
In this sense, connected dominating sets behave in regards to subdivided edges as vertex
covers do to normal edges, hence allowing us to adapt a substantial part of the construction
from CONNECTED VERTEX COVER to CONNECTED DOMINATING SET.

Formal Construction. We proceed by describing how to construct the path gadget P . We
create the following sets of vertices:
• 4 join vertices u1,1, u1,2, u2,1, u2,2,
• 6 auxiliary vertices a1,1, a1,2, a1,3, a2,1, a2,2, a2,3,
• 4 solution indicator vertices b1,0, b1,1, b2,0, b2,1,
• 4 connectivity indicator vertices c1,0, c1,1, c2,0, c2,1,
• 4 domination indicator vertices d1,0, d1,1, d2,0, d2,1, and
• 5 clique vertices v1, . . . , v5.
For every i ∈ [2], we add the edges {ui,1, ai,1}, {ai,1, ai,2}, {ai,1, bi,0}, {ai,1, ci,1}, and
{ui,2, di,1}. Moreover, for every i ∈ [2], we add subdivided edges from ui,1 to ai,3 and bi,0;
from ai,3 to bi,1; from bi,0 to bi,1; from ci,0 to ci,1; and from di,0 to di,1.

We make the following vertices adjacent to the root vertex r̂: the auxiliary vertices ai,3
for all i ∈ [2], all solution indicator vertices, all connectivity indicator vertices, all domination

7.3 Connected Dominating Set Lower Bound 155

indicator vertices, and all clique vertices. We add all possible subdivided edges between
the clique vertices vℓ, ℓ ∈ [5], so that they induce a clique of size 5 where every edge is
subdivided.

Finally, we explain how to connect the indicator vertices to the clique vertices. The clique
vertex vℓ corresponds to choosing state sℓ on the join vertices (u1,1, u1,2, u2,1, u2,2). The
indicator vertices are supposed to describe the behavior of a partial solution X of P + r̂ as
follows:
• bi,1 ∈ X ⇐⇒ ui,1 ∈ X,
• ci,1 ∈ X ⇐⇒ ui,1 ∈ X and ui,1 is root-connected in X ∪ {r̂},
• di,1 ∈ X ⇐⇒ ui,2 ∈ N [X] \X, i.e., u1,2 is dominated by X.
Accordingly, for all i ∈ [2] and ℓ ∈ [5], we add subdivided edges from vℓ to bi,sol(sℓ

2i−1)
and ci,conn(sℓ

2i−1) and di,dom(sℓ
2i

). This concludes the construction of P , see Figure 7.7 for a
depiction of the construction.

v1

v2

v3

v4

v5

subdivided K5

== adjacent to root r̂

u1,1

u1,2

a1,1

a1,2

a1,3 b1,1

b1,0

c1,1

c1,0

d1,0

d1,1

u2,1

u2,2

a2,1

a2,2

a2,3b2,1

b2,0

c2,1

c2,0

d2,0

d2,1

Fig. 7.7.: The path gadget for CONNECTED DOMINATING SET[linear-clique-width]. Vertices denoted by
squares are adjacent to the root vertex r̂ and bold red edges represent subdivided edges. The
edges of the subdivided 5-clique formed by the clique vertices vℓ, ℓ ∈ [5], are not depicted.
Besides the connections to r̂, only the join vertices ui,1, ui,2, i ∈ [2], and clique vertices vℓ,
ℓ ∈ [5], have connections to outside this path gadget.

Behavior of a Single Path Gadget. For the upcoming lemmas, we assume that G is a graph
that contains P + r̂ as an induced subgraph and that only the join vertices ui,1, ui,2, i ∈ [2],
and clique vertices vℓ, ℓ ∈ [5], have neighbors outside this copy of P + r̂. Furthermore, let X
be a connected dominating set of G with r̂ ∈ X. We study the behavior of such connected
dominating sets on P ; we will abuse notation and write X ∩ P instead of X ∩ V (P). The
assumption on how P connects to the remaining graph implies that any vertex v ∈ V (P)
with stateX∩P (v) = 10 has to be root-connected in X through some path that leaves P + r̂

156 Chapter 7 Lower Bounds Parameterized By Clique-Width

via one of the join vertices ui,j , i, j ∈ [2]. Note that any path leaving P + r̂ through some
clique vertex vℓ, ℓ ∈ [5], immediately yields a path to r̂ in P + r̂ as {vℓ : ℓ ∈ [5]} ⊆ N(r̂).

We obtain a lower bound for |X ∩ P | via a vertex-disjoint packing of subgraphs.

Lemma 7.3.1. Any connected dominating set X with r̂ ∈ X satisfies |X ∩ P | ≥ 14 =
2 · 5 + 4 and more specifically, ai,1 ∈ X, |X ∩ {bi,0, bi,1, ai,3, ui,1}| ≥ 2, X ∩ {ci,0, ci,1} ̸= ∅,
X ∩ {di,0, di,1} ≠ ∅ for all i ∈ [2] and |X ∩ {v1, . . . , v5}| ≥ 4.

Proof. First, observe that the closed neighborhoods of each of the following vertices are
disjoint: ai,2, w{bi,0,bi,1}, w{ai,3,ui,1}, w{ci,0,ci,1}, w{di,0,di,1} for all i ∈ [2]. Since X is a
dominating set, X contains at least one vertex of each of these neighborhoods. Since X
is connected, it follows that ai,1 ∈ X, and for each of the subdivided edges one of the
endpoints must be contained in X.

Next, we turn to the subdivided 5-clique. Again, X has to contain at least one endpoint
of each subdivided edge present in this clique. If there were two clique vertices vi, vj /∈ X,
i ̸= j, then the subdivided edge between them is not resolved by X. Therefore, X can avoid
taking at most one of the clique vertices.

For any partial solution Y ⊆ V (P), we formalize the states at the boundary of P with
the 4-tuple

state(Y) = (stateY (u1,1), stateY (u1,2), stateY (u2,1), stateY (u2,2)).

The following lemma shows that the states communicated to the boundary depend on the
state of the central clique in the desired way.

Lemma 7.3.2. Any connected dominating setX with r̂ ∈ X and |X∩P | ≤ 14 satisfies ai,1 ∈ X,
X ∩{bi,0, bi,1, ai,3, ui,1} ∈ {{bi,0, ai,3}, {bi,1, ui,1}}, |X ∩{ci,0, ci,1}| = 1, |X ∩{di,0, di,1}| = 1
for all i ∈ [2] and there exists a unique ℓ ∈ [5] such that vℓ /∈ X. Furthermore, we have that
state(X ∩ P) = sℓ.

Proof. All the inequalities of Lemma 7.3.1 have to be tight in this case which proves every-
thing of the first part except the part regarding {bi,0, bi,1, ai,3, ui,1}. We know that X contains
exactly two of these vertices, but if X contains two that are connected by a subdivided
edge, then the subdivided edge between the other two vertices is not resolved. Therefore,
X ∩ {bi,0, bi,1, ai,3, ui,1} ∈ {{bi,0, ai,3}, {bi,1, ui,1}}.

It remains to prove the property regarding the states of the join vertices. Since vℓ /∈ X, the
other endpoints of the incident subdivided edges have to be contained in X. By construction,
these are the vertices bi,sol(sℓ

2i−1), ci,conn(sℓ
2i−1), and di,dom(sℓ

2i
) for i ∈ [2]. Fix i ∈ [2], and note

that by the budget allocation inside P , it follows that ui,2 /∈ X. Therefore, ui,2 can only
be dominated by di,1 inside P and stateX∩P (ui,2) = 01 ⇐⇒ di,1 ∈ X ⇐⇒ dom(sℓ2i) =
1 ⇐⇒ sℓ2i = 01. We have that ui,1 ∈ X ⇐⇒ bi,1 ∈ X ⇐⇒ sol(sℓ2i−1) = 1 ⇐⇒ sℓ2i−1 ∈
{10,11} and ui,1 is always dominated by ai,1, hence stateX∩P (ui,1) ̸= 00 in all cases. If
ui,1 ∈ X, then its only neighbor inside X ∩ P is ai,1 which brings root-connectivity to ui,1
if and only if ci,1 ∈ X, therefore stateX∩P (ui,1) = 11 ⇐⇒ ci,1 ∈ X ⇐⇒ conn(sℓ2i−1) =
1 ⇐⇒ sℓ2i−1 = 11. This concludes the proof.

7.3 Connected Dominating Set Lower Bound 157

Next, we establish that for any sℓ ∈ States, a partial solution attaining sℓ actually exists
and that these partial solutions are root-connected and dominate everything inside P , if this
holds at the join vertices ui,j , i, j ∈ [2].

Lemma 7.3.3. For every ℓ ∈ [5], there exists a set Xℓ
P of P such that |Xℓ

P | = 14, Xℓ
P ∩

{v1, . . . , v5} = {v1, . . . , v5} \ {vℓ}, state(Xℓ
P) = sℓ, and

stateXℓ
P

(V (P) \ {a1,1, a2,1, u1,1, u1,2, u2,1, u2,2}) ⊆ {01,11}.

If X is a vertex subset of G with r̂ ∈ X and X ∩ P = Xℓ
P and stateX({ui,1, u1,2}) ⊆ {01,11}

for every i ∈ [2], then stateX(V (P)) ⊆ {01,11}.

Proof. We define

Xℓ
P = ({v1, . . . , v5} \ {vℓ}) ∪ {ai,1 : i ∈ [2]}

∪ {ui,1 : i ∈ [2] and sol(sℓ2i−1) = 1} ∪ {ai,3 : i ∈ [2] and sol(sℓ2i−1) = 0}

∪ {bi,sol(sℓ
2i−1) : i ∈ [2]} ∪ {ci,conn(sℓ

2i−1) : i ∈ [2]} ∪ {di,dom(sℓ
2i

) : i ∈ [2]}

and claim that Xℓ
P has the desired properties. We clearly have that |Xℓ

P | = 14 and vℓ /∈ Xℓ
P .

We proceed by showing that every vertex of P with the 6 exceptions a1,1, a2,1, u1,1, u1,2, u2,1, u2,2

is dominated by Xℓ
P or root-connected in Xℓ

P + r̂.
First, observe that for any vertex v ∈ N(r̂) ∩ V (P), we have that stateXℓ

P
(v) ∈ {01,11}.

Since ai,1 ∈ Xℓ
P and ai,2 /∈ Xℓ

P , we have that stateXℓ
P

(ai,2) = 01 for every i ∈ [2]. It remains
to handle the subdividing vertices w{x,y}. Since Xℓ

P contains one vertex from every pair of
indicator vertices, every subdividing edge between such a pair is resolved. By construction
Xℓ
P either contains the pair {bi,0, ai,3} or the pair {bi,1, ui,1} for every i ∈ [2] and in either

case the subdivided edges incident to ai,3 and ui,1 are resolved. The subdivided edges
between the clique vertices are resolved because Xℓ

P contains 4 out of 5 clique vertices.
Finally, the subdivided edges between vℓ and the indicator vertices are resolved, since by
construction of P , the subdivided edges incident to vℓ lead to bi,sol(sℓ

2i−1), ci,conn(sℓ
2i−1), and

di,dom(sℓ
2i

) for all i ∈ [2] which are precisely the indicator vertices contained in Xℓ
P .

By similar arguments as in the proof of Lemma 7.3.2, we obtain state(Xℓ
P) = sℓ.

We proceed with the second part. By the first part, it remains to handle the vertices
a1,1, a2,1, u1,1, u1,2, u2,1, u2,2. By assumption, the join-vertices that are not contained in X
are dominated and those that are contained in X are root-connected. By definition of Xℓ

P ,
we see that a1,1, a2,1 ∈ X, hence it remains to establish the root-connectivity of a1,1 and
a2,1.

We show that ai,1 is root-connected by considering the different cases for stateXℓ
P

(ui,1).
Note that stateXℓ

P
(ui,1) ̸= 00, since ai,1 ∈ Xℓ

P . If stateXℓ
P

(ui,1) = 01, then ai,1 is root-
connected via the path ai,1, bi,0, r̂ in X. If stateXℓ

P
(ui,1) = 10, then ui,1 is root-connected in

X via some path that leaves P+ r̂ which we can extend to ai,1. Finally, if stateXℓ
P

(ui,1) = 11,
then the path ai,1, ci,1, r̂ exists in G[X].

State Transitions. In the lower bound construction, we again create long paths by repeat-
edly concatenating the path gadgets P . To study how the state can change between two
consecutive path gadgets, suppose that we have two copies P 1 and P 2 of P such that the

158 Chapter 7 Lower Bounds Parameterized By Clique-Width

vertices u2,1 and u2,2 in P 1 are joined to the vertices u1,1 and u1,2 in P 2. We denote the
vertices of P 1 with a superscript 1 and the vertices of P 2 with a superscript 2, e.g., u1

2,1 refers
to the vertex u2,1 of P 1. Again, suppose that P 1 and P 2 are embedded as induced subgraphs
in a larger graph G with a root vertex r̂ and that only the vertices u1

1,1, u
1
1,2, u

2
2,1, u

2
2,2 and

the clique vertices v1
ℓ , v

2
ℓ , ℓ ∈ [5], have neighbors outside of P 1 + P 2 + r̂. Furthermore, X

denotes a connected dominating set of G with r̂ ∈ X.
The previous lemmas allow us to conclude that the gadget state can indeed only transition

according to the transition order and that the state can remain stable.

0
1
0
1

=
=
=
=

00

01

10

111
1

0
1

0
0

1
1

1
0

1
1

0
1

0
01

1
1
0

×××××

×××

×

×

×

×

×

P 1
P 2

at P 1: (sℓ1
3 , s

ℓ1
4)

at P 2: (sℓ2
1 , s

ℓ2
2)

Fig. 7.8.: A matrix depicting the possible state transitions between two consecutive path gadgets.
The rows are labeled with (sℓ1

3 , sℓ1
4), ℓ1 ∈ [5], and the columns are labeled with (sℓ2

1 , sℓ2
2),

ℓ2 ∈ [5]. An × marks possible state transitions in a connected dominating set.

Lemma 7.3.4. If X satisfies |X ∩ P 1| ≤ 14 and |X ∩ P 2| ≤ 14, then state(X ∩ P 1) = sℓ1

and state(X ∩ P 2) = sℓ2 with ℓ1 ≤ ℓ2.
Additionally, for each ℓ ∈ [5], the set Xℓ = Xℓ

P 1 ∪Xℓ
P 2 dominates or root-connects all inner

join vertices, i.e., stateXℓ({u1
2,1, u

1
2,2, u

2
1,1, u

2
1,2}) ⊆ {01,11}.

Proof. By Lemma 7.3.2, there are ℓ1, ℓ2 ∈ [5] such that state(X ∩ P 1) = sℓ1 and state(X ∩
P 2) = sℓ2 . It remains to verify that ℓ1 ≤ ℓ2. The main idea is to consider the states at the
inner join vertices u1

2,1, u
1
2,2, and u2

1,1, u2
1,2 and notice that at least one of these four vertices is

not dominated or not root-connected whenever ℓ1 > ℓ2. Recall that these inner join vertices
are only adjacent to vertices inside P 1 + P 2 and N({u1

2,1, u
1
2,2}) ∩ V (P 2) = {u2

1,1, u
2
1,2} and

N({u2
1,1, u

2
1,2}) ∩ V (P 1) = {u1

2,1, u
1
2,2}. Figure 7.8 depicts the possible state transitions.

First, if ℓ1 ∈ {3, 4, 5} and ℓ2 ∈ [2], then we have that stateX∩P 1(u1
2,2) = 00 and

stateX∩P 2({u2
1,1, u

2
1,2}) ⊆ {00,01}. Therefore, the vertex u1

2,2 cannot be dominated by X
in this case. Secondly, if ℓ1 ∈ {4, 5} and ℓ2 = 3, then 11 /∈ stateX∩P 1({u1

2,1, u
1
2,2}) and

stateX∩P 2(u2
1,1) = 10. Therefore, the vertex u2

1,1 cannot be root-connected in X in this
case. Lastly, if (ℓ1, ℓ2) ∈ {(2, 1), (5, 4)}, then we have stateX∩P 1({u1

2,1, u
1
2,2}) ⊆ {00,01}

and stateX∩P 2(u2
1,2) = 00. Therefore, the vertex u2

1,2 cannot be dominated by X in this
case.

For the second part, fix some ℓ ∈ [5]. By Lemma 7.3.3, we have that state(Xℓ ∩ P 1) =
state(Xℓ ∩ P 2) = sℓ. We distinguish based on ℓ ∈ [5]; also see Figure 7.9:

7.3 Connected Dominating Set Lower Bound 159

• ℓ = 1: u2
1,2 is dominated by u1

2,1.
• ℓ = 2: all four vertices are already dominated by Lemma 7.3.3.
• ℓ = 3: u1

2,1 root-connects u2
1,1 and dominates u2

1,2; u2
1,1 dominates u1

2,2.
• ℓ = 4: reverse situation of ℓ = 3.
• ℓ = 5: reverse situation of ℓ = 1.
This finishes the proof of the second part.

0 1 0 1= = = =00 01 10 11

1

0 1

u1
2,1

u1
2,2

u2
1,1

u2
1,2

Case 1:

0 0

u1
2,1

u1
2,2

u2
1,1

u2
1,2

Case 2:

0 0

u1
2,1

u1
2,2

u2
1,1

u2
1,2

Case 3:

1

1

1

1

u1
2,1

u1
2,2

u2
1,1

u2
1,2

Case 4:

1

1

0

u1
2,1

u1
2,2

u2
1,1

u2
1,2

Case 5:

011 110

Fig. 7.9.: Case distinction to show stateXℓ ({u1
2,1, u1

2,2, u2
1,1, u2

1,2}) ⊆ {01, 11}.

We say that a cheat occurs if ℓ1 < ℓ2. Creating arbitrarily long paths of the path gadgets
P , Lemma 7.2.4 shows that at most |States| − 1 = 4 = O(1) cheats occur on such a path
which allows us to find a cheat-free region as outlined previously.

7.3.2 Complete Construction
Setup. Assume that CONNECTED DOMINATING SET can be solved in time O∗((5 − ε)k) for
some ε > 0 when given a linear k-expression. Given a SATISFIABILITY-instance σ with n

variables and m clauses, we construct an equivalent CONNECTED DOMINATING SET instance
with linear-clique-width approximately n log5(2) so that the existence of such an algorithm
for CONNECTED DOMINATING SET would imply that the SETH is false.

We pick an integer β only depending on ε; the precise choice of β will be discussed at
a later point. The variables of σ are partitioned into groups of size at most β, resulting in
t = ⌈n/β⌉ groups. Furthermore, we pick the smallest integer p that satisfies 5p ≥ 2β , i.e.,
p = ⌈log5(2β)⌉. We now begin with the construction of the CONNECTED DOMINATING SET

instance (G = G(σ, β), b).
We create the root vertex r̂ and attach a leaf r̂′ which forces r̂ into any connected

dominating set. For every group i ∈ [t], we create p long path-like gadgets P i,j , j ∈ [p],
where each P i,j consists of m(4tp+ 1) copies P i,j,ℓ, ℓ ∈ [m(4tp+ 1)], of the path gadget P
and consecutive copies are connected by a join. More precisely, the vertices in some P i,j,ℓ

inherit their names from the generic path gadget P and the superscript of P i,j,ℓ and for every
i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)−1], the vertices {ui,j,ℓ2,1 , u

i,j,ℓ
2,2 } are joined to {ui,j,ℓ+1

1,1 , ui,j,ℓ+1
1,2 }.

The ends of each path P i,j , i.e., the vertices ui,j,11,1 , ui,j,11,2 , u
i,j,m(4tp+1)
2,1 , u

i,j,m(4tp+1)
2,2 are made

adjacent to the root r̂.
For every group i ∈ [t] and column ℓ ∈ [m(4tp+ 1)], we create a decoding gadget Di,ℓ

in the same style as Cygan et al. [49] for CONNECTED VERTEX COVER[pathwidth]. Every
variable group i has at most 2β possible truth assignments and by choice of p we have that
5p ≥ 2β , so we can find an injective mapping κ : {0, 1}β → [5]p which assigns to each truth

160 Chapter 7 Lower Bounds Parameterized By Clique-Width

B1,1 B1,2... · · ·... B1,m...
... B1,m+1 B1,m+2... · · ·... B1,2m...

B2,1 B2,2... · · ·... B2,m...
... B2,m+1 B2,m+2... · · ·... B2,2m...

Bt,1 Bt,2... · · ·... Bt,m...
... Bt,m+1 Bt,m+2... · · ·... Bt,2m...

...
...

...
...

...
...

...
...

...
...

...

· · ·... B1,#co...

· · ·... B2,#co...

· · ·... Bt,#co...

...
...

R1 R2

· · · · · · · · ·o1

ō1
o2

ō2
om

ōm
om+1

ōm+1
om+2

ōm+2
o2m

ō2m
o#co

ō#co

P 1,1

P 1,2

P 1,p

P 2,1

P 2,2

P 2,p

P t,1

P t,2

P t,p

= adjacent to root r̂ #co = (4tp+ 1)m

· · ·

· · ·

R#co

Fig. 7.10.: High-level construction for CONNECTED DOMINATING SET[linear-clique-width]. Every edge
between two blocks Bi,ℓ and Bi,ℓ+1 represents a join. The regions Rγ , highlighted by the
dashed cyan rectangles, are important for the proof of Lemma 7.3.6.

assignment τ ∈ {0, 1}β a sequence κ(τ) ∈ [5]p. For each sequence h = (h1, . . . , hp) ∈ [5]p,
we create vertices xi,ℓh , x̄i,ℓh , yi,ℓh and edges {xi,ℓh , x̄i,ℓh }, {xi,ℓh , yi,ℓh }, {yi,ℓh , r̂}. We add the
edge {xi,ℓh , vi,j,ℓhj

} for all h = (h1, . . . , hp) ∈ [5]p and j ∈ [p]. Finally, we create two adjacent

vertices zi,ℓ and z̄i,ℓ and edges {zi,ℓ, yi,ℓh } for all h ∈ [5]p. Each decoding gadget Di,ℓ together
with the adjacent path gadgets P i,j,ℓ, j ∈ [p], forms the block Bi,ℓ, see Figure 7.10 for a
high-level depiction of the connections between different blocks.

Lastly, we construct the clause gadgets. We number the clauses of σ by C0, . . . , Cm−1.
For every column ℓ ∈ [m(4tp+ 1)], we create an adjacent pair of vertices oℓ and ōℓ. Let
ℓ′ ∈ [0,m − 1] be the remainder of (ℓ − 1) modulo m; for all i ∈ [t], h ∈ κ({0, 1}β) such
that κ−1(h) is a truth assignment for variable group i satisfying clause Cℓ′ , we add the
edge {oℓ, yi,ℓh }. See Figure 7.11 for a depiction of the decoding and clause gadget and the
connections to the path gadgets.

Lemma 7.3.5. If σ is satisfiable, then there exists a connected dominating set X of G = G(σ, β)
of size |X| ≤ (14tp+ (5p + 2)t+ 1)m(4tp+ 1) + 1 = b.

Proof. Let τ be a satisfying truth assignment of σ and let τ i denote the restriction of τ to
the i-th variable group for every i ∈ [t] and let κ(τ i) = hi = (hi1, . . . , hip) ∈ [5]p be the
corresponding sequence. The connected dominating set is given by

X = {r̂} ∪
⋃

ℓ∈[m(4tp+1)]

{oℓ} ∪
⋃
i∈[t]

{yi,ℓhi , z
i,ℓ} ∪

⋃
h∈[5]p

{xi,ℓh } ∪
⋃
j∈[p]

X
hi

j

P i,j,ℓ

 ,

where X
hi

j

P i,j,ℓ refers to the sets given by Lemma 7.3.3.

7.3 Connected Dominating Set Lower Bound 161

...

zi,ℓ z̄i,ℓ

xi,ℓ(5,5,...)

x̄i,ℓ(5,5,...)

xi,ℓ(2,1,...)

x̄i,ℓ(2,1,...)

xi,ℓ(1,1,...)

x̄i,ℓ(1,1,...)
yi,ℓ(1,1,...)

yi,ℓ(2,1,...)

yi,ℓ(5,5,...)

vi,1,ℓ1
vi,1,ℓ2
vi,1,ℓ3
vi,1,ℓ4
vi,1,ℓ5

vi,2,ℓ1
vi,2,ℓ2
vi,2,ℓ3
vi,2,ℓ4
vi,2,ℓ5

...

...

oℓ ōℓ

= adjacent to r̂

subdivided K5

Fig. 7.11.: Decoding and clause gadget for CONNECTED DOMINATING SET[linear-clique-width].

Clearly, |X| = b as |Xhi
j

P i,j,ℓ | = 14 for all i, j, ℓ, so it remains to prove that X is a connected
dominating set. We begin by considering the path gadgets. First, notice that we have⋃

i∈[t]

⋃
j∈[p]

{ui,j,11,1 , ui,j,11,2 , u
i,j,m(4tp+1)
2,1 , u

i,j,m(4tp+1)
2,2 } ⊆ N(r̂),

hence the vertices at the ends of the paths P i,j are dominated or root-connected in X. Next,
we invoke Lemma 7.3.3 and the second part of Lemma 7.3.4 to see that all vertices on the
path gadgets are root-connected in X or dominated.

Fix i ∈ [t], ℓ ∈ [m(4tp+ 1)], and consider the corresponding decoding gadget. Since
zi,ℓ ∈ X and xi,ℓh ∈ X for all h ∈ [5]p, all vertices in the decoding gadget are dominated by
X. Furthermore, since oℓ ∈ X, all vertices inside the clause gadget are dominated by X.
Hence, X has to be a dominating set of G.

It remains to prove that the vertices in the decoding and clause gadgets that belong to X
are also root-connected. Again, fix i ∈ [t], ℓ ∈ [m(4tp+ 1)], and h = (h1, . . . , hp) ∈ [5]p\{hi}.
Since h ̸= hi, there is some j ∈ [p] such that hj ̸= hij and hence vi,j,ℓhj

∈ X by Lemma 7.3.3

which connects xi,ℓh to the root r̂. The vertices xi,ℓhi and zi,ℓ are root-connected via yi,ℓhi ∈ X.
We conclude by showing that oℓ is root-connected for all ℓ ∈ [m(4tp+ 1)]. Since τ is a

satisfying truth assignment of σ, there is some variable group i ∈ [t] such that τ i already
satisfies clause Cℓ′ , where ℓ′ is the remainder of (ℓ− 1) modulo m. By construction of G and
X, the vertex yi,ℓhi ∈ X is adjacent to oℓ, since κ(τ i) = hi, and connects oℓ to the root r̂. This
shows that all vertices of X are root-connected, so G[X] has to be connected.

Lemma 7.3.6. If there exists a connected dominating set X of G = G(σ, β) of size |X| ≤
(14tp+ (5p + 2)t+ 1)m(4tp+ 1) + 1 = b, then σ is satisfiable.

162 Chapter 7 Lower Bounds Parameterized By Clique-Width

Proof. We begin by arguing that X has to satisfy |X| = b. First, we must have that r̂ ∈ X,
because r̂ has a neighbor of degree 1. By Lemma 7.3.1, we have that |X ∩ P i,j,ℓ| ≥ 14 for
all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)]. In every decoding gadget, i.e., one for every i ∈ [t] and
ℓ ∈ [m(4tp+ 1)], the set {zi,ℓ} ∪

⋃
h∈[5]p x

i,ℓ
h has to be contained in X, since every vertex

in this set has a neighbor of degree 1. Furthermore, to connect zi,ℓ to r̂, at least one of
the vertices yi,ℓh , h ∈ [5]p, has to be contained in X. Hence, X must contain at least 5p + 2
vertices per decoding gadget. Lastly, oℓ ∈ X for all ℓ ∈ [m(4tp+ 1)], since oℓ has a neighbor
of degree 1. Since we have only considered disjoint vertex sets, this shows that |X| = b and
all of the previous inequalities have to be tight.

By Lemma 7.3.2, we know that X assumes one of the five possible states on each P i,j,ℓ.
Fix some P i,j =

⋃
ℓ∈[m(4tp+1)] P

i,j,ℓ and note that due to Lemma 7.3.4 the state can change
at most four times along P i,j . Such a state change is called a cheat. Let γ ∈ [0, 4tp] and
define the γ-th region Rγ =

⋃
i∈[t]

⋃
j∈[p]

⋃(γ+1)m
ℓ=γm+1 P

i,j,ℓ. Since there are 4tp+ 1 regions,
there is at least one region Rγ such that no cheat occurs in Rγ . We will consider this region
for the remainder of the proof and read off a satisfying truth assignment from this region.

For i ∈ [t], define hi = (hi1, . . . , hip) ∈ [5]p such that vi,j,γm+1
hi

j

/∈ X for all j ∈ [p]; this

is well-defined by Lemma 7.3.2. Since Rγ does not contain any cheats, the definition of
hi is independent of which column ℓ ∈ [γm + 1, (γ + 1)m] we consider. For every i ∈ [t]
and ℓ ∈ [γm+ 1, (γ + 1)m], we claim that yi,ℓh ∈ X if and only if h = hi. We have already
established that for every i and ℓ, there is exactly one h such that yi,ℓh ∈ X. Consider the
vertex xi,ℓhi ∈ X, its neighbors in G are vi,1,ℓ

hi
1
, vi,2,ℓ
hi

2
, . . . , vi,p,ℓhi

p
, x̄i,ℓhi , and yi,ℓhi . By construction

of hi and the tight allocation of the budget, we have (NG(xi,ℓhi) \ {yi,ℓhi }) ∩X = ∅. Therefore,
X has to include yi,ℓhi to connect xi,ℓhi to the root r̂. This shows the claim.

For i ∈ [t], we define the truth assignment τ i for variable group i by taking an arbitrary
truth assignment if hi /∈ κ({0, 1}β) and setting τ i = κ−1(hi) otherwise. By setting τ =⋃
i∈[t] τ

i we obtain a truth assignment for all variables and we claim that τ satisfies σ.
Consider some clause Cℓ′ , ℓ′ ∈ [0,m− 1], and let ℓ = γm+ ℓ′ + 1. We have already argued
that oℓ ∈ X and to connect oℓ to the root r̂, there has to be some yi,ℓh ∈ NG(oℓ) ∩X. By the
previous claim, h = hi for some i ∈ [t] and therefore τ i, and also τ , satisfy clause Cℓ′ due
to the construction of G. Because the choice of Cℓ′ was arbitrary, τ has to be a satisfying
assignment of σ.

Lemma 7.3.7. The constructed graph G = G(σ, β) has lin-cw(G) ≤ tp+ 3 · 5p + O(1) and a
linear clique-expression of this width can be constructed in polynomial time.

Proof. We will describe how to construct a linear clique-expression for G of width tp+ 3 ·
5p+O(1). The clique-expression will use one path label (i, j) for every long path P i,j , i ∈ [t],
j ∈ [p], temporary decoding labels for every vertex of a decoding gadget, i.e. 3 · 5p + 2 many,
temporary gadget labels for every vertex of a path gadget, two temporary clause labels for
the clause gadget, one label for the root vertex and a trash label.

The construction of the clique-expression is described in Algorithm 4 and the idea is to
proceed column by column and group by group in each column. By reusing the temporary
labels, we keep the total number of labels small. The maximum number of labels used
simultaneously occurs in line 7 and is tp+ (3 · 5p + 2) + O(1). This concludes the proof.

7.3 Connected Dominating Set Lower Bound 163

Algorithm 4: Constructing a linear clique-expression for G.

1 Introduce r̂ with root label and r̂′ with trash label and add the edge {r̂, r̂′};
2 for ℓ ∈ [m(4tp+ 1)] do
3 Introduce oℓ and ōℓ and the edge {oℓ, ōℓ} with the clause labels;
4 for i ∈ [t] do
5 Build Di,ℓ using decoding labels and add edges to oℓ;
6 for j ∈ [p] do
7 Build P i,j,ℓ using gadget labels and add edges to Di,j;
8 Join ui,j,ℓ1,1 and ui,j,ℓ1,2 to path label (i, j) if ℓ > 1 and to root label otherwise;
9 Relabel path label (i, j) to trash label;

10 Relabel ui,j,ℓ2,1 and ui,j,ℓ2,2 to path label (i, j);
11 Relabel all other gadget labels to the trash label;

12 Relabel all decoding labels to the trash label;

13 Relabel all clause labels to the trash label;

Theorem 7.3.8. There is no algorithm that solves CONNECTED DOMINATING SET, given a
linear k-expression, in time O∗((5 − ε)k) for some ε > 0, unless CNF-SETH fails.

Proof. Assume that there exists an algorithm A that solves CONNECTED DOMINATING SET

in time O∗((5 − ε)k) for some ε > 0 given a linear k-expression. Given β, we define δ1 < 1
such that (5 − ε)log5(2) = 2δ1 and δ2 such that (5 − ε)1/β = 2δ2 . By picking β large enough,
we can ensure that δ = δ1 + δ2 < 1. We will show how to solve SATISFIABILITY using A in
time O∗(2δn poly(m)) = O∗(2δn), where n is the number of variables, thus contradicting
CNF-SETH, Conjecture 2.1.1.

Given a SATISFIABILITY instance σ, we construct G = G(σ, β) and the linear clique-
expression from Lemma 7.3.7 in polynomial time, note that we have β = O(1) and hence
p = O(1); recall p = ⌈log5(2β)⌉. We then run A on G and return its answer. This is correct
by Lemma 7.3.5 and Lemma 7.3.6. Due to Lemma 7.3.7, the running time is

O∗
(

(5 − ε)tp+3·5p+O(1)
)

≤ O∗ (
(5 − ε)tp

)
≤ O∗

(
(5 − ε)⌈ n

β ⌉p
)

≤ O∗
(

(5 − ε)
n
β p

)
≤ O∗

(
(5 − ε)

n
β ⌈log5(2β)⌉

)
≤ O∗

(
(5 − ε)

n
β log5(2β)(5 − ε)

n
β

)
≤ O∗

(
2δ1β

n
β 2δ2n

)
≤ O∗

(
2(δ1+δ2)n

)
≤ O∗ (

2δn
)
,

hence completing the proof.

164 Chapter 7 Lower Bounds Parameterized By Clique-Width

Lower Bounds Parameterized
By Modular-Treewidth

8
8.1 General Approach

In this section, we prove the tight lower bounds for CONNECTED VERTEX COVER and FEED-
BACK VERTEX SET parameterized by modular-treewidth. We do not need the full power
of the modular decomposition, twinclass-variants are already sufficient. Since we follow
the high-level construction principle of Lokshtanov et al. [126] again, the lower bounds
already apply to the linear version of our width parameter. Therefore, we prove tight
lower bounds for CONNECTED VERTEX COVER[twinclass-pathwidth] and FEEDBACK VERTEX

SET[twinclass-pathwidth], which transfer to modular-treewidth as mod-tw ⪯ mod-pw ⪯
tc-pw by Lemma 2.4.22.

Connections Between Path Gadgets. For twinclass-pathwidth, two consecutive path
gadgets in the same row are connected via a single twinclass, i.e., such twinclass acts as a
vertex separator of the row; in this way, each row of the construction contributes one unit
of twinclass-pathwidth. Whereas for cutwidth and clique-width adjacent path gadgets are
connected by some type of edge separator, for pathwidth and twinclass-pathwidth we have
vertex separators, which has some nontrivial consequences for our design approach. As we
consider vertex selection problems, the solutions might contain vertices of these separators.
Since we need to balance the costs of the different path gadget states, where the contained
separator vertices can depend on the state, we also have to account for the cost due to the
separator vertices. To handle this, we consider the separators to be part of the path gadgets
now, as opposed to before. The consequence is that the path gadgets will be asymmetric in
some sense: the left boundary consists of the separating twinclass and the right boundary
consists of possibly multiple twinclasses/vertices that will be connected to the left boundary
of the next path gadget. Therefore, also the states communicated to the boundaries of the
path gadget are of different kinds, where we have more flexibility at the right boundary by
using multiple twinclasses.

Determining a Transition Order. Between two twinclasses, either no edges exist or
all edges exist, i.e., we have a join between them in the latter case. Therefore, it does
make sense to first study what happens across a join, which we can simply copy from the
clique-width investigation for the case of CONNECTED VERTEX COVER. However, similar to
the algorithms for parameterization by modular-treewidth, we see that the connectivity
properties of vertices inside a twinclass behave in a homogeneous way, which causes us to
lose some states, at least at the left boundary, that were applicable for clique-width. For both

165

problems, the remaining states are not sufficient to prove a tight lower bound, instead, we
have to make use of the allowed asymmetry of the path gadget. By using several vertices
that are not in the same twinclass at the right boundary, we can essentially recover some
of the lost states and obtain a compatibility matrix with a sufficient amount of structure
allowing us to prove the tight lower bounds.

Designing the Path Gadget. We use the same approach as for clique-width, i.e., the path
gadget has a clique-like center and the two boundary parts. However, the design of the left
boundary and the right boundary is not necessarily as similar as before due to the asymmetry.
In particular, the design of the left boundary, i.e., the separating twinclass, is challenging,
as previously we could attach gadgets to singular boundary vertices, but now we can only
attach gadgets to the twinclass as a whole. Hence, the clique-width approach of isolating
properties of the boundary vertices via indicator pairs does not directly apply. Additionally,
this also complicates the balancing of the costs of the various path gadget states.

Decoding and Clause Gadgets. Due to the clique-like center of the path gadgets, we can
again reuse already-known constructions for the decoding and clause gadget. For CON-
NECTED VERTEX COVER, we use the construction of the CONNECTED VERTEX COVER[pathwidth]
lower bound by Cygan et al. [50]. For FEEDBACK VERTEX SET, we use a simplified construc-
tion compared to the FEEDBACK VERTEX SET[pathwidth] lower bound of Cygan et al.[50],
which we will reuse in Part III when proving lower bounds for modulator-parameters.

8.2 Connected Vertex Cover Lower Bound
This subsection is devoted to proving that CONNECTED VERTEX COVER[twinclass-pathwidth]
cannot be solved in time O∗((5 − ε)tc-pw(G)) for some ε > 0 unless the CNF-SETH, Conjec-
ture 2.1.1, fails. We first design the path gadget and analyze it in isolation and afterwards
we present the complete construction. The decoding gadgets are directly adapted from the
lower bound for CONNECTED VERTEX COVER[pathwidth] given by Cygan et al. [50].

8.2.1 Path Gadget Construction and Analysis
Root. We create a vertex r̂ called the root and attach a vertex r̂′ of degree 1 to ensure that
every connected vertex cover contains r̂. Given a subset X ⊆ V (G) with r̂ ∈ X, a vertex
v ∈ X is root-connected in X if there is a v, r̂-path in G[X]. We just say root-connected if X
is clear from the context. Note that G[X] is connected if and only if all vertices of X are
root-connected in X.

Determining a Transition Order. We first follow the state analysis of the clique-width
case. The possible vertex states with respect to a partial solution X ⊆ V (G) are 0, 10, 11,
representing that a vertex is not in X (state 0), in X and root-connected (state 11) or not
(state 10). As for labels in the clique-width case, we can describe the state of a twinclass by
listing which distinct vertex appear in the twinclass, thus the possible twinclass states are

166 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

X1 vs. X2 {0} {10} {11} {10,0} {11,0}
{0} 0 0 1 0 0
{10} 0 0 1 0 1
{11} 1 1 1 1 1
{10,0} 0 0 1 0 0
{11,0} 0 1 1 0 0

Tab. 8.1.: The compatibility matrix for CONNECTED VERTEX COVER with respect to a join between
two twinclasses.

X1 vs. X2 {10,0} {11,0} {10} {11,10} {11}
{11} 1 1 1 1 1
{10} 0 1 0 1 1
{11,0} 0 0 1 1 1
{10,0} 0 0 0 1 1
{0} 0 0 0 0 1

Tab. 8.2.: The triangular compatibility matrix for CONNECTED VERTEX COVER[twinclass-pathwidth]
obtained by using asymmetric states.

described by the power set P({0,10,11}). Considering a join between two twinclasses, we
obtain the same compatibility matrix as for clique-width, see Table 7.1. However, in every
twinclass C that avoids the root r̂, the states 10 and 11 cannot simultaneously occur: if
v ∈ C ∩X is root-connected in G[X], then we also obtain a path to the root r̂ for any other
vertex w ̸= v ∈ C ∩X because every twinclass is a module. Therefore, only the compatibility
matrix in Table 8.1 remains. However, this compatibility matrix has only rank 4 and can
therefore not be rearranged to a triangular matrix of size 5 × 5.

Introducing Asymmetry. To obtain a compatibility matrix containing a large enough
triangular submatrix, we make use of the allowed asymmetry for path gadgets in this case.
Instead of considering a single twinclass at the right boundary, we consider multiple vertices
that do not belong to the same twinclass. As all vertices at the right boundary will be
adjacent to the left boundary of the next path gadget, we may consider the right boundary
as a single label and thus recover the heterogeneous states {10,11} and {0,10,11}. In the
compatibility matrix for the clique-width case, Table 7.1, this allows us to build a triangular
submatrix by picking rows corresponding to homogeneous states and columns corresponding
to homogeneous and heterogeneous states (or swapping the role of rows and columns).
Doing so, we obtain the triangular matrix in Table 8.2.

Formal Definition of States. We collect the three vertex states, also called atomic states, in
the set Atoms = {0,10,11} and define the two predicates sol, conn : Atoms → {0, 1} by
sol(a) = [a ∈ {10,11}] and conn(a) = [a = 11]. The meaning of these symbols is the same
as before. As the twinclass and label states used in Table 8.2 can be attained by just using
two vertices each, we obtain the following five path gadget states, each consisting of four
atomic states, by pairing states along the main diagonal:
• s1 = (0 ,0 ,11,11),
• s2 = (10,0 ,11,10),
• s3 = (11,0 ,10,10),
• s4 = (10,10,11,0),
• s5 = (11,11,10,0).

8.2 Connected Vertex Cover Lower Bound 167

The states are numbered in the transition order following from Table 8.2. We collect the five
states in the set States = {s1, . . . , s5} and use the notation sℓi ∈ Atoms, i ∈ [4], ℓ ∈ [5], to
refer to the i-th atomic component of state sℓ.

Given a partial solution Y ⊆ V (G), we formally associate to each vertex its state with
respect to Y via the map stateY : V (G) → Atoms by

stateY (v) =

0 if v /∈ Y,

10 if v ∈ Y and v is not root-connected in Y ∪ {r̂},

11 if v ∈ Y and v is root-connected in Y ∪ {r̂}.

Path Gadget Construction. The path gadget P is constructed as follows. We create 15
central vertices wℓ,i, ℓ ∈ [5], i ∈ [3], in 5 sets Wℓ = {wℓ,1, wℓ,2, wℓ,3} of size 3 and each set
will form a twinclass. We create 2 input vertices u1, u2, 4 cost vertices w+,1, . . . , w+,4, 5 clique
vertices v1, . . . , v5, and 5 complement vertices v̄1, . . . , v̄5. Furthermore, for every f ∈ [4], we
create 2 auxiliary vertices a1,f , a2,f , 2 indicator vertices b0,f , b1,f , and 2 connectivity vertices
c0,f , c1,f . Finally, we create 4 further auxiliary vertices ā1,1, ā2,1, ā1,2, ā2,2 and 4 further
connectivity vertices c̄0,1, c̄1,1, c̄0,2, c̄1,2. The vertices a1,4 and ā1,2 will also be called output
vertices.

We add edges such that the central sets Wℓ, ℓ ∈ [5], are pairwise adjacent twinclasses, i.e.
they induce a complete 5-partite graph, and such that the clique vertices vℓ, ℓ ∈ [5], form
a clique. Each complement vertex v̄ℓ, ℓ ∈ [5], is made adjacent to Wℓ and to vℓ. The cost
vertices w+,1 and w+,2 are made adjacent to W1; w+,3 is made adjacent to W2; and w+,4 is
made adjacent to W3.

For every f ∈ [4], we add edges {a1,f , a2,f}, {a2,f , b1,f}, {b1,f , b0,f}, {b0,f , a1,f}, forming
a C4, and the edges {a1,f , c1,f} and {c0,f , c1,f}. For every i ∈ [2], we add edges {ā1,i, ā2,i},
{ā1,i, c̄1,i}, {c̄0,i, c̄1,i}. The input vertices u1 and u2 are made adjacent to each a1,f for f ̸= 4
and they are made adjacent to ā1,1.

All vertices except {a1,f : f ∈ [4]} ∪ {ā1,i, ā2,i : i ∈ [2]} ∪ {u1, u2} are made adjacent to
the root r̂. Finally, we describe how to connect the central vertices to the rest. Each twinclass
Wℓ, ℓ ∈ [5], is made adjacent to b[sℓ

2=0],f and to c[sℓ
1=sℓ

2],f for all f ∈ [4] and Wℓ is also made
adjacent to c̄[sℓ

1 ̸=10],1 and c̄[sℓ
1 ̸=11],2. The construction is depicted in Figure 8.1 and Figure 8.2.

We emphasize that the graphs P [{a1,f , a2,f , b0,f , b1,f , c0,f , c1,f} ∪
⋃
ℓ∈[5] Wℓ], f ∈ [4], are

all isomorphic to each other, however the first three are also adjacent to the input vertices
u1 and u2, whereas the fourth one is not. To study the path gadget P , we mostly consider
the parts in Figure 8.1; the parts in Figure 8.2 are considerably simpler and will later allow
us to simply attach the standard decoding gadget already used by Cygan et al. [50] for
CONNECTED VERTEX COVER[pathwidth].

Behavior of Single Path Gadget. Having given the formal construction of the path gadget,
we can start analyzing it. For this sake, we assume that G is a graph that contains P + r̂ as
an induced subgraph and that only the input vertices u1, u2, the output vertices a1,4, ā1,2,
and the clique vertices vℓ, ℓ ∈ [5], have neighbors outside this copy of P + r̂. Furthermore,
we assume that {u1, u2} is a twinclass in G. Let X be a vertex cover of G with r̂ ∈ X. We

168 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

W1
+2

c0,f

c1,f

u1

u2

a1,f

ā1,1

ā2,1

a2,f

b0,f

b1,f

c̄1,1

c̄0,1

c0,4

c1,4

a1,4

ā1,2

ā2,2

a2,4

b0,4

b1,4

c̄1,2

c̄0,2

W2
+1

W3
+1

W4
+0

W5
+0

f ∈ {1, 2, 3}

u′
1

u′
2

complete 5-partite

Fig. 8.1.: The main part of path gadget for CONNECTED VERTEX COVER[twinclass-pathwidth]. Vertices
depicted with a rectangle are adjacent to the root vertex r̂. The graph in the black dashed
rectangle appears thrice with the same connections to the remaining vertices. The vertices
inside the cyan dashed rectangle induce a complete 5-partite graph. The dashed circles at
the central vertices indicate the number of cost vertices attached to this set, and the dashed
vertices and edges at the right indicate how to connect to the next copy of the path gadget.

study the behavior of such vertex covers on P ; we will abuse notation and write X ∩ P

instead of X ∩ V (P).
Observe that the set

M = {{a1,f , a2,f}, {b0,f , b1,f}, {c0,f , c1,f} : f ∈ [4]}

∪ {{ā1,i, ā2,i}, {c̄0,i, c̄1,i} : i ∈ [2]}

∪ {{vℓ, v̄ℓ} : ℓ ∈ [5]}

is a matching in P of size 4 · 3 + 2 · 2 + 5 = 21. By also taking into account the behavior on
the central clique-like part, we obtain the following lower bound for |X ∩ P |. Additionally,
by analyzing the behavior between the left boundary and the center more closely when
G[X] is connected, we see that the cost vertices balance the costs of the vertices inside the
twinclass at the left boundary.

Lemma 8.2.1. We have that |{ℓ ∈ [5] : Wℓ ⊆ X}| ≥ 4 and |X ∩ P | ≥ |M | + 4 · 3 =
33. If G[X] is connected, then |X ∩ P | ≥ |M | + 4 · 3 + 2 = 35 and in case of equality,
|X ∩ {u1, u2, w+,1, . . . , w+,4}| = 2 and there is a unique ℓ ∈ [5] such that Wℓ ̸⊆ X.

Proof. The vertex set
⋃
ℓ∈[5] Wℓ induces a complete 5-partite graph disjoint from the matching

M . Any vertex cover must contain at least 4 of the 5 partition classes completely, otherwise
there is an edge that is not covered, and since each class is of size 3, this accounts for
4 · 3 = 12 further vertices. This shows that |X ∩ P | ≥ |M | + 4 · 3 = 33.

If X completely contains all Wℓ, ℓ ∈ [5], then it immediately follows that |X ∩ P | ≥ 36,
so if |X ∩ P | = 35, then there is an unique ℓ ∈ [5] such that Wℓ ̸⊆ X. If ℓ = 1, then we

8.2 Connected Vertex Cover Lower Bound 169

W1

W2

W3

W4

W5

v̄1

v̄2

v̄3

v̄4

v̄5

v1

v2

v3

v4

v5

w+,1

w+,2

w+,3

w+,4

cliquecomplete 5-partite

...

...

...

...

...

Fig. 8.2.: A depiction of the remaining parts of the path gadget P for CONNECTED VERTEX

COVER[twinclass-pathwidth], which will be connected to the decoding gadget. All ver-
tices that are depicted with a rectangle are adjacent to the root vertex r̂. The vertices inside
the cyan dashed rectangle induce a complete 5-partite graph or a clique respectively. Only
the clique vertices have neighbors outside of P .

must have w+,1, w+,2 ∈ X, so |X ∩ P | ≥ 35. Before we proceed with the remaining proof,
notice that Af = {a1,f , a2,f , b0,f , b1,f} induces a C4 for all f ∈ [4], so if |X ∩Af | = 2, then
X ∩Af ∈ {{a1,f , b1,f}, {a2,f , b0,f}}, i.e., X must pick an antipodal pair from Af .

For the remainder of the proof, assume that G[X] is connected. Suppose that X ∩
{u1, u2} = ∅, then a1,f ∈ X for all f ∈ [3] and a1,f must be root-connected in X. If
ℓ ∈ {2, 3}, then b1,f , c0,f ∈ X, so whichever neighbor of a1,f we choose for the sake of
root-connectedness, the size of X increases by one for every f ∈ [3]. If ℓ ∈ {4, 5}, then
b0,f ∈ X, so a1,f is root-connected, but we need to pick another vertex of Af to cover the
remaining edge induced by Af , again increasing the size of X. In summary, we obtain
|X ∩ P | ≥ 36 if ℓ > 1 and X ∩ {u1, u2} = ∅.

Suppose that |X∩{u1, u2}| = 1 and without loss of generality u1 ∈ X and u2 /∈ X. Again,
we must have a1,f ∈ X for all f ∈ [3]. If ℓ ∈ {2, 3}, we have that w+,3 ∈ X or w+,4 ∈ X.
If ℓ ∈ {4, 5}, we again see that |X ∩ Af | ≥ 3 for all f ∈ [3] and hence |X ∩ P | ≥ 37, so
|X ∩ P | ≥ 35 in either case.

By the previous arguments, we see that |X ∩ P | = 35 and X ∩ {u1, u2} = ∅ implies
that ℓ = 1; |X ∩ P | = 35 and |X ∩ {u1, u2}| = 1 implies that ℓ ∈ {2, 3}; |X ∩ P | = 35 and
|X ∩{u1, u2}| = 2 implies that ℓ ∈ {4, 5}. So, the equation |X ∩{u1, u2, w+,1, . . . , w+,4}| = 2
follows.

Next, we want to show that the appropriate states, i.e., those given by s1, . . . , s5, are
propagated to the left and right boundary depending on which central twinclass is not fully
contained in X. For any partial solution Y ⊆ V (P), we define the 4-tuple

state(Y) = (stateY (u1), stateY (u2), stateY (ā1,2), stateY (a1,4)).

170 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

If G[X] is connected, then the construction of P and the restrictions on how P connects
to the remaining graph imply that any vertex v ∈ V (P) with stateX∩P (v) = 10 must be
root-connected in X via a path that leaves through the input vertices or output vertices.

We say that a vertex subset Y ⊆ V (G) is canonical with respect to the twinclass {u1, u2}
if u2 ∈ Y implies u1 ∈ Y ; we will just say that Y is canonical if {u1, u2} is clear from the
context. Since {u1, u2} is a twinclass, we can always assume that we are working with a
canonical subset.

Lemma 8.2.2. If X is canonical, G[X] is connected, and |X ∩P | ≤ 35, then |X ∩P | = 35 and
there is an unique ℓ ∈ [5] such that vℓ /∈ X and we have that state(X ∩ P) = sℓ.

Proof. Lemma 8.2.1 implies that |X ∩ P | = 35, |X ∩ {u1, u2, w+,1, . . . , w+,4}| = 2, that X
contains exactly one endpoint of each edge in M and that there is an unique ℓ ∈ [5] such that
Wℓ ̸⊆ X. To cover all edges between Wℓ and v̄ℓ, we must have that v̄ℓ ∈ X and vℓ /∈ X, since
{v̄ℓ, vℓ} ∈ M . Furthermore, we must have X ∩ {v1, . . . , v5} = {v1, . . . , v5} \ {vℓ}, because
else X does not cover the clique induced by v1, . . . , v5. So, the uniqueness of vℓ follows.

Recall that Af = {a1,f , a2,f , b0,f , b1,f} induces a C4 and |X ∩Af | = 2 since Af contains
two edges of M , hence X ∩Af ∈ {{a1,f , b1,f}, {a2,f , b0,f}} for all f ∈ [4].

We claim that state(X∩P)\{u1,u2}(a1,f) = sℓ4 for all f ∈ [4]. Observe that sℓ2 = 0 ⇔
sℓ4 ̸= 0 and sℓ1 = sℓ2 ⇔ sℓ4 ̸= 10. Hence, by construction Wℓ is adjacent to b[sℓ

4 ̸=0],f and
c[sℓ

4 ̸=10],f , so b[sℓ
4 ̸=0],f , c[sℓ

4 ̸=10],f ∈ X to cover the edges incident to Wℓ. So, we see that
a1,f ∈ X ⇔ b1,f ∈ X ⇔ sℓ4 ̸= 0 as desired. Concerning the root-connectivity of a1,f in
(X ∩ P) \ {u1, u2}, we know that the adjacent vertices a2,f and b0,f are not in X when a1,f

is in X, due to Af inducing a C4, hence a1,f can only be root-connected via c1,f . Since
c1,f ∈ X ⇔ sℓ4 ̸= 10, the claim follows.

The claim implies that stateX∩P (a1,4) = sℓ4 as desired. We proceed by computing
state(X∩P)\{u1,u2}(ā1,i) for i ∈ 1, 2. Due to the degree-1-neighbor ā2,i, we see that ā1,i ∈ X

because X is a connected vertex cover. The vertex ā1,i can only be root-connected via c̄1,i

and because c̄1,i is an endpoint of a matching edge, we see that c̄1,i ∈ X if and only if c̄1,i is
adjacent to Wℓ. For i = 1, we have that

state(X∩P)\{u1,u2}(ā1,1) = 11 ⇔ c̄1,1 ∈ X ⇔ sℓ1 ̸= 10 ⇔ ℓ ∈ {1, 3, 5}.

For i = 2, we have that

state(X∩P)\{u1,u2}(ā1,2) = 11 ⇔ c̄1,2 ∈ X ⇔ sℓ1 ̸= 11 ⇔ sℓ3 = 11.

In particular, we have shown that stateX∩P (ā1,2) = sℓ3 as desired.
It remains to show that stateX∩P (u1) = sℓ1 and stateX∩P (u2) = sℓ2. Due to |X ∩

{u1, u2, w+,1, . . . , w+,4}| = 2 and X being canonical, we see that

X ∩ {u1, u2} =

∅, ℓ = 1,

{u1}, ℓ ∈ {2, 3},

{u1, u2}, ℓ ∈ {4, 5}.

8.2 Connected Vertex Cover Lower Bound 171

Hence, we only have to determine the root-connectivity of u1 and possibly u2 in X ∩ P for
ℓ > 1. They can only obtain root-connectivity via a1,1, a1,2, a1,3, or ā1,1. By the previous
calculations, at least one of these is root-connected in (X∩P)\{u1, u2} if and only if sℓ3 = 10

or sℓ4 = 11, which happens precisely when ℓ ∈ {3, 5} as desired (as ℓ = 1 is excluded).

To prove that every satisfying assignment of the SATISFIABILITY instance also yields
a small connected vertex cover of the constructed graph, we prove that for every state
a partial solution attaining this state actually exists. Moreover, it is sufficient to check
root-connectivity at the input and output vertices for these partial solutions.

Lemma 8.2.3. For every ℓ ∈ [5], there exists a canonical vertex cover Xℓ
P of P such that

|Xℓ
P | = 35, Xℓ

P ∩ {v1, . . . , v5} = {v1, . . . , v5} \ {vℓ}, and state(Xℓ
P) = sℓ. If X is a vertex

cover of G with r̂ ∈ X, X ∩ P = Xℓ
P , and stateX({u1, u2, ā1,2, a1,4}) ⊆ {0,11}, then every

vertex of Xℓ
P is root-connected in X.

Proof. We claim that

Xℓ
P =

 ⋃
k∈[5]\{ℓ}

Wk ∪ {vk}

 ∪ {ā1,1, ā1,2} ∪ {a2−[sℓ
2=0],f : f ∈ [4]} ∪ Uℓ ∪N(Wℓ),

where U1 = ∅, U2 = U3 = {u1}, U4 = U5 = {u1, u2}, is the desired vertex cover. Clearly, Xℓ
P

is canonical. By construction of P , we compute that

N(Wℓ) = {v̄ℓ, c̄[sℓ
1 ̸=10],1, c̄[sℓ

1 ̸=11],2} ∪ {b[sℓ
2=0],f , c[sℓ

1=sℓ
2],f : f ∈ [4]} ∪W+,ℓ,

where W+,1 = {w+,1, w+,2},W+,2 = {w+,3},W+,3 = {w+,4},W+,4 = W+,5 = ∅. Note that
|Uℓ| + |W+,ℓ| = 2 and hence |Xℓ

P | = 35 for all ℓ ∈ [5].
We proceed by verifying that Xℓ

P is a vertex cover of P . The only non-trivial edges to
consider are {a1,f , c1,f}, f ∈ [4], and the edges between {u1, u2} and {a1,f : f ∈ [3]}. If
a1,f /∈ Xℓ

P , then sℓ2 ̸= 0 which also implies that sℓ1 = sℓ2 and hence c1,f ∈ Xℓ
P , so the edge

{a1,f , c1,f}, f ∈ [4], is covered in all cases. If 1 ≤ ℓ ≤ 3, then sℓ2 = 0, so a1,f ∈ Xℓ
P for all

f ∈ [4]. If 4 ≤ ℓ ≤ 5, then u1, u2 ∈ X, so in either case the edges between {u1, u2} and
{a1,f : f ∈ [3]} are covered.

Moving on to the second part, assume that X is a vertex cover of G with r̂ ∈ X, X ∩P =
Xℓ
P , and stateX({u1, u2, ā1,2, a1,4}) ⊆ {0,11}. We only have to consider the vertices in

Xℓ
P \N(r̂) ⊆ {a1,f : f ∈ [4]} ∪ {ā1,1, ā1,2}. The statement immediately follows if u1 or u2 is

root-connected in X, because they are adjacent to all vertices in {a1,f : f ∈ [3]} ∪ {ā1,1} and
a1,4 and ā1,2 are handled by assumption. It remains to consider the case u1, u2 /∈ X which
corresponds to ℓ = 1, so we see that a1,f , c1,f ∈ X for all f ∈ [4] and c̄1,1 ∈ X. Then, a1,f is
root-connected via c1,f and ā1,1 is root-connected via c̄1,1.

State Transitions. In the complete construction, we create long paths by repeatedly
concatenating the path gadgets P . To study the state transitions between two consecutive
path gadgets, suppose that we have two copies P 1 and P 2 of P such that the vertices a1,4

and ā1,2 in P 1 are joined to the vertices u1 and u2 in P 2. We denote the vertices of P 1 with a
superscript 1 and the vertices of P 2 with a superscript 2, e.g., a1

1,4 refers to the vertex a1,4 of

172 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

P 1. Again, suppose that P 1 and P 2 are embedded as induced subgraphs in a larger graph G
with a root vertex r̂ and that only the vertices u1, u

1
2, a

2
1,4, ā

2
1,2 and the clique vertices v1

ℓ , v
2
ℓ ,

ℓ ∈ [5], have neighbors outside of P 1 + P 2 + r̂. Let X be a connected vertex cover of G with
r̂ ∈ X.

By making use of Lemma 8.2.2 and analyzing the behavior at the boundary between P 1

and P 2, which essentially boils down to computing the entries of the triangular compatibility
matrix, we show that the state from one path gadget to the next can only transition according
to the desired transition order.

Lemma 8.2.4. Suppose that X is canonical with respect to {u1
1, u

1
2} and {u1

2, u
2
2}, that G[X]

is connected and that |X ∩ P 1| ≤ 35 and |X ∩ P 2| ≤ 35, then state(X ∩ P 1) = sℓ1 and
state(X ∩ P 2) = sℓ2 with ℓ1 ≤ ℓ2.

Additionally, for each ℓ ∈ [5], the set Xℓ = Xℓ
P 1 ∪ Xℓ

P 2 is a vertex cover of P 1 + P 2 with
stateXℓ({u1

1, u
1
2, a

2
1,4, ā

2
1,2}) ⊆ {0,11}.

Proof. By Lemma 8.2.2, we see that there are ℓ1, ℓ2 ∈ [5] such that state(X ∩ P 1) = sℓ1 and
state(X ∩ P 2) = sℓ2 . It remains to show that ℓ1 ≤ ℓ2.

Define U1 = {a1
1,4, ā

1
1,2} and U2 = {u2

1, u
2
2} and U = U1 ∪U2. By the assumption on how

P 1 +P 2 + r̂ can be connected to the rest of the graph G, one can see that any path from U to
r̂ passes through some vertex in (V (P1) ∪ V (P2)) ∩N(r̂). Hence, we can determine whether
the vertices of X ∩ U are root-connected in X by just considering the graph P 1 + P 2 + r̂.

Consider the state pairs s̄1 = (stateX∩P 1(ā1
1,2), stateX∩P 1(a2

1,4)) = (sℓ1
3 , s

ℓ2
4) and s̄2 =

(stateX∩P 2(u2
1), stateX∩P 2(u2

2)) = (sℓ2
1 , s

ℓ2
2). We claim that whenever ℓ1 > ℓ2 there is some

edge in G[U] that is not covered by X or there is a vertex in X ∩U that is not root-connected
in X. There is an uncovered edge in G[U] if and only if both s̄1 and s̄2 each contain at least
one 0. This shows that (ℓ1, ℓ2) /∈ {4, 5} × [3]. Some vertex in X ∩ U is not root-connected in
X if and only if either s̄1 or s̄2 contains a 10 and the other one only contains two 0s or if both
contain no 11 at all. This shows that (ℓ1, ℓ2) /∈ {(5, 4), (3, 2), (3, 1), (2, 1)} and concludes the
proof of the first part.

For the second part, notice that state(Xℓ
P 1) = state(Xℓ

P 2) = sℓ by Lemma 8.2.2 and
using the same approach as in the last paragraph, we see that for ℓ = ℓ1 = ℓ2 all edges in
G[U] are covered and all vertices in Xℓ are root-connected in Xℓ.

We say that a cheat occurs if ℓ1 < ℓ2. By Lemma 8.2.4, even when we concatenate
arbitrarily many path gadgets P , thus creating a long path, at most |States| − 1 = 4 = O(1)
cheats may occur on such a path. When proving that a small connected vertex cover gives
rise to a satisfying assignment, this allows us to find a cheat-free region as outlined before,
where we can read off a satisfying assignment.

8.2.2 Complete Construction
Setup. Assume that CONNECTED VERTEX COVER can be solved in time O∗((5−ε)tc-pw(G)) for
some ε > 0. Given a SATISFIABILITY-instance σ with n variables and m clauses, we construct
an equivalent CONNECTED VERTEX COVER instance with twinclass-pathwidth approximately
n log5(2) so that the existence of such an algorithm for CONNECTED VERTEX COVER would
imply that CNF-SETH is false.

8.2 Connected Vertex Cover Lower Bound 173

...

zi,ℓ z̄i,ℓ

xi,ℓ(5,5,...)

x̄i,ℓ(5,5,...)

xi,ℓ(2,1,...)

x̄i,ℓ(2,1,...)

xi,ℓ(1,1,...)

x̄i,ℓ(1,1,...)
yi,ℓ(1,1,...)

yi,ℓ(2,1,...)

yi,ℓ(5,5,...)

vi,1,ℓ1
vi,1,ℓ2
vi,1,ℓ3
vi,1,ℓ4
vi,1,ℓ5

vi,2,ℓ1
vi,2,ℓ2
vi,2,ℓ3
vi,2,ℓ4
vi,2,ℓ5

...

...

oℓ ōℓ

= adjacent to r̂

clique K5

Fig. 8.3.: The decoding gadget for group i ∈ [t] and column ℓ ∈ [m(4tp + 1)]. The clause gadget for
column ℓ consists of oℓ and ōℓ and represents clause Cℓ′ , where ℓ′ = (ℓ − 1) mod m. In
this figure the truth assignment for group i corresponding to (2, 1, . . .) ∈ [5]p satisfies clause
Cℓ′ .

We pick an integer β only depending on ε; the precise choice of β will be discussed at
a later point. The variables of σ are partitioned into groups of size at most β, resulting in
t = ⌈n/β⌉ groups. Furthermore, we pick the smallest integer p that satisfies 5p ≥ 2β . We now
begin with the construction of the CONNECTED VERTEX COVER instance (G = G(σ, β), b).

We create the root vertex r̂ and attach a leaf r̂′ which forces r̂ into any connected vertex
cover. For every group i ∈ [t], we create p long path-like gadgets P i,j , j ∈ [p], where each P i,j

consists of m(4tp+ 1) copies P i,j,ℓ, ℓ ∈ [m(4tp+ 1)], of the path gadget P and consecutive
copies are connected by a join. More precisely, the vertices in some P i,j,ℓ inherit their names
from P and the superscript of P i,j,ℓ and for every i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1) − 1], the
output vertices ai,j,ℓ1,4 and āi,j,ℓ1,2 are joined to the input vertices ui,j,ℓ+1

1 and ui,j,ℓ+1
2 of the

next path gadget. The ends of each path P i,j , i.e., the vertices ui,j,11 , ui,j,12 , ai,j,m(4tp+1)
1,4 ,

ā
i,j,m(4tp+1)
1,2 are made adjacent to r̂.

For every group i ∈ [t] and column ℓ ∈ [m(4tp+ 1)], we create a decoding gadget Di,ℓ

in the same style as Cygan et al. [50] for CONNECTED VERTEX COVER[pathwidth]. Every
variable group i has at most 2β possible truth assignments and by choice of p we have that
5p ≥ 2β , so we can find an injective mapping κ : {0, 1}β → [5]p which assigns to each truth
assignment τ ∈ {0, 1}β a sequence κ(τ) ∈ [5]p. For each sequence h = (h1, . . . , hp) ∈ [5]p,
we create vertices xi,ℓh , x̄i,ℓh , yi,ℓh and edges {xi,ℓh , x̄i,ℓh }, {xi,ℓh , yi,ℓh }, {yi,ℓh , r̂}. Furthermore,
we add the edge {xi,ℓh , vi,j,ℓhj

} for all h = (h1, . . . , hp) ∈ [5]p and j ∈ [p]. Finally, we create

two adjacent vertices zi,ℓ and z̄i,ℓ and edges {zi,ℓ, yi,ℓh } for all h ∈ [5]p. For every group
i ∈ [t] and column ℓ ∈ [m(4tp+ 1)], we bundle the the path gadgets P i,j,ℓ, j ∈ [p], and the
decoding gadget Di,ℓ into the block Bi,ℓ.

174 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

B1,1 B1,2... · · ·... B1,m...
... B1,m+1 B1,m+2... · · ·... B1,2m...

B2,1 B2,2... · · ·... B2,m...
... B2,m+1 B2,m+2... · · ·... B2,2m...

Bt,1 Bt,2... · · ·... Bt,m...
... Bt,m+1 Bt,m+2... · · ·... Bt,2m...

...
...

...
...

...
...

...
...

...
...

...

· · ·... B1,#co...

· · ·... B2,#co...

· · ·... Bt,#co...

...
...

R1 R2

· · · · · · · · ·o1

ō1
o2

ō2
om

ōm
om+1

ōm+1
om+2

ōm+2
o2m

ō2m
o#co

ō#co

P 1,1

P 1,2

P 1,p

P 2,1

P 2,2

P 2,p

P t,1

P t,2

P t,p

= adjacent to root r̂ #co = (4tp+ 1)m

· · ·

· · ·

R#co

Fig. 8.4.: The matrix structure of the constructed graph for CONNECTED VERTEX COVER[twinclass-
pathwidth]. Every m columns form a region, which are highlighted by the dashed cyan
rectangles.

Lastly, we construct the clause gadgets. We number the clauses of σ by C0, . . . , Cm−1.
For every column ℓ ∈ [m(4tp+ 1)], we create an adjacent pair of vertices oℓ and ōℓ. Let
ℓ′ ∈ [0,m − 1] be the remainder of (ℓ − 1) modulo m. For every i ∈ [t], h ∈ κ({0, 1}β),
we add the edge {oℓ, yi,ℓh } whenever κ−1(h) is a truth assignment for variable group i that
satisfies clause Cℓ′ . See Figure 8.3 for a depiction of the decoding and clause gadgets and
Figure 8.4 for a high-level view of the whole construction.

Lemma 8.2.5. If σ is satisfiable, then there exists a connected vertex cover X of G = G(σ, β)
of size |X| ≤ (35tp+ (5p + 2)t+ 1)m(4tp+ 1) + 1 = b.

Proof. Let τ be a satisfying truth assignment of σ and let τ i denote the restriction of τ to the
i-th variable group for every i ∈ [t] and let κ(τ i) = hi = (hi1, . . . , hip) be the corresponding
sequence. The connected vertex cover is given by

X = {r̂} ∪
⋃

ℓ∈[m(4tp+1)]

{oℓ} ∪
⋃
i∈[t]

{yi,ℓhi , z
i,ℓ} ∪

⋃
h∈[5]p

{xi,ℓh } ∪
⋃
j∈[p]

X
hi

j

P i,j,ℓ

 ,

where X
hi

j

P i,j,ℓ refers to the sets given by Lemma 8.2.3.
Clearly, |X| = b, so it remains to prove thatX is a connected vertex cover. By Lemma 8.2.3

and the second part of Lemma 8.2.4 all edges induced by the path gadgets are covered by X
and all vertices on the path gadgets that belong to X are root-connected, except for possibly
the vertices at the ends, i.e.

⋃
i∈[t]

⋃
j∈[p]{u

i,j,1
1 , ui,j,12 , a

i,j,m(4tp+1)
1,4 , ā

i,j,m(4tp+1)
1,2 }, but these

are contained in the neighborhood of r̂ by construction.
Fix i ∈ [t], ℓ ∈ [m(4tp+ 1)], and consider the corresponding decoding gadget. Since

zi,ℓ ∈ X and xi,ℓh ∈ X for all h ∈ [5]p, all edges induced by the decoding gadget and all
edges between the decoding gadget and the path gadgets are covered by X. Furthermore,
since oℓ ∈ X, all edges inside the clause gadget and all edges between the clause gadget
and the decoding gadgets are covered by X. Hence, X has to be a vertex cover of G.

8.2 Connected Vertex Cover Lower Bound 175

It remains to prove that the vertices in the decoding and clause gadgets that belong to X
are also root-connected. Again, fix i ∈ [t], ℓ ∈ [m(4tp+ 1)], and h = (h1, . . . , hp) ∈ [5]p\{hi}.
Since h ̸= hi, there is some j ∈ [p] such that vi,j,ℓhj

∈ X by Lemma 8.2.3 which connects xi,ℓh

to the root r̂. The vertices xi,ℓhi and zi,ℓ are root-connected via yi,ℓhi ∈ X.
We conclude by showing that oℓ is root-connected for all ℓ ∈ [m(4tp+ 1)]. Since τ is a

satisfying truth assignment of σ, there is some variable group i ∈ [t] such that τ i already
satisfies clause Cℓ′ , where ℓ′ is the remainder of ℓ− 1 modulo m. By construction of G and
X, the vertex yi,ℓhi ∈ X is adjacent to oℓ, since κ(τ i) = hi, and connects oℓ to the root r̂. This
shows that all vertices of X are root-connected, so G[X] has to be connected.

Lemma 8.2.6. If there exists a connected vertex cover X of G = G(σ, β) of size |X| ≤
(35tp+ (5p + 2)t+ 1)m(4tp+ 1) + 1 = b, then σ is satisfiable.

Proof. We assume without loss of generality thatX is canonical with respect to each twinclass
{ui,j,ℓ1 , ui,j,ℓ2 }, i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)].

We begin by arguing that X has to satisfy |X| = b. First, we must have that r̂ ∈ X,
because r̂ has a neighbor of degree 1. By Lemma 8.2.1, we have that |X ∩ P i,j,ℓ| ≥ 35 for
all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)]. In every decoding gadget, i.e. one for every i ∈ [t] and
ℓ ∈ [m(4tp+ 1)], the set {zi,ℓ} ∪

⋃
h∈[5]p x

i,ℓ
h has to be contained in X, since every vertex

in this set has a neighbor of degree 1. Furthermore, to connect zi,j to r̂, at least one of
the vertices yi,ℓh , h ∈ [5]p, has to be contained in X. Hence, X must contain at least 5p + 2
vertices per decoding gadget. Lastly, oℓ ∈ X for all ℓ ∈ [m(4tp+ 1)], since oℓ has a neighbor
of degree 1. Since we have only considered disjoint vertex sets, this shows that |X| = b

and all of the previous inequalities have to be tight, in particular for every i ∈ [t] and
ℓ ∈ [m(4tp+ 1)], there is a unique h ∈ [5]p such that yi,ℓh ∈ X.

By Lemma 8.2.2, we know that X assumes one of the five possible states on each P i,j,ℓ.
Fix some P i,j =

⋃
ℓ∈[m(4tp+1)] P

i,j,ℓ and note that due to Lemma 8.2.4 the state can change
at most four times along P i,j . Such a state change is called a cheat. Let γ ∈ [0, 4tp] and
define the γ-th region Rγ =

⋃
i∈[t]

⋃
j∈[p]

⋃(γ+1)m
ℓ=γm+1 P

i,j,ℓ. Since there are 4tp+ 1 regions
and tp many paths, there is at least one region Rγ such that no cheat occurs in Rγ . We
consider region Rγ for the rest of the proof and read off a satisfying truth assignment from
this region.

For i ∈ [t], let hi = (hi1, . . . , hip) ∈ [5]p such that vi,j,γm+1
hi

j

/∈ X for all j ∈ [p]; this is

well-defined by Lemma 8.2.2. Since Rγ does not contain any cheats, the definition of hi

is independent of which column ℓ ∈ [γm+ 1, (γ + 1)m] we consider. For every i ∈ [t] and
ℓ ∈ [γm + 1, (γ + 1)m], we claim that yi,ℓh ∈ X if and only if h = hi. We have already
established that for every i and ℓ, there is exactly one h such that yi,ℓh ∈ X. Consider the
vertex xi,ℓhi ∈ X, its neighbors in G are vi,1,ℓ

hi
1
, vi,2,ℓ
hi

2
, . . . , vi,p,ℓhi

p
, x̄i,ℓhi , and yi,ℓhi . By construction

of hi and the tight allocation of the budget, we have (N(xi,ℓhi) \ {yi,ℓhi }) ∩X = ∅. Therefore,
X has to include yi,ℓhi to connect xi,ℓhi to the root r̂. This shows the claim.

For i ∈ [t], we define the truth assignment τ i for group i by taking an arbitrary truth
assignment if hi /∈ κ({0, 1}β) and setting τ i = κ−1(hi) otherwise. By setting τ =

⋃
i∈[t] τ

i

we obtain a truth assignment for all variables and we claim that τ satisfies σ. Consider some
clause Cℓ′ , ℓ′ ∈ [0,m− 1], and let ℓ = γm+ ℓ′ + 1. We have already argued that oℓ ∈ X and
to connect oℓ to the root r̂, there has to be some yi,ℓh ∈ N(oℓ) ∩ X. By the previous claim,

176 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

h = hi for some i ∈ [t] and therefore τ i, and also τ , satisfy clause Cℓ′ due to the construction
of G. Because the choice of Cℓ′ was arbitrary, τ has to be a satisfying assignment of σ.

Lemma 8.2.7. The constructed graph G = G(σ, β) has tc-pw(G) ≤ tp+ 3 · 5p + O(1) and a
path decomposition of Gq = G/Πtc(G) of this width can be constructed in polynomial time.

Proof. By construction, all sets {ui,j,ℓ1 , ui,j,ℓ2 }, i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)], are twinclasses.
Let G′ be the graph obtained by contracting each of these twinclasses, denoting the resulting
vertex by ui,j,ℓ, then Gq is a subgraph of G′. We will show that tc-pw(G) = pw(Gq) ≤
pw(G′) ≤ tp+ 3 · 5p + O(1) by giving an appropriate strategy for the mixed-search-game on
G′ and applying Lemma 2.4.31.

Algorithm 5: Mixed-search-strategy for G′

1 Place searchers on r̂ and r̂′;
2 Place searchers on ui,j,1 for all i ∈ [t], j ∈ [p];
3 for ℓ ∈ [m(4tp+ 1)] do
4 Place searchers on oℓ and ōℓ;
5 for i ∈ [t] do
6 Place searchers on all vertices of the decoding gadget Di,ℓ;
7 for j ∈ [p] do
8 Place searchers on all vertices of P i,j,ℓ − {ui,j,ℓ1 , ui,j,ℓ2 };
9 Remove searcher from ui,j,ℓ and place it on ui,j,ℓ+1;

10 Remove searchers on P i,j,ℓ − {ui,j,ℓ1 , ui,j,ℓ2 };

11 Remove searchers on Di,ℓ;

12 Remove searchers on oℓ and ōℓ;

The mixed-search-strategy for G′ described in Algorithm 5 proceeds column by column
and group by group in each column. The maximum number of placed searchers occurs on
line 8 and is 2 + tp+ 2 + (3 · 5p + 2) + 61.

Theorem 8.2.8. No algorithm can solve CONNECTED VERTEX COVER, given a path decompo-
sition of Gq = G/Πtc(G) of width k, in time O∗((5 − ε)k) for some ε > 0, unless CNF-SETH
fails.

Proof. Suppose there is an algorithm A that solves CONNECTED VERTEX COVER in time
O∗((5 − ε)k) for some ε > 0 given a path decomposition of Gq = G/Πtc(G) of width k.
Given β, we define δ1 < 1 such that (5 − ε)log5(2) = 2δ1 and δ2 such that (5 − ε)1/β = 2δ2 .
By picking β large enough, we can ensure that δ = δ1 + δ2 < 1. We show how to solve
SATISFIABILITY using A in time O(2δn poly(m)) = O∗(2δn), where n is the number of
variables, thus contradicting CNF-SETH, Conjecture 2.1.1.

Given a SATISFIABILITY instance σ, construct G = G(σ, β) and the path decomposition
from Lemma 8.2.7 in polynomial time, as we have β = O(1) and hence p = O(1). We run

8.2 Connected Vertex Cover Lower Bound 177

A on G and return its answer. This is correct by Lemma 8.2.5 and Lemma 8.2.6. Due to
Lemma 8.2.7, the running time is

O∗
(

(5 − ε)tp+3·5p+O(1)
)

≤ O∗ (
(5 − ε)tp

)
≤ O∗

(
(5 − ε)⌈ n

β ⌉p
)

≤ O∗
(

(5 − ε)
n
β p

)
≤ O∗

(
(5 − ε)

n
β ⌈log5(2β)⌉

)
≤ O∗

(
(5 − ε)

n
β log5(2β)(5 − ε)

n
β

)
≤ O∗

(
2δ1β

n
β 2δ2n

)
≤ O∗

(
2(δ1+δ2)n

)
≤ O∗ (

2δn
)
,

hence completing the proof.

8.3 Feedback Vertex Set Lower Bound
This subsection is devoted to proving that FEEDBACK VERTEX SET[twinclass-pathwidth]
cannot be solved in time O∗((5 − ε)tc-pw(G)) for some ε > 0 unless the SETH fails. The main
challenge is the design of the path gadget. The decoding gadgets are adapted from the
lower bound constructions for ODD CYCLE TRANSVERSAL by Hegerfeld and Kratsch [102], cf.
Chapter 13, which rely on arrows that are adapted from Lokshtanov et al. [126]. We remark
that our construction will rely on false twinclasses and not true twinclasses, because in the
algorithm for FEEDBACK VERTEX SET it can already be seen that true twinclasses only admit
four distinct states instead of the desired five.

Local Cycles. Nontrivial twinclasses quickly lead to local cycles, i.e., whenever a twinclass
of size at least two has two or more neighboring vertices, then the twinclass together with its
neighbors leads to a cycle. Such local cycles are the main culprit of the additional complexity
for FEEDBACK VERTEX SET[twinclass-pathwidth] compared to parameterization by pathwidth
or treewidth. To preserve the complexity of the sparse case, we also need to consider more
global cycles that intersect each twinclass in at most one vertex. To create such global cycles
for the path gadgets, we use the following construction.

Root. We create a distinguished vertex r̂ called the root which will be connected to several
vertices throughout the construction. Given a vertex subset X ⊆ V (G) with r̂ ∈ Y , we say
that a vertex v ∈ Y is root-connected in Y if there is a v, r̂-path in G[Y]. We will just say
root-connected if Y is clear from the context. The construction and choice of the budget will
ensure that the root vertex r̂ cannot be deleted by the desired feedback vertex sets. Such a
root has also been used in the FEEDBACK VERTEX SET[pathwidth] lower bound by Cygan
et al. [50]. Whenever two root-connected vertices have a path between them that avoids
the root, we obtain a cycle. In this way, the root is used to create global cycles spanning
multiple path gadgets, which must be destroyed by a feedback vertex set.

Determining a Transition Order. We begin by analyzing the possible twinclass states for
partial solutions of FEEDBACK VERTEX SET. From the discussion on local cycles, one can
observe that it does not matter whether two or more than two vertices remain inside a
twinclass after deleting vertices from the graph. Therefore, we restrict our attention to

178 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

X1 vs. X2 01 00 11 10 2
2 1 1 1 1 1
10 0 1 1 1 1
11 0 1 1 0 1
00 0 0 1 1 1
01 0 0 0 0 1

Tab. 8.3.: The compatibility matrix for FEEDBACK VERTEX SET with respect to a join between two
twinclasses.

X1 vs. X2 01 (11,10) 00 10 2
2 1 1 1 1 1
10 0 1 1 1 1
11 0 0 1 1 1
00 0 0 0 1 1
01 0 0 0 0 1

Tab. 8.4.: The triangular compatibility matrix for FEEDBACK VERTEX SET[twinclass-pathwidth] ob-
tained by using asymmetric states.

twinclasses of size two. We describe the state of a twinclass C with respect to a partial
solution X ⊆ V (G) by the number of vertices in the intersection X ∩ C, when |X ∩ C| = 1
we distinguish whether the remaining vertex in C \ X is root-connected (state 11) in
Y = V (G) \ X or not (state 10), and when X ∩ C = ∅ we distinguish whether the two
vertices in C \X are connected (state 01) in Y = V (G) \X or not (state 00); the remaining
state 2 represents |X ∩C| = 2. First, we look at the compatibility matrix for the join between
two twinclasses. Two twinclass states are incompatible when they lead to a local cycle, e.g.,
20 vs. 20 or 21 vs. 10, or a cycle through the root, i.e., 11 vs. 11. We obtain the compatibility
matrix in Table 8.3, which has rank 5, but cannot be arranged to a triangular matrix of size
5 × 5: for the bottom two rows of the triangular matrix, we need two rows containing at
most two 1s, but there is only one such row in Table 8.3.

Introducing Asymmetry. Our analysis shows again that using a single twinclass at both
boundaries will not be sufficient to prove a tight lower bound for FEEDBACK VERTEX

SET[twinclass-pathwidth]. Instead, we again create an asymmetric path gadget that uses
several twinclasses at the right boundary. This allows us to consider the heterogeneous state
(11,10) where in one twinclass a root-connected vertex remains and in another a non-root-
connected vertex remains. Using the heterogeneous state (11,10) instead of state 11 at the
right boundary, we obtain the triangular compatibility matrix of size 5×5 in Table 8.4, which
guides the design of the path gadget. We remark that in the actual construction of the path
gadget, we will just use twinclasses of size one, i.e., single vertices, instead of larger ones at
the right boundary.

Complete Construction

Triangle Edges. Given two vertices u and v, by adding a triangle edge between u and v we
mean that we add a new vertex w{u,v} and the edges {u, v}, {u,w{u,v}}, {w{u,v}, v}, so that
the three vertices u, v, w{u,v} induce a triangle. The vertex w{u,v} will not receive any further
neighbors in the construction. Any feedback vertex set X has to intersect {u, v, w{u,v}}
and since w{u,v} has only degree 2, we can always assume that w{u,v} /∈ X. In this way, a
triangle edge naturally implements a logical or between u and v.

8.3 Feedback Vertex Set Lower Bound 179

v3

v1, v2, v4, v5

v4

v4, v5

v2, v3, v4, v5

v1, v2, v3, v5

u1

u2

c1

c0

a4

a3

a2

a1

v1

v2

v3

v4

v5

clique using

a4, c1

a3, a4, c1

a3, a4, c0

a1, a2, a3, c1

a2, a3, a4, c1

b1,1

b1,2
b2,1

b2,2
b3,1

b3,2
b4,1

b4,2

b5,1

b5,2

complete 5-partite
= adjacent to the root r̂

triangle edges
using triangle edges

path gadget:

= triangle edge

Fig. 8.5.: The superscripts in vertex names are omitted and the edges between the auxiliary vertices,
connectivity vertices, and clique vertices are not drawn directly for visual clarity. All vertices
that are depicted with a rectangle are adjacent to the root vertex r̂. The thick green edges
denote triangle edges. The vertices inside the dashed rectangle induce a 5-clique or a
complete 5-partite graph using triangle edges. The edges from the output vertices to the
next pair of input vertices are hinted at.

Arrows. Given two vertices u and v, by adding an arrow from u to v we mean that we add
three vertices xuv, yuv, zuv and the edges {u, xuv}, {u, yuv}, {xuv, yuv}, {yuv, zuv}, {yuv, v},
{zuv, v}, i.e., we are essentially adding two consecutive triangle edges between u and v. The
resulting graph is denoted by A(u, v) and u is the tail and v the head of the arrow. None of
the vertices in V (A(u, v)) \ {u, v} will receive any further neighbors in the construction. The
construction of an arrow is symmetric, but the direction will be relevant for constructing a
cycle packing that witnesses a lower bound on the size of a feedback vertex set.

We use arrows to propagate deletions throughout the graph. Let X be a feedback vertex
set. If u /∈ X, then we can resolve both triangles simultaneously by putting yuv into X. If
u ∈ X, then the first triangle is already resolved and we can safely put v into X, hence
propagating the deletion from u to v. The former solution is called the passive solution of
the arrow and the latter is the active solution. Using simple exchange arguments, we see
that it is sufficient to only consider feedback vertex sets that on each arrow either use the
passive solution or the active solution.

Setup of Construction. Assume that FEEDBACK VERTEX SET can be solved in time O∗((5 −
ε)tc-pw(G)) for some ε > 0. Given a q-SATISFIABILITY-instance σ with n variables and m

clauses, we construct an equivalent FEEDBACK VERTEX SET instance with twinclass-pathwidth
approximately n log5(2) so that the existence of such an algorithm for FEEDBACK VERTEX SET

would imply that SETH is false. We pick an integer β only depending on ε; the precise choice
of β will be discussed at a later point. The variables of σ are partitioned into groups of size
at most β, resulting in t = ⌈n/β⌉ groups. Furthermore, we pick the smallest integer p that
satisfies 5p ≥ 2β . We now begin with the construction of the FVS instance (G = G(σ, β), b);
we recall that we first create a root vertex r̂.

180 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

Path Gadgets. For every i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)], we create a path gadget P i,j,ℓ

that consists of two input vertices ui,j,ℓ1 , ui,j,ℓ2 forming a false twinclass; four auxiliary vertices
ai,j,ℓ1 , . . ., ai,j,ℓ4 ; two connectivity vertices ci,j,ℓ0 , ci,j,ℓ1 ; five clique vertices vi,j,ℓ1 , . . . , vi,j,ℓ5 ; and
ten output vertices in pairs of two bi,j,ℓ1,1 , bi,j,ℓ1,2 , bi,j,ℓ2,1 , bi,j,ℓ2,2 , . . . , bi,j,ℓ5,2 . We add a join between the
input vertices ui,j,ℓ1 , ui,j,ℓ2 and the first three auxiliary vertices ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 , furthermore
we add the edges {ai,j,ℓ2 , ai,j,ℓ3 }, {ai,j,ℓ1 , ci,j,ℓ1 }, and {bi,j,ℓ1,1 , b

i,j,ℓ
1,2 }. The vertices ci,j,ℓ1 and bi,j,ℓ2,1

are made adjacent to the root r̂. We add triangle edges between ai,j,ℓ4 and the other auxiliary
vertices ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 and we add a triangle edge between ci,j,ℓ0 and ci,j,ℓ1 . We add a
triangle edge between every pair of distinct clique vertices vi,j,ℓφ , φ ∈ [5], and every pair of
output vertices bi,j,ℓφ,γ and bi,j,ℓφ′,γ′ with φ ̸= φ′ ∈ [5] and γ, γ′ ∈ {1, 2}. For all φ ∈ [5], we add a
triangle edge between vi,j,ℓφ and every bi,j,ℓψ,γ for ψ ∈ [5] \ {φ} and γ ∈ {1, 2}. We finish the
construction of P i,j,ℓ by describing how to connect the clique vertices vi,j,ℓφ , φ ∈ [5], to the
left side of P i,j,ℓ. For each φ ∈ [5], we add triangle edges between vi,j,ℓφ and one or several
target vertices on the left side of P i,j,ℓ. The target vertices, depending on φ ∈ [5], are
• for φ = 1: ai,j,ℓ4 and ci,j,ℓ1 ;
• for φ = 2: ai,j,ℓ3 , ai,j,ℓ4 , and ci,j,ℓ1 ;
• for φ = 3: ai,j,ℓ3 , ai,j,ℓ4 , and ci,j,ℓ0 ;
• for φ = 4: ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 , and ci,j,ℓ1 ;
• for φ = 5: ai,j,ℓ2 , ai,j,ℓ3 , ai,j,ℓ4 , and ci,j,ℓ1 .
Finally, for ℓ ∈ [m(4tp+ 1) − 1], we connect P i,j,ℓ to P i,j,ℓ+1 by adding a join between the
output pair bi,j,ℓφ,1 , bi,j,ℓφ,2 and the next input vertices ui,j,ℓ+1

1 , ui,j,ℓ+1
2 for every φ ∈ {1, 2, 3} and

we join the vertex bi,j,ℓ4,1 to ui,j,ℓ+1
1 and ui,j,ℓ+1

2 . This concludes the description of the path
gadgets, cf. Figure 8.5.

Intuition for Path Gadget. The left boundary is built in such a way that a feedback vertex
set has to delete at least three of the vertices among the input and auxiliary vertices, so the
auxiliary vertices balance out the cost of the deletions at the separating twinclass. Using
triangle edges, we force specific vertices into the feedback vertex set depending on which
clique vertex is avoided. The construction at the right boundary ensures that all output
vertices except the pair corresponding to the avoided clique vertex are deleted. In this way,
we have built a generic selector gadget choosing the appropriate state at the right boundary
via the pairs instead of building a more intricate gadget that forces the desired state at two
fixed vertices. The states at the left boundary associated with the avoided clique vertex are
s1 = 2, s2 = 10, s3 = 11, s4 = 00, and s5 = 01, with the same meaning as in the derivation
of the transition order. However, in this gadget the relation between the avoided clique
vertex and the state at the left boundary is not perfect in the sense that avoiding the i-th
clique vertex does not force state si at the left boundary. Instead, we will prove that avoiding
the i-th clique vertex at least ensures that the state at the left boundary must be sj with
i ≤ j, which preserves the transition order and still allows the proof to go through.

Decoding Gadgets. For every group i ∈ [t], column ℓ ∈ [m(4tp+ 1)], and state sequence
h = (h1, . . . , hp) ∈ [5]p, we create a decoding gadget Di,ℓ,h consisting of 4p vertices xi,ℓ,h1 ,
. . ., xi,ℓ,h4p ; a distinguished vertex x̂i,ℓ,h; and two vertices yi,ℓ,h1 and yi,ℓ,h2 . We add the edges
{yi,ℓ,h1 , yi,ℓ,h2 }, {yi,ℓ,h1 , x̂i,ℓ,h}, {yi,ℓ,h2 , x̂i,ℓ,h} and for every γ ∈ [4p], the edges {yi,ℓ,h1 , xi,ℓ,hγ }

8.3 Feedback Vertex Set Lower Bound 181

...

vi,1,ℓ1
vi,1,ℓ2
vi,1,ℓ3
vi,1,ℓ4
vi,1,ℓ5

vi,2,ℓ1
vi,2,ℓ2
vi,2,ℓ3
vi,2,ℓ4
vi,2,ℓ5

...

4p vertices

x̂i,ℓ,(2,1,...)
y
i,ℓ,(2,1,...)
1

y
i,ℓ,(2,1,...)
2

Zℓif assignment
satisfies clause

= arrow gadget
= packing

Fig. 8.6.: A depiction of the decoding Di,ℓ,h and clause gadget Zℓ with h = (2, 1, . . .). The red triangle
is part of the packing P . The arrows point in the direction of the deletion propagation.

and {yi,ℓ,h2 , xi,ℓ,hγ }, hence {yi,ℓ,h1 , yi,ℓ,h2 , xi,ℓ,hγ } induces a triangle for every γ ∈ [4p]. The path
gadgets P i,j,ℓ with j ∈ [p] are connected to Di,ℓ,h as follows. For every clique vertex vi,j,ℓφ

with φ ∈ [5] \ {hj}, we pick a private vertex xi,ℓ,hγ , γ ∈ [4p], and add an arrow from vi,j,ℓφ to
xi,ℓ,hγ . Since there are precisely 4p such vi,j,ℓφ for fixed i, ℓ, and h, this construction works out.
For every i ∈ [t], ℓ ∈ [m(4tp+ 1)], the block Bi,ℓ consists of the path gadgets P i,j,ℓ, j ∈ [p],
and the decoding gadgets Di,ℓ,h, h ∈ [5]p. See Figure 8.6 for a depiction of the decoding
gadget.

Mapping Truth Assignments to State Sequences. Every variable group i ∈ [t] has at
most 2β possible truth assignments. By choice of p, we have that 5p ≥ 2β , hence we can
fix an injective mapping κ : {0, 1}β → [5]p that maps truth assignments τ ∈ {0, 1}β to state
sequences h ∈ [5]p.

Clause Cycles. We number the clauses of σ by C0, . . . , Cm−1. For every column ℓ ∈
[m(4tp+ 1)], we create a cycle Zℓ consisting of q5p vertices zℓγ , γ ∈ [q5p]. Let ℓ′ be the
remainder of ℓ− 1 modulo m. For every group i ∈ [t] and state sequence h ∈ [5]p, we add
an arrow from x̂i,ℓ,h to a private zℓγ if h ∈ κ({0, 1}β) and κ−1(h) is a truth assignment for
variable group i that satisfies clause Cℓ′ . Since σ is a q-SATISFIABILITY instance, every clause
intersects at most q variable groups. Every variable group has at most 2β ≤ 5p possible truth
assignments, hence q5p is a sufficient number of vertices for this construction to work. See
Figure 8.7 for a depiction of the high-level structure.

Packing. We construct a vertex-disjoint packing P that will witness a lower bound on the
size of any feedback vertex set in the constructed graph G. The packing P consists of the
following subgraphs:
• the triangle edge between ci,j,ℓ0 and ci,j,ℓ1 for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)],

182 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

B1,1 B1,2... · · ·... B1,m...
... B1,m+1 B1,m+2... · · ·... B1,2m...

B2,1 B2,2... · · ·... B2,m...
... B2,m+1 B2,m+2... · · ·... B2,2m...

Bt,1 Bt,2... · · ·... Bt,m...
... Bt,m+1 Bt,m+2... · · ·... Bt,2m...

...
...

...
...

...
...

...
...

...
...

...

· · ·... B1,#co...

· · ·... B2,#co...

· · ·... Bt,#co...

...
...

R1 R2

Z1 Z2 Zm Zm+1 Zm+2 Z2m Z#co· · · · · · · · ·

P 1,1

P 1,2

P 1,p

P 2,1

P 2,2

P 2,p

P t,1

P t,2

P t,p

= adjacent to root r̂
#co = (4tp+ 1)m

· · ·

· · ·

R#co

= arrow gadget

Fig. 8.7.: The matrix structure of the constructed graph for FEEDBACK VERTEX SET[twinclass-
pathwidth]. Every m columns form a region, which are highlighted by the dashed cyan
rectangles.

• the graph induced by the clique vertices vi,j,ℓφ , φ ∈ [5], and the triangle edges between
them for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)],

• the graph induced by the output vertices bi,j,ℓφ,γ , φ ∈ [5], γ ∈ {1, 2}, and the triangle edges
between them for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)],

• the graph induced by the input vertices ui,j,ℓ1 , ui,j,ℓ2 and the auxiliary vertices ai,j,ℓ1 , . . .,
ai,j,ℓ4 and the triangle edges between them for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)],

• the triangle induced by x̂i,ℓ,h, yi,ℓ,h1 , yi,ℓ,h2 for all i ∈ [t], ℓ ∈ [m(4tp+ 1)], h ∈ [5]p,
• the second triangle in every arrow A(u, v), i.e., the triangle containing the head v if the

arrow was constructed from u to v.
Observe that in the construction of G at most the tail of an arrow is incident with any of the
other subgraphs in P, hence the subgraphs in P are indeed vertex-disjoint. Let nA be the
number of arrows in G, we define

costP = (1 + 4 + 8 + 3)tpm(4tp+ 1) + tm(4tp+ 1)5p + nA.

Lemma 8.3.1. Let X be a feedback vertex set of G, then |X| ≥ costP .

Proof. We first apply the standard exchange arguments for triangle edges and arrows to X,
obtaining a feedback vertex set X ′ of G with |X ′| ≤ |X| that never contains the degree-2
vertex in a triangle edge and always uses the passive or active solution on any arrow.

For every triangle in P , the feedback vertex set X ′ must clearly contain at least one vertex
of that triangle. Fix i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)] for the rest of the proof. Consider the
graph induced by the clique vertices vi,j,ℓφ , φ ∈ [5], and suppose that there are φ ̸= ψ ∈ [5]
such that vi,j,ℓφ , vi,j,ℓψ /∈ X ′, then the triangle edge between these two vertices is not resolved
by assumption on X ′. Hence, X ′ contains at least four of the vertices vi,j,ℓφ , φ ∈ [5]. Similarly,
consider the graph induced by the output vertices bi,j,ℓφ,γ , φ ∈ [5], γ ∈ {1, 2}, and suppose
that there are φ ̸= ψ ∈ [5], γ, γ′ ∈ {1, 2} such that bi,j,ℓφ,γ , b

i,j,ℓ
ψ,γ′ /∈ X ′, then the triangle edge

between these two vertices is not resolved by assumption on X ′. Hence, X ′ contains at
least eight of these vertices, in particular four out of five pairs bi,j,ℓφ,1 , bi,j,ℓφ,2 , φ ∈ [5], must be
completely contained in X ′.

8.3 Feedback Vertex Set Lower Bound 183

It remains to show that X ′ contains at least three vertices in the subgraph induced by
the input vertices ui,j,ℓ1 , ui,j,ℓ2 and the auxiliary vertices ai,j,ℓ1 , . . ., ai,j,ℓ4 . First, observe that
X ′ has to contain all of the first three auxiliary vertices ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 or the last auxiliary
vertex ai,j,ℓ4 , otherwise there is an unresolved triangle edge incident to the last auxiliary
vertex ai,j,ℓ4 . We distinguish three cases based on α = |X ′ ∩ {ui,j,ℓ1 , ui,j,ℓ2 }|. If α = 2, we are
done by the first observation. If α = 1, there is a triangle induced by ai,j,ℓ2 , ai,j,ℓ3 , and the
remaining input vertex which needs to be resolved. Hence, ai,j,ℓ2 ∈ X ′ or ai,j,ℓ3 ∈ X ′ and due
to the first observation X ′ has to contain at least one further vertex. Finally, if α = 0, note
that the graph induced by the input vertices and the first three auxiliary vertices contains a
K2,3, so X ′ has to contain at least two of the first three auxiliary vertices and due to the first
observation X ′ has to contain at least one further vertex, hence we are done.

Lemma 8.3.2. If σ is satisfiable, then there is a feedback vertex set X of G with |X| ≤ costP .

Proof. Let τ be a satisfying truth assignment of σ and let τ i be the induced truth assignment
for variable group i ∈ [t]. Each truth assignment τ i corresponds to a state sequence
κ(τ i) = hi = (hi1, . . . , hip) which we will use to construct the feedback vertex set X. On
every path gadget P i,j,ℓ, i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)], we consider five different types of
solutions Xi,j,ℓ

φ , φ ∈ [5], which we will define now:
• Xi,j,ℓ

1 = {vi,j,ℓφ , bi,j,ℓφ,1 , b
i,j,ℓ
φ,2 : φ ∈ [5] \ {1}} ∪ {ci,j,ℓ1 } ∪ {ai,j,ℓ4 } ∪ {ui,j,ℓ1 , ui,j,ℓ2 }

• Xi,j,ℓ
2 = {vi,j,ℓφ , bi,j,ℓφ,1 , b

i,j,ℓ
φ,2 : φ ∈ [5] \ {2}} ∪ {ci,j,ℓ1 } ∪ {ai,j,ℓ3 , ai,j,ℓ4 } ∪ {ui,j,ℓ1 }

• Xi,j,ℓ
3 = {vi,j,ℓφ , bi,j,ℓφ,1 , b

i,j,ℓ
φ,2 : φ ∈ [5] \ {3}} ∪ {ci,j,ℓ0 } ∪ {ai,j,ℓ3 , ai,j,ℓ4 } ∪ {ui,j,ℓ1 }

• Xi,j,ℓ
4 = {vi,j,ℓφ , bi,j,ℓφ,1 , b

i,j,ℓ
φ,2 : φ ∈ [5] \ {4}} ∪ {ci,j,ℓ1 } ∪ {ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 } ∪ ∅

• Xi,j,ℓ
5 = {vi,j,ℓφ , bi,j,ℓφ,1 , b

i,j,ℓ
φ,2 : φ ∈ [5] \ {5}} ∪ {ci,j,ℓ1 } ∪ {ai,j,ℓ2 , ai,j,ℓ3 , ai,j,ℓ4 } ∪ ∅

The feedback vertex set on the path gadgets P i,j,ℓ is given by

XP =
⋃
i∈[t]

⋃
j∈[p]

⋃
ℓ∈[m(4tp+1)]

Xi,j,ℓ
hi

j

.

On the decoding gadgets Di,ℓ,h, we define

XD =
⋃
i∈[t]

⋃
ℓ∈[m(4tp+1)]

(
{x̂i,ℓ,h

i

} ∪ {yi,ℓ,h1 : h ∈ [5]p \ {hi}}
)
.

We obtain the desired feedback vertex set X by starting with XP ∪ XD and propagating
the deletions throughout G using the arrows, i.e., if the tail u of an arrow A(u, v) is in
X, then we choose the active solution on this arrow and otherwise we choose the passive
solution. Since |Xi,j,ℓ

φ | = 16 for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)], φ ∈ [5], we compute
that |XP | = 16tpm(4tp+ 1) and for XD, we see that |XD| = tm(4tp+ 1)5p and hence
|X| = costP as desired, since we perform one additional deletion per arrow.

It remains to show that X is a feedback vertex set of G, i.e., that G−X is a forest. First,
notice that the passive solution of an arrow A(u, v) disconnects u from v inside A(u, v) and
that the remainder of A(u, v) − {u, v} cannot partake in any cycles. The active solution of
an arrow A(u, v) deletes u and v, so that the three remaining vertices of the arrow form a
single connected component. Since the path gadgets P i,j,ℓ are connected to the decoding
gadgets Di,ℓ,h only via arrows and also the decoding gadgets are only connected to the

184 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

clause cycles Zℓ via arrows, X disconnects these three types of gadgets from each other and
we can handle each type separately.

We begin with the decoding gadgets Di,ℓ,h, i ∈ [t], ℓ ∈ [m(4tp+ 1)], h ∈ [5]p. Every
Di,ℓ,h is in its own connected component in G−X, since one can only enter or leave Di,ℓ,h

via an arrow. Every cycle in Di,ℓ,h intersects yi,ℓ,h1 which is in X if h ̸= hi. Hence, it remains
to consider the case h = hi. In this case, X contains x̂i,ℓ,h

i

by definition of XD and we claim
that xi,ℓ,h

i

γ ∈ X for all γ ∈ [4p] due to propagation via arrows. By construction of G, every
xi,ℓ,h

i

γ , γ ∈ [4p], is the head of an arrow A(vi,j,ℓφ , xi,ℓ,h
i

γ) for some j ∈ [p] and φ ∈ [5] \ {hip},
but every such vi,j,ℓφ is in X by definition of XP . Hence, these deletions are propagated to

the xi,ℓ,h
i

γ , γ ∈ [4p] and the only remaining vertices of Di,ℓ,hi

are yi,ℓ,h
i

1 and yi,ℓ,h
i

2 which
clearly induce an acyclic graph.

We continue with the clause cycles Zℓ, ℓ ∈ [m(4tp+ 1)]. Again, each clause cycle Zℓ is in
its own connected component in G−X and Zℓ consists of a single large cycle with vertices
zℓγ , γ ∈ [q5p]. We claim that X propagates a deletion to at least one of these zℓγ . Let ℓ′ be the
remainder of ℓ− 1 modulo m. Since τ satisfies σ and in particular clause Cℓ′ , there is some
variable group i ∈ [t] such that already τ i satisfies clause Cℓ′ . By construction of G, there is
an arrow A(x̂i,ℓ,hi

, zℓγ) for some γ ∈ [q5p] because κ(τ i) = hi. By definition of XD, we have
that x̂i,ℓ,h

i ∈ X and a deletion is indeed propagated to zℓγ , thus resolving the cycle Zℓ.
It remains to show that there is no cycle in G−X intersecting a path gadget P i,j,ℓ, i ∈ [t],

j ∈ [p], ℓ ∈ [m(4tp+ 1)]. All path gadgets are connected to each other via the root vertex
r̂ and furthermore consecutive path gadgets P i,j,ℓ and P i,j,ℓ+1 are connected via the joins
between them. We first show that there is no cycle in G−X that is completely contained in
a single path gadget P i,j,ℓ. It is easy to see that each X ∩ P i,j,ℓ = Xi,j,ℓ

hi
j

contains at least

one vertex per triangle edge in P i,j,ℓ. Any further cycle that could remain in P i,j,ℓ can only
involve the vertices ui,j,ℓ1 , ui,j,ℓ2 , ai,j,ℓ1 , ai,j,ℓ2 , and ai,j,ℓ3 . These vertices induce a K2,3 plus the
edge {ai,j,ℓ2 , ai,j,ℓ3 } in G. In each Xi,j,ℓ

φ , φ ∈ [5], one side of the biclique K2,3 is contained
completely with the exception of at most one vertex and ai,j,ℓ2 and ai,j,ℓ3 only remain together
if the other side is contained completely. Hence, no cycle remains there either.

Observe that P i,j,ℓ is separated from any P i,j,ℓ
′

with ℓ′ /∈ {ℓ−1, ℓ, ℓ+1} in G− (X ∪{r̂}),
because X contains at least one endpoint of each triangle edge between the clique vertices
vi,j,ℓφ , φ ∈ [5], and the output vertices bi,j,ℓφ,γ , φ ∈ [5], γ ∈ {1, 2}. Hence, any cycle in G− (X ∪
{r̂}) would have to involve two consecutive path gadgets. Furthermore, {ui,j,ℓ+1

1 , ui,j,ℓ+1
2 } is

a separator of size two between P i,j,ℓ and P i,j,ℓ+1 in G− (X ∪ {r̂}), so any cycle involving
both path gadgets has to contain ui,j,ℓ+1

1 and ui,j,ℓ+1
2 . Therefore, we only have to consider

the partial solutions Xi,j,ℓ
4 ∪Xi,j,ℓ+1

4 and Xi,j,ℓ
5 ∪Xi,j,ℓ+1

5 as otherwise at least one of ui,j,ℓ+1
1

and ui,j,ℓ+1
2 will be deleted. In both cases, the connected component of G−X containing

ui,j,ℓ+1
1 and ui,j,ℓ+1

2 induces a path on three vertices plus some pendant edges from the
triangle edges. Hence, there is no cycle in G− (X ∪ {r̂}).

We are left with showing that G − X contains no cycle containing the root vertex r̂.
We do so by arguing that each vertex in G − X has at most one path to r̂ in G − X. The
neighbors of r̂ are the vertices bi,j,ℓ2,1 and ci,j,ℓ1 for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)]. It is
sufficient to show that there is no path between any of these neighbors in G− (X ∪ {r̂}).
By the same argument as in the previous paragraph, we only have to consider consecutive
path gadgets P i,j,ℓ and P i,j,ℓ+1. By resolving the triangle edges between the clique vertices

8.3 Feedback Vertex Set Lower Bound 185

vi,j,ℓφ , φ ∈ [5], and the output vertices bi,j,ℓφ,γ , φ ∈ [5], γ ∈ {1, 2}, all paths in G − r̂ between
bi,j,ℓ2,1 and ci,j,ℓ1 are intersected by X. Similarly for paths in G− r̂ between ci,j,ℓ1 and one of
the vertices ci,j,ℓ+1

1 or bi,j,ℓ+1
2,1 and paths between bi,j,ℓ2,1 and bi,j,ℓ+1

2,1 .
It remains to consider paths in G− (X ∪ {r̂}) between bi,j,ℓ2,1 and ci,j,ℓ+1

1 . We distinguish
based on the chosen partial solution Xi,j,ℓ

φ ∪ Xi,j,ℓ+1
φ , φ ∈ [5]. For φ ̸= 3, we see that

ci,j,ℓ1 ∈ X. For φ = 3, we see that bi,j,ℓ2,1 ∈ X. Hence, no such path can exist and X has to be
a feedback vertex set.

We say that a vertex subset X ⊆ V (G) is canonical with respect to the twinclass
{ui,j,ℓ1 , ui,j,ℓ2 } if ui,j,ℓ2 ∈ X implies ui,j,ℓ1 ∈ X. Since {ui,j,ℓ1 , ui,j,ℓ2 } is a twinclass, we can
always assume that we are working with a canonical subset.

Given a subset X ⊆ V (G) \ {r̂} that is canonical with respect to each twinclass
{ui,j,ℓ1 , ui,j,ℓ2 }, we define stateX : [t] × [p] × [m(4tp+ 1)] → {2,10,11,00,01} by

stateX(i, j, ℓ) =

2, if |X ∩ {ui,j,ℓ1 , ui,j,ℓ2 }| = 2,

10, if X ∩ {ui,j,ℓ1 , ui,j,ℓ2 } = {ui,j,ℓ1 } and

ui,j,ℓ2 is not root-connected in (P i,j,ℓ + r̂) −X,

11, if X ∩ {ui,j,ℓ1 , ui,j,ℓ2 } = {ui,j,ℓ1 } and

ui,j,ℓ2 is root-connected in (P i,j,ℓ + r̂) −X,

00, if X ∩ {ui,j,ℓ1 , ui,j,ℓ2 } = ∅ and

ui,j,ℓ1 and ui,j,ℓ2 are not connected in (P i,j,ℓ + r̂) −X,

01, if X ∩ {ui,j,ℓ1 , ui,j,ℓ2 } = ∅ and

ui,j,ℓ1 and ui,j,ℓ2 are connected in (P i,j,ℓ + r̂) −X.

Due to the assumption that X is canonical, we see that stateX is well-defined. We remark
that the meaning of the subscript is slightly different when one or no vertex of the twinclass
is in X. We also recall the notation s1 = 2, s2 = 10, s3 = 11, s4 = 00, and s5 = 01.

Lemma 8.3.3. If there is a feedback vertex set X of G of size |X| ≤ costP , then σ is satisfiable.

Proof. Due to Lemma 8.3.1, we immediately see that |X| = costP and X ∩ V (H) has to be
a minimum feedback vertex set of H for any H ∈ P . So, X contains precisely one vertex of
each triangle in P and satisfies the packing equations for all i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)]:
• |X ∩ {vi,j,ℓφ : φ ∈ [5]}| = 4,
• |X ∩ {bi,j,ℓφ,1 , b

i,j,ℓ
φ,2 : φ ∈ [5]}| = 8,

• |X ∩ {ui,j,ℓ1 , ui,j,ℓ2 , ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 , ai,j,ℓ4 }| = 3.
In particular, this also implies that X cannot contain the root vertex r̂.

Furthermore, due to the standard exchange arguments for triangle edges and arrows,
we can assume for any triangle edge between u and v that X contains u or v and for any
arrow A(u, v) that X uses the passive solution or the active solution on A(u, v). Finally, we
can assume that X is canonical with respect to each twinclass {ui,j,ℓ1 , ui,j,ℓ2 }, i.e., ui,j,ℓ2 ∈ X

implies that ui,j,ℓ1 ∈ X.
We begin by studying the structure of X ∩ P i,j,ℓ for any i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)].

For fixed i, j, ℓ, there is a unique φ ∈ [5] such that vi,j,ℓφ /∈ X due to the packing equations.

186 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

Hence, we must have X ∩ {bi,j,ℓψ,1 , b
i,j,ℓ
ψ,2 : ψ ∈ [5]} = {bi,j,ℓψ,1 , b

i,j,ℓ
ψ,2 : ψ ∈ [5] \ {φ}} due

to the packing equations and the triangle edges between vi,j,ℓφ and the output vertices
{bi,j,ℓψ,1 , b

i,j,ℓ
ψ,2 : ψ ∈ [5] \ {φ}}.

For the left side of a path gadget P i,j,ℓ, we claim that vi,j,ℓφ /∈ X implies stateX(i, j, ℓ) =
sφ′

with φ′ ≥ φ. For φ = 1 there is nothing to show. One can see that (φ′, φ) /∈ ([3]×{4, 5})∪
({1}×{2, 3}) by considering the size ofX∩{ui,j,ℓ1 , ui,j,ℓ2 , ai,j,ℓ1 , ai,j,ℓ2 , ai,j,ℓ3 , ai,j,ℓ4 } in those cases:
Due to the triangle edges between the clique vertices vi,j,ℓψ , ψ ∈ [5] and auxiliary vertices
ai,j,ℓγ , γ ∈ [4], we see that X contains at least two auxiliary vertices if φ ≥ 2 and at least
three if φ ≥ 4. Using the packing equations, we see that this implies |X ∩ {ui,j,ℓ1 , ui,j,ℓ2 }| ≤ 1
if φ ≥ 2 and X ∩ {ui,j,ℓ1 , ui,j,ℓ2 } = ∅ if φ ≥ 4, but the listed cases contradict this. It remains
to handle the two cases (φ′, φ) = (2, 3) and (φ′, φ) = (4, 5). In the first case, the triangle
edges between the vertex vi,j,ℓ3 and the vertices ai,j,ℓ3 , ai,j,ℓ4 , ci,j,ℓ0 together with the packing
equations imply that ui,j,ℓ2 , ai,j,ℓ1 , ci,j,ℓ1 /∈ X, but then stateX(i, j, ℓ) = 11 = s3 ̸= sφ′

because
ui,j,ℓ2 , ai,j,ℓ1 , ci,j,ℓ1 , r̂ is a path in (P i,j,ℓ+ r̂)−X. In the second case, the triangle edges between
vi,j,ℓ5 and the auxiliary vertices ai,j,ℓ2 , ai,j,ℓ3 , ai,j,ℓ4 together with the packing equations imply
that ui,j,ℓ1 , ui,j,ℓ2 , ai,j,ℓ1 /∈ X and hence stateX(i, j, ℓ) = 01 = s5 ̸= sφ′

. This proves the claim.
Next, we claim that for any i ∈ [t], j ∈ [p], and ℓ1, ℓ2 ∈ [m(4tp+ 1)] with ℓ1 < ℓ2, that

the unique φ1 ∈ [5] and φ2 ∈ [5] such that vi,j,ℓ1
φ1

/∈ X and vi,j,ℓ2
φ2

/∈ X satisfy φ1 ≥ φ2. This
essentially follows from the triangularity of the considered compatibility matrix; we proceed
with the formal argument. We can assume without loss of generality that ℓ2 = ℓ1 + 1. By the
previous arguments, we know that bi,j,ℓ1

φ1,1 , b
i,j,ℓ1
φ1,2 /∈ X and stateX(i, j, ℓ2) = sφ′

with φ′ ≥ φ2,
so we are done if we can show that φ1 ≥ φ′. We do so by arguing that G − X contains
a cycle in all other cases, thus contradicting that X is a feedback vertex set. If φ1 < φ′

and (φ1, φ
′) /∈ {(2, 3), (4, 5)}, then G[{bi,j,ℓ1

φ1,1 , b
i,j,ℓ1
φ1,2 , u

i,j,ℓ1+1
1 , ui,j,ℓ1+1

2 } \X] simply contains
a cycle. If (φ1, φ

′) = (2, 3), then there is a cycle passing through the root r̂ in G−X visiting
r̂, bi,j,ℓ1

2,1 , ui,j,ℓ1+1
2 , and then uses the path to r̂ inside (P i,j,ℓ1+1 + r̂) − X which exists due

to stateX(i, j, ℓ1 + 1) = sφ′ = s3 = 11. If (φ1, φ
′) = (4, 5), then there is a cycle in G − X

visiting ui,j,ℓ1+1
1 , bi,j,ℓ1

4,1 , ui,j,ℓ1+1
2 , and then uses the path between ui,j,ℓ1+1

2 and ui,j,ℓ1+1
1 in

(P i,j,ℓ1+1 + r̂) −X which exists due to stateX(i, j, ℓ1 + 1) = sφ′ = s5 = 01. This shows the
claim.

We say that X cheats from P i,j,ℓ to P i,j,ℓ+1 if vi,j,ℓφ1
, vi,j,ℓ+1
φ2

/∈ X with φ1 > φ2. By the
previous claim, there can be at most four cheats for fixed i and j. For γ ∈ [4tp+ 1], we
define the γ-th column region Rγ = [(γ − 1)m + 1, γm]. Since there are tp paths, there is
a column region Rγ that contains no cheats by the pigeonhole principle, i.e., for all i ∈ [t],
j ∈ [p], ℓ1, ℓ2 ∈ Rγ , φ ∈ [5], we have vi,j,ℓ1

φ /∈ X if and only if vi,j,ℓ2
φ /∈ X. Fix this γ for the

remainder of the proof.
We obtain sequences hi = (hi1, . . . , hip) ∈ [5]p, i ∈ [t], by defining hij ∈ [5] as the unique

number satisfying vi,j,γm
hi

j

/∈ X. Since Rγ contains no cheats, we would obtain the same

sequences if we use any column ℓ ∈ Rγ \ {γm} instead of column γm in the definition. We
obtain a truth assignment τ i for variable group i by setting τ i = κ−1(hi) if hi ∈ κ({0, 1}β)
and otherwise picking an arbitrary truth assignment.

We claim that τ = τ1 ∪ · · · ∪ τ t is a satisfying assignment of σ. To prove this claim, we
begin by showing for all i ∈ [t], ℓ ∈ Rγ , h ∈ [5]p, that x̂i,ℓ,h ∈ X implies h = hi. Suppose
that h = (h1, . . . , hp) ̸= hi, then there is some j ∈ [p] with hj ̸= hij . There is an arrow from

8.3 Feedback Vertex Set Lower Bound 187

vi,j,ℓ
hi

j

/∈ X to some xi,ℓ,hγ , γ ∈ [4p], but X uses the passive solution on this arrow and hence

xi,ℓ,hγ /∈ X as well, otherwise the packing equation for the second triangle in the arrow
would be violated. To resolve the triangle in Di,ℓ,h induced by {xi,ℓ,hγ , yi,ℓ,h1 , yi,ℓ,h2 }, we must
have yi,ℓ,h1 ∈ X or yi,ℓ,h2 ∈ X. Hence, we must have x̂i,ℓ,h /∈ X in either case, as otherwise
the packing equation for the triangle induced by {x̂i,ℓ,h, yi,ℓ,h1 , yi,ℓ,h2 } would be violated. This
proves the subclaim.

Consider clause Cℓ′ , ℓ′ ∈ [0,m − 1], we will argue now that τ satisfies clause Cℓ′ . The
clause cycle Zℓ with ℓ = (γ − 1)m+ ℓ′ + 1 ∈ Rγ corresponds to clause Cℓ′ and since X is a
feedback vertex set, there exists some zℓη ∈ X ∩ Zℓ, η ∈ [q5p]. By construction of G, there is
at most one arrow incident to zℓη. If there is no incident arrow, then zℓη is not contained in
any of the subgraphs in the packing P and hence zℓη ∈ X contradicts |X| = costP . So, there
is exactly one arrow incident to zℓη and by construction of G, this arrow comes from some
x̂i,ℓ,h. We must have x̂i,ℓ,h ∈ X as well, because X uses the active solution on this arrow.
The previous claim implies that h = hi. Finally, such an arrow only exists, by construction,
if κ−1(h) = κ−1(hi) = τ i satisfies clause Cℓ′ , so τ must satisfy Cℓ′ as well. In this step, we
use that the definition of hi is independent of the considered column in region Rγ . Since
the choice of Cℓ′ was arbitrary, this shows that σ is satisfiable.

Lemma 8.3.4. The graph G = G(σ, β) has tc-pw(G) ≤ tp+ (4p+ 3 + q)5p + O(1) and a path
decomposition of Gq = G/Πtc(G) of this width can be constructed in polynomial time.

Proof. By construction, all sets {ui,j,ℓ1 , ui,j,ℓ2 }, i ∈ [t], j ∈ [p], ℓ ∈ [m(4tp+ 1)], are twinclasses.
Let G′ be the graph obtained by contracting each of these twinclasses, denoting the resulting
vertex by ui,j,ℓ, then Gq is a subgraph of G′. We will show that tc-pw(G) = pw(Gq) ≤
pw(G′) ≤ tp+ (4p+ 3 + q)5p + O(1) by giving an appropriate strategy for the mixed-search-
game on G′ and applying Lemma 2.4.31.

Algorithm 6: Mixed-search-strategy for G′

1 Handling of arrows: whenever a searcher is placed on the tail u of an arrow A(u, v), we
place searchers on all vertices of A(u, v) and immediately afterwards remove the
searchers from A(u, v) − {u, v} again;

2 Place searcher on r̂;
3 Place searchers on ui,j,1 for all i ∈ [t], j ∈ [p];
4 for ℓ ∈ [m(4tp+ 1)] do
5 Place searchers on all vertices of the clause cycle Zℓ;
6 for i ∈ [t] do
7 for h ∈ [5]p do
8 Place searchers on all vertices of the decoding gadget Di,ℓ,h;

9 for j ∈ [p] do
10 Place searchers on all vertices of P i,j,ℓ − {ui,j,ℓ1 , ui,j,ℓ2 };
11 Remove searcher from ui,j,ℓ and place it on ui,j,ℓ+1;
12 Remove searchers on P i,j,ℓ − {ui,j,ℓ1 , ui,j,ℓ2 };

13 for h ∈ [5]p do
14 Remove searchers on Di,ℓ,h;

15 Remove searchers on Zℓ;

188 Chapter 8 Lower Bounds Parameterized By Modular-Treewidth

The mixed-search-strategy for G′ is described in Algorithm 6 and the central idea is to
proceed column by column and group by group in each column. The maximum number
of placed searchers occurs on line 10 and is divided into one searcher for r̂; one searcher
for each (i, j) ∈ [t] × [p]; q5p searchers for the current Zℓ; (4p+ 3)5p searchers for all Di,ℓ,h

with the current i and ℓ; O(1) searchers for the current P i,j,ℓ; and O(1) searchers to handle
an arrow A(u, v). Note that arrows can be handled sequentially, i.e., there will be at any
point in the search-strategy at most one arrow A(u, v) with searchers on A(u, v) − {u, v}.
Furthermore, note that whenever we place a searcher on the tail u of an arrow A(u, v), we
have already placed a searcher on the head v of the arrow.

Theorem 8.3.5. There is no algorithm that solves FEEDBACK VERTEX SET, given a path
decomposition of Gq = G/Πtc(G) of width k, in time O∗((5 − ε)k) for some ε > 0, unless SETH
fails.

Proof. Assume that there exists an algorithm A that solves FEEDBACK VERTEX SET in time
O∗((5 − ε)k) for some ε > 0 given a path decomposition of Gq = G/Πtc(G) of width k.
Given β, we define δ1 < 1 such that (5 − ε)log5(2) = 2δ1 and δ2 such that (5 − ε)1/β = 2δ2 .
By picking β large enough, we can ensure that δ = δ1 + δ2 < 1. We will show how to solve
q-SATISFIABILITY using A in time O∗(2δn), where n is the number of variables, for all q, thus
contradicting SETH.

Given a q-SATISFIABILITY instance σ, we construct G = G(σ, β) and the path decompo-
sition from Lemma 8.3.4 in polynomial time, note that we have q = O(1), β = O(1) and
hence p = O(1). We then run A on G and return its answer. This is correct by Lemma 8.3.2
and Lemma 8.3.3. Due to Lemma 8.3.4, we have that tc-pw(G) ≤ tp + f(q, p) for some
function f(q, p) and hence we can bound the running time by

O∗
(

(5 − ε)tp+f(q,p)
)

≤ O∗ (
(5 − ε)tp

)
≤ O∗

(
(5 − ε)⌈ n

β ⌉p
)

≤ O∗
(

(5 − ε)
n
β p

)
≤ O∗

(
(5 − ε)

n
β ⌈log5(2β)⌉

)
≤ O∗

(
(5 − ε)

n
β log5(2β)(5 − ε)

n
β

)
≤ O∗

(
2δ1β

n
β 2δ2n

)
≤ O∗

(
2(δ1+δ2)n

)
≤ O∗ (

2δn
)
,

hence completing the proof.

8.3 Feedback Vertex Set Lower Bound 189

Conclusion and Future Work 9
In this part, we have explored the fine-grained complexity landscape of several benchmark
connectivity problems relative to the dense width parameters clique-width and modular-
treewidth. The algorithms are obtained by bringing the cut-and-count-technique into
the dense regime and fine-tuning of the states considered in the dynamic programming
algorithms by problem-specific insights. The lower bounds follow the construction principle
of Lokshtanov et al. [126], where the gadget designs are guided by developing an intuitive
understanding of various compatibility matrices. We proceed by discussing several directions
for further research related to this topic, further research directions will be discussed in
Chapter 17.

Steiner Tree Parameterized by Clique-Width. STEINER TREE is arguably the purest connec-
tivity problem, however, we were not able to determine its precise complexity parameterized
by clique-width. The presented O(4cw(G))-time algorithm follows very naturally from our
techniques and we see no obvious potential for reducing the number of states considered in
the algorithm. Let us consider the natural compatibility matrix with respect to a join and
denote the vertex states by 0, 10, and 11 as in the CONNECTED VERTEX COVER[clique-width]
lower bound. As in the algorithm, we observe that the presence of vertex state 0 in a label
does not impose any constraints across a join. Therefore, it is sufficient to consider the
label states that do not contain 0, for which we obtain the almost-triangular compatibility
matrix in Table 9.1. This matrix has rank 4, but cannot be rearranged to a triangular matrix
since every row contains at least 2 ones, thus we cannot prove a tight lower bound with our
approach. However, we know that the base is at least 3 due to the known lower bounds
parameterized by cutwidth or pathwidth. Closing the gap between the upper and lower
bound is important future work. It is conceivable that using the rank of the compatibility
matrix and similar methods as Groenland et al. [95] a tight lower bound for the modulo-2
counting variant can be shown, which is also solved by the presented algorithm. At the same
time, it might be possible to solve the decision/optimization variant in time O∗(3cw(G)) via
a different technique; in that case, STEINER TREE would behave similarly to VERTEX COVER

in the sense that the base for all parameters sandwiched between cutwidth and clique-width
is the same.

X1 vs. X2 {} {10} {11,10} {11}
{11} 1 1 1 1
{11,10} 0 1 1 1
{10} 0 0 1 1
{} 1 0 0 1

Tab. 9.1.: An almost-triangular compatibility matrix for STEINER TREE[clique-width].

191

Feedback Vertex Set Parameterized By Clique-Width. The standard way to obtain
algorithms for FEEDBACK VERTEX SET via the cut-and-count-technique is to rely on the fact
that a n-vertex m-edge graph G is a forest if and only if G has at most n − m connected
components like in the FEEDBACK VERTEX SET[modular-treewidth] algorithm. As discussed
in Section 3.1, the cut-and-count-technique can be modified so that candidates with at most
some number of connected components remain. By additionally counting the vertices and
edges induced by a candidate, we can implement the mentioned inequality to check that a
candidate induces a forest, i.e., we are solving the dual problem INDUCED FOREST instead of
FEEDBACK VERTEX SET. However, as already observed by Bergougnoux and Kanté [11], the
straightforward implementation of this approach only yields an XP-algorithm: to count the
number of edges induced by a candidate, we need to know how many vertices of each label
belong to the candidate so that the number of edges can be updated at join-operations, but
storing this information leads to an XP space requirement. This problem could be avoided in
the modular-treewidth algorithm, as the modular structure allows for exchange arguments
showing that we only need to consider a constant number of cases for each module. Via
a modified rank-based approach that avoids counting edges, Bergougnoux and Kanté [11]
obtain an O∗(15k2(ω+1)k)-time algorithm for FEEDBACK VERTEX SET[clique-width]. Can
their ideas be adapted to the cut-and-count-technique or optimized to get closer to a tight
result? By our lower bound for FEEDBACK VERTEX SET[twinclass-pathwidth], we know that
the optimal base for FEEDBACK VERTEX SET[clique-width] is at least 5.

Connected Odd Cycle Transversal Parameterized By Clique-Width. For CONNECTED ODD

CYCLE TRANSVERSAL[clique-width], we have provided an O∗(14k)-time algorithm. However,
similar to STEINER TREE[clique-width], our techniques are insufficient to obtain a tight result.
To construct a compatibility matrix for a CONNECTED ODD CYCLE TRANSVERSAL[clique-width]
lower bound, we consider the vertex states 01, 02, 10, 11, where 10 and 11 have the same
meaning as in the CONNECTED VERTEX COVER[clique-width] lower bound, the states 01 and
02 represent undeleted vertices and the subscript encodes whether the vertex is colored with
the first or second color. If one constructs the compatibility matrix, which we omit here, with
the resulting 15 label states, then one sees by elementary arguments that it does not contain
a triangular submatrix of size 14 × 14. However a 12 × 12 triangular submatrix exists and
by generalizing the path gadget for CONNECTED VERTEX COVER[clique-width] and adding
a simple gadget to detect the color used on a join vertex, it should be possible to obtain a
corresponding lower bound, leaving a gap of 2 between upper and lower bound.

Connected Odd Cycle Transversal Parameterized By Modular-Treewidth. For CON-
NECTED ODD CYCLE TRANSVERSAL[modular-treewidth], it suffices to consider homoge-
neous cuts by Lemma 6.1.2, which decreases the 14 states of the CONNECTED ODD CYCLE

TRANSVERSAL[clique-width] algorithm down to 11. Furthermore, the sensible behaviors
inside a module greatly depend on its coloring properties. In a false twinclass, i.e., a mod-
ule inducing an independent set, simple exchange arguments show that we should either
completely delete the twinclass or color all vertices with the same color, leading to 4 states
when applying cut-and-count. In a true twinclass of size at least 3, i.e., inducing a clique,
we always have to delete at least one vertex and all remaining vertices must get different

192 Chapter 9 Conclusion and Future Work

colors, thus leading to 8 states. However, 2-colorable graphs that are not 2-critical, i.e.,
at least two vertices must be deleted to make the graph 1-colorable, yield one additional
state, i.e., 9 in total, compared to true twinclasses, since we can also choose to not delete
any of its vertices. It is not difficult that this is the maximum number of states that can be
assumed by any module. This investigation seems to suggest that the optimal base differs
when parameterizing by modular-treewidth versus twinclass-pathwidth. Following the usual
lower bound approach, one can also find appropriate triangular compatibility matrices with
asymmetric states for both cases, suggesting that the optimal base of CONNECTED ODD CYCLE

TRANSVERSAL[modular-treewidth] should be 9 and the optimal base of CONNECTED ODD

CYCLE TRANSVERSAL[twinclass-treewidth] should be 8.

Twinclass-Cutwidth and Modular-Cutwidth. In several cases, the base of the running time
improves when going from treewidth and pathwidth to cutwidth, cf. Table 4.1, therefore it is
natural to ask whether the same happens when we lift cutwidth into the dense setting. We
first remark that the presented reductions for STEINER TREE and CONNECTED DOMINATING

SET, also reduce the modular-cutwidth case to the cutwidth case, as we reduce to the same
problem on the quotient graph. If the algorithms of Bojikian et al. [24] can be augmented
to also handle vertex costs, then a O∗(3k)-time algorithm for CONNECTED DOMINATING

SET[modular-cutwidth] likely exists; for STEINER TREE the base does not decrease when
going to cutwidth. For the other two problems, CONNECTED VERTEX COVER and FEEDBACK

VERTEX SET, the necessity of having to consider compatibility matrices with asymmetric states
in the lower bounds parameterized by modular-treewidth is an indication that improved
algorithms parameterized by modular-cutwidth could exist. Indeed, when considering the
compatibility matrices for the cut-and-count states, which are essentially the tables we
consider at the introduce edge bags, we see that both matrices only have rank 4 over Z2.
Using these rank bounds, a sufficient extension of the framework for coloring-like problems
by Bojikian et al. [24] might be able to obtain improved algorithms.

Other Width Parameters. We have studied the fine-grained complexity of connectivity
problems relative to clique-width and modular-treewidth. Beyond the open questions left
for these parameters, it is intriguing to extend this study to further width parameters. The
parameters treewidth and cutwidth are essentially dealt with already due to Cygan et al. [51]
and Bojikian et al. [24], respectively. Bergougnoux et al. [12] prove a meta-theorem yielding
algorithms for connectivity problems relative to several dense width parameters; the forms
of the obtained running times are 2O(k)nO(1), 2O(k2)nO(1), nO(k), where k is the boolean-
width1, rank-width, or mim-width, respectively. Based on the form of the running time, a
natural next target would be boolean-width as there we have the biggest likelihood that our
techniques transfer. Since boolean-width is smaller than clique-width, see Vatshelle [172],
such results would nicely extend the fine-grained complexity landscape. For rank-width and
mim-width, we know that in many cases these running time forms are essentially optimal
under ETH due to lower bounds of Bergougnoux et al. [14] and Bakkane and Jaffke [6].
Can the exponent O(k2) or O(k) also be more precisely understood in these cases by proving

1However, the running time 2O(k)nO(1) is only obtained for a smaller class of connectivity problems parameterized
by boolean-width.

193

lower bounds under SETH or some other hypothesis? Another interesting candidate would be
twin-width, where we are currently even lacking any optimized algorithms for connectivity
problems.

Hamiltonian Cycle. As discussed in Section 4.4, HAMILTONIAN CYCLE is also a widely
studied connectivity problem. The algorithm of Cygan, Kratsch, and Nederlof [48] for
HAMILTONIAN CYCLE[pathwidth] implies that HAMILTONIAN CYCLE[cutwidth] can also be
solved in time O∗((2 +

√
2)k), however it is unknown whether this running time can be

improved for cutwidth. In the dense setting, Fomin et al. [73] have shown that no FPT-
algorithm for HAMILTONIAN CYCLE[clique-width] can exist under the assumption FPT ̸=
W [1], but we do not know the complexity of HAMILTONIAN CYCLE[modular-treewidth] or
HAMILTONIAN CYCLE[modular-pathwidth]. Does it remain W[1]-hard or can we find an
FPT-algorithm for this case?

194 Chapter 9 Conclusion and Future Work

Part III

Beyond Width Parameters

Introduction 10
So far, our investigation has focused on the impact of various width parameters on problem
complexity. Phrased informally, given a hierarchical decomposition scheme, cf. Chapter 1,
we have only considered the effect of different separator structures, but not limits on how
the different separators in such a scheme are allowed to interact. This part deals with
such issues in the form of constraining the depth of the considered hierarchical decompo-
sition schemes. That means the considered schemes only allow for a bounded number of
decomposition rounds, taking into account the complexity of the separator used in each
round, which yields so-called depth parameters. In the extreme case, we only allow a single
round of decomposition, thus obtaining a single modulator to some simple graph class.
As the guarantee of bounded depth, reduces the expressive strength of such hierarchical
decomposition schemes and in particular avoids lower bounds in the style of Lokshtanov et
al. [126], cf. Section 3.2.1, it is natural to ponder what algorithmic gain can be obtained by
such a restriction. We consider two dimensions of algorithmic gain: first, a reduction of the
space requirement and secondly, reducing the running time of the algorithms.

Since width parameters naturally lead to dynamic programming algorithms, which use ad-
ditional space to reduce the running time, it is not surprising that the time-optimal algorithms
parameterized by width parameters presented in Part II have large space requirements, in
fact, the space requirement essentially equals the running time and is single-exponential in
the parameter value. However, as already discussed by Woeginger [175], this greatly limits
their applicability, because such algorithms tend to run out of available space much before
the running time becomes infeasibly large. In contrast, depth parameters allow for branching
algorithms, where we only need to store a very limited amount of intermediate results, thus
yielding a small space footprint. We continue the study of connectivity problems from Part II
and investigate this phenomenon and provide branching algorithms using only polynomial
space for connectivity parameterized by treedepth, the depth analog of treewidth, in the first
large section of this part.

Depth parameters allow us to shift the algorithmic paradigm from dynamic programming
to branching, thus enabling greater algorithmic flexibility to tackle problems. As additionally,
the standard lower bound approach of Lokshtanov et al. [126] does not apply to depth
parameters, we are led to believe that depth-parameterizations yield smaller running time
bases than the corresponding width-parameterization. In the remainder of this part, we
provide new examples where this belief is false, even when going to the extreme case of
modulator-parameterizations, by showing that several tight lower bounds relative to width
parameters already hold relative to more restrictive modulator-parameterizations. While the
lack of algorithmic improvements is unfortunate, such results help us understand from which
structural features the problem complexity derives; in our case, we will see that already a
single large separator is sufficient to cause the problem complexity as opposed to needing

197

many large disjoint separators as appearing in the lower bound constructions for width
parameters.

We proceed by discussing the obtained results in more detail. The results on branch-
ing algorithms for connectivity problems parameterized by treedepth are based on joint
work with Stefan Kratsch [99] and the results on tight lower bounds relative to modular-
parameterizations are based on joint work with Stefan Kratsch [102] as well.

10.1 Connectivity Problems Parameterized By Treedepth
Problems that only involve local constraints usually admit single-exponential dynamic pro-
gramming algorithms when parameterized by treewidth [2, 47, 163, 164, 170]. However,
already for such locally checkable problems, there is evidence that the exponential space re-
quirement of the dynamic programming algorithms is unavoidable while maintaining single-
exponential running time: Pilipczuk and Wrochna [155] show that a single-exponential
time and subexponential space algorithm for 3-COLORING[pathwidth] would lead to a
breakthrough for the space complexity of algorithms for LONGEST COMMON SUBSEQUENCE.
Drucker et al. [58] show, under plausible complexity-theoretic assumptions, that a single-
exponential time and subexponential space algorithm for INDEPENDENT SET[pathwidth]
does not exist. Furthermore, Chen et al. [37] devised a model for single-pass dynamic
programming algorithms on tree decompositions and showed that such algorithms require
exponential space for VERTEX COVER and 3-COLORING.

Faced with these obstacles when trying to reduce the space consumption for treewidth-
parameterization, we turn to the parameter treedepth, which is slightly larger than pathwidth
and treewidth, cf. Lemma 2.4.17, and hence the running time bases for single-exponential
algorithms parameterized by treedepth are at least as small as those for treewidth. However,
treedepth has been successfully used several times to obtain branching algorithms main-
taining the base of the running time for treewidth, but only using polynomial space [37,
80, 155]. Obtaining such algorithms can be challenging even for problems with only local
constraints, as a problem formulation has to be devised that admits recurrences of a specific
form, where solutions to different subproblems can be combined via an essentially pointwise
accumulation. As an example, the naive formulation of DOMINATING SET does not have
recurrences of this specific form, but can be transformed appropriately by using e.g. the tech-
nique of inclusion-exclusion branching as was shown by Pilipczuk and Wrochna [155], who
obtain an O∗(3k)-time and polynomial space algorithm for DOMINATING SET[treedepth].

Such transforms can be obtained in several cases via the algebraization technique of
Lokshtanov and Nederlof [129], which has been adapted to treedepth by Fürer and Yu [80]
to obtain space-efficient algorithms for e.g. counting perfect matchings. Belbasi and Fürer [8]
build upon these results and present a polynomial-space algorithm for counting Hamiltonian
cycles parameterized by treedepth, however its running time is not single-exponential in the
treedepth. Beyond this result on Hamiltonian cycles, little was known about problems with
global constraints parameterized by treedepth.

Filling this gap, we consider vertex-based connectivity problems parameterized by
treedepth systematically. A priori, it seems very challenging to achieve the kind of re-

198 Chapter 10 Introduction

currences required for a branching algorithm in the presence of a connectivity constraint.
Fortunately, the cut-and-count-technique of Cygan et al. [51] is exactly the right ingredient
for this task: not only is the global connectivity constraint transformed into locally checkable
constraints, but these local constraints are already in an appropriate form for branching
algorithms.

We show that for several connectivity problems, the associated problem implied by the
Cut&Count technique can be solved in single-exponential time O∗(αk) and polynomial space,
where α is a constant and k is the depth of a given treedepth decomposition. Furthermore,
the base α matches the base in the running time of the corresponding treewidth-algorithm.

Theorem 10.1.1. There are one-sided-error Monte Carlo algorithms that, given a treedepth
decomposition of depth k for a graph G, solve
• STEINER TREE in time O∗(3k) and polynomial space,
• CONNECTED VERTEX COVER in time O∗(3k) and polynomial space,
• CONNECTED ODD CYCLE TRANSVERSAL in time O∗(4k) and polynomial space,
• CONNECTED DOMINATING SET in time O∗(4k) and polynomial space,
• FEEDBACK VERTEX SET in time O∗(3k) and polynomial space,
• for all q ≥ 3, CONNECTED DELETION TO q-COLORABLE in time O∗((q+2)k) and polynomial

space.

Related Work. Almost all other work related to the cut-and-count-technique has already
been surveyed in Section 3.1 and Section 4.4, and will hence not be repeated here. Very
shortly after the publishing of the original paper [99], Nederlof et al. [137] show how
also edge-based connectivity problems, such as HAMILTONIAN CYCLE[treedepth] and LONG

PATH[treedepth], can be solved in time O∗(5k) and polynomial space. Nederlof et al.
also make use of the cut-and-count-technique and reformulate their problems by count-
ing perfect matchings in an auxiliary graph, which can be counted in polynomial space
using inclusion-exclusion branching. We note however that these additional tricks come
at the price of increasing the base of the running time compared to treewidth. Beyond
the already mentioned branching algorithms parameterized by treedepth, Pilipczuk and
Siebertz [154] provide a 2O(h log k)nO(1)-time and polynomial-space algorithm for SUBGRAPH

ISOMORPHISM[treedepth], where h is the size of the pattern graph. Nadara et al. [135]
show that treedepth can be computed exactly in time 2O(k2)n and polynomial space, thus
preserving the polynomial-space requirement even when a treedepth decomposition; we
note that this algorithm also relies on inclusion-exclusion branching.

10.2 Tight Lower Bounds Under
Modulator-Parameterizations
The standard application of the construction principle of Lokshtanov et al. [126] creates
graphs containing arbitrarily long paths and is thus unsuitable for proving lower bounds
parameterized by treedepth, as the treedepth grows logarithmically in the maximum length
of contained paths, see e.g. Nešeťril and Ossona de Mendez [142]. Accordingly, very

10.2 Tight Lower Bounds Under Modulator-Parameterizations 199

few tight fine-grained lower bounds relative to depth-parameterizations or modulator-
parameterizations are known. One exception is q-COLORING [109, 126] and its general-
ization to homomorphism problems [151], which do not include any cardinality or cost
constraint, and beyond that we are only aware of isolated results on VERTEX COVER [107]
and CONNECTED VERTEX COVER [46] relative to modulator-parameterizations, and a folklore
lower bound for DOMINATING SET[vertex cover]; it is notable that for all of these latter three
results the optimal base in the running time is 2. The crux is that other lower bound proofs
deal with more complex problems (e.g., deletion of vertices, packing of subgraphs, etc.) by
copying the same (type of) partial solution over many disjoint separators; this addresses
several obstacles but makes the approach unsuitable for modulator-parameterizations (or
even for treedepth).

We show that a much broader range of problems may admit such improved lower
bounds by giving new tight lower bounds for vertex-deletion problems such as VERTEX

COVER and ODD CYCLE TRANSVERSAL relative to modulator-parameters, in both the sparse
setting and dense setting. In the sparse setting, we consider the size disttw≤q of modulators to
treewidth q and in the dense setting we consider the size1 tcmtw≤q of twinclass-modulators to
treewidth q, where q is a constant depending on the considered problem. Thus the resulting
graphs may still contain long paths, but due to td ⪯∗ disttw≤q and tc-td ⪯∗ tcmtw≤q, see
Corollary 2.4.18 and Lemma 2.4.23, we do not only obtain new tight lower bounds for
these modulator-parameters, but they also transfer to treedepth and its twinclass-variant by
Lemma 2.4.12.2

Sparse Setting. Our main problem under consideration is DELETION TO q-COLORABLE, i.e.,
delete as few vertices as possible so that a q-colorable graph remains, which specializes to
VERTEX COVER for q = 1 and to ODD CYCLE TRANSVERSAL for q = 2. Lokshtanov et al. [126]
have shown that the optimal base in the running time is 2 for VERTEX COVER[path/treewidth]
and 3 for ODD CYCLE TRANSVERSAL[path/treewidth]. We show that both of these lower
bounds and their generalization to more colors already hold relative to modulators to
constant treewidth. Our main result for the sparse setting is as follows.

Theorem 10.2.1. If there are q ≥ 2, ε > 0 such that DELETION TO q-COLORABLE can be solved
in time O∗((q + 1 − ε)|M |), where M is a modulator to treewidth q, then SETH is false.

The general construction for DELETION TO q-COLORABLE, q ≥ 2, does not work for the
case q = 1, i.e., VERTEX COVER, and we fill this gap by providing a simple ad-hoc construction
for VERTEX COVER parameterized by a modulator to pathwidth 2.

Theorem 10.2.2. If there is an ε > 0 such that VERTEX COVER can be solved in time
O∗((2 − ε)|M |), where M is a modulator to pathwidth 2, then SETH is false.

For q ≥ 3, Theorem 10.2.1 provides new tight lower bounds as a matching upper bound
follows from generalizing the known algorithm for ODD CYCLE TRANSVERSAL[treewidth]. We

1Recall that the size of a twinclass-modulator is the number of contained twinclasses and not the number of
vertices.

2In contrast, the inequality td(G) ≤ (tw(G) + 1) log2 |V (G)| from Lemma 2.4.17 is insufficient for such a lower
bound transfer, as log2 |V (G)| appears in a multiplicative way instead of an additive way. In particular, a
single-exponential algorithm parameterized by treedepth only gives rise to an XP-algorithm parameterized by
treewidth.

200 Chapter 10 Introduction

emphasize that in Theorem 10.2.1 the treewidth bound q is the same as the bound q on the
number of colors. The treewidth bound for q = 2 and the pathwidth bound in Theorem 10.2.2
cannot be improved due to improved algorithms obtained by Lokshtanov et al. [128] for
VERTEX COVER and ODD CYCLE TRANSVERSAL parameterized by odd cycle transversal,
which also implies improved algorithms when parameterized by feedback vertex set, i.e., a
modulator to treewidth 1. Lokshtanov et al. [126] asked if the complexity of problems, other
than q-COLORING (where a modulator to a single path is already sufficient [109]), relative
to treewidth could already be explained with parameterization by feedback vertex set. As
argued, this cannot be true for VERTEX COVER and ODD CYCLE TRANSVERSAL, so our results
are essentially the next best explanation.

As mentioned, these tight lower bounds transfer to treedepth, thus yielding the first tight
lower bounds relative to treedepth for vertex selection problems and partially resolving
a question of Jaffke and Jansen [109] regarding the complexity relative to treedepth for
problems studied by Lokshtanov et al. [126].

Corollary 10.2.3. If there is a q ≥ 1 and an ε > 0 such that DELETION TO q-COLORABLE can
be solved in time O∗((q + 1 − ε)td(G)), then SETH is false.

Via simple reductions from VERTEX COVER, Theorem 10.2.2 also implies the follow-
ing tight lower bounds for MAXIMUM CUT and Kq -FREE DELETION relative to modulator-
parameterizations.

Theorem 10.2.4. Assuming the SETH, the following lower bounds hold:
• MAXIMUM CUT cannot be solved in time O∗((2 − ε)|M |) for any ε > 0, where M is a

modulator to treewidth at most 2.
• Kq -FREE DELETION cannot be solved in time O∗((2 − ε)|M |) for any ε > 0 and q ≥ 3, where

M is a modulator to treewidth at most q − 1.

The lower bound for MAXIMUM CUT also partially answers a question of Jaffke and
Jansen [109], by being another problem considered by Lokshtanov et al. [126] whose
running time cannot be improved when parameterizing by treedepth instead of treewidth.

Dense Setting. By considering twinclasses, which are arguably the simplest form of dense
structure, and lifting the parameterizations from the sparse setting to twinclass-modulators
and twinclass-treedepth, we show that analogous lower bounds can be proved in the dense
setting. In particular, we obtain the first tight fine-grained lower bounds relative to a dense
modulator. For the modulator-parameterization, it is not necessary to change the structural
requirement of the remaining graph, i.e., graphs of treewidth q still suffice. Our main result
in the dense setting is as follows.

Theorem 10.2.5. If there are q ≥ 2, ε > 0 such that DELETION TO q-COLORABLE can be solved
in time O∗((2q − ε)|M|), where M is a TCM to treewidth q, then SETH is false.

Additionally, it follows that if there are q ≥ 2, ε > 0 such that DELETION TO q-COLORABLE

can be solved in time O∗((2q − ε)tc-td(G)), then SETH is false.

Due to the results of Section 2.4.4, we have that mcw ⪯ tc-td, so the lower bounds for
twinclass-treedepth transfer to multi-clique-width and all parameters sandwiched between

10.2 Tight Lower Bounds Under Modulator-Parameterizations 201

them. Thus, the following result, relying on standard techniques for dynamic programming
on graph decompositions such as the (min,+)-cover product, yields a tight upper bound
complementing the previous lower bounds.

Theorem 10.2.6. Given a k-multi-clique-expression µ for G, DELETION TO q-COLORABLE on
G can be solved in time O∗((2q)k).

There is no further lower bound result for VERTEX COVER, since q + 1 = 2q for q = 1
and hence Theorem 10.2.2 already yields a tight lower bound for the multi-clique-width-
parameterization. We remark that Jacob et al. [108] have simultaneously proven a similar
upper and lower bound for the special case of ODD CYCLE TRANSVERSAL, q = 2, parameter-
ized by clique-width. Their construction also proves the lower bound for linear-clique-width,
but not for the more restrictive twinclass-treedepth or twinclass-modulator like our construc-
tion.

Going into more detail, the twinclasses of the modulator in the construction for Theo-
rem 10.2.5 are true twinclasses, i.e., each twinclass induces a clique, and moreover they are
of size q (with a small exception). Intuitively, allowing for deletions, there are 2q possible
sets of at most q colors that can be assigned to a clique of size q, e.g., the empty set ∅
corresponds to deleting the clique completely. Hence, our results essentially show that
it is necessary and optimal to go through all of these color sets for each twinclass in the
modulator.

In contrast, consider the situation for q-COLORING where Lampis [123] has obtained
tight running times of O∗

((
q

⌊q/2⌋
)tc-tw(G)

)
when parameterized by twinclass-treewidth and

of time O∗((2q − 2)cw(G)) when parameterized by clique-width. Whereas the complexities
for q-COLORING vary between the twinclass-setting and clique-width, this is not the case
for DELETION TO q-COLORABLE. The base

(
q

⌊q/2⌋
)

is due to the fact that without deletions
only color sets of the same size as the considered (true) twinclass can be attained and the
most sets are possible when the size is ⌊q/2⌋. For clique-width, a label class may induce
more complicated graphs than cliques or independent sets and the interaction between two
label classes may also be more intricate. Lampis [123] shows that the extremal cases of
color sets ∅ and [q] = {1, . . . , q} can be handled separately, thus yielding the base 2q − 2 for
clique-width.

Exact Structural Thresholds. Another perspective on the achieved lower bounds is that
they bring us closer to exact structural thresholds of complexity jumps. Let us illustrate this
concept for the problem ODD CYCLE TRANSVERSAL. It is known that the optimal running
time base of ODD CYCLE TRANSVERSAL[treewidth] is 3 and our results in particular show that
the optimal base for ODD CYCLE TRANSVERSAL[clique-width] is 4. Based on these results,
we informally know that replacing a large number of vertex separators with join-based
separators causes a complexity jump from 3 to 4 for ODD CYCLE TRANSVERSAL. To better
understand the relation problem complexity and input structure, we want to identify minimal
structural features that cause a complexity jump; these are what we call an exact structural
threshold. Returning to the ODD CYCLE TRANSVERSAL example, our lower bound relative to
a twinclass-modulator to treewidth 2 shows that already changing a single modulator to a
twinclass-modulator is sufficient for this complexity jump.

202 Chapter 10 Introduction

More abstractly, if we know that GRAPH PROBLEM[p], where p is some graph parameter,
has optimal base α in the running time, then determining exact structural thresholds
requires pushing this result in two directions. First, designing algorithms for parameters q
that are more expressive than p such that GRAPH PROBLEM[qmax] maintains optimal base α,
essentially showing that the increase in structural complexity when going from p to qmax
can be handled without a penalty in time complexity. Secondly, as the results in this section
are doing, determining more restrictive parameters qmin than p such that the lower bound
showing optimality of base α can still be proven for GRAPH PROBLEM[qmin], thus ideally
determining minimal structural features sufficient for this time complexity. In this way,
the isolated result for GRAPH PROBLEM[p] is turned into a larger range of input structure,
captured between qmin and qmax, that admits the same tight complexity.

Related Work. We investigate the related work in more detail and begin by considering
other fine-grained lower bounds relative to modulators. Jacob et al. [107] show that VERTEX

COVER parameterized by a modulator to cluster graphs, where a cluster graph is a disjoint
union of cliques, has optimal base 2 by a reduction from HITTING SET. Their result does not
imply the lower bound for VERTEX COVER[treedepth] based on parameter relationships, but
this can be obtained by a slight modification of their proof.3 Cygan et al. [46] prove that
CONNECTED VERTEX COVER[connected vertex cover] has optimal base 2 by a reduction from
SET COVER, however their reduction fundamentally relies on the connectivity constraint and
seems unlikely to apply to more general settings.

All other tight lower bounds relative to modulator-parameterizations known to us
consider coloring problems or their generalization to homomorphism problems and thus
do not involve any cost or cardinality constraint. Lokshtanov et al. [126] show that q-
COLORING[feedback vertex set] has optimal base q. Jaffke and Jansen [109] show that
a modulator to a single path is enough for this lower bound and give a dichotomy when
q-COLORING[distF] admits improved algorithms for families F that exclude some biclique
and are closed under induced subgraphs. Piecyk and Rzążewski [151] show that the tight
bounds obtained by Okrasa et al. [145] for list homomorphism problems parameterized by
pathwidth and treewidth already apply relative to feedback vertex set, i.e., a modulator to a
forest. We do not know any tight fine-grained lower bound relative to some depth parameter
that does not already apply relative to some modulator, hence it would be interesting to find
a natural problem with such complexity behavior.

In addition to these modulator lower bounds, there are some other results on improving
lower bounds in the sense of exact structural thresholds. Van Geffen et al. [94] improve
the lower bounds for INDEPENDENT SET[pathwidth] and DOMINATING SET[pathwidth] of
Lokshtanov et al. [126] and show that they already apply to cutwidth even when restricted
to planar graphs. Bojikian et al. [24] in particular also improve the parameterization from
pathwidth to cutwidth of the lower bounds for STEINER TREE and CONNECTED ODD CYCLE

TRANSVERSAL obtained by Cygan et al. [50].
On the algorithmic side of exact structural thresholds, the study of heterogeneous

parameterizations has been gaining traction [1, 33, 34, 65, 66, 67, 103, 110], yielding the

3Our result on VERTEX COVER[distpw≤2] also follows by reduction from HITTING SET and was obtained indepen-
dently of the result of Jacob et al. [107], but only accepted for publication later.

10.2 Tight Lower Bounds Under Modulator-Parameterizations 203

notions of H-treewidth and H-elimination distance, where the latter is a generalization of
treedepth. Currently, only few of these works [65, 110] contain algorithmic results that are
sufficiently optimized to apply to our fine-grained setting. Jansen et al. [110] show that
VERTEX COVER can be solved in time O∗(2k) and ODD CYCLE TRANSVERSAL in time O∗(3k)
when parameterized by bipartite-treewidth. Eiben et al. [65] show that MAXIMUM CUT[Rw-
treewidth] can be solved in time O∗(2k), where Rw denotes the graphs of rank-width at
most w. Another line of work is on dense depth parameters, we will discuss these in more
detail in Chapter 15.

10.3 Organization
In Chapter 11, we present the polynomial-space branching algorithms for connectivity
problems parameterized by treedepth, where we first give a general overview of such
branching algorithms and then consider the problems one by one. In Chapter 12, we show a
simple tight lower bound for VERTEX COVER parameterized by a modulator to pathwidth
2 and consider its consequences for the problems MAXIMUM CUT and Kq -FREE DELETION.
Afterwards in Chapter 13, we present the main tight lower bounds of this part, namely the
tight lower bounds for DELETION TO q-COLORABLE parameterized by a (twinclass-)modulator
to treewidth q, where we start with an outline of these results and then present the detailed
constructions. To complement these lower bounds, we provide a straightforward algorithm
for DELETION TO q-COLORABLE[multi-clique-width] in Chapter 14. We conclude this part in
Chapter 15 and consider future work.

204 Chapter 10 Introduction

Branching Algorithms on
Treedepth Decompositions

11
We begin by giving a mostly informal overview of the ingredients for the developed branching
algorithms for connectivity problems parameterized by treedepth. In the sections that follow
afterwards we present the algorithms for the considered connectivity problems one by one.

11.1 Overview
Notation. We slightly extend the notation for treedepth decompositions used by Pilipczuk
and Wrochna [155]. For a rooted forest T = (V,ET) and a node v ∈ V we denote by
subtree[v] the set of nodes in the subtree rooted at v, including v. By tail[v] we denote the
set of all ancestors of v, including v. Furthermore, we define subtree(v) = subtree[v] \ {v},
tail(v) = tail[v] \ {v}, and broom[v] = {v} ∪ tail(v) ∪ subtree(v). By child(v) we
denote the children of v.

Setup. For the remainder of this section, we assume that G = (V,E) is a connected graph
and that the given costs c(v), v ∈ V , are polynomially bounded in n = |V |. Furthermore, let
T be a treedepth decomposition of G of depth d. Note that since G is connected, T only
consists of a single rooted tree.

Associated Subgraphs. At a node v ∈ V (T) = V (G), the branching algorithms consider
the subgraph G[broom[v]], which contains all ancestors and descendants of v in T , and
we want to implicitly compute a set of partial solutions living in G[broom[v]]. Let us
mention a few elementary properties that directly follow from the definition of a treedepth
decomposition.
• We have that NG[v] ⊆ broom[v], so G[broom[v]] contains all edges incident to v.
• We have that broom[v] = tail[v] ∪

⋃
u∈child(v) subtree[u].

• If |child(v)| ≥ 2, then tail[v] separates subtree[u] from subtree[u′] in G for every
pair u ̸= u′ ∈ child(v). In particular, there are no edges in G between subtree[u] and
subtree[u′] for u ̸= u′ ∈ child(v).

Overview. Having decided upon a sensible set States of vertex states for the considered
problem, our branching algorithms on a treedepth decomposition T roughly work as follows.
We proceed top-down along the treedepth decomposition, branching on the states of the
encountered vertices; these branching decisions will be recorded in signatures of the form
h : dom(h) → States with dom(h) = tail(v) or dom(h) = tail[v] for some vertex v. So,

205

each branch is essentially determined by a root-node path in the treedepth decomposition
and an assignment of states for the vertices contained in this path. Having arrived at a
vertex v with signature g : tail(v) → States, we want to generate all partial solutions
living in G[broom[v]] that are compatible with the branching decisions recorded in g. To
do so, we branch over the possible vertex states of v, thus extending the signature g to a
signature f with dom(f) = dom(g) ∪ {v} = tail(v) ∪ {v} = tail[v] and perform a recursive
call with signature f for every child u ∈ child(v) of v in T . These recursive calls are
set up so that they can be answered independently of each other, which in particular
relies on the fact that tail(u) = tail[v] = dom(f) separates subtree[u] from subtree[u′]
for all u ̸= u′ ∈ child(v). When these recursive calls return, where the recursive call
at u ∈ child(v) returns partial solutions living in G[broom[u]], the partial solutions of
the different children can, due to the properties of a treedepth decomposition, be easily
combined into partial solutions living in G[broom[v]]. At the root node r̂ of the treedepth
decomposition, we have that G[broom[r̂]] = G[subtree[r̂]] = G, so we do obtain genuine
solutions of the problem when the algorithm finishes.

Using Formal Polynomials to Track Costs and Weights. As we will again employ the
cut-and-count-technique to solve connectivity problems, we must count the number of
partial solutions at each node. However, as in the dynamic programming algorithms on tree
decomposition or clique-expressions, these counts must be separated based on the size/cost
and weight of the considered partial solutions. Previously, we have augmented the dynamic
programming tables with additional dimensions to store this information. The same could
be done for the branching algorithms on treedepth decompositions, but it turns out that
formal polynomials, which have been used by Pilipczuk and Wrochna [155] in the same
context, are a particularly convenient formalism for the recurrences that tend to appear in
these branching algorithms.1

To illustrate, we introduce the formal variables ZC and ZW when tracking the cost
and weight of partial solutions and we define a polynomial P ∈ Z[ZC , ZW] such that
the coefficient of the monomial ZcCZ

w
W is the number of partial solutions with cost c and

weight w, akin to generating functions. If we have two such polynomials P1 and P2 with
Pi corresponding to a set of partial solutions Pi living on a vertex set Vi, i ∈ [2], where
V1 ∩ V2 = ∅, then P1 + P2 corresponds to the union P1 ∪ P2 and P1 · P2 corresponds to the
cartesian product P1 × P2, where the cost of (X,Y) ∈ P1 × P2 is given by adding the cost
of X and Y and similarly for the weight. Furthermore, multiplications with e.g. ZaC allow us
to increase the cost of all partial solutions by a. In our application, the relevant sets V1 and
V2 are not disjoint, but we only track cost and weight on the parts that are currently disjoint
and integrate the remaining parts later on; this makes tracking the number of induced edges
for FEEDBACK VERTEX SET a bit more intricate, but it is quite straightforward for tracking
anything related to the vertices.

1Formal polynomials are not quite as natural for e.g. dynamic programming on tree decompositions, as often
costs and weights are subtracted at join nodes to handle overcounting. One could either introduce an additional
operator on the polynomial ring to handle this or modify the dynamic program to avoid such subtraction
operations. Nadara et al. [135] choose the former approach in their paper on computing treedepth exactly in
polynomial space.

206 Chapter 11 Branching Algorithms on Treedepth Decompositions

Inclusive and Exclusive Objects. Fix a node v ∈ V (T) = V (G) of the treedepth decom-
position. In the overview, we have already seen that we consider signatures of the form
f : tail[v] → States and of the form f : tail(v) → States; we call the former inclusive v-
signatures and the latter exclusive v-signatures.2 Accordingly, we call partial solutions/objects
living in G[broom[v]] that are compatible with an inclusive v-signature f inclusive objects
and those that are compatible with an exclusive v-signature g exclusive objects; both types of
objects will be handled by different polynomials. The benefit of this distinction is that when
computing the partial solutions for G[broom[v]] from the partial solutions for G[broom[u]]
with u ∈ child(v), we can do so in two separate steps: the inclusive case constructs inclusive
objects at v based on exclusive objects at the children u ∈ children(v), and the exclusive
case constructs exclusive objects at v from inclusive objects at v. The recurrence for the
inclusive case will be the same for all considered problems and just boils down to multiplying
several polynomials, but the recurrence for the exclusive case is problem-dependent and
involves the mentioned branching over the vertex states.

Polynomial Space Requirement. Branching algorithms that adhere to the described
approach only have a polynomial space requirement for the following reasons. First, the
computed polynomials will only be of polynomial size based on our assumption about the
given costs. Secondly, when computing some polynomial at a node v ∈ V (T) = V (G),
we only access polynomials associated with the same node or associated with a child
u ∈ child(v). Thirdly, the signatures of the accessed polynomials are either the current
signature or a one-vertex extension of the current signature, i.e., f = g[v 7→ s], meaning that
we never change the branching decisions in the current branch but only make additional
branching decisions. The last two properties show that the polynomials can be computed
recursively and immediately discarded after they have been used in the relevant computation.
Finally, the stack of recursive calls has depth at most O(d) = O(n), since the recursion stops
at the leaf nodes of the treedepth decomposition, which are at depth at most d, and we
make two recursive calls per encountered node, one for the inclusive case and one for the
exclusive case.

Formulating Appropriate Recurrences. For a problem to admit a branching algorithm
(with polynomial space requirement) as described in this section, we must be able to
formulate appropriate recurrences that only access polynomials corresponding to one-vertex
extensions of the current signature. As already mentioned by Pilipczuk and Wrochna [155],
this is straightforward when the problem only has "CSP-like"3 constraints, i.e., each vertex
is assigned some color, and feasibility can be determined by checking that the colors of
the endpoints of each edge satisfy some specific relation. However, for other problems
such as DOMINATING SET, where the domination constraint is not CSP-like as it comes
with an existential quantifier, this might require additional tricks.4 Furthermore, note that

2This naming is borrowed from the paper of Nederlof et al. [137] on HAMILTONIAN CYCLE[treedepth] and related
problems.

3CSP is the abbreviation of constraint satisfaction problem.
4This behavior also required the development of a fast convolution algorithm for speeding up the join node

computation in the dynamic programming algorithm for DOMINATING SET[treewidth], see van Rooij et al. [164].

11.1 Overview 207

connectivity constraints are not CSP-like, therefore we require an appropriate transformation
to obtain the desired branching algorithms for connectivity problems.

Cut-and-Count. Fortunately, the cut-and-count-technique of Cygan et al. [51] achieves
just that; the connectivity constraint is transformed into a CSP-like constraint plus counting,
which is easily integrated into the branching strategy. Therefore, we apply the cut-and-count-
technique to obtain such branching algorithms for connectivity problems parameterized by
treedepth. No special changes to the cut-and-count-technique are required for its application
on treedepth decompositions. In particular, using the technique of fixed vertices or marker
vertices is not required. Not using these techniques allows us to give particularly simple
definitions of the considered sets of partial solutions and simplifies the recurrences by
avoiding edge cases. Up to the change of not using a fixed vertex or markers, the considered
solution families for the cut-and-count-technique are the same as in the treewidth algorithms
of Cygan et al. [51], however we provide different algorithms to compute them.

Inclusion-Exclusion-States. As we give a branching algorithm for CONNECTED DOMINATING

SET[treedepth], we also have to handle its domination constraint. Like Pilipczuk and
Wrochna [155], we use the technique of inclusion-exclusion-branching which transforms
the domination constraint into a CSP-like constraint by considering a different set of states
and applying a small inclusion-exclusion formula. We will see that this technique can be
combined with the cut-and-count-technique and thus obtain the desired branching algorithm
for CONNECTED DOMINATING SET[treedepth].

11.2 Steiner Tree
Let G be a connected graph and assume that the costs c(v), v ∈ V , are polynomially bounded
in n = |V |. We begin by giving the standard cut-and-count-formulation for STEINER TREE.
For every V ′ ⊆ V , the relaxed solutions in V ′ are given by

R(V ′) = {X ⊆ V ′ : K ∩ V ′ ⊆ X}

and the candidate-cut-pairs in V ′ are given by

Q(V ′) = {(X, (XL, XR)) ∈ C(G[V ′]) : X ∈ R(V ′)},

i.e., Q(V ′) consists of all consistently cut induced subgraphs of G[V ′] that contain all
terminals appearing in V ′. The solutions are given by S = {X ∈ R(V) : G[X] is connected}.

For the isolation lemma, the universe is simply given by U = V . Hence, we sample a
weight function w : V → [N] with N = 2n to guarantee an error probability of less than 1/2
in the isolation lemma. We stratify the solutions according to their cost and weight, i.e., we
define Sc,w = {X ∈ S : c(X) = c,w(X) = w} for every c ∈ [0, c(V)] and w ∈ [0, nN].

The possible states of a single vertex v in a candidate-cut-pair (X, (XL, XR)) ∈ Q(V ′)
are given by States = {0,1L,1R}. The interpretation of the state 0 is that the vertex does

208 Chapter 11 Branching Algorithms on Treedepth Decompositions

not belong to the Steiner tree. The states 1L and 1R indicate that the vertex is inside the
Steiner tree and the subscript denotes to which side of the consistent cut it belongs.

For the remainder of this section, fix a treedepth decomposition T of G of depth d.
Given a vertex v, an inclusive v-signature is a function f : tail[v] → States, and an exclusive
v-signature is a function g : tail(v) → States. A candidate-cut-pair (X, (XL, XR)) ∈
Q(broom[v]) is compatible with an (inclusive/exclusive) v-signature h if for all u ∈ dom(h)
we have u /∈ X if h(u) = 0, u ∈ XL if h(u) = 1L, and u ∈ XR if h(u) = 1R.

Definition 11.2.1. Given a vertex v and inclusive v-signature f , the inclusive partial objects
P [v, f] at v respecting f consist of all (X, (XL, XR)) ∈ Q(broom[v]) compatible with f .

Definition 11.2.2. Given a vertex v and exclusive v-signature g, the exclusive partial objects
P (v, g) at v respecting g consist of all (X, (XL, XR)) ∈ Q(broom[v]) compatible with g.

The distinction between inclusive and exclusive partial objects is important when consider-
ing a node v that has multiple children in T . If f is an inclusive v-signature and u ∈ child(v)
a child of v in T , then we can consider P [v, f] and P (u, f). If |child(v)| = 1, then we have
broom[v] = broom[u] and P [v, f] = P (u, f). However, if |child(v)| ≥ 2, then broom[v] =
tail[v] ∪

⋃
u∈child(v) subtree[u] where the union over the subtree[u] is disjoint. So, in the

latter case an inclusive partial object in P [v, f] gives rise to an exclusive partial object in
P (u, f) for each u ∈ child(v). Vice versa, since broom[u] ∩ broom[u′] = tail[v] = dom(f)
for u ̸= u′ ∈ child(v), we can take an exclusive partial object from P (u, f) for each child
u ∈ child(v) and combine them to obtain an inclusive partial object from P [v, f].

While inclusive and exclusive partial objects at v both live in broom[v], for inclusive
objects we track the cost and size only inside subtree(v), and for exclusive objects we
track them inside subtree[v], i.e., inside the parts of broom[v] where the signature does not
specify the state.5 Formally, for every inclusive v-signature f , trackers c ∈ [0, c(V)], and
w ∈ [0, nN], the family Pc,w[v, f] consists of all (X, (XL, XR)) ∈ P [v, f] with

c(X ∩ subtree(v)) = c and w(X ∩ subtree(v)) = w.

Similarly, for every exclusive v-signature g, trackers c ∈ [0, c(V)], and w ∈ [0, nN], the family
Pc,w(v, g) consists of all (X, (XL, XR)) ∈ P (v, g) with

c(X ∩ subtree[v]) = c and w(X ∩ subtree[v]) = w.

Next, we prove the main correctness lemma for the cut-and-count technique applied to
STEINER TREE, namely that all unconnected candidates X ∈ R(V) cancel modulo four.

Lemma 11.2.3. Let r̂ be the root of the treedepth decomposition T . For every c ∈ [0, c(V)]
and w ∈ [0, nN], it holds that |Pc,w(r̂, ∅)| ≡4 2|Sc,w|.

5This observation also gives rise to a definition that avoids the case distinction that follows, i.e., for a given
(inclusive/exclusive) v-signature h and a compatible partial object (X, (XL, XR)) at v, we track the cost and
weight of the subset X \ dom(h).

11.2 Steiner Tree 209

Proof. At the root r̂, we have that broom[r̂] = V and tail(r̂) = ∅. By Lemma 3.1.1, we can
compute

|Pc,w(r̂, ∅)| = |{(X, (XL, XR)) ∈ Q(V) : c(X) = c,w(X) = w}| =
∑

X∈R(V) :
c(X)=c,w(X)=w

2cc(G[X])

=
∑

X∈R(V) :
c(X)=c,w(X)=w,

cc(G[X])=1

2cc(G[X]) +
∑

X∈R(V) :
c(X)=c,w(X)=w,

cc(G[X])≥2

2cc(G[X]) = 2|Sc,w| + 4
∑

X∈R(V) :
c(X)=c,w(X)=w,

cc(G[X])≥2

2cc(G[X])−2

≡4 2|Sc,w|.

We proceed by presenting the counting procedure for STEINER TREE, which will then
yield the desired algorithm for STEINER TREE[treedepth] via the standard cut-and-count
approach.

Lemma 11.2.4. There is an algorithm that given a treedepth decomposition T of depth d and
weight function w : V → [N] computes |Pc,w(r̂, ∅)| modulo 4 for all c ∈ [0, c(V)], w ∈ [0, nN]
in time O∗(3d) and polynomial space.

Proof. Our algorithm will compute a multivariate polynomial in the formal variables ZC and
ZW , where the coefficient of ZcCZ

w
W is the cardinality of Pc,w[r̂, ∅] modulo 4, i.e., the degree

of the formal variables tracks the cost and weight of candidate solutions. The algorithm
follows the approach described in Section 11.1. We begin by giving the definitions of the
formal polynomials associated with the inclusive and exclusive objects.

Given a vertex v and inclusive v-signature f , the inclusive polynomial P [v, f] ∈ Z4[ZC , ZW]
at v respecting f is given by P [v, f] =

∑
c,w |Pc,w[v, f]|ZcCZwW , where c ∈ [0, c(V)], w ∈

[0, nN]. Similarly, given an exclusive v-signature g, the exclusive polynomial P (v, g) ∈
Z4[ZC , ZW] at v respecting g is given by P (v, g) =

∑
c,w |Pc,w(v, g)|ZcCZwW .

We proceed by presenting the recurrences to compute the inclusive and exclusive polyno-
mials. First, we give the recurrences for the inclusive polynomial and then the recurrence
for the exclusive polynomial.
• Leaf Case: If v is a leaf node of T , then broom[v] = tail[v] = dom(f) and P [v, f] can

contain at most the candidate-cut-pair (f−1({1L,1R}), (f−1(1L), f−1(1R))). We simply
verify if it satisfies the constraints of Q(tail[v]), yielding the equation

P [v, f] = [(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L,1R})]
· [K ∩ tail[v] ⊆ f−1({1L,1R})].

(11.1)

• Inclusive Case: If v is not a leaf node of T , then we have to combine the exclusive
partial objects at the children of v to obtain the inclusive partial objects at v as discussed
before. Since subtree(v) =

⋃
u∈child(v) subtree[u], where the union is disjoint, the cost

and weight are obtained by adding the costs and weights of the partial objects at the
children, allowing us to simply multiply the exclusive polynomials:

P [v, f] =
∏

u∈child(v)

P (u, f). (11.2)

210 Chapter 11 Branching Algorithms on Treedepth Decompositions

• Exclusive Case: The exclusive polynomials at v can be computed from the inclusive
polynomials at v by branching over all possible states for v and multiplying by formal
variables, depending on the state, to update the cost and weight. Since the accumulators
now track cost and weight inside of subtree[v] = {v}∪subtree(v) instead of subtree(v),
only the state of v affects the accumulator update:

P (v, g) = P [v, g[v 7→ 0]] + (P [v, g[v 7→ 1L]] + P [v, g[v 7→ 1R]])Zc(v)
C Z

w(v)
W . (11.3)

Based on these recurrences, the two mutually recursive functions computeInclusive(v, f)
and computeExclusive(v, g) which compute P [v, f] and P (v, g) are given by Algorithm 7
and Algorithm 8 respectively. The algorithm calls computeExclusive(r̂, ∅) to compute
P := P (r̂, ∅) and the coefficients of the monomials in P yield the desired numbers |Pc,w(r̂, ∅)|
modulo 4.
Algorithm 7: computeInclusive(v, f)
Input: treedepth decomposition T , costs c : V → N>0, weights w : V → [N], vertex

v ∈ V , inclusive v-signature f
1 if v is a leaf of T then return the result of equation (11.1);
2 else
3 P := 1;
4 for u ∈ child(v) do // cf. equation (11.2)

5 P := P · computeExclusive(u, f);

6 return P ;

Algorithm 8: computeExclusive(v, g)
Input: treedepth decomposition T , costs c : V → N>0, weights w : V → [N], vertex

v ∈ V , exclusive v-signature g
1 for s ∈ {0,1L,1R} do
2 Ps := computeInclusive(v, g[v 7→ s]);

3 return P0 + (P1L
+ P1R

)Zc(v)
C Z

w(v)
W ; // cf. equation (11.3)

Correctness. We will now prove the correctness of equations (11.1) through (11.3). The
correctness of (11.1) has already been explained. For the remaining two equations (11.2)
and (11.3), we will establish bijections between the objects counted on either side of the
respective equation and argue that size and weight are updated correctly; the bijections
imply that the recurrences are also correct over Z instead of just Z4.

We proceed by proving the correctness of equation (11.2), which is the only equation
where the proof of correctness requires the special properties of treedepth decompositions.
Consider any (X, (XL, XR)) ∈ P [v, f] and define Xu = X ∩ broom[u], Xu

L = XL ∩ broom[u],
Xu
R = XR ∩ broom[u] for every u ∈ child(v). We have that (Xu, (Xu

L, X
u
R)) ∈ P (u, f)

for every u ∈ child(v), because we are restricting the Steiner tree X and consistent cut
(XL, XR) to the induced subgraph G[broom[u]] of G[broom[v]]. Vice versa, we claim that any
combination of exclusive partial objects (Xu, (Xu

L, X
u
R)) ∈ P (u, f) for each u ∈ child(v)

yields an inclusive partial object (X, (XL, XR)) ∈ P [v, f] by setting X =
⋃
uX

u, XL =

11.2 Steiner Tree 211

⋃
uX

u
L, XR =

⋃
uX

u
R. We clearly have K ∩ broom[v] ⊆ X since broom[v] =

⋃
u broom[u].

On tail[v] = dom(f) all these partial objects agree, hence no edge between tail[v] and
subtree(v) =

⋃
u subtree[u] can cross the cut (XL, XR). Furthermore, as there are no

edges in G between subtree[u] and subtree[u′] for u ̸= u′ ∈ child(v) by the properties
of a treedepth decomposition, we have (X, (XL, XR)) ∈ C(G[broom[v]]) which shows the
claim. Since the sets Xu \ tail[v] partition X \ tail[v], we obtain the cost and weight of
X \ tail[v] by summing over the costs and weights of the sets Xu \ tail[v] respectively.
Hence, these values are updated correctly by polynomial multiplication.

It remains to prove the correctness of (11.3). Since both inclusive and exclusive partial
objects at v live in Q(broom[v]), we only have to account for updating the signature and the
costs and weights properly. Consider any (X, (XL, XR)) ∈ P (v, g), we have three possible
cases depending on the state of v in this partial object.
1. If v /∈ X, then we have that (X, (XL, XR)) ∈ P [v, f], where f = g[v 7→ 0]. Vice versa, any

(X, (XL, XR)) ∈ P [v, f] must also be in P (v, g). Since X∩subtree[v] = X∩subtree(v),
we do not need to update the cost or size in this case.

2. If v ∈ XL ⊆ X, then (X, (XL, XR)) ∈ P [v, f], where f = g[v 7→ 1L] and vice versa.
Since X ∩ subtree[v] = (X ∩ subtree(v)) ∪ {v}, multiplication by Zc(v)

C Z
w(v)
W correctly

accounts for the cost and weight change.
3. If v ∈ XR ⊆ X, the proof is analogous to case 2.
Note that by establishing these bijections in the proofs of correctness, we have actually
shown that equations (11.1) through (11.3) are also correct when working in Z instead of
Z4.

Time and Space Analysis. We finish the proof by discussing the time and space requirement
of the algorithm. Observe that the coefficients of our polynomials are in Z4 and hence can be
added and multiplied in constant time. Furthermore, all considered polynomials consist of at
most polynomially many monomials as the cost and weight of a partial object are polynomial
in n by assumption. Therefore, we can add and multiply the polynomials in polynomial time
and hence compute recurrences (11.1) through (11.3) in polynomial time. Every polynomial
P [v, f] and P (v, g) is computed at most once, because P [v, f] is only called by P (v, g) where
f is an extension of g, i.e., f = g[v 7→ s] for some s ∈ States, and P (v, g) is only called by
P [w, g] where w is the parent of v. Hence, the recurrences only make disjoint calls and no
polynomial is computed more than once. For a fixed vertex v there are at most 3d choices for
f and g. Thus, the algorithm runs in time O∗(3d) for treedepth decompositions of depth d.
Furthermore, the algorithm requires only polynomial space, because it has a recursion depth
of 2d+ 1, every recursive call needs to store at most a constant number of polynomials, and
each call only requires polynomial space by the previous discussion.

Theorem 11.2.5. There is a Monte-Carlo algorithm that given a treedepth decomposition of
depth d for a graph G solves STEINER TREE on G in time O∗(3d) and polynomial space. The
algorithm cannot give false positives and may give false negatives with probability at most 1/2.

Proof. We sample a weight function w : U → [N] with N = 2n = 2|U | uniformly at random
and run the algorithm from Lemma 11.2.4. If there are c ∈ [0, b] and w ∈ [0, nN] such that
|Pc,w(r̂, ∅)| ̸≡4 0, then the algorithm returns true. Otherwise, the algorithm returns false.

212 Chapter 11 Branching Algorithms on Treedepth Decompositions

Due to Lemma 11.2.3, the algorithm cannot return false positives. Hence, assume
that we are given a positive instance. By Lemma 3.1.4, the weight function w isolates
{X ∈ R(V) : G[X] is connected and c(X) ≤ b} ̸= ∅ with probability at least 1/2. If
successful, there is some c ∈ [0, b] and w ∈ [0, nN] with |Sc,w| = 1, so the algorithm will
return true due to Lemma 11.2.3.

While we have considered the node-variant of STEINER TREE here, the edge-variant of
STEINER TREE can be easily reduced to the node-variant by subdividing each edge once,
which increases the treedepth by at most one.

11.2.1 Adapting the Algorithm to Other Problems
The high-level structure of the counting procedure for the other problems is very similar to
that of the algorithm for STEINER TREE, as they all follow the description in Section 11.1. One
possible difference is that we might have to consider the solutions over a more complicated
universe U than just the vertex set V , this occurs when we consider CONNECTED ODD CYCLE

TRANSVERSAL and its generalization CONNECTED DELETION TO q-COLORABLE. Also, we
might want to keep track of more data of the partial solutions and hence use more than
just two formal variables for the polynomials, which occurs for FEEDBACK VERTEX SET. The
equation for the base case (cf. equation (11.1)) and the recurrence for P (v, g) (cf. equation
(11.3)) are also problem-dependent, but the equation for the inclusive case (cf. equation
(11.2)) stays the same.

Time and Space Analysis. The properties that we require of the polynomials and equations
in the time and space analysis, namely that the equations can be evaluated in polynomial
time and every polynomial is computed at most once, remain true by the same arguments
as for STEINER TREE. The running time essentially follows from the number of computed
polynomials, which increases when we use more states for the vertices. Again denoting the
set of states by States, we obtain a running time of O∗(|States|d) on treedepth decomposi-
tions of depth d. The space analysis also transfers, as we ensure that the access structure of
the recurrences remains the same, so that the same arguments still apply.

11.3 Connected Deletion to q-Colorable
Let G be connected graph and assume that the costs c(v), v ∈ V , are polynomially bounded
in n = |V |.

CONNECTED DELETION TO q-COLORABLE generalizes the problems CONNECTED VERTEX

COVER (q = 1) and CONNECTED ODD CYCLE TRANSVERSAL (q = 2). The algorithm for
CONNECTED DELETION TO q-COLORABLE is mostly straightforward, but requires a slight
technical adjustment. Whereas for the previous problems, it was sufficient to consider the
universe U = V for the isolation lemma, this will not work here. To verify that G − X is
q-colorable, every partial solution (X,φ) consists of a deletion set X and a q-coloring φ of
the remaining graph. However, for a fixed X there might be multiple valid q-colorings φ.

11.3 Connected Deletion to q-Colorable 213

Therefore, isolating only over all cheapest connected deletion sets X does not necessarily
avoid unwanted cancellations modulo four. Instead, the weights for the isolation lemma will
also take the q-coloring φ into account.

To apply the cut-and-count technique, we make the following definitions. For every
V ′ ⊆ V , the relaxed solutions in V ′ are given by

R(V ′) = {(X,φ) : X ⊆ V ′ and φ is a q-coloring of G[V ′ \X]},

and the candidate-cut-pairs in V ′ are given by

Q(V ′) = {((X,φ), (XL, XR)) : (X,φ) ∈ R(V ′) and (X, (XL, XR)) ∈ C(G[V ′])}.

The solutions are given by S = {(X,φ) ∈ R(V) : G[X] is connected}.
For the isolation lemma, we set the universe to U = V × ({⊥} ∪ [q]), where ⊥ is a formal

symbol representing the deletion of a vertex. So, we sample a weight function w : U → [N]
with N = 2(q+ 1)n to guarantee an error probability of less than 1/2 in the isolation lemma.
The weight of a pair (X,φ) consisting of a deletion set X and q-coloring φ is given by
w(X,φ) =

∑
v∈X w(v,⊥) +

∑
v∈dom(φ) w(v, φ(v)). We define Sc,w = {(X,φ) ∈ S : c(X) =

c,w(X,φ) = w} for every c ∈ [0, c(V)] and w ∈ [0, nN].
The possible states of a single vertex v in a pair ((X,φ), (XL, XR)) are given by States =

{⊥L,⊥R} ∪ [q], where ⊥L and ⊥R represent deleted vertices on the left side or the right
side of the cut respectively and the states in [q] represent the colors of undeleted vertices.

For the remainder of this section, fix a treedepth decomposition T of G of depth d.
Given a vertex v, an inclusive v-signature is a function f : tail[v] → States, and an exclusive
v-signature is a function g : tail(v) → States. A candidate-cut-pair ((X,φ), (XL, XR)) ∈
Q(broom[v]) is compatible with an (inclusive/exclusive) v-signature h if for all u ∈ dom(h)
we have φ(u) = h(u) if h(u) ∈ [q], u ∈ XL if h(u) = ⊥L, and u ∈ XR if h(u) = ⊥R.

Definition 11.3.1. Given a vertex v and inclusive v-signature f , the inclusive partial objects
P [v, f] at v respecting f consist of all ((X,φ), (XL, XR)) ∈ Q(broom[v]) compatible with f .
Furthermore, for trackers c ∈ [0, c(V)], w ∈ [0, nN], the subfamily Pc,w[v, f] consists of all
((X,φ), (XL, XR)) ∈ P [v, f] with

c(X ∩ subtree(v)) = c and w(X ∩ subtree(v), φ
∣∣
subtree(v)\X) = w.

Definition 11.3.2. Given a vertex v and exclusive v-signature g, the exclusive partial objects
P (v, g) at v respecting g consist of all ((X,φ), (XL, XR)) ∈ Q(broom[v]) compatible with g.
Furthermore, for trackers c ∈ [0, c(V)], w ∈ [0, nN], the subfamily Pc,w(v, g) consists of all
((X,φ), (XL, XR)) ∈ P (v, g) with

c(X ∩ subtree[v]) = c and w(X ∩ subtree[v], φ
∣∣
subtree[v]\X) = w.

Lemma 11.3.3. Let r̂ be the root of the treedepth decomposition T . For every c ∈ [0, c(V)]
and w ∈ [0, nN], it holds that |Pc,w(r̂, ∅)| ≡4 2|Sc,w|.

214 Chapter 11 Branching Algorithms on Treedepth Decompositions

Proof. By Lemma 3.1.1, we can compute

|Pc,w(r̂, ∅)| =
∑

(X,φ)∈R(V) :
c(X)=c,w(X)=w,

cc(G[X])=1

2cc(G[X]) +
∑

(X,φ)∈R(V) :
c(X)=c,w(X)=w,

cc(G[X])≥2

2cc(G[X]) ≡4 2|Sc,w|.

We can now proceed with the algorithm and present the counting procedure for CON-
NECTED DELETION TO q-COLORABLE, then the desired branching algorithm for CONNECTED

DELETION TO q-COLORABLE[treedepth] follows via the cut-and-count-technique.

Lemma 11.3.4. If the treedepth decomposition T has depth d and the costs c(v), v ∈ V ,
are polynomially bounded in n = |V |, then we can determine |Pc,w(r̂, ∅)| modulo 4 for all
c ∈ [0, c(V)], w ∈ [0, nN] in time O∗((q + 2)d) and polynomial space.

Proof. As usual, given a vertex v and inclusive v-signature f , the inclusive polynomial
P [v, f] ∈ Z4[ZC , ZW] at v respecting f is given by P [v, f] =

∑
c,w |Pc,w[v, f]|ZcCZwW . Given

an exclusive v-signature g, we define the exclusive polynomial at v respecting g by P (v, g) =∑
c,w |Pc,w(v, g)|ZcCZwW . The recurrences to compute these polynomials are as follows:

• Leaf case: If v is a leaf node, then broom[v] = tail[v] = dom(f) and P [v, f] can contain
at most the candidate-cut-pair ((f−1({⊥L,⊥R}), f

∣∣
f−1([q])), (f

−1(⊥L), f−1(⊥R))); we
simply verify if it satisfies the constraints of Q(tail[v]), yielding the equation

P [v, f] = [(f−1(⊥L), f−1(⊥R)) is a consistent cut of G[f−1({⊥L,⊥R})]

· [f
∣∣
f−1([q]) is a q-coloring of G[f−1([q])]].

• Inclusive case: If v is not a leaf node, then we need to combine the partial objects at
the children of v. Since partial objects coming from different children are disjoint except
for possibly the parts in tail[v], their costs and weights simply add up corresponding to
polynomial multiplication:

P [v, f] =
∏

u∈child(v)

P (u, f).

• Exclusive case: We branch through all possible states of v and account for their effect
on the cost and weight of the partial objects:

P (v, g) = (P [v, g[v 7→ ⊥L]]+P [v, g[v 7→ ⊥R]])Zc(v)
C Z

w(v,⊥)
W +

∑
a∈[q]

P [v, g[v 7→ a]]Zw(v,a)
W .

The correctness of these recurrences follows the same style of arguments as before. We
highlight that in the exclusive case, the weight always increases by w(v,⊥) or w(v, a),
a ∈ [q], as also vertices that are not part of the deletion set X affect the weight of the partial
objects.

For the inclusive case, we highlight that a partial object ((X,φ), (XL, XR)) ∈ P [v, f]
induces a partial object ((X ∩ broom[u], φ

∣∣
broom[u]\X), (XL ∩ broom[u], XR ∩ broom[u])) ∈

P (u, f) for any u ∈ child(v). Vice versa, choosing partial objects ((Xu, φu), (Xu
L, X

u
R)) ∈

P (u, f) for all u ∈ child(v) combine to a partial object in P [v, f], since they agree on

11.3 Connected Deletion to q-Colorable 215

tail[v] = tail(u) and since there are no edges between subtree[u] and subtree[u′] for
u ̸= u′ ∈ child(v).

The time and space bound follow from the general discussion in Section 11.2.1.

Theorem 11.3.5. There exists a Monte-Carlo algorithm that given a treedepth decomposition
of depth d solves CONNECTED DELETION TO q-COLORABLE in time O∗((q+2)d) and polynomial
space. The algorithm cannot give false positives and may give false negatives with probability at
most 1/2.

Proof. We sample a weight function w : U → [N] with N = 2(q + 1)n uniformly at random
and run the algorithm from Lemma 11.3.4. If there are c ∈ [0, b] and w ∈ [0, nN] such that
|Pc,w(r̂, ∅)| ̸≡4 0, then the algorithm returns true. Otherwise, the algorithm returns false.

Due to Lemma 11.3.3, the algorithm cannot return false positives. Hence, assume
that we are given a positive instance. By Lemma 3.1.4, the weight function w isolates
{(X,φ) ∈ R(V) : G[X] is connected and c(X) ≤ b} ̸= ∅ with probability at least 1/2. If
successful, there is some c ∈ [0, b] and w ∈ [0, nN] with |Sc,w| = 1, so the algorithm will
return true due to Lemma 11.3.3.

Connected Vertex Cover

The case q = 1, i.e., CONNECTED VERTEX COVER, can also be solved by reducing to STEINER

TREE. We simply observe that the reduction presented by Cygan et al. [51] only increases
the treedepth by 1 and also works with vertex costs.

Lemma 11.3.6. Let G be a graph that contains at least two edges. There is a polynomial-
time algorithm that given a CONNECTED VERTEX COVER instance (G, c, b) with a treedepth
decomposition T of depth d for G constructs an equivalent STEINER TREE instance (G′, c′,K, b

′)
with a treedepth decomposition T ′ of depth d+ 1 for G′.

Proof. To construct the STEINER TREE instance (G′ = (V ′, E′), c′,K, b
′) we subdivide each

edge of G with a terminal, formally we replace e = {u, v} ∈ E by a new vertex we and two
edges {u,we}, {we, v} and set K = {we : e ∈ E(G)}. The new costs are given by c′(v) = c(v)
for all v ∈ V ′ \ K and c(v) = 1 for all v ∈ K. Setting b

′ = |K| + b, it is easy to see that G
contains a connected vertex cover of cost at most b if and only if (G′,K) contains a Steiner
tree of cost at most b

′ = |K| + b = E(G) + b.
To obtain the treedepth decomposition T ′ of depth d+ 1 for G′ first observe that G′ −K

is an independent set. Hence, T is also a valid treedepth decomposition of G′ −K. For an
edge e = {u, v} ∈ E(G), we can assume without loss of generality that u is a descendant
of v in T and attach the node corresponding to we directly below u as a leaf. Then, the
endpoints of {u,we} and {we, v} are in an ancestor-descendant-relationship respectively.
We repeat this process for all we to obtain a treedepth decomposition T ′ of depth d+ 1 for
G′.

216 Chapter 11 Branching Algorithms on Treedepth Decompositions

11.4 Connected Dominating Set
Let G be a connected graph and we assume that the costs c(v), v ∈ V , are polynomially
bounded in n = |V |.

Obtaining a fast polynomial-space algorithm for CONNECTED DOMINATING SET is inter-
esting, because already the algorithm running in time O∗(3td(G)) and polynomial space for
DOMINATING SET by Pilipczuk and Wrochna [155] is nontrivial. Their algorithm counts
dominating sets by recursively applying a small inclusion-exclusion formula. Combining
inclusion-exclusion with branching has appeared in the literature before and is also called
inclusion-exclusion-branching [7, 139, 140]. We do not need any further ideas to apply the
cut-and-count-technique, and it turns out that applying the inclusion-exclusion approach
simultaneously is not an issue.

To motivate the need for the inclusion-exclusion technique, consider a vertex v that is
dominated only by a proper descendant in the treedepth decomposition. However, this
is costly to check for a naive branching algorithm: we have to pick at least one child
u ∈ child(v) and require that in subtree[u] all partial objects contain a vertex dominating
v and in the other subtrees rooted at the children of v we do not impose this restriction. As
this has to be done recursively, it seems difficult to implement this for a branching algorithm
while maintaining the running time and only using polynomial space.

Instead, we can declare vertices as allowed or forbidden, which will turn the existential
requirement of picking at least one dominating vertex into a universal requirement. The
considered partial objects may or may not dominate allowed vertices, but may not dominate
forbidden vertices. If we count the number av of partial objects where v is declared allowed
and the number bv of partial objects where v is declared forbidden, then av − bv is the
number of partial objects where v is dominated. The crux is that allowed and forbidden
impose the same constraints on all subtrees rooted at the children of v, hence these branches
are independent and the standard branching approach works again. We remark that the
subtraction av − bv should only be performed when all edges incident to v have been
introduced by the decomposition. As G[broom[v]] contains all edges incident to v, it makes
sense to perform subtraction when branching on the states of v.

We define the objects needed for cut-and-count in the setting of CONNECTED DOMINAT-
ING SET. To apply the inclusion-exclusion branching, we need more involved definitions
compared to STEINER TREE. We must distinguish, based on the considered node of the
treedepth decomposition, for which vertices the subtraction av − bv was already performed
and for which it still needs to be done; the former kind of vertices must be dominated and
the latter kind not necessarily. For every V1, V2 ⊆ V with V1 ∩ V2 = ∅, the relaxed solutions
are given by

R(V1, V2) = {X ⊆ V1 ∪ V2 : V1 ⊆ N [X]}

and the candidate-cut-pairs are given by

Q(V1, V2) = {(X, (XL, XR)) ∈ C(G[V1 ∪ V2]) : X ∈ R(V1, V2)},

i.e., Q(V1, V2) consists of all consistently cut induced subgraphs of G[V1 ∪ V2] that dominate
all vertices in V1. The solutions are given by S = {X ∈ R(V, ∅) : G[X] is connected}.

11.4 Connected Dominating Set 217

As for STEINER TREE, we have that the universe for the isolation lemma is U = V . We
sample a weight function w : V → [N] with N = 2n to ensure an error probability of less
than 1/2 in the isolation lemma. We define Sc,w = {X ∈ S : c(X) = c,w(X) = w} for every
c ∈ [0, c(V)] and w ∈ [0, nN].

The possible states of a single vertex in a candidate-cut-pair (X, (XL, XR)) are given by
States = {0A,0F ,1L,1R} representing allowed vertices (0A), forbidden vertices (0F), and
vertices on the left (1L) or the right (1R) side of the cut of the partial dominating set.

For the remainder of this section, fix a treedepth decomposition T of G of depth d.
Given a vertex v, an inclusive v-signature is a function f : tail[v] → States, and an exclusive
v-signature is a function g : tail(v) → States. A candidate-cut-pair (X, (XL, XR)) ∈
Q(V1, V2) is compatible with an (inclusive/exclusive) v-signature h with dom(h) = V2 if for
all u ∈ dom(h) = V2, we have that
• h(u) = 0A implies u /∈ X,
• h(u) = 0F implies u /∈ NG[X],
• h(u) = 1L implies u ∈ XL,
• h(u) = 1R implies u ∈ XR.
Note that if (X, (XL, XR)) is compatible with a signature h with h(u) = 0F for some
u ∈ dom(h), then (X, (XL, XR)) is also compatible with the signature h[u 7→ 0A].

Definition 11.4.1. Given a vertex v and inclusive v-signature f , the inclusive partial objects
P [v, f] at v wrt. f consist of all (X, (XL, XR)) ∈ Q(subtree(v), tail[v]) compatible with f .
Furthermore, for trackers c ∈ [0, c(V)], w ∈ [0, nN], the subfamily Pc,w[v, f] consists of all
(X, (XL, XR)) ∈ P [v, f] with c(X ∩ subtree(v)) = c and w(X ∩ subtree(v)) = w.

Definition 11.4.2. Given a vertex v and exclusive v-signature g, the exclusive partial objects
P (v, g) at v wrt. g consist of all (X, (XL, XR)) ∈ Q(subtree[v], tail(v)) compatible with g.
Furthermore, for trackers c ∈ [0, c(V)], w ∈ [0, nN], the subfamily Pc,w(v, g) consists of all
(X, (XL, XR)) ∈ P (v, g) with c(X ∩ subtree[v]) = c and w(X ∩ subtree[v]) = w.

These definitions imply that for (X, (XL, XR)) ∈ P (v, g) the vertex v must be dominated
by X, whereas this is not necessarily the case for (X, (XL, XR)) ∈ P [v, f], but both kinds of
partial objects live in the subgraph G[broom[v]].

Lemma 11.4.3. Let r̂ be the root of the treedepth decomposition T . For every c ∈ [0, c(V)]
and w ∈ [0, nN], it holds that |Pc,w(r̂, ∅)| ≡4 2|Sc,w|.

Proof. At the root r̂, we have that subtree[r̂] = V and tail(r̂) = ∅. By Lemma 3.1.1, we
can compute

|Pc,w(r̂, ∅)| =
∑

X∈R(V,∅) :
c(X)=c,w(X)=w,

cc(G[X])=1

2cc(G[X]) +
∑

X∈R(V,∅) :
c(X)=c,w(X)=w,

cc(G[X])≥2

2cc(G[X]) ≡4 2|Sc,w|.

We can now proceed with the algorithm and describe the counting procedure CONNECTED

DOMINATING SET, which then yields the desired algorithm for CONNECTED DOMINATING

SET[treedepth] via the cut-and-count-technique as usual.

218 Chapter 11 Branching Algorithms on Treedepth Decompositions

Lemma 11.4.4. If the treedepth decomposition T has depth d and the costs c(v), v ∈ V , are
polynomially bounded in n = |V |, then we can determine |P (r̂, ∅)| modulo 4 for all c ∈ [0, c(V)],
w ∈ [0, nN] in time O∗(4d) and polynomial space.

Proof. The algorithm follows the same scheme as discussed in Section 11.1 and Section 11.2.
As usual, given a vertex v and inclusive v-signature f , the inclusive polynomial P [v, f] ∈
Z4[ZC , ZW] at v respecting f is given by P [v, f] =

∑
c,w |Pc,w[v, f]|ZcCZwW . Given an exclu-

sive v-signature g, we define the exclusive polynomial P (v, g) =
∑
c,w |Pc,w(v, g)|ZcCZwW . The

coefficients of the exclusive polynomial P (r̂, ∅) at the root r̂ will yield the desired numbers.
The recurrences to compute these polynomials are as follows:
• Leaf case: If v is a leaf node, then broom[v] = tail[v] = dom(f) and P [v, f] can contain

at most the candidate-cut-pair (f−1({1L,1R}), (f−1(1L), f−1(1R))); we simply verify if
it satisfies the constraints of Q(∅, tail[v]), namely that we have a consistent cut and no
forbidden vertices are dominated, yielding the equation

P [v, f] = [(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L,1R})]]
· [N [f−1({1L,1R})] ∩ f−1(0F) = ∅].

• Inclusive case: If v is not a leaf node, then we need to combine the partial objects at the
children of v. Since partial objects coming from different children are disjoint except for
possibly the parts in tail[v], their costs and weights simply add up which corresponds
to polynomial multiplication:

P [v, f] =
∏

u∈child(v)

P (u, f).

• Exclusive case: Here, we branch through all possible states of v and also apply the
inclusion-exclusion approach to ensure that the vertex v is dominated. Furthermore,
we also have to account for any changes to the cost and weight, hence we obtain the
recurrence:

P (v, g) = (P [v, g[v 7→ 0A]] − P [v, g[v 7→ 0F]])
+ (P [v, g[v 7→ 1L]] + P [v, g[v 7→ 1R]])Zc(v)

C Z
w(v)
W .

The correctness of the leaf case and inclusive case follows the same style of arguments
as before. In the inclusive case, the fact that there are no edges between subtree[u] and
subtree[u′] for u ̸= u′ ∈ child(v) implies that the union of consistent cuts remains a
consistent cut and that vertices from different subtrees cannot dominate each other.

We proceed by proving the correctness of the exclusive case. Note that we do not only
have to account for updating the signature, costs, and weights properly, but also ensure
that v is dominated. Consider any (X, (XL, XR)) ∈ P (v, g), we have four possible cases
depending on the state of v in this partial object.
1. If v /∈ NG[X], then v is not dominated and we have that (X, (XL, XR)) ∈ P [v, g[v 7→ 0A]]∩

P [v, g[v 7→ 0F]]. Hence, the recurrence counts (X, (XL, XR)) once positively and once
negatively which cancel each other, so that (X, (XL, XR)) is filtered out as desired.

11.4 Connected Dominating Set 219

2. If v /∈ X and v ∈ N [X], then v is dominated and we have that (X, (XL, XR)) ∈
P [v, g[v 7→ 0A]] \ P [v, g[v 7→ 0F]], hence the recurrence counts (X, (XL, XR)) exactly
once. Vice versa, any (X, (XL, XR)) ∈ P [v, g[v 7→ 0A]] \ P [v, g[v 7→ 0F]] must also be in
P (v, g) as this implies that v is dominated. Since X ∩ subtree[v] = X ∩ subtree(v), we
do not need to update the cost or size in this case.

3. If v ∈ XL ⊆ X, then (X, (XL, XR)) ∈ P [v, f], where f = g[v 7→ 1L] and vice versa.
Since X ∩ subtree[v] = (X ∩ subtree(v)) ∪ {v}, multiplication by Zc(v)

C Z
w(v)
W correctly

accounts for the cost and weight change.
4. If v ∈ XR ⊆ X, the proof is analogous to case 3.
The running time and space bound follow from the general discussion in Section 11.2.1.

Theorem 11.4.5. There exists a Monte-Carlo algorithm that given a treedepth decomposition
of depth d solves CONNECTED DOMINATING SET in time O∗(4d) and polynomial space. The
algorithm cannot give false positives and may give false negatives with probability at most 1/2.

Proof. We sample a weight function w : U → [N] with N = 2n uniformly at random and
run the algorithm from Lemma 11.4.4. If there are c ∈ [0, b] and w ∈ [0, nN] such that
|Pc,w(r̂, ∅)| ̸≡4 0, then the algorithm returns true. Otherwise, the algorithm returns false.

Due to Lemma 11.4.3, the algorithm cannot return false positives. Hence, assume
that we are given a positive instance. By Lemma 3.1.4, the weight function w isolates
{X ∈ R(V, ∅) : G[X] is connected and c(X) ≤ b} ≠ ∅ with probability at least 1/2. If
successful, there is some c ∈ [0, b] and w ∈ [0, nN] with |Sc,w| = 1, so the algorithm will
return true due to Lemma 11.4.3.

11.5 Feedback Vertex Set
We only consider the case that the costs c(v), v ∈ V , are polynomially bounded in n = |V |.

FEEDBACK VERTEX SET differs from the other problems in that we do not have a positive
connectivity requirement, but a negative connectivity requirement, i.e., we need to ensure
that the remaining graph is badly connected in the sense that it contains no cycles. Cygan et
al. [49] approach this via the well-known Lemma 11.5.1 and we will do the same.

Lemma 11.5.1. A graph G with n vertices and m edges is a forest if and only if G has at most
n−m connected components.

Note that any graph G with n vertices and m edges has at least n − m connected
components, hence it is also true that G is a forest if and only if G has exactly n − m

connected components. The application of Lemma 11.5.1 requires that we count how many
vertices and edges remain after deleting a set X ⊆ V from G. We use the cut-and-count
technique to bound the number of connected components of G−X by working modulo a
higher power of two as discussed in Section 3.1.

To be consistent with the previous algorithms, it is convenient to switch to the com-
plementary problem INDUCED FOREST. Although we seek to maximize c(X) in INDUCED

FOREST, we still call c a cost function. Clearly, G contains an induced forest X of cost
c(X) ≥ b if and only if G contains a feedback vertex set Y of cost c(Y) ≤ c(V) − b. We only
consider INDUCED FOREST for the remainder of this section.

220 Chapter 11 Branching Algorithms on Treedepth Decompositions

The basic definitions for cut-and-count in the setting of INDUCED FOREST are surprisingly
simple since we do not use the marker technique, cf. Section 3.1. For every V ′ ⊆ V , the
relaxed solutions in V ′ are given by R(V ′) = {X : X ⊆ V ′} and the candidate-cut-pairs in V ′

are given by
Q(V ′) = {(X, (XL, XR)) ∈ C(G[V ′]) : X ∈ R(V ′)},

i.e., Q(V ′) simply consists of all consistently cut subgraphs of G[V ′] without any further
restrictions. The solutions are given by S = {X ∈ R(V) : G[X] is a forest}.

The universe for the isolation lemma is U = V . We sample a weight function w : V → [N]
with N = 2n uniformly at random to guarantee an error probability of less than 1/2. For
every c ∈ [0, c(V)], w ∈ [0, nN], v ∈ [0, n], e ∈ [0,m], we define

Sc,w,v,e = {X ∈ S : c(X) = c,w(X) = w, |X| = v, |E(G[X])| = e}.

The possible states of a single vertex v in a candidate-cut-pair (X, (XL, XR)) ∈ Q(V ′)
are given by States = {0,1L,1R}. The interpretation of the state 0 is that the vertex does
not belong to the induced forest. The states 1L and 1R indicate that the vertex is inside the
induced forest and the subscript denotes to which side of the consistent cut it belongs.

For the remainder of this section, fix a treedepth decomposition T of G of depth d.
Given a vertex v, an inclusive v-signature is a function f : tail[v] → States, and an exclusive
v-signature is a function g : tail(v) → States. A candidate-cut-pair (X, (XL, XR)) ∈
Q(broom[v]) is compatible with an (inclusive/exclusive) v-signature h if for all u ∈ dom(h)
we have u /∈ X if h(u) = 0, u ∈ XL if h(u) = 1L, and u ∈ XR if h(u) = 1R.

Definition 11.5.2. Given a vertex v and inclusive v-signature f , the inclusive partial objects
P [v, f] at v respecting f consist of all (X, (XL, XR)) ∈ Q(broom[v]) compatible with f .

Definition 11.5.3. Given a vertex v and exclusive v-signature g, the exclusive partial objects
P (v, g) at v respecting g consist of all (X, (XL, XR)) ∈ Q(broom[v]) compatible with g.

We partition the inclusive and exclusive partial objects according to their cost, weight,
number of vertices, and edges. The tracking of cost, weight, and number of vertices is
standard, but the tracking of the number of edges is slightly more intricate. Note that
once we arrive at broom[v], all edges incident to v are present in the considered subgraph
G[broom[v]]. Given an inclusive or exclusive v-signature h, we will track the number of edges
in G[X] that are incident to vertices in X ∩ (broom[v] \ dom(h)).

Formally, for an inclusive v-signature f , and trackers c ∈ [0, c(V)], w ∈ [0, nN], v ∈ [0, n],
e ∈ [0,m], the family Pc,w,v,e[v, f] consists of all (X, (XL, XR)) ∈ P [v, f] with
• c(X ∩ subtree(v)) = c, w(X ∩ subtree(v)) = w, |X ∩ subtree(v)| = v, and
• |E(G[X ∩ subtree(v)])| + |E(X ∩ subtree(v), X ∩ tail[v])| = e.
Similarly, for an exclusive v-signature g, and trackers c ∈ [0, c(V)], w ∈ [0, nN], v ∈ [0, n],
e ∈ [0,m], the family Pc,w,v,e(v, g) consists of all (X, (XL, XR)) ∈ P (v, g) with
• c(X ∩ subtree[v]) = c, w(X ∩ subtree[v]) = w, |X ∩ subtree[v]| = v, and
• |E(G[X ∩ subtree[v]])| + |E(X ∩ subtree[v], X ∩ tail(v))| = e.
Observe in both definitions that X ∩ tail[v] and X ∩ tail(v) are completely specified by f
and g respectively.

11.5 Feedback Vertex Set 221

Lemma 11.5.4. Let r̂ be the root of the treedepth decomposition T . For every c ∈ [0, c(V)],
w ∈ [0, nN], v ∈ [0, n], e ∈ [0, v − 1], it holds that |Pc,w,v,e(r̂, ∅)| ≡2v−e+1 2v−e|Sc,w,v,e|.

Proof. Note that for the root r̂, it holds that broom[r̂] = subtree[r̂] = V and |E(G[X])| =
|E(G[X ∩ subtree[r̂]])| + |E(X ∩ subtree[r̂], X ∩ tail(r̂))| for all X ⊆ V . By Lemma 3.1.1,
we have that

|Pc,w,v,e(r̂, ∅)| =
∑

X : cc(G[X])≤v−e

2cc(G[X]) +
∑

X : cc(G[X])>v−e

2cc(G[X]

≡2v−e+1

∑
X : cc(G[X])≤v−e

2cc(G[X]) =
∑

X : cc(G[X])=v−e

2cc(G[X])

[Lemma 11.5.1] = 2v−e|Sc,w,v,e|,

where the sums range over all X ∈ R(V) with c(X) = c, w(X) = w, |X| = v, and
|E(G[X])| = e.

We now present the counting procedure for FEEDBACK VERTEX SET/INDUCED FOREST,
after which the algorithm for FEEDBACK VERTEX SET[treedepth] follows using standard
cut-and-count arguments.

Lemma 11.5.5. There is an algorithm that given a treedepth decomposition T of depth d

and weight function w : V → [N] computes |Pc,w,v,e(r̂, ∅)| for all c ∈ [0, c(V)], w ∈ [0, nN],
v ∈ [0, n], e ∈ [0, v − 1] in time O∗(3d) and polynomial space.

Proof. The algorithm generally follows the same framework as the counting procedure for
STEINER TREE. However, there are slight adjustments to the setup of the polynomials. Since
we are tracking the number of vertices and edges in addition to the cost and weight, we
consider polynomials in four formal variables as opposed to two. Furthermore, since the
considered power of two depends on the number of vertices and edges of the associated
partial objects, we consider polynomials whose coefficients are simply (non-negative) whole
numbers.

Given a vertex v and an inclusive v-signature f , the inclusive polynomials P [v, f] ∈
Z[ZC , ZW , ZV , ZE] at v respecting f is given by P [v, f] =

∑
c,w,v,e |Pc,w,v,e[v, f]|ZcCZwWZvV ZeE .

Given an exclusive v-signature g, the exclusive polynomials P (v, g) ∈ Z[ZC , ZW , ZV , ZE] at v
respecting g is given by P (v, g) =

∑
c,w,v,e |Pc,w,v,e(v, g)|ZcCZwWZvV ZeE .

Note that there are at most 3n consistently cut induced subgraphs of G, thus all occurring
coefficients have size polynomial in n and can be added and multiplied in polynomial time.

We now present the recurrences used to compute the polynomials P [v, f] and P (v, g).
• Leaf case: If v is a leaf node, then broom[v] = tail[v] = dom(f) and P [v, f] can contain

at most the candidate-cut-pair (f−1({1L,1R}), (f−1(1L), f−1(1R))); we simply verify
that it is a consistently cut subgraph, i.e.

P [v, f] = [(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L,1R})]].

• Inclusive case: If v is not a leaf node, then we must combine the partial objects at the
children of v. Since the vertex sets and edge sets whose cost, weight, and size we track

222 Chapter 11 Branching Algorithms on Treedepth Decompositions

are disjoint for partial objects coming from different children, we can simply multiply
the corresponding polynomials

P [v, f] =
∏

u∈child(v)

P (u, f).

• Exclusive case: We branch through all possible states of v and account for their effect
on the different accumulators of the partial objects. In particular, the number of edges
increases by |E({v}, tail(v)) ∩ E(G[X])| = |N(v) ∩ g−1({1L,1R})| =: eg for every
(X, (XL, XR)) ∈ P (v, g) with v ∈ X. Hence, the recurrence is given by

P (v, g) = P [v, g[v 7→ 0]] + (P [v, g[v 7→ 1L]] + P [v, g[v 7→ 1R]])Zc(v)
C Z

w(v)
W ZV Z

eg

E .

As in the proof for STEINER TREE, we can design two mutually recursive functions based
on these recurrences that allow us to compute P [r̂, ∅] as desired. The correctness of these
recurrences also largely follows by very similar arguments as for STEINER TREE. We show
that the number of edges is correctly updated in the inclusive and exclusive case, all other
details are omitted.

For the inclusive case, we have an inclusive partial object (X, (XL, XR)) ∈ P [v, f] and
exclusive partial objects (Xu, (Xu

L, X
u
R)) ∈ P (u, f) with Xu = X ∩ broom[u] for every

u ∈ child(v). Let e = |E(G[X ∩ subtree(v)])| + |E(X ∩ subtree(v), X ∩ tail[v])| and
eu = |E(G[Xu∩subtree[u]])|+ |E(Xu∩subtree[u], Xu∩tail(u))| for every u ∈ child(v).
We claim that e =

∑
u∈child(v) e

u. We know that X ∩ subtree(v) is the disjoint union
of the Xu ∩ subtree[u], u ∈ child(v), and that E(subtree[u], subtree[u′]) = ∅ for every
u ̸= u′ ∈ child(v), thus handling the first summand of e and every eu. Since Xu∩tail(u) =
X ∩ tail[v] for every u ∈ child(v), also the second summands are handled, which proves
the claim and shows that the recurrence for the inclusive case is correct.

For the exclusive case, we have an exclusive partial object (X, (XL, XR)) ∈ P (v, g)
with e = |E(G[X ∩ subtree[v]])| + |E(X ∩ subtree[v], X ∩ tail(v))| and there is some
s ∈ States with (X, (XL, XR)) ∈ P [v, g[v 7→ s]]. Let e′ = |E(G[X ∩ subtree(v)])| + |E(X ∩
subtree(v), X ∩ tail[v])|. If s = 0, then v /∈ X and clearly e = e′. If s ∈ {1L,1R}, then
v ∈ X and the following equations hold:
• |E(G[X ∩ subtree[v]])| = |E(G[X ∩ subtree(v)])| + |E({v}, X ∩ subtree(v))|,
• |E(X ∩ subtree[v], X ∩ tail(v))| = |E(X ∩ subtree(v), X ∩ tail(v))| + |E({v}, X ∩

tail(v))|,
• |E(X ∩ subtree(v), X ∩ tail[v])| = |E(X ∩ subtree(v), X ∩ tail(v))| + |E({v}, X ∩

subtree(v))|.
Therefore, e − e′ = |E({v}, X ∩ tail(v))| = |N(v) ∩ g−1({1L,1R})|, which proves the
correctness of the recurrence.

The running time and space bound essentially follow from the general discussion in
Section 11.2.1, but notice that the running time and space requirement are larger by a
polynomial factor due to the non-constant coefficients.

By putting everything together, we obtain the following theorem.

11.5 Feedback Vertex Set 223

Theorem 11.5.6. There is a Monte-Carlo algorithm that given a treedepth decomposition of
depth d for a graph G solves FEEDBACK VERTEX SET/INDUCED FOREST on G in time O∗(3d)
and polynomial space. The algorithm cannot give false positives and may give false negatives
with probability at most 1/2.

Proof. If solving FEEDBACK VERTEX SET, we first switch to the complementary problem
INDUCED FOREST as discussed before.

We sample a weight function w : U → [N] with N = 2n uniformly at random and run
the algorithm from Lemma 11.5.5. If there are some c ∈ [b, c(V)], w ∈ [0, nN], v ∈ [0, n],
e ∈ [0, v − 1] such that |Pc,w,v,e(r̂, ∅)| ̸≡2v−e+1 0, then the algorithm returns true. Otherwise,
the algorithm returns false.

Due to Lemma 11.5.4, the algorithm cannot return false positives. Hence, assume
that we are given a positive instance. By Lemma 3.1.4, the weight function w isolates
{X ∈ R(V) : G[X] is a forest and c(X) ≥ b} ≠ ∅ with probability at least 1/2. If successful,
there are some c ∈ [b, c(V)], w ∈ [0, nN], v ∈ [0, n], e ∈ [0, v − 1] with |Sc,w,v,e| = 1, so the
algorithm will return true due to Lemma 11.2.3.

Theorem 11.5.6 allows us to easily reobtain a result of Cygan et al. [51] on FEEDBACK

VERTEX SET[feedback vertex set]. The assumption that a feedback vertex set is given can be
eliminated by using the technique of iterative compression. This result has been superseded
by results of Li and Nederlof [125]; they present an O∗(2.7k)-time and exponential-space
algorithm and an O∗(2.8446k)-time and polynomial-space algorithm for this problem.

Corollary 11.5.7 ([51]). There is a Monte-Carlo algorithm that given a feedback vertex set of
size s solves FEEDBACK VERTEX SET with unit costs in time O∗(3s) and polynomial space. The
algorithm cannot give false positives and may give false negatives with probability at most 1/2.

Proof. By Corollary 2.4.18, we have that td ⪯∗ fvs constructively. Hence, we can appro-
priately transform the given feedback vertex set and then run the algorithm from Theo-
rem 11.5.6. The running time follows by Lemma 2.4.12.

224 Chapter 11 Branching Algorithms on Treedepth Decompositions

Modulator Lower Bound for
VERTEX COVER

12
In Section 12.1 we prove the lower bound for VERTEX COVER parameterized by a modulator
to pathwidth 2 and in Section 12.2 we show that this lower bound also implies lower bounds
for MAXIMUM CUT and Kq -FREE DELETION. Note that VERTEX COVER is just another name
for DELETION TO 1-COLORABLE, but the case q = 1 is not covered by the lower bounds in
Chapter 13.

12.1 Lower Bound
This section is devoted to establishing the lower bound for VERTEX COVER when parameter-
ized by a modulator to pathwidth 2, i.e., Theorem 12.1.1. For VERTEX COVER, we do not
need to convert between different bases in the running time. By additionally reducing from
q-HITTING SET instead of q-SATISFIABILITY, we obtain a significantly simplified reduction
that does not require the trick of Cygan et al. [46]. We construct a graph so that each vertex
in the modulator corresponds to an element in the universe of the q-HITTING SET instance.
We construct gadgets of pathwidth at most 2 that simulate the q-HITTING SET constraints
on the modulator. Using Theorem 2.1.2, this implies the desired lower bound for VERTEX

COVER if SETH is true. VERTEX COVER[multi-clique-width] can be solved in time O∗(2k) by
an algorithm of Fürer [79] and by Section 2.4.4 this implies that the obtained lower bound
is tight. So, in the exceptional case of VERTEX COVER, the complexity when parameterized
by clique-width is already explained by the sparse setting and we do not need to consider
twinclasses.

Theorem 12.1.1. If VERTEX COVER can be solved in time O∗((2 − ε)|M |) for some ε > 0,
where M is a modulator to pathwidth at most 2, then SETH is false.

Suppose that we can solve VERTEX COVER in time O∗((2 − ε)|M |) for some ε > 0. Fix an
integer q and let (U = {u1, . . . , un},F) be a q-HITTING SET instance with |F| = m sets of
size at most q each, and budget h. The elements of the j-th set in F , j ∈ [m], are denoted by
{uj1, u

j
2, . . . , u

j
pj

}, pj ≤ q. We will reduce (U,F) to a VERTEX COVER instance G = G(U,F)
with budget b, which will be defined later, and which admits a modulator to pathwidth 2 of
size n.

Construction. We create an independent set of n central vertices W = {w1, . . . , wn}. The
vertices in W that are chosen by a vertex cover will correspond to the hitting set. For the
j-th set {uj1, u

j
2, . . . , u

j
pj

} ∈ F , pj ≤ q, we create a triangle path, denoted by P j: The triangle
path P j consists of pj vertices ajs, where s ∈ [pj], and 2pj + 2 vertices bjs, where s ∈ [2pj + 2],

225

such that ajs, b
j
2s, b

j
2s+1 form a triangle for all s ∈ [pj] and bj1, b

j
2 . . . , b

j
2pj+2 form a path, see

Figure 12.1. We connect P j to W by adding, for all s ∈ [pj], an edge between ajs and ws′ ,
where s′ ∈ [n] so that us′ = ujs. The key property of the triangle path P j is that it costs more
to cover P j if no vertex in N(P j) ⊆ W is inside the vertex cover. Since the budget constraint
will be tight, this implies that a vertex cover has to take at least one vertex in each N(P j).

bj1 bj2

aj1

bj3 bj4

aj2

bj5 bj6

aj3

bj7 bj8

w1 w3 w7

Fig. 12.1.: The triangle path P j , where the j-th set consists of u1, u3, and u7.

Lemma 12.1.2. Let j ∈ [m] and X be a vertex cover of G, then |X ∩ P j | ≥ 2pj and:
1. If X ∩N(P j) = ∅, then |X ∩ P j | ≥ 2pj + 1.
2. If |X ∩N(P j)| ≥ 1, then there is a vertex cover X ′ with X \P j = X ′ \P j and |X ′ ∩P j | ≤

2pj .

Proof. Let X be a vertex cover of G. Consider some P j and notice that the triangles
{ajs, b

j
2s, b

j
2s+1}, s ∈ [pj], are vertex-disjoint and any vertex cover has to contain at least 2

vertices in each triangle. Hence, |X ∩ P j | ≥ 2pj for all j ∈ [m].
Now, suppose that X ∩ N(P j) = ∅ for some j ∈ [m]. By assumption, the pj edges

between P j and W are not covered by X ∩W and hence X must contain {aj1, a
j
2, . . . , a

j
pj

}.
Hence, X contains all a-vertices of P j and after removing these from P j a path on 2pj + 2
vertices remains. Therefore, X has to contain at least pj + 1 vertices of this path. In total, X
contains at least 2pj + 1 vertices of P j .

Lastly, suppose that X is a vertex cover with |X ∩ N(P j)| ≥ 1 for some j ∈ [m]. Let
s∗ ∈ [pj] be the smallest integer such that the neighbor in W of ajs∗ belongs to X. We define
X ′
P = {ajs : s ∈ [pj] \ {s∗}} ∪ {bj2s : s ∈ [s∗]} ∪ {bj2s+1 : s ∈ [pj] \ [s∗ − 1]} and claim that X ′

P

is a vertex cover of G[P j]. Notice that X ′
P contains 2 vertices in each triangle {ajs, b

j
2s, b

j
2s+1},

s ∈ [pj], and the edges {bjs, b
j
s+1} are covered by the bj with an even subscript if s ≤ 2s∗ and

otherwise by the bj with an odd subscript. Hence, X ′
P is a vertex cover of G[P j]. We define

X ′ = (X \ P j) ∪X ′
P . All edges between P j and W are covered by X ′ ∩ P j except the edge

incident to ajs∗ which is covered by X ′ ∩W by assumption. Therefore, X ′ is a vertex cover
of G with X \P j = X ′ \P j and |X ′ ∩P j | = |X ′

P | = (pj − 1) + s∗ + (pj + 1 − s∗) = 2pj .

Lemma 12.1.3. Let q ∈ N and (U,F) be a q-HITTING SET instance with |U | = n and |F| = m.
There is a hitting set for (U,F) of size at most h if and only if G = G(U,F) has a vertex cover
of size at most b = h+ 2

∑
j∈[m] pj .

Proof. Let H be a hitting set of (U,F) of size |H| ≤ h. Let XW = {wi ∈ W : ui ∈ H} and
consider X = XW ∪

⋃m
j=1 P

j . The set X is certainly a vertex cover of G and by applying the
second part of Lemma 12.1.2 for every j ∈ [m], which is possible since H was a hitting set,
we obtain a vertex cover X ′ with X ′ ∩W = XW and |X ′ ∩ P j | ≤ 2pj for all j ∈ [m]. Hence,
X ′ is a vertex cover of G of size at most h+ 2

∑
j∈[m] pj .

226 Chapter 12 Modulator Lower Bound for Vertex Cover

For the other direction, let X be a vertex cover of G of size at most h+ 2
∑
j∈[m] pj . Due

to Lemma 12.1.2, we have that |X ∩ P j | ≥ 2pj for all j ∈ [m]. Define JX = {j ∈ [m] :
|X ∩ P j | > 2pj} and XW = X ∩ W . The size constraint implies that |JX | + |XW | ≤ h. If
JX = ∅, then by the first part of Lemma 12.1.2 we must have that X ∩ N(P j) ̸= ∅ for all
j ∈ [m]. By the construction of G this means that H = {ui ∈ U : wi ∈ XW } must be a
hitting set for (U,F) of size at most h.

If JX ̸= ∅, then take some j ∈ JX and some wi ∈ N(P j) and construct the vertex cover
X ′ = X ∪ {wi}. By the second part of Lemma 12.1.2, there is a vertex cover X ′′ with
X ′′ \ P j = X ′ \ P j and |X ′′ ∩ P j | ≤ 2pj . This implies that |X ′′| = |X| + 1 + |X ′′ ∩ P j | −
|X ∩P j | ≤ |X| + 1 + 2pj − (2pj + 1) = |X| and JX′′ = JX \ {j}. We replace X with X ′′ and
repeat this argument until JX = ∅ and then obtain the desired hitting set by the previous
argument.

Lemma 12.1.4. It holds that pw(P j) = tw(P j) = 2 for all j ∈ [m].

Proof. We construct a path decomposition T for P j of width 2. Let T be a path on 2pj + 1
vertices t1, t2, . . . t2pj+1. For s ∈ [pj + 1], define the bag Bt2s−1 = {bj2s−1, b

j
2s}, and for

s ∈ [pj] define bags Bt2s
= {ajs, b

j
2s, b

j
2s+1}. Using these bags, T is a path decomposition of

width 2 for P j . Since P j is neither a linear forest nor a forest, we have that pw(P j) ≥ 2 and
tw(P j) ≥ 2.

Proof of Theorem 12.1.1. Suppose that VERTEX COVER can be solved in time O∗((2 − ε)|M |)
for some ε > 0, where M is a modulator to pathwidth at most 2. We argue that we can then
solve q-HITTING SET in time O∗((2 − ε)n) for all q, thus violating SETH by Theorem 2.1.2.

Fix an arbitrary integer q ≥ 1 and a q-HITTING SET instance (U,F) with |U | = n and
|F| = m. From (U,F) construct the graph G = G(U,F) = (V,E) as described above in
polynomial time. Let M = W , then G − M is the disjoint union of the P j , j ∈ [m], and
by Lemma 12.1.4 the pathwidth of G − M is 2. So, M is a modulator to pathwidth at
most 2 of size |M | = |W | = n. Running the VERTEX COVER algorithm on G with budget
b = h+ 2

∑
j∈[m] pj and modulator M solves q-HITTING SET by Lemma 12.1.3. As the size

of G is polynomial in |U | = n and |F| = m, the resulting running time is O∗((2 − ε)n) and
hence SETH must be false.

Corollary 12.1.5. If VERTEX COVER can be solved in time O∗((2 − ε)td(G)) for some ε > 0,
then SETH is false.

Proof. Follows from Theorem 12.1.1 and Corollary 2.4.18

12.2 Further Consequences
Corollary 12.2.1. If MAXIMUM CUT can be solved in time O∗((2 − ε)|M |) for some ε > 0,
where M is a modulator to treewidth at most 2, then SETH is false.

Proof. We use a well-known reduction from VERTEX COVER to MAXIMUM CUT by Garey et
al. [92]. Let G = (V,E) be a graph. We construct another graph G′ = (V ′, E′) as follows:
The vertex set is given by V ′ = V ∪ {x} ∪ {eu, ev : e = {u, v} ∈ E}. The vertex x is adjacent

12.2 Further Consequences 227

to all v ∈ V and for every edge e = {u, v} ∈ E, we add the five edges {x, eu}, {x, ev},
{eu, ev}, {eu, u}, and {ev, v} to E′. Now, G contains a vertex cover of size at most |V (G)|− b

if and only if G′ contains a cut of size at least 4|E(G)| + b.
Let M be a modulator to treewidth at most 2 for G, i.e., tw(G − M) ≤ 2. We claim

that M ′ = M ∪ {x} is a modulator to treewidth at most 2 for G′, i.e., tw(G′ − M ′) ≤ 2.
After removing M ′ only edges of the form {eu, ev}, {eu, u}, and {ev, v} remain. Notice that
G′ −M ′ can be obtained from G−M by subdividing each edge twice, i.e., replacing each
edge with a path of length 3. It is well-known that subdividing edges does not affect the
treewidth, hence we have that tw(G′ −M ′) = tw(G−M) ≤ 2.

If we can solve MAXIMUM CUT in time O∗((2 − ε)|M |) for some ε > 0, where M is a
modulator to treewidth at most 2, then we can also solve VERTEX COVER in time O∗((2 −
ε)|M |) by using the discussed polynomial-time reduction and noting that any modulator to
pathwidth at most 2 is also a modulator to treewidth at most 2. Hence, SETH must be false
by Theorem 12.1.1.

Corollary 12.2.2. If MAXIMUM CUT can be solved in time O∗((2 − ε)td(G)) for some ε > 0,
then SETH is false.

Proof. Follows from Corollary 12.2.1 and Corollary 2.4.18.

Corollary 12.2.3. Let r ≥ 3. If Kq -FREE DELETION can be solved in time O∗((2 − ε)|M |) for
some ε > 0, where M is a modulator to treewidth at most r − 1, then SETH is false.

Proof. Let G = (V,E) be a VERTEX COVER instance. We construct G′ = (V ′, E′) by using a
classical trick and replacing each edge of G with a clique on r vertices which is just like the
deletion edges for the DELETION TO q-COLORABLE lower bounds. It can be seen that G has a
vertex cover of size at most b if and only if there is a set X ⊆ V ′, |X| ≤ b, such that G′ −X

is Kr-free.
If M is a modulator to treewidth at most 2 for G, i.e., tw(G − M) ≤ 2, then we claim

that M is also a modulator to treewidth at most r − 1 for G′. Let T be a tree decomposition
of width 2 for G − M with bags Bt, t ∈ V (T). We construct a tree decomposition T ′ of
width r − 1 for G′ −M as follows. We start with the tree decomposition T of G−M . For
every edge e ∈ E(G−M) there is a t ∈ V (T) such that e ⊆ Bt and to t we attach a degree-1
node t∗ and the bag of t∗ contains the r-clique that replaced edge e. Hence, every edge of
G′ −M is captured in some bag of T ′ and T ′ is a tree decomposition of width r − 1.

Since the construction of G′ can be performed in polynomial time and since the size of
the modulator does not change, the result follows by Theorem 12.1.1.

Corollary 12.2.4. Let r ≥ 3. If Kr -FREE DELETION can be solved in time O∗((2 − ε)td(G)) for
some ε > 0, then SETH is false.

Proof. Follows from Corollary 12.2.3 and Corollary 2.4.18.

The lower bounds obtained for VERTEX COVER, MAXIMUM CUT, and Kr -FREE DELETION

are tight in the sense that we have algorithms with matching running time by straightforward
dynamic programming on tree decompositions.

228 Chapter 12 Modulator Lower Bound for Vertex Cover

Lower Bound for Deletion to
q-Colorable

13
In this chapter, we prove the two tight parameterized lower bounds for DELETION TO q-
COLORABLE. We begin by outlining the main ideas behind our constructions in Section 13.1.
Compared to the outline, we present the detailed lower bounds in reverse order, i.e., we
first present the dense setting in Section 13.3 and then the sparse setting in Section 13.4.
Since the constructions are very similar, this allows us to give the more complicated proof
for the dense setting in full detail, while only discussing the changes needed for the sparse
setting. Before presenting the lower bounds, we construct a family of (q + 1)-critical graphs
in Section 13.2 that will serve as important gadgets in both lower bound constructions.

13.1 Outline of Modulator Lower Bounds
We outline our two main results, i.e., tight lower bounds for DELETION TO q-COLORABLE

parameterized by a (twinclass-)modulator to treewidth q. We begin by informally discussing
the main technical obstacle to achieving such results and how we overcome it. Afterwards,
we give a high-level overview of our lower bound constructions.

13.1.1 Technical Obstacle
Recall the lower bound approach relative to width parameters of Lokshtanov et al. [126]
presented in Section 3.2.1. The creation of long paths in this approach is necessary to
avoid the issues caused by the occurrence of undesired state transitions, which we also call
cheats. These cheats can occur because, for example, in ODD CYCLE TRANSVERSAL it is locally
always preferable to delete a vertex instead of not deleting it. In contrast, for problems
such as q-COLORING, all states are equally constraining and such cheats can be avoided,
hence enabling us to prove the same lower bounds under more restrictive parameters such
as feedback vertex set. But for vertex deletion problems, like ODD CYCLE TRANSVERSAL, these
cheats do occur and pose a big issue when trying to compress the path gadgets into a single
separator M , since deletions in M are highly favorable. On a single separator M , such
behavior means that one partial solution is dominating another and if we cannot control
this behavior, then we lose the dominated partial solution for the purpose of encoding
group assignments. Concretely, for ODD CYCLE TRANSVERSAL we obtain dominating partial
solutions by deleting further vertices in the single separator M . The number of deletions is
bounded from above by the budget constraint, but if we limit the number of deletions in M ,

229

then we do not have 3|M | partial solutions anymore and the construction may not be able to
attain the desired base in the running time.

To resolve this issue we expand upon a technique of Cygan et al. [46] and construct an
instance with a slightly large parameter value, i.e., a slightly larger single separator M . Thus,
we can limit the number of deletions and are still able to encode sufficiently many group
assignments. More precisely, we consider only partial solutions with the same number of
deletions in M , hence only pairwise non-dominating partial solutions remain. We construct
a structure gadget to enforce a lower bound on the number of deletions in M . A positive side
effect is that the remaining gadgets can also leverage the structure of the partial solutions.

In the dense setting and especially for a higher number q of colors, this issue is amplified.
Here, we consider the states of twinclasses, instead of single vertices, in a partial solution.
For a twinclass, there is a hierarchy of dominating states: any state that does not delete
all vertices in the twinclass is dominated by a state that deletes further vertices in the
twinclass. For DELETION TO q-COLORABLE, the maximum number of states is achieved
on a true twinclass of size q and we can partition the states into levels based on the
number of deletions they induce. Within each level, the states are pairwise nondominating.
Consequently, we restrict the family of partial solutions so that for every level the number of
twinclasses with that level is fixed. This requires a considerably more involved construction
of the structure gadget which now has to distinguish states based on their level.

13.1.2 Outline of Construction
Conceptually, the constructions for the sparse setting and for the dense setting are similar.
The most significant change is in the structure gadget, since we have to enforce a considerably
more involved structure in the dense setting. We give an overview of both settings and go
into more detail for the dense case.

We fix the number of colors q ≥ 2. Solutions are functions φ : V (G) → [q] ∪ {⊥} so that
for every edge {u, v} ∈ E(G) either φ(u) = φ(v) = ⊥ or φ(u) ̸= φ(v). Hence, φ−1(⊥) is the
set of deleted vertices, whereas φ

∣∣
V (G)\φ−1(⊥) is a q-coloring of the remaining graph.

In both settings, we want to simulate a logical OR constraint. For ODD CYCLE TRANSVER-
SAL, i.e. q = 2, we can use odd cycles. For q ≥ 3, Theorem 13.1.1 provides an analog, where
a graph H is (q + 1)-critical if χ(H) = q + 1 and χ(H − v) = q for all v ∈ V (H).

Theorem 13.1.1 (see Section 13.2). There exists a family Hq of (q + 1)-critical graphs with
treewidth q such that for every s ∈ N, there exists a graph H ∈ Hq with s ≤ |V (H)| ≤ s+ q.

Setup. Given a q-SATISFIABILITY instance σ with n variables and m clauses, we start with
the following standard step [126]: we partition the variables into t = ⌈n/β⌉ groups of size
β, where β only depends on the running time base that we want to rule out. Furthermore,
we pick an integer p depending on β that represents the size of the groups in the graph.

230 Chapter 13 Lower Bound for Deletion to q-Colorable

13.1.3 Sparse Setting
Central Vertices and Solution Structure. We construct a graph G that has a solution φ for
DELETION TO q-COLORABLE with cost |φ−1(⊥)| ≤ b if and only if σ is satisfiable. Converting
from base q + 1 to base 2 implies that G should admit a modulator M to treewidth q of size
roughly n logq+1(2). Like Cygan et al. [46], we make the modulator slightly larger, thus
picking a larger p. The modulator M consists of t+ 1 vertex groups: the first t groups Ui,
i ∈ [t], are independent sets of size p each and correspond to the variable groups; the last
group F is a clique of size q which simulates LIST COLORING constraints.

On each group Ui, we consider the set of partial solutions Φi = {φ : Ui → [q] ∪ {⊥} :
|φ−1(⊥)| = p/(q + 1)}. By picking p large enough, Φi is sufficiently large to encode all
assignments of the i-th variable group. Defining Φi in this way achieves two things: first,
the solutions in Φi are pairwise non-dominating; secondly, this fixes the budget used on
the modulator. The second point is important, because by also fixing the budget on the
remaining graph via a vertex-disjoint packing P of (q + 1)-critical graphs, no vertex of F
can be deleted, which allows us to simulate LIST COLORING constraints with the clique F .

Structure Gadgets. The next step is to enforce that only the solutions in Φi can be attained
on group Ui. By choosing the budget b appropriately, we obtain an upper bound on the
number of deletions in Ui. To obtain a lower bound, we construct the structure gadgets.
These are built by combining (q + 1)-critical graphs with the arrow gadget of Lokshtanov et
al. [126]. A (thin) arrow simply propagates a deletion from a vertex u to another vertex v;
else if u is not deleted, then v is not deleted and the arrow does not affect the remaining
graph.

The structure gadget works as follows: if φ deletes less than p/(q + 1) vertices in group
Ui, then there is a subset S ⊆ Ui of size |S| = (|Ui| − p/(q + 1)) + 1 that avoids all deletions
in Ui. For every subset of this size, G contains a (q + 1)-critical graph Li,S with an arrow
from every u ∈ S to a private vertex v in Li,S , hence simulating an OR on the vertices in S.
Since S avoids all deletions of φ, no deletion is propagated to Li,S and φ must pay extra to
resolve Li,S . By copying each Li,S sufficiently often, we can ensure that the existence of a
deletion-avoiding S implies that φ must exceed our budget constraint.

Decode and Verify. The remaining construction decodes the partial solution on the
modulator M and verifies if the corresponding truth assignment satisfies all clauses of σ.
One could generalize the gadgets of Lokshtanov et al. [126] to higher q, but this leads to
an involved construction with a worse bound on the treewidth of the remainder: for ODD

CYCLE TRANSVERSAL the construction of Lokshtanov et al. has treewidth 4, whereas the
simpler construction we use has only treewidth 2. More details will be presented in the
dense case.

13.1.4 Dense Setting
We now have a twinclass-modulator M to treewidth q instead of a basic modulator and this
changes the possible states as follows. Whereas φ could assume q + 1 different states on a

13.1 Outline of Modulator Lower Bounds 231

single vertex u, i.e., one of the q colors or deleting the vertex, there are 2q possible states
on a true twinclass U of size q; each corresponds to a possible value of φ(U) \ {⊥} ⊆ [q].
Since U is a true twinclass, no color is used multiple times and the exact mapping φ

∣∣
U

is
irrelevant.

Central Twinclasses and Setup. The twinclass-modulator M of the constructed graph
G consists of t+ 1 groups and each group is a family of twinclasses. The first t groups Ui,
i ∈ [t], correspond to the variable groups and each consists of p true twinclasses of size q
that are pairwise non-adjacent. The last group contains the clique F .

Solution Structure. Our family Φi of considered partial solutions on group Ui should
achieve the same two things as before. First, consider the structure of states of φ on a
twinclass U ∈ Ui precisely: fix a state C = φ(U) \ {⊥} and note that all states C ′ ⊊ C

dominate C if we disregard the budget constraint, i.e., φ remains a solution if we replace C
by C ′. After arranging the states into levels according to the number ℓ of deleted vertices,
there is no domination between states on the same level. This motivates the following
definition.

Definition 13.1.2 (informal). Given rationals 0 < cℓ < 1, ℓ ∈ [0, q], with
∑q
ℓ=0 cℓ = 1, the

set Φi consists of solutions φ on the family of twinclasses Ui such that for every ℓ ∈ [0, q]
there are exactly cℓ · |Ui| twinclasses U ∈ Ui where φ deletes exactly ℓ vertices in U .

Essentially, we are only restricting how the deletions can be distributed inside the
modulator; there are no restrictions on the used colors. This again fixes the budget used
on the modulator, allowing us to simulate LIST COLORING constraints with the clique F .
By picking cℓ =

(
q
ℓ

)
2−q, ℓ ∈ [0, q], we ensure that Φi contains the solutions on Ui where all

2q states appear the same number of times. This enables us to choose p small enough so
that the time calculations work out and simultaneously large enough so that an injective
mapping κi : {0, 1}β → Φi, mapping truth assignments of the i-th variable group to solutions
in Φi, exists.

Thick Arrows and Structure Gadgets. To enforce the structure of Φi, we need a gadget to
distinguish different numbers of deletions inside a twinclass. We can construct such a gadget
Aℓ(U, v), ℓ ∈ [q], also called thick ℓ-arrow. See Lemma 13.1.3 for the gadget’s behavior.

Lemma 13.1.3 (informal). Let U be a set of q true twins and v be a vertex that is not adjacent
to U and ℓ ∈ [q]. There is a gadget A = Aℓ(U, v) of treewidth q with the following properties:
• Any solution φ must delete at least ℓ vertices in A− U .
• If a solution φ deletes exactly ℓ vertices in A − U , then φ can only delete v if φ deletes at

least ℓ vertices in U .

We proceed by constructing the structure gadgets which enforce that the partial solution
on Ui belongs to Φi. Let c<ℓ = c0 + · · · + cℓ−1 for all ℓ ∈ [0, q]. For every group i ∈ [t],
number of deletions ℓ ∈ [q], set of twinclasses S ⊆ Ui with |S| = c<ℓ · p + 1, we add an
(q + 1)-critical graph Li,ℓ,S ∈ Hq consisting of at least |S| vertices. For every U ∈ S, we pick
a private vertex v in Li,ℓ,S and add the thick ℓ-arrow Aℓ(U, v). We create a large number of

232 Chapter 13 Lower Bound for Deletion to q-Colorable

copies of each Li,ℓ,S and the incident thick arrows. This concludes the construction of the
structure gadget.

The number of deletions in the central vertices is already bounded from above by the
budget constraint. If too few deletions occur in the twinclasses of Ui, then we can find an ℓ
and an S ⊆ Ui with |S| = c<ℓ · p+ 1 such that less than ℓ vertices are deleted in each U ∈ S.
Hence, all thick ℓ-arrows leading to Li,ℓ,S and its copies cannot propagate deletions. To
resolve all these (q + 1)-critical graphs, one extra vertex per copy must be deleted. Due to
the large number of copies, this implies that we must violate our budget constraint.

Hence, for any S ⊆ Ui with |S| = c<ℓ · p + 1 and any solution φ obeying the budget
constraint there is at least one twinclass U ∈ S in which φ deletes at least ℓ vertices.
Therefore, there are at least (1 − c<ℓ)p twinclasses in Ui where φ deletes at least ℓ vertices.
Since this holds for all ℓ ∈ [0, q] and the budget b is chosen appropriately, all inequalities
have to be tight and the deletions inside Ui follow the distribution imposed by Φi. The
upcoming decoding gadgets will make use of this structure.

Color-Set-Gadgets and Decoding Gadgets. Next, we discuss the decoding part of the con-
struction. Since gadgets cannot read the color of single vertices but only of a whole twinclass,
we need color-set-gadgets to detect the colors used on a twinclass, cf. Lemma 13.1.4.

Lemma 13.1.4 (informal). Let U be a set consisting of q true twins and v be a vertex that is
not adjacent to U and let C ⊊ [q]. There is a gadget S = SC(U, v) of treewidth q such that:
• Any solution φ deletes at least (q − |C|) + 1 vertices in S − U .
• If φ deletes exactly (q − |C|) + 1 vertices in S − U , then φ(v) = ⊥ only if φ(U) \ {⊥} ⊆ C.

To construct the color-set-gadgets we rely on the LIST COLORING constraints that are
simulated with the central clique F . Note that the color-set-gadgets only check for set
inclusion and not set equality. Using the structure of solutions in Φi however, the color-set-
gadgets will still be sufficient to distinguish the solutions in Φi from each other.

By using a complete (q + 1)-partite graph with all sets of the partition being singletons
except for one large independent set, we can simulate a logical AND, see Lemma 13.1.5.

Lemma 13.1.5 (informal). Let nY be a positive integer. There is a gadget Y of treewidth q
with a set of input vertices V ′ ⊆ V (Y), |V ′| = nY , and a vertex ŷ ∈ V (Y) \ V ′ such that:
• Any solution φ has to delete at least one vertex in Y − V ′.
• If φ deletes exactly one vertex in Y − V ′, then φ(ŷ) = ⊥ only if φ(V ′) = {⊥}.

For the j-th clause, variable group i ∈ [t], solution φi ∈ Φi, we invoke Lemma 13.1.5 to
create a gadget Y ji,φi

for nY = (1 − cr)p = (1 − 2−q)p input vertices and with distinguished
vertex ŷji,φi

. For every twinclass U ∈ Ui with φi(U) ̸= [q], we pick a private input vertex v
of Y ji,φi

and add the color-set-gadget Bφi(U)\{⊥}(U, v). By Lemma 13.1.5, the vertex ŷji,φi

can only be deleted if all input vertices of Y ji,φi
are deleted. Due to Lemma 13.1.4 and the

structure of Φi, this will only be the case if φi is the partial solution on Ui.

Clause Gadgets. For the j-th clause, we add an (q + 1)-critical graph Zj ∈ Hq consisting
of at least q2β vertices. For every group i ∈ [t] and solution φi ∈ Φi such that κ−1

i (φi) is a
partial truth assignment satisfying the j-th clause, we pick a private vertex v in Zj and add

13.1 Outline of Modulator Lower Bounds 233

Ui Ui′

Li,1,Si,1

Li,1,S′
i,1

Li,2,Si,2

Li,2,S′
i,2...

...

Li′,1,Si′,1

Li′,1,S′
i′,1...

Li′,2,Si′,2

Li′,2,S′
i′,2...

A1 A2

Y ji,φi
Y ji,ψi

Y j
′

i,φi
Y j

′

i,ψi
Y ji′,φi′ Y

j
i′,ψi′ Y

j′

i′,φi′ Y
j′

i′,ψi′

color-set-gadgets BC :

thick arrows Aℓ : A1 A2

Zj Zj
′

thin arrows:

structure gadgets:

clause gadgets:

(attached to clique F)

central twinclasses:

decoding gadgets:

Fig. 13.1.: An overview of the construction for the dense setting in case of q = 2. The arrows point in
the direction in that deletions are propagated by the corresponding gadget.

a thin arrow from ŷji,φi
to v. The budget constraint will ensure that the only way to delete a

vertex in Zj is by propagating a deletion via a thin arrow from some ŷji,φi
. By construction of

the decoding and clause gadgets, this is only possible if the partial solution on Ui corresponds
to a satisfying assignment of the j-th clause. This concludes the construction, cf. Figure 13.1.

Budget and Packing. The budget b = b0 + costP of the constructed instance (G, b) consists
of two parts; b0 = tqp/2 is allocated to the central twinclasses and matches the number
of deletions incurred by picking a partial solution φi ∈ Φi on Ui for each group i ∈ [t];
the second part costP is due to a vertex-disjoint packing P which we describe next. A
part of each thin arrow in G is added to P and for every thick arrow, color-set-gadget,
or decoding gadget, we add the appropriate parts to P given by Lemmas 3.3, 3.4, 3.5,
respectively. Summing up the implied costs yields costP . Hence, we know how the deletions
are distributed throughout the various gadgets. In particular, this ensures that no vertex of
the central clique F is deleted.

Theorem 10.2.5 follows by using these ideas and working out the remaining technical
details.

13.2 Construction of Critical Graphs
We say that a graph G is t-critical if χ(G) = t and χ(G − v) = t − 1 for all v ∈ V (G). The
odd cycles form a family of 3-critical graphs of treewidth 2 that contains graphs of arbitrarily
large size. To obtain lower bounds for DELETION TO q-COLORABLE with q > 2 instead of ODD

CYCLE TRANSVERSAL, we instead construct a family of (q + 1)-critical graphs of treewidth q
that contains graphs of arbitrarily large size.

Theorem 13.2.1. Let q ≥ 2. There exists a family Hq of graphs such that
• H is (q + 1)-critical for all H ∈ Hq,
• pw(H) = tw(H) = q for all H ∈ Hq,
• for every s ∈ N, there exists a graph H ∈ Hq with s ≤ |V (H)| ≤ s+ q.

234 Chapter 13 Lower Bound for Deletion to q-Colorable

Definition 13.2.2 ([55, 98]). Given two graphs G and H and edges {v, w} ∈ E(G) and
{x, y} ∈ E(H). We obtain a graph G′ = (V ′, E′) by applying Hajós’ construction, where
V ′ = (V (G) ∪ V (H) ∪ {s}) \ {v, x} and E′ = E(G − v) ∪ E(H − x) ∪ {{s, u} : {v, w} ≠
{v, u} ∈ E(G)} ∪ {{s, u} : {x, y} ̸= {x, u} ∈ E(H)} ∪ {w, y}. That is, we remove the edges
{v, w} and {x, y}, identify v and x into a single vertex called s, and add the edge {w, y}.

Definition 13.2.3 ([55, 98]). Let t ≥ 3. A graph G = (V,E) is t-constructible if it can be
constructed from the following operations, starting with the complete graph Kt:
• Let G and H be t-constructible graphs, then the graph obtained by applying Hajós’

construction to G and H (wrt. edges {v, w} ∈ E(G) and {x, y} ∈ E(H) and identifying
v and x) is t-constructible.

• Let G be a t-constructible graph and u and v two non-adjacent vertices in G. The graph
formed by adding the edge {u, v} to G and then contracting {u, v} is t-constructible.

Lemma 13.2.4 ([55, 98]). If a graph G is t-constructible, then χ(G) ≥ t, i.e., coloring G
requires at least t colors.

b1

a1

c1,1 c1,2

b2

a2

c2,1 c2,2

b3

a3
a4

c3,1 c3,2

Fig. 13.2.: The graphs H4
2 , H4

3 , H5
2 , H5

3 and the vertex labels of H5
3 .

We set Ht
1 = Kt with vertex labels V (Ht

1) = {a1, a
′
1, b1, c1,1, c1,2, . . . , c1,t−3}. For γ ≥ 2,

we obtainHt
γ by performing Hajós’ construction onHt

γ−1 andKt, where we label the vertices
of Kt by aγ , a′

γ , bγ , cγ,1, cγ,2, . . . , cγ,t−3, with respect to the edges {bγ−1, a
′
γ−1} ∈ E(Ht

γ−1)
and {aγ , bγ} ∈ E(Kt) and identifying a′

γ−1 with aγ . Having finished the construction, we
will not require the a′-labels anymore, in Ht

γ we set aγ+1 = a′
γ , see Figure 13.2.

We define Ht−1 = {Ht
γ : γ ∈ N} for t ≥ 3. Observe that for t = 3 we obtain exactly the

odd cycles. We establish the following properties of the graphs Ht
γ which directly implies

Theorem 13.2.1.

Lemma 13.2.5. The graphs Ht
γ , t ≥ 3, γ ∈ N, have the following properties:

1. |V (Ht
γ)| = (t− 1)γ + 1. 2. Ht

γ is t-critical. 3. pw(Ht
γ) = tw(Ht

γ) = t− 1.

Proof. Property 1 can be easily shown by induction over γ. Now, we can prove that Ht
γ

is t-critical. By Lemma 13.2.4 we have that χ(Ht
γ) ≥ t. Let v ∈ V (Ht

γ) be arbitrary. We
have to show that χ(Ht

γ − v) ≤ t− 1. We distinguish whether v is labeled by a, b, or c, see
Figure 13.3.

Case v = ai, i ∈ [γ + 1]: We construct a proper (t− 1)-coloring φ : V (Ht
γ − v) → [t− 1].

For ℓ ∈ [γ], set φ(bℓ) = (ℓ mod 2) + 1. For ℓ ∈ [γ+ 1], set φ(aℓ) = (ℓ+ 1 mod 2) + 1 if ℓ < i

and set φ(aℓ) = (ℓ mod 2) + 1 if ℓ > i. For ℓ ∈ [γ] and k ∈ [t− 3], set φ(cℓ,k) = k + 2. Now,
for all ℓ ∈ [γ], the (t− 1)-clique induced by aℓ, aℓ+1, cℓ,1, . . . , cℓ,t−3 is colored properly and

13.2 Construction of Critical Graphs 235

2
1

3 4

2

3 4

1
1

3 4

2
2 1

3 4

2
1

3 4

1
2

3 4

2

3 4

1
1 2

3 4
2

1

3 4

1
2

3 4

4
1

3

2
2 1

3 4

Fig. 13.3.: The three coloring cases in the proof of Lemma 13.2.5 for the graph H5
4 .

the graph induced by N [bℓ] is colored properly. Since these cover all edges, φ must be a
proper coloring.

Case v = bi, i ∈ [γ]: Again, we construct a proper (t − 1)-coloring φ. For ℓ ∈ [γ], set
φ(bℓ) = (ℓ mod 2) + 1 if ℓ < i and set φ(bℓ) = (ℓ + 1 mod 2) + 1 if ℓ > i. For ℓ ∈ [γ + 1],
set φ(aℓ) = (ℓ+ 1 mod 2) + 1. For ℓ ∈ [γ] and k ∈ [t− 3], set φ(cℓ,k) = k + 2. Similarly to
the previous case, φ must be a proper coloring.

Case v = ci,k, i ∈ [γ], k ∈ [t − 3]: We construct a proper (t − 1)-coloring φ as follows.
We set φ(bi) = k + 2. For ℓ ∈ [γ] \ {i}, set φ(bℓ) = (ℓ mod 2) + 1 if ℓ < i and set
φ(bℓ) = (ℓ + 1 mod 2) + 1 if ℓ > i. For ℓ ∈ [γ + 1], set φ(aℓ) = (ℓ + 1 mod 2) + 1. For
(ℓ, k′) ∈ ([γ] × [t − 3]) \ {(i, k)}, set φ(cℓ,k′) = k′ + 2. Again, like in the previous cases, φ
must be a proper coloring.

This shows that Ht
γ is t-critical. We proceed by showing that pw(Ht

γ) = tw(Ht
γ) = t− 1.

Note that by contracting all vertices in V (Ht
γ) \ {a1, a2, b1, c1,1, . . . , c1,t−3} into b1, we obtain

Kt and hence pw(G) ≥ tw(G) ≥ tw(Kt) = t − 1, as treewidth is a minor-monotone
parameter. For the other direction, we construct a path decomposition T of width t − 1.
Let T be the path on 2γ − 1 vertices denoted by w1, . . . , w2γ−1. For ℓ ∈ [γ], we define
the bag Bw2ℓ−1 = {aℓ, aℓ+1, bℓ, cℓ,1, cℓ,2, . . . , cℓ,t−3} and for ℓ ∈ [γ − 1], we define the bag
Bw2ℓ

= {bℓ, bℓ+1, aℓ+1}. This yields a path decomposition of width t−1 and hence establishes
property 3.

13.3 Dense Setting
We again view solutions to DELETION TO q-COLORABLE as functions φ : V (G) → [q] ∪ {⊥}
satisfying φ(u) = ⊥ or φ(v) = ⊥ or φ(u) ̸= φ(v) for every edge {u, v} ∈ E(G).

We will prove a lower bound for DELETION TO q-COLORABLE parameterized by the size of
a twinclass-modulator (TCM) to treewidth q. This implies a lower bound for parameterization
by twinclass-treedepth due to Lemma 2.4.23. By Section 2.4.4, this further extends to lower
bounds for parameterization by twinclass-pathwidth and clique-width. Hence, we will see
that the running time of the algorithm from Theorem 14.0.1 is tight, unless CNF-SETH is
false.

236 Chapter 13 Lower Bound for Deletion to q-Colorable

u v u v

w1 w1

w2

Fig. 13.4.: A deletion edge between u and v for q = 2 and q = 3.

Theorem 13.3.1. If DELETION TO q-COLORABLE can be solved in time O∗((2q − ε)|M|) for
some q ≥ 2 and ε > 0, where M is a TCM to treewidth q, then CNF-SETH is false.

Assume that we can solve DELETION TO q-COLORABLE in time O∗((2q − ε)|M|) for some
q ≥ 2 and ε > 0. We provide a reduction from SATISFIABILITY with n variables and m

clauses to DELETION TO q-COLORABLE with a TCM to treewidth q of size approximately
n log2q (2) = n/q to convert from base 2q to base 2 and graph size polynomial in n and
m. Combining this reduction with the assumed algorithm will imply a faster algorithm for
SATISFIABILITY, thus violating CNF-SETH. From now on, we consider q to be fixed.

Before we begin with the actual construction, we describe several gadgets that will be
important.

13.3.1 Preliminary Gadgets
Deletion Edges. Let u and v be two vertices. By adding a deletion edge between u and v,
we mean adding q − 1 vertices w1, . . . , wq−1 and edges so that {u, v, w1, w2, . . . , wq−1} is a
clique of size q + 1, see Figure 13.4. The vertices w1, . . . , wq−1 will not receive any further
incident edges. Therefore, any solution to DELETION TO q-COLORABLE has to delete at least
one vertex in this clique and we can assume that the deleted vertex is u or v.

Arrows. Our construction relies on being able to propagate deletions throughout the graph.
This is done via so-called arrows. We distinguish between two types of arrows, namely thin
arrows and thick arrows. Thin arrows arise already in the sparse setting of the lower bound
construction of Lokshtanov et al. [126] for the restricted case of q = 2, i.e., ODD CYCLE

TRANSVERSAL[pathwidth]. A thin arrow simply propagates a deletion from a single vertex to
another vertex. Whereas the newly introduced thick arrows propagate a deletion to a single
vertex only if sufficiently many vertices have been deleted in some true twinclass of size q.
The construction of thick arrows is described in the proof of Lemma 13.3.2.

Let us proceed with the construction of thin arrows. Given two single vertices u and v,
adding a thin arrow from u to v means adding a new vertex w and a deletion edge between u
and w and a deletion edge between w and v. We remark that compared to the construction
of Lokshtanov et al. [126], we have shortened the thin arrows. The construction of thin
arrows is symmetric, but the direction will be important later for the description of a packing
that witnesses a lower bound on the required budget. The idea is that when u is not deleted,
we delete w to resolve both incident deletion edges; when u is deleted, the first deletion
edge is resolved and we can afford to delete v to resolve the second deletion edge. The
former is called the passive solution of the thin arrow and the latter is the active solution.

13.3 Dense Setting 237

Kr Kr−ℓ

· · ·

Iℓ−1

U
v

· · ·

KℓAℓ(U, v) :

Fig. 13.5.: The construction of a thick ℓ-arrow Aℓ(U, v). The double-lined edges represent deletion
edges. An edge attached to a circle or ellipse represents a join, i.e., a bundle of edges.

Using exchange arguments, one can see that it is sufficient to only consider solutions that on
each thin arrow use either the passive solution or active solution.

Lemma 13.3.2. Let U be a set of q true twins and v be a vertex that is not adjacent to U and
ℓ ∈ [q]. There is a graph A = Aℓ(U, v) with the following properties:
• Any solution φ satisfies |V (A− U) ∩ φ−1(⊥)| ≥ ℓ.
• If |V (A− U) ∩ φ−1(⊥)| = ℓ, then φ(v) = ⊥ implies that |U ∩ φ−1(⊥)| ≥ ℓ.
• Any solution φ̃ for G̃ = G[(V \ V (A)) ∪ U ∪ {v}] with φ̃(v) ̸= ⊥ or |U ∩ φ̃−1(⊥)| ≥ ℓ can

be extended to a solution φ for G with |V (A− U) ∩ φ−1(⊥)| = ℓ.
• tw(A− U) ≤ q via a winning cops-and-robber-strategy starting with a cop on v.

Proof. The graph A = Aℓ(U, v) is constructed by adding a clique Kℓ on ℓ vertices, a clique
Kq−ℓ on q − ℓ vertices, an independent set Iℓ−1 on ℓ − 1 vertices and adding all edges
between U and Kℓ, all edges between Kℓ and Kq−ℓ, all edges between Kℓ and v, all edges
between Kq−ℓ and v, and a deletion edge between each vertex of Kℓ and each vertex of
Iℓ−1, cf. Figure 13.5. Observe that the Kℓ, Kq−ℓ, and v together form a clique of size q + 1.
Only U and v can have further incident edges.

We first show that any solution φ has to delete at least ℓ vertices in A− U . Suppose that
no deletion occurs in Kℓ, then ℓ− 1 disjoint deletion edges between Kℓ and Iℓ−1 remain and
at least one deletion has to occur in Kq−ℓ ∪ {v}. On the other hand, suppose that 1 ≤ d ≤ ℓ

deletions occur in Kℓ, then ℓ− d disjoint deletion edges between Kℓ and Iℓ−1 remain. In
either case, we must delete at least ℓ vertices.

Next, we argue that a solution φ deleting exactly ℓ vertices in A − U cannot delete v
if less than ℓ deletions occur in U . Suppose that d < ℓ deletions occur in U , then at least
ℓ− d ≥ 1 deletions must occur in Kℓ, because U and Kℓ together form a clique of size q + ℓ.
Let d′ ≥ 1 be the number of deletions in Kℓ, then like in the previous paragraph ℓ − d′

disjoint deletion edges between Kℓ and Iℓ−1 remain. Hence, we must already perform a
total of ℓ deletions in Kℓ and the deletion edges, so v cannot be deleted.

Consider any solution φ̃ for G̃. If φ̃(v) ̸= ⊥, then we can extend φ̃ to a solution φ for G
by deleting Kℓ completely. This deletes all edges between U and A and one endpoint of
each deletion edge. The Kq−ℓ is only attached to v and can always be properly colored. We
give all vertices in Iℓ−1 the same color and the cliques attached to Iℓ−1 due to the deletion

238 Chapter 13 Lower Bound for Deletion to q-Colorable

edges are all disjoint and of size q − 1 each, so they can be properly colored as well. Hence,
φ is a valid solution for G.

If |U ∩ φ̃−1(⊥)| ≥ ℓ and φ̃(v) = ⊥, then we can extend φ̃ to a solution φ for G by deleting
Iℓ−1 completely. To Kℓ we assign a subset of the colors [q] \ φ̃(U), this is possible since at
least ℓ deletions occur in U . The Kℓ and Kq−ℓ together form a clique of size q that we can
properly color. The cliques of the deletion edges are all disjoint as before and only attached
to Kℓ and have size q − 1 each, hence they can also be properly colored. Hence, φ is a valid
solution for G.

Finally, we argue that tw(A− U) ≤ q using the omniscient cops-and-robber-game. We
begin by placing q + 1 cops on Kℓ ∪ Kq−ℓ ∪ {v}, then we remove the q − ℓ + 1 cops on
Kq−ℓ ∪ {v}. Now, all remaining connected components correspond to a vertex of Iℓ−1. Fix
the component the robber escaped to and place one cop on the corresponding vertex of Iℓ−1.
Now, the robber must have escaped to the inside of some deletion edge between Kℓ and
Iℓ−1. We remove the ℓ− 1 cops from Kℓ that are not on the endpoint of this deletion edge.
Finally, we place q − 1 cops on the remaining vertices of the deletion edge and capture the
robber. Throughout the strategy, we have never placed more than q + 1 cops simultaneously
and hence the claimed treewidth bound holds by Theorem 2.4.30.

Similarly to the thin arrows, we say that a thick ℓ-arrow Aℓ(U, v) is active if the considered
solution φ satisfies |U ∩ φ−1(⊥)| ≥ ℓ and hence Lemma 13.3.2 allows us to assume that
φ(v) = ⊥; otherwise, we say that Aℓ(U, v) is passive.

13.3.2 Complete Construction
Construction Setup. We will now begin with the construction of the DELETION TO q-
COLORABLE instance. Consider a SATISFIABILITY instance σ with n variables and m clauses.
We enumerate the clauses and simply refer to them by their number. Depending only on
ε and q, we will choose an integer β; we will describe how to choose β later. We partition
the variables of σ into groups of size at most β, resulting in t = ⌈n/β⌉ groups which will
be indexed by i. Next, we choose the smallest integer p such that p is divisible by 2q and
(2q)p (2q−1)!

2(2q) p−(2q) ≥ 2β .
Usually, a simple base conversion from a base that is a power of 2 to base 2 allows for a

construction where the handling of groups is a lot less technical. Unfortunately, since we
require the trick of Cygan et al. [46] that enlarges the groups, this is not possible here. We
will now describe the construction of the DELETION TO q-COLORABLE instance G = G(σ, q, β).

Central Twinclasses. The central vertices of G will form the TCM to treewidth q. For each
variable group i ∈ [t], we create a set Ui ⊆ Πtc(G) consisting of p true twinclasses of size q
each; there are no edges between the different twinclasses. The partial solution induced
by a solution φ of DELETION TO q-COLORABLE on the twinclasses in Ui will correspond to a
truth assignment for the i-th variable group.

13.3 Dense Setting 239

Central Clique. We create a clique F = {f1, . . . , fq} on q vertices which also belongs to
the central part. The vertices of F will not be twins; each vertex of F has its own twinclass.
This concludes the construction of the central part which will form the modulator M.

Our construction will ensure that no vertex of F can be deleted; we will prove so later.
This allows us to use F to simulate LIST COLORING constraints, i.e., we can forbid specific
colors at a vertex. To do so, we normalize the considered solutions by assuming that
φ(fs) = s for all s ∈ [q] and then no vertex v adjacent to some fs can receive color s. We say
that a solution φ is normalized if F ∩ φ−1(⊥) = ∅ and φ(fs) = s for all s ∈ [q].

We mention here that in principle a twinclass-modulator could contain arbitrarily large
twinclasses. In our case, every twinclass has size at most q = O(1), so the number |

⋃
(M)|

of vertices in M is linear in the size |M| of M.

Budget. The budget b = costP + tqp/2 for the DELETION TO q-COLORABLE instance is
split into two parts. The first part costP is due to a vertex-disjoint packing P of subgraphs
that will be described later and the second part tqp/2 is allocated to the vertices in the
twinclass-modulator.

Partial Solution Structure. We want to ensure that under our budget restriction no vertex
of F can be deleted, as otherwise the simulation of LIST COLORING constraints will not work.
This entails that all considered solutions should perform the same number of deletions.
On the gadgets that will be attached to the central vertices, this does not pose a big issue.
However, it does on the central vertices: to obtain the desired lower bound, for each true
twinclass U ∈ U and solution φ, it should in principle be possible for φ(U) to attain every
subset of [q], so that we have 2q states per twinclass. However, the number of deletions in U
depends on |φ(U)|. We can partition the possible states into different levels depending on
the number ℓ of deletions they incur in the true twinclass. A state can incur any number of
deletions between 0 and q.

Using slightly larger groups like Cygan et al. [46] allows us to overcome these issues.
By using slightly more twinclasses per variable group i ∈ [t] than necessitated by the base
conversion, we can consider solutions with a special structure on the central vertices. It is
designed in such a way that all solutions obeying this structure incur the same number of
deletions on the central vertices while still allowing all states to appear the same number of
times. Due to the slight increase in the number of twinclasses, we can still encode sufficiently
many truth assignments into such structured solutions.

For every i ∈ [t], U ∈ Ui, C ⊆ [q], we fix some representative solution φi,U,C : U →
[q] ∪ {⊥} to DELETION TO q-COLORABLE on U with φi,U,C(U) \ {⊥} = C. The point of this
is that we only distinguish between different solutions φ based on the sets φ(U), U ∈ Ui,
and not based on the actual mappings φ

∣∣
U

, U ∈ Ui. Since there are exactly
(
q
q−ℓ

)
=

(
q
ℓ

)
states that incur exactly ℓ deletions each and we want to allow for the possibility of all
states appearing the same number of times, we arrive at the following definition for each
group i ∈ [t]. The family Φi consists of all solutions φ :

⋃
(Ui) → [q] ∪ {⊥} to DELETION TO

q-COLORABLE on
⋃

(Ui) with the properties
•

∣∣∣{U ∈ Ui : φ(U) \ {⊥} ∈
([q]
ℓ

)}∣∣∣ =
(
q
ℓ

)
p
2q for all ℓ ∈ [q], and

• φ
∣∣
U

= φi,U,φ(U)\{⊥} for all U ∈ Ui.

240 Chapter 13 Lower Bound for Deletion to q-Colorable

Informally, this means that we only consider partial solutions that pick a representative
solution on each twinclass in Ui and for every level ℓ ∈ [0, q], i.e., a possible number of
deletions, there is a fixed number

(
q
ℓ

)
p
2q of twinclasses in Ui where the partial solution attains

a state of level ℓ. Lemma 13.3.3 gives the total number of deletions for a partial solution
φi ∈ Φi and Lemma 13.3.4 studies the size of Φi.

Lemma 13.3.3. If φ ∈ Φi, then |φ−1(⊥)| = qp/2.

Proof.

|φ−1(⊥)| =
q∑
ℓ=0

(q − ℓ)
(
r

ℓ

)
p

2q = p

2q q
q−1∑
ℓ=0

(
q − 1
ℓ

)
= p

2q q2
q−1 = qp/2.

Lemma 13.3.4. If p ≥ 2q, then we have that |Φi| ≥ (2q)p (2q−1)!
2(2q) p−(2q).

Proof. Observe that∣∣∣{φ ∈ Φi : |{U ∈ Ui : φ(U) \ {⊥} = C}| = p

2q for all C ⊆ [q]
}∣∣∣ =

(
p

p
2q , . . . ,

p
2q

)
= x,

where x is the central multinomial coefficient. The central multinomial coefficient x is a
maximum of the function (c1, . . . , c2q) 7→

(
p

c1,...,c2q

)
. Hence, x is a maximum term in the sum

of the multinomial theorem, i.e., (2q)p =
∑
c1+···+c2q =p

(
p

c1,...,cq

)
. The number of terms in

the sum of the multinomial theorem is the number of weak compositions of p into 2q parts
which is

(
p+2q−1

p

)
. Bounding this term from above using p ≥ 2q, we obtain

(
p+ 2q − 1

p

)
= 1

(2q − 1)! (p+ 1) · · · (p+ 2q − 1) ≤ 1
(2q − 1)! (2p)

(2q) = 22q

(2q − 1)!p
(2q).

By the multinomial theorem, we hence obtain that

|Φi| ≥ x ≥ (2q)p (2q − 1)!
2(2q) p−(2q).

Hence, if we choose p as discussed previously, then we can pick for each group i ∈ [t] an
injective mapping κi : {0, 1}β → Φi mapping truth assignments of the i-th variable group to
partial solutions on Ui with the desired structure.

Structure Gadgets. We proceed by constructing the structure gadgets to enforce that the
partial solution on Ui belongs to Φi. For every group i ∈ [t], number of deletions ℓ ∈ [q],
set of twinclasses S ⊆ Ui with |S| =

(
q

≥(q−ℓ+1)
)
p
2q + 1, we add an (q + 1)-critical graph

Li,ℓ,S ∈ Hq consisting of at least |S| vertices. For every U ∈ S, we pick a private vertex v in
Li,ℓ,S and add the thick ℓ-arrow Aℓ(U, v). We create 1 + tqp/2 = 1 + (b− costP) copies of
Li,ℓ,S and the incident thick arrows. This concludes the construction of the structure gadget,
cf. Figure 13.6.

Due to our budget constraint, no solution will be able to perform too many deletions
in the central vertices. The idea of the structure gadget is that if a solution φ performs
too few deletions in the twinclasses of Ui, then we can find an ℓ and an S ⊆ Ui with

13.3 Dense Setting 241

A1A1

Li,1,S

Ui :

S

twinclasses in Ui with at least 1 deletion

=
=
=

⊥
1
2

A1 A2A2

Li,2,S′

Ui :

S′
twinclasses in Ui

A2A2A2A2A2

with 2 deletions

Fig. 13.6.: The construction of structure gadgets Li,1,S and Li,2,S′ for the case of q = 2, i.e., ODD

CYCLE TRANSVERSAL, and p = 8 and its connection to the central twinclasses. The large
ellipses represent twinclasses and the arrows represent thick 1-arrows or thick 2-arrows.
The depicted solution φi belongs to Φi and propagates a deletion to every attached
structure gadget. Note that φi does not use each color set the same number of times.

U ...
...

{c1,⊥}

{cℓ,⊥}

{1,⊥}

{1,⊥}
{1,⊥}

{1,⊥}

w1 w2

w3 w4

w2ℓ−1 w2ℓ

w2ℓ+1 v

BC(U, v) :

{c2,⊥}

Fig. 13.7.: The construction of a color-set-gadget SC(U, v) with [q] \ C = {c1, . . . , cℓ}. The double-
lined edges represent deletion edges. An edge attached to a circle or ellipse represents a
join, i.e., a bundle of edges. The sets depict the allowed states at a vertex.

|S| =
(

q
≥(q−ℓ+1)

)
p
2q +1 such that φ deletes less than ℓ vertices in each U ∈ S. Hence, all thick

ℓ-arrows leading to Li,ℓ,S and its copies have to be passive. To resolve all these (q+1)-critical
graphs, we have to spend one extra unit of budget per copy which is not accounted for by
the packing. Due to the large number of copies, this implies that we must violate our budget
constraint.

Color-Set-Gadgets. The next step is to construct gadgets that can distinguish between the
different partial solutions in Φi. To do so, these gadgets must be able to react not only based
on the number of deletions inside a twinclass, but also based on the set of colors used for a
twinclass. In Lemma 13.3.5, we construct color-set-gadgets SC(U, v) using LIST COLORING

constraints simulated by the central clique F . Given a solution φ and a set of colors C ⊊ [q],
the color-set-gadget SC(U, v) propagates a deletion to the vertex v when the set of colors
φ(U) \ {⊥} used on a set of true twins U is a subset of C, i.e., φ(U) \ {⊥} ⊆ C. We say that
SC(U, v) is active if a deletion is propagated to v and passive otherwise.

242 Chapter 13 Lower Bound for Deletion to q-Colorable

Lemma 13.3.5. Let U be a set consisting of at most q true twins and v be a vertex that is not
adjacent to U and let C ⊊ [q] with |C| ≤ |U |. There is a graph S = SC(U, v) with the following
properties:
• Any solution φ, also unnormalized ones, satisfies |V (S − U) ∩ φ−1(⊥)| ≥ (q − |C|) + 1.
• If φ is a normalized solution with |V (S − U) ∩ φ−1(⊥)| = (q − |C|) + 1, then φ(v) = ⊥

implies that φ(U) \ {⊥} ⊆ C.
• Any normalized solution φ̃ for G̃ = G[(V \V (S))∪U∪{v}] with φ̃(v) ̸= ⊥ or φ̃(U)\{⊥} ⊆

C can be extended to a normalized solution φ forG with |V (S−U)∩φ−1(⊥)| = (q−|C|)+1.
• tw(S − U) ≤ q via a winning cops-and-robber-strategy starting with a cop on v.

Proof. Let [q] \ C = {c1, . . . , cℓ}. We add 2ℓ + 1 vertices w1, . . . , w2ℓ+1 and add all edges
between w2i−1, i ∈ [ℓ], and U , all edges between w2i, i ∈ [ℓ], and w2ℓ+1, a deletion edge
between w2ℓ+1 and v and a deletion edge between each pair w2i−1 and w2i for i ∈ [ℓ]. We
also add all edges between {w2i : i ∈ [ℓ]} ∪ {w2ℓ+1} and F \ {f1}. Finally, for each i ∈ [ℓ],
vertex w2i−1 is adjacent to all vertices in F \{fci

}. Hence, considering a normalized solution,
the vertices in {w2i : i ∈ [ℓ]} ∪ {w2ℓ+1} may only receive color 1 or be deleted and vertex
w2i−1, i ∈ [ℓ], may only receive color ci or be deleted. See Figure 13.7 for a depiction of the
construction.

The lower bound on the number of deletions for possibly unnormalized solutions follows
by noticing that S − U contains ℓ+ 1 = (q − |C|) + 1 disjoint deletion edges.

Suppose that φ is a normalized solution with |V (S−U)∩φ−1(⊥)| = ℓ+1 and φ(U)\{⊥} ̸⊆
C, then there exists some ci ∈ ([q] \ C) ∩ φ(U). Due to the constraints enforced by F , we
must have that φ(w2i−1) = ⊥ and φ(w2i) = 1 by the bound on the number of deletions. This
in turn forces φ(w2ℓ+1) = ⊥ and hence v cannot be deleted without violating the deletion
bound.

Suppose that φ̃ is a normalized solution of G̃ with φ̃(v) ̸= ⊥, then we can extend to a
normalized solution φ of G by deleting all vertices in {w2i−1 : i ∈ [ℓ]} ∪ {w2ℓ+1}. It is easy
to see that the remainder can be colored correctly.

Suppose that φ̃ is a normalized solution of G̃ with φ̃(U) \ {⊥} ⊆ C and φ̃(v) = ⊥.
Since ([q] \ C) ∩ φ̃(U) = ∅, we can extend φ̃ to a normalized solution φ of G by setting
φ(w2i−1) = ci, φ(w2i) = ⊥ for all i ∈ [ℓ], and φ(w2ℓ+1) = 1. It is easy to see that the
remainder can be colored correctly.

We argue that tw(S − U) ≤ q using the omniscient cops-and-robber-game. We begin
by placing cops on v and w2ℓ+1. This splits the graph into ℓ + 1 connected components,
one per deletion edge. We place two cops on the endpoints of the deletion edge the robber
escaped to. If v or respectively w2ℓ+1 is not an endpoint of the considered deletion edge,
then we remove the cop from v or respectively w2ℓ+1. Finally, we place q − 1 cops on the
vertices inside the deletion edge and capture the robber. This proves the treewidth bound by
Theorem 2.4.30.

In the case of C = ∅ one could also use a thick q-arrow from Lemma 13.3.2 instead.
We will only invoke Lemma 13.3.5 with |U | = q in the dense setting of the DELETION TO

q-COLORABLE lower bound; we use the case |U | = 1 for the sparse version of the lower
bound.

13.3 Dense Setting 243

Ui :

=
=
=
=

⊥
1
2
3

B∅ B{1} B{2} B{3} B{1,2} B{1,3} B{1,2}
ŷji,φi

thin arrow
Zj

Y ji,φi

Fig. 13.8.: The decoding gadget Y j
i,φi

and its connections to the central twinclasses and the clause
gadget for the case q = 3 and p = 8. The large circles represent twinclasses and the arrows
represent color-set-gadgets or thin arrows. The solution chosen on the central twinclasses
is φi. Note that it is allowed that φi uses the same color set on several twinclasses in Ui.

Decoding Gadgets. The color-set-gadgets allow us to construct decoding gadgets that can
distinguish between the different partial solutions in Φi. While the color-set-gadgets only
check for inclusion and not equality, this is nonetheless sufficient to distinguish solutions in
Φi due to their structure.

We begin with the construction now. For the j-th clause, group i ∈ [t], solution φi ∈ Φi,
we construct a gadget Y ji,φi

as follows. The gadget Y ji,φi
consists of a large independent set

joined to a Kq, i.e., adding all edges between both sets. In other words, Y ji,φi
is a complete

(q + 1)-partite graph with one large independent set and all other independent sets in the
partition are singletons. More precisely, the large independent set consists of (1 − 2−q)p+ 1
vertices (recall that 2q divides p). One of these vertices is distinguished and denoted by ŷji,φi

.
This concludes the construction, see Figure 13.8 for a depiction of the construction.

In particular, the Kq and ŷji,φi
induce a complete graph of size q+ 1. Hence, any solution

must delete at least one vertex in this complete graph, and due to the budget constraint
exactly one vertex has to be deleted. The distinguished vertex ŷji,φi

can only be deleted if
also all other vertices in the large independent set are deleted. By appropriately adding
color-set-gadgets, we will ensure that this can only be achieved if φi is chosen on Ui.

For the j-th clause, group i ∈ [t], solution φi ∈ Φi, twinclass U ∈ Ui with φi(U) ̸= [q],
we pick a private vertex v ̸= ŷji,φi

in the large independent set of Y ji,φi
and add the color-

set-gadget Sφi(U)\{⊥}(U, v) and denote this instance of the color-set-gadget by W j
i,φi,U

. We
will see, using the properties of solutions in Φi, that if the solution on Ui diverges from φi,
then at least one W j

i,φi,v
will be passive. Otherwise, all W j

i,φi,v
will be active, allowing us to

delete the vertex ŷji,φi
in Y ji,φi

.

Clause Gadgets. For the j-th clause, we add an (q + 1)-critical graph, denoted Zj ∈ Hq,
consisting of at least n2β vertices. For every group i ∈ [t] and solution φi ∈ Φi such that
κ−1
i (φi) is a partial truth assignment satisfying the j-th clause, we pick a private vertex
v in Zj and add a thin arrow from ŷji,φi

to v. Since each variable group has size at most
β, there are at most 2β partial truth assignments per variable group that satisfy the j-th

244 Chapter 13 Lower Bound for Deletion to q-Colorable

clause. Therefore, Zj contains enough vertices so that we can pick a private one for every
considered partial truth assignment. This concludes the construction of the clause gadget.

The idea of the clause gadget is that we can only afford to delete a vertex in Zj if we
have picked a partial solution on some Ui that corresponds to a satisfying truth assignment
of the j-th clause, which will propagate a deletion to Zj via the decoding gadgets.

Ui Ui′

Li,1,Si,1

Li,1,S′
i,1

Li,2,Si,2

Li,2,S′
i,2...

...

Li′,1,Si′,1

Li′,1,S′
i′,1...

Li′,2,Si′,2

Li′,2,S′
i′,2...

A1 A2

Y ji,φi
Y ji,ψi

Y j
′

i,φi
Y j

′

i,ψi
Y ji′,φi′ Y

j
i′,ψi′ Y

j′

i′,φi′ Y
j′

i′,ψi′

color-set-gadgets BC :

thick arrows Aℓ : A1 A2

Zj Zj
′

thin arrows:

structure gadgets:

clause gadgets:

(attached to clique F)

central twinclasses:

decoding gadgets:

Fig. 13.9.: An overview of the construction of the graph G(σ, q, β) for the case q = 2.

Packing. We will now construct a packing P of vertex-disjoint graphs that will fully explain
the budget outside of the central vertices. For every thin arrow from u to v in the construction,
we add the Kq+1 induced by the deletion edge incident to v to the packing P. For every
thick ℓ-arrow Aℓ(U, v) in the construction, we add Aℓ(U, v) − U to the packing P and by
Lemma 13.3.2 these graphs require at least ℓ deletions each. For every color-set-gadget
SC(U, v) in the construction, we add SC(U, v) − U to the packing P and by Lemma 13.3.5
these graphs require at least (q − |C|) + 1 deletions each. Finally, for every Y ji,φi

, we add the
Kq+1 induced by ŷji,φi

and the Kq of Y ji,φi
to the packing P . Let costP denote the cost of the

packing P.
Observe that no vertex will be the head of several arrows or color-set-gadgets in our

construction, hence the graphs in P are indeed vertex-disjoint. Furthermore, no graph in P
intersects the central vertices and the cost of P is independent of the partial solution chosen
on the central vertices. Finally, notice that the cost of SC(U, v) − U is fully explained by
the (q − |C|) + 1 disjoint deletion edges and hence does not rely on any LIST COLORING

constraints simulated by the central clique F .
This concludes the construction ofG = G(σ, q, β), cf. Figure 13.9. We proceed by showing

the correctness of the reduction. From now on, we might omit the range of the indices for
the sake of readability, but we keep the meaning of the indices consistent throughout. By i
we denote a group of variables, φi denotes a partial solution in Φi, and U denotes a true
twinclass in Ui with φi(U) ̸= [q].

13.3 Dense Setting 245

13.3.3 Proofs
Theorem 13.3.6. Let σ be a SATISFIABILITY instance with n variables and m clauses. Let
G = G(σ, q, β) and P be the graph and packing as constructed above and let b = costP + tqp/2.
If σ has a satisfying assignment τ , then there is a solution φ of the DELETION TO q-COLORABLE

instance (G, b).

Proof. We start with the construction of φ on the central vertices. We color the central clique
F with φ(fs) = s for s ∈ [q], i.e., φ will be a normalized solution. For each group i of
variables, let τi ∈ {0, 1}β be the partial truth assignment on group i induced by τ . For each
group i, we set φ

∣∣⋃
(Ui) = φi := κi(τi) ∈ Φi. By Lemma 13.3.3, this results in exactly tqp/2

deletions. Hence, only the budget costP for the packing P remains, so for every graph in P
we have to match the lower bound on the number of deletions for this graph.

Whenever we delete the tail u or head v of a thin arrow from u to v, then we use the
active solution on this arrow; otherwise, we use the passive solution. Either type of solution
results in exactly one deletion in the deletion edge incident to v which belongs to P.

Similarly, for any thick ℓ-arrow Aℓ(U, v), we extend to the solution with |V (Aℓ(U, v) −
U) ∩φ−1(⊥)| = ℓ as given by Lemma 13.3.2. If |U ∩φ−1(⊥)| ≥ ℓ, then this solution is active
and satisfies φ(v) = ⊥.

For every color-set-gadget SC(U, v), we extend to the solution with |V (SC(U, v) − U) ∩
φ−1(⊥)| = (q − |C|) + 1 as given by Lemma 13.3.5. If φ(U) \ {⊥} ⊆ C, then this solution is
active and satisfies φ(v) = ⊥.

For every decoding gadget Y ji,φi
, we delete the distinguished vertex ŷji,φi

. For every j-th
clause, group i, and solution ψi ∈ Φi \ {φi}, we pick one of the vertices in the Kq of Y ji,ψi

and delete it. This deletes exactly one vertex in the Kq+1 formed by ŷji,φi
or ŷji,ψi

and the
Kq.

This concludes the description of the deletions; for each graph in the packing P, we
match the lower bound on the number of deletions for this graph. It remains to show that
the remainder of G can be properly q-colored. This can be easily seen for the thin arrows.
For thick ℓ-arrows Aℓ(U, v) it follows from Lemma 13.3.2. For the color-set-gadgets W j

i,ψi,U
,

where ψi ∈ Φi, it follows from Lemma 13.3.5. It remains to handle the structure gadgets
Li,ℓ,S , the decoding gadgets Y ji,ψi

, ψi ∈ Φi, and the clause gadgets Zj .
By Lemma 13.3.2 and Lemma 13.3.5, we can appropriately extend solutions to Aℓ(U, v)

and SC(U, v) for every color choice on the vertex v. Hence, when handling the aforemen-
tioned gadgets, it does not matter how we color the undeleted vertices. It is sufficient to
verify that enough deletions occur and that the remainder of the gadget can be q-colored.

Consider some group i, some ℓ ∈ [q], some S ⊆ Ui with |S| =
(

q
≥(q−ℓ+1)

)
p
2q + 1,

and some copy of Li,ℓ,S . Since Li,ℓ,S is an (q + 1)-critical graph that does not belong
to P, we must perform at least one deletion in Li,ℓ,S and this deletion has to be prop-
agated to Li,ℓ,S by some thick ℓ-arrow Aℓ(U, v), U ∈ Ui. Since φi ∈ Φi, we have that∣∣∣{U ∈ Ui : φi(U) \ {⊥} ∈

([q]
≤(q−ℓ)

)}∣∣∣ =
(

q
≤(q−ℓ)

)
p
2q , i.e., there are exactly

(
q

≤(q−ℓ)
)
p
2q twin-

classes in Ui where φi deletes at least ℓ vertices in each. Due to
(

q
≤(q−ℓ)

)
p
2q + |S| = p+ 1 >

p = |Ui|, there must be at least one twinclass U ∈ S with φi(U) \ {⊥} ∈
([q]

≤(q−ℓ)
)
, i.e.,

where φi deletes at least ℓ vertices. Therefore, the thick ℓ-arrow Aℓ(U, v) leading to this

246 Chapter 13 Lower Bound for Deletion to q-Colorable

copy of Li,ℓ,S propagates a deletion to Li,ℓ,S by Lemma 13.3.2 and thereby resolves this
(q + 1)-critical graph.

Consider some Y ji,ψi
, where ψi ∈ Φi, if ψi ̸= φi, then one of the vertices in the Kq

is deleted and this (q + 1)-partite graph is resolved. If ψi = φi, then we claim that the
large independent set is fully deleted. In the construction of φ, we distributed a deletion
to ŷji,φi

. All other vertices v of the large independent set are hit by some W j
i,φi,U

, where
φi(U) \ {⊥} ̸= [q]. By Lemma 13.3.5, we see that W j

i,φi,U
= Sφi(U)\{⊥}(U, v) propagates

a deletion to v due to Lemma 13.3.5. Due to φi ∈ Φi, there are
(

q
≤(q−1)

)
p
2q = (1 − 2−q)p

twinclasses U ∈ Ui with φi(U) \ {⊥} ̸= [q], thus matching the size of the large independent
set of Y ji,φi

with the exception of ŷji,φi
. This shows that the large independent set is fully

deleted and the (q + 1)-partite graph Y ji,φi
is resolved.

Finally, consider some Zj , then there is some group i such that τi satisfies the j-th clause
because τ is a satisfying assignment of σ. By construction φi = κi(τi) and the vertex ŷji,φi

is deleted, so the thin arrow from ŷji,φi
to Zj is active and propagates a deletion to Zj .

Therefore, the (q + 1)-critical graph Zj is resolved as well.

Theorem 13.3.7. Let σ be a SATISFIABILITY instance with n variables and m clauses. Let
G = G(σ, q, β) be the graph as constructed above and let b = costP + tqp/2. If φ is a solution
of the DELETION TO q-COLORABLE instance (G, b), then |φ−1(⊥)| = b. Furthermore, there is a
normalized solution ψ with |ψ−1(⊥)| = |φ−1(⊥)| = b and ψ

∣∣⋃
(Ui) ∈ Φi for all i ∈ [t].

Proof. As argued in the construction of P, the packing P forces φ to spend at least costP

units of budget outside of the central vertices. We claim that for any group i ∈ [t] and
number of deletions ℓ ∈ [q], there must be at least

(
q

≤(q−ℓ)
)
p
2q twinclasses U ∈ Ui such

that |U ∩ φ−1(⊥)| ≥ ℓ, i.e., φ deletes at least ℓ vertices in each of those U . We first define
Sℓi (φ) = {U ∈ Ui : |U ∩ φ−1(⊥)| = ℓ} and S≥ℓ

i (φ) = Sℓi (φ) ∪ Sℓ+1
i (φ) ∪ · · · ∪ Sqi (φ) for all

i ∈ [t] and ℓ ∈ [0, q].
Suppose that there is some group i and some number of deletions ℓ ∈ [q] with |S≥ℓ

i (φ)| <(
q

≤(q−ℓ)
)
p
2q . Then there exists a family S ⊆ Ui of twinclasses with |S| =

(
q

≥(q−ℓ+1)
)
p
2q + 1 and

S≥ℓ
i (φ) ∩ S = ∅. Consider any copy of Li,ℓ,S and the thick ℓ-arrows Aℓ(U, v) from S ⊆ Ui to
Li,ℓ,S . Due to S≥ℓ

i (φ) ∩ S = ∅, the solution φ deletes at most ℓ− 1 vertices in each U ∈ S,
and by Lemma 13.3.2 this implies that no vertex in the copy of Li,ℓ,S is deleted, unless we
pay for at least one extra deletion not accounted for by the packing P per copy of Li,ℓ,S .
However, since Li,ℓ,S is an (q + 1)-critical graph, we must delete at least one vertex in each
copy. This would exceed our remaining budget, because there are 1 + tqp/2 > b − costP

copies of Li,ℓ,S . Hence, we must have that |S≥ℓ
i (φ)| ≥

(
q

≤(q−ℓ)
)
p
2q for all groups i ∈ [t] and

deletions ℓ ∈ [q].

13.3 Dense Setting 247

We now argue that |Sℓi (φ)| =
(
q
q−ℓ

)
p
2q for all i ∈ [t] and ℓ ∈ [q] due to our budget

constraint. Consider some group i, using the previous inequalities we can derive the
following bound on the total number of deletions performed on Ui by φ:

q∑
ℓ=1

ℓ|Sℓi (φ)| = q|Sqi (φ)| +
q−1∑
ℓ=1

ℓ(|S≥ℓ
i (φ)| − |S≥(ℓ+1)

i (φ)|) =
q∑
ℓ=1

|S≥ℓ
i (φ)|

≥
q∑
ℓ=1

(
q

≤ (q − ℓ)

)
p

2q =
q−1∑
ℓ=0

(q − ℓ)
(
q

ℓ

)
p

2q = qp/2,

where the last inequality follows from the computation in the proof of Lemma 13.3.3.
Summing over the lower bound for all groups, we see that this uses up the whole remaining
budget and hence the inequality must be tight for every group. Therefore, also |S≥ℓ

i (φ)| =(
q

≤(q−ℓ)
)
p
2q and |Sℓi (φ)| = |S≥ℓ

i (φ)| − |S≥(ℓ+1)
i (φ)| =

(
q
q−ℓ

)
p
2q for all i ∈ [t] and ℓ ∈ [q]. Since∑q

ℓ=0 |Sℓi (φ)| = p, this also implies that |S0
i (φ)| =

(
q
q

)
p
2q = p

2q for all groups i.
No vertex of the central clique F can be deleted as φ spends its whole budget on the

packing P and the families of twinclasses Ui, i ∈ [t]. Hence, we can assume by permuting
the colors that φ(fs) = s, s ∈ [q], i.e., φ is a normalized solution.

Finally, the equations |Sℓi (φ)| =
(
q
q−ℓ

)
p
2q =

(
q
ℓ

)
p
2q , i ∈ [t], ℓ ∈ [0, q], imply that for every

group i there exists some ψi ∈ Φi with φ(U) = ψi(U) for all U ∈ Ui. Since all U ∈ Ui
are twinclasses, exchanging φ

∣∣⋃
(Ui) with ψi for every group i still yields a solution ψ for

DELETION TO q-COLORABLE with the desired properties.

Theorem 13.3.8. Let σ be a SATISFIABILITY instance with n variables and m clauses. Let
G = G(σ, q, β) be the graph as constructed above and let b = costP + tqp/2. If the DELETION

TO q-COLORABLE instance (G, b) has a solution φ, then σ has a satisfying assignment τ .

Proof. By Theorem 13.3.7, we know that |φ−1(⊥)| = b and can assume that φ is a normalized
solution with φi := φ

∣∣⋃
(Ui) ∈ Φi for all groups i. Hence, the deletions are fully explained by

the packing P and the properties of solutions in Φi.
For every thin arrow from u to v, thick ℓ-arrow Aℓ(U, v), color-set-gadget SC(U, v), by

Lemma 13.3.2 and Lemma 13.3.5, we can assume that φ chooses the active solution on this
gadget if the appropriate condition at u or U is satisfied.

Consider the j-th clause and some group i, we argue that φ(ŷji,ψi
) = ⊥ can only hold if

ψi = φi. Observe that ŷji,ψi
may only be deleted if all other vertices of the large independent

set in Y ji,ψi
are deleted, otherwise Y ji,ψi

, which induces a complete (q + 1)-partite graph, is
not resolved or we exceed the packing budget on the complete graph induced by ŷji,ψi

and
the Kq. Consider some ψi ∈ Φi \ {φi}. We distinguish three cases based on the sizes of the
color sets assigned to the twinclasses in Ui by φi and ψi.
1. Suppose that there is some U ∈ Ui such that |ψi(U) \ {⊥}| < |φi(U) \ {⊥}|. This implies

that ψi(U) \ {⊥} ̸= [q], hence the gadget W j
i,ψi,U

= Sψi(U)\{⊥}(U, v), where v is in
the large independent set of Y ji,ψi

, exists. The cardinality inequality also implies that
φi(U) \ {⊥} ̸⊆ ψi(U) \ {⊥}, so by Lemma 13.3.5 and the budget being tight on the
graphs of the packing P , we see that v cannot be deleted. Hence, ŷji,ψi

cannot be deleted
either.

248 Chapter 13 Lower Bound for Deletion to q-Colorable

Zj

Y ji,φi
Y ji′,φi′Y ji,ψi

Y ji′,ψi′

W j
i,φi,U

W j
i,φi,U ′ W j

i,ψi,U
W j
i,ψi,U ′ W j

i′,φi′ ,U W j
i′,φi′ ,U ′ W j

i′,ψi′ ,U W j
i′,ψi′ ,U ′

Fig. 13.10.: A high-level overview of the component corresponding to the j-th clause after removing
the TCM M. The arrows leading to Zj denote thin arrows.

2. Suppose that there is some U ∈ Ui such that |ψi(U) \ {⊥}| > |φi(U) \ {⊥}|, then the first
case must also apply for some U ′ ∈ Ui, as otherwise ψi would perform too few deletions
in Ui and hence ψi /∈ Φi.

3. Since the first two cases do not apply, it follows that |ψi(U) \ {⊥}| = |φi(U) \ {⊥}| for all
U ∈ Ui. Due to ψi ̸= φi, there must exist some U ∈ Ui such that ψi(U) \ {⊥} ̸= φi(U) \
{⊥}. This implies that ψi(U)\{⊥} ̸= [q] and hence the gadgetW j

i,ψi,U
= Sψi(U)\{⊥}(U, v),

where v is in the large independent set of Y ji,ψi
, exists. Since |ψi(U)\{⊥}| = |φi(U)\{⊥}|

and ψi(U) \ {⊥} ̸= φi(U) \ {⊥}, we must have that φi(U) \ {⊥} ̸⊆ ψi(U) \ {⊥}, hence,
as in the first case, v cannot be deleted and neither can ŷji,ψi

.
This proves the claim regarding the deletion of ŷji,ψi

.
Now, consider the gadget Zj . To resolve Zj , there has to be a thin arrow from some

ŷji,ψi
to Zj that is active since Zj is not part of the packing P. By the previous claim, this

implies that ψi = φi. Furthermore, by construction of G such a thin arrow only exists if the
partial truth assignment τi = κ−1

i (φi) satisfies the j-th clause. Note that the definition of τi
is independent of the considered clause.

For some groups i, the partial solution φi might not be in the image of κi, in that case τi
is an arbitrary partial truth assignment for the i-th variable group. By the previous argument,
the truth assignment τ =

⋃t
i=1 τi satisfies all clauses of σ.

Theorem 13.3.9. Let G = G(σ, q, β) be the graph as constructed above. The set M =
(
⋃t
i=1 Ui) ∪ {{fs} : s ∈ [q]} is a TCM for G of size tp+ q to treewidth q, i.e., |M| = tp+ q and

tw(G−
⋃

(M)) ≤ q.

Proof. It follows from the construction of G that M has size
∑t
i=1 |Ui| + |F | = tp+ q and

only consists of twinclasses. The fact that all sets in M are twinclasses and not just sets of
twins can be seen by considering the various color-set-gadgets BC(U, v) in the construction.
It remains to argue that the treewidth of G′ := G −

⋃
(M) is at most q. We will show

this by using the omniscient-cops-and-robber-game. The remaining graph G′ consists of
several connected components, namely one connected component per copy of Li,ℓ,S and one
connected component for every clause. Observe that the heads of thick ℓ-arrows Aℓ(U, v), of
color-set-gadgets SC(U, v), of thin arrows, and also the tails of thin arrows consist of only a

13.3 Dense Setting 249

single vertex. So, if the robber escapes through one of these gadgets and there is no other
path back, then a single cop suffices to prevent the robber from going back.

We begin by handling the connected components corresponding to a copy of Li,ℓ,S . On
a high level, these components look like stars; the center is Li,ℓ,S and for every U ∈ S
the remainder Aℓ(U, v) − U of a thick ℓ-arrow is attached to Li,ℓ,S . By Theorem 13.2.1,
Li,ℓ,S has pathwidth q. With q + 1 cops we sweep from left to right through the bags
of the pathwidth decomposition of Li,ℓ,S until the robber escapes to one of the attached
Aℓ(U, v) − U . When that happens we remove all cops, except the cop on the head v of the
considered thick ℓ-arrow from Li,ℓ,S . We can then capture the robber using the strategy
given by Lemma 13.3.2.

Next, we handle the connected components corresponding to a clause. Figure 13.10
gives a high-level overview of how these components look, notice that at this level there
are no cycles. Our strategy makes use of this hierarchy, we start at Zj and chase the robber
downwards, making sure that the robber cannot go back upwards. By Theorem 13.2.1, Zj

has pathwidth q. Again, we sweep with q + 1 cops from left to right through the bags of the
pathwidth decomposition of Zj , until the robber escapes through some thin arrow coming
from some Y ji,φi

. Then, we remove all cops except the one on the head of the thin arrow
and place one cop on the tail ŷji,φi

of the thin arrow. Either the robber escapes to the thin
arrow, where we can capture it easily using q − 1 further cops or the robber escapes to Y ji,φi

.
If the robber escapes to Y ji,φi

, then we remove the cop from the head of the thin
arrow and place q cops on the Kq in Y ji,φi

. This leaves us with one connected component
W j
i,φi,U

= SC(U, v) for each U ∈ Ui with φi(U) ̸= [q]. Consider the connected component
the robber escaped to and move the cop from ŷji,φi

to v. Since there are still cops on the Kq

in Y ji,φi
, the robber cannot go back. We can now remove these cops on Kq and capture the

robber using the strategy given by Lemma 13.3.5.
This concludes the strategy. Since we have never placed more than q + 1 cops simultane-

ously, we see by Theorem 2.4.30 that G′ has treewidth at most q.

Proof of Theorem 13.3.1. Suppose there is some q ≥ 2 and ε > 0 such that DELETION TO

q-COLORABLE can be solved in time O∗((2q − ε)|M|), where M is a TCM to treewidth
q. We will show that there exists a δ < 1 such that we can solve SATISFIABILITY in time
O(2δn poly(m)) = O∗(2δn), where n is the number of variables and m the number of clauses.
This contradicts CNF-SETH, Conjecture 2.1.1, and hence implies the desired lower bound.

Given a SATISFIABILITY instance σ, we construct the graph G = G(σ, q, β), where β
depends only on q and ε and will be chosen later. We can consider q and ε as constants,
hence also β = β(q, ε) and p = p(β) are constant. First, we will argue that G has polynomial
size. The number of vertices in the various gadgets can be estimated as follows, where we
have an additional summand q for the (q + 1)-critical graphs, since Theorem 13.2.1 only
constructs them in increments of q:
• |V (G[

⋃
(M)])| =

∑t
i=1 |Ui|q + |F | = tpq + q = ⌈nβ ⌉pq + q = O(n).

• |V (Li,ℓ,S)| ≤ |S| + q ≤ |Ui| + q = p+ q = O(1).
• |V (Zj)| ≤ n2β + q = O(n).
• |V (Y ji,φi

)| ≤ (1 − 2−q)p+ 1 = O(1).
• |V (W j

i,φi,U
)| ≤ (q + 1)2 = O(1).

250 Chapter 13 Lower Bound for Deletion to q-Colorable

• |V (Aℓ(U, v))| ≤ q3 + 3q + 1 = O(1).
• Every thin arrow consists of 2q + 1 vertices.
Next, we bound how often each gadget appears:
• i can take on t = ⌈nβ ⌉ = O(n) values.
• As there are m clauses, j can take on m values.
• ℓ can take on q = O(1) values.
• For fixed i, S ⊆ Ui, so S can take on 2|Ui| = 2p = O(1) values.
• We create 1 + tqp/2 = O(n) copies of each Li,ℓ,S .
• For fixed i, φi ∈ Φi and |Φi| ≤ (2q)p = O(1).
• For fixed i, U ∈ Ui, so U can take on |Ui| = p = O(1) values.
• We create at most one (thin or thick) arrow per vertex in some Zj or Li,ℓ,S .
Together, all these bounds show that the size of G is polynomial in n, and m and following
the construction of G, one can easily see that G can also be constructed in polynomial time.
Furthermore, from the proof of Theorem 13.3.9 we can obtain a tree decomposition of
G′ := G−

⋃
(M) of width q in polynomial time.

To analyze the running time resulting from applying the reduction and running the
assumed algorithm for DELETION TO q-COLORABLE, we first bound p as follows:

p ≤ β

q
+ 2q+1 ⌈log2q (β/q)⌉ + 2q + 1. (13.1)

In the construction of G = G(σ, q, β), we chose p as the smallest integer such that p is
divisible by 2q and such that the quantity from Lemma 13.3.4, which we denote by x, is
larger than 2β . The summand 2q in (13.1) accounts for the divisibility. It remains to show
that the second property is satisfied, for this, we work with p = β

q + 2q+1⌈log2q (β/q)⌉ + 1.
We first observe that (2q − 1)!/2(2q) ≥ 1

4 for all q ≥ 2. Hence, x ≥ (2q)pp−(2q)/4 =: x′.
Furthermore, observe that we have 2β/q ≥ p for sufficiently large β. We proceed by showing
that x′ ≥ 2β:

x′ ≥ (2q)
β
q +2q+1⌈log2q (β/q)⌉p−(2q) ≥ 2β

(
β

q

)(2q+1)
p−(2q) ≥ 2β

(
β

q

)(2q+1) (
2β
q

)−(2q)

≥ 2β (β/q)(2q) 2−(2q) ≥ 2β ,

where we use β/q ≥ 2 for sufficiently large β in the last inequality.
Running the assumed algorithm for DELETION TO q-COLORABLE on G decides, by The-

orem 13.3.6 and Theorem 13.3.8, the satisfiability of σ. Since G can be constructed in
polynomial time and has parameter value |M| = ⌈nβ ⌉p+ q by Theorem 13.3.9, we can solve
SATISFIABILITY in time

O∗((2q − ε)|M|) = O∗((2q − ε)⌈ n
β ⌉p+q) ≤ O∗((2q − ε)

n
β p)

≤ O∗((2q − ε)
n
q (2q − ε)

n
β (2q+1⌈log2q (β/q)⌉+2q+2)).

13.3 Dense Setting 251

We have that O∗((2q − ε)
n
q) ≤ O∗(2δ1n) for some δ1 < 1. It remains to upper bound the

second factor, we will again use that β can be chosen sufficiently large:

O∗
(

(2q − ε)
n
β (2q+1⌈log2q (β/q)⌉+2q+2)

)
≤ O∗

(
(2q − ε)2q+2 n

β log2q (β/q)
)

≤ O∗
(

(2q − ε)2q+2 n
β log2q (β)

)
≤ O∗

((
(2q − ε)2q+2 log2q (β)

β

)n)
≤ O∗ (

2δ2n
)
,

where δ2 can be chosen to be arbitrarily close to 0 by making β sufficiently large. By choosing
δ2 small enough so that δ := δ1 + δ2 < 1, we obtain that SATISFIABILITY can be solved in
time O∗(2δn), contradicting CNF-SETH, Conjecture 2.1.1.

Corollary 13.3.10. If DELETION TO q-COLORABLE can be solved in time O∗((2q − ε)tc-td(G))
for some q ≥ 2 and ε > 0, then CNF-SETH is false.

Proof. Follows from Theorem 13.3.1 and Lemma 2.4.23.

13.4 Sparse Setting
We again view solutions to DELETION TO q-COLORABLE as functions φ : V (G) → [q] ∪ {⊥}
with the property discussed in the outline, cf. Section 13.1.

In this subsection, we show how to adapt the lower bound for the dense setting to the
sparse setting. We will give the construction in full detail again, but since the principle of
construction is so similar we will only explain how to adapt the previous proofs. One can
see that the lower bound is tight by a routine application of dynamic programming on tree
decompositions.

Theorem 13.4.1. If DELETION TO q-COLORABLE can be solved in time O∗((q + 1 − ε)|M |) for
some q ≥ 2 and ε > 0, where M is a modulator to treewidth q, then CNF-SETH is false.

The remainder of this section is devoted to proving Theorem 13.4.1. Assume that we
can solve DELETION TO q-COLORABLE in time O∗((q + 1 − ε)|M |) for some q ≥ 2 and ε > 0.
We provide a reduction from SATISFIABILITY with n variables and m clauses to DELETION

TO q-COLORABLE with a modulator to treewidth q of size approximately n logq+1(2) and
graph size polynomial in n and m. Together with the assumed faster algorithm, this implies
a faster algorithm for SATISFIABILITY, thus violating CNF-SETH, Conjecture 2.1.1. We will
consider q to be fixed from now on.

Construction. Consider a SATISFIABILITY instance σ with n variables and m clauses. We
enumerate the clauses and refer to them by their number. We pick an integer β which only
depends on ε and q; we will describe how to choose β later. We partition the variables of σ
into groups of size at most β, resulting in t = ⌈n/β⌉ groups which will be indexed by i. Next,
we choose the smallest integer p such that p is divisible by q+ 1 and (q+ 1)p p!q!

(p+q)! ≥ 2β . We
will now describe the construction of the DELETION TO q-COLORABLE instance G = G(σ, q, β).

252 Chapter 13 Lower Bound for Deletion to q-Colorable

Comparison to Dense Setting. The principle behind the construction is essentially the
same as for the dense setting, cf. Section 13.3, but the gadgets can be simplified. The
central twinclasses will simply be single vertices now. Hence, we will not have to distinguish
between different numbers of deletions in a twinclass, instead we simply distinguish between
whether a vertex is deleted or not. Most notably, this allows us to use thin arrows instead of
thick ℓ-arrows and the structure of the considered partial solutions on the central vertices
simplifies significantly. The remaining gadgets structurally stay the same, but their size may
change.

Construction of Central Vertices. The central vertices of G form the modulator to
treewidth q. For each variable group i ∈ [t], we create an independent set Ui consist-
ing of p vertices. Furthermore, we again have a central clique F = {fs : s ∈ [q]} consisting of
q vertices that is used to simulate LIST COLORING constraints. A solution φ : V → [q] ∪ {⊥}
satisfying φ−1(⊥) ∩ F = ∅ and φ(fs) = s for all s ∈ [q] is called a normalized solution.

As described in the outline, we only want to consider solutions that delete a fixed
number of vertices per group Ui. By using slightly more vertices p than enforced by the base
conversion, sufficiently many solutions remain, if we define Φi as follows.

Definition 13.4.2. The family Φi consists of all φ : Ui → [q] ∪ {⊥} that satisfy the equation
|φ−1(⊥)| = p/(q + 1).

Lemma 13.4.3. We have that |Φi| ≥ (q + 1)p p!q!
(p+q)! for all i ∈ [t].

Proof. Since Φi contains all φ : Ui → [q] ∪{⊥} with |φ−1(c)| = p/(q+1) for all c ∈ [q] ∪{⊥},
we see that |Φi| ≥

(
p

p
q+1 ,...,

p
q+1

)
= x, where x is the central multinomial coefficient. It can

be seen that x is a maximum of the function (c1, . . . , cq+1) 7→
(

p
c1,...,cq+1

)
. The number of

summands in the multinomial theorem
∑
c1+···cq+1=p

(
p

c1,...,cq+1

)
= (q+ 1)p is

(
p+q
p

)
= (p+q)!

p!q! ,
which corresponds to the number of weak compositions of p into q + 1 parts, and x is one of
them. Hence, we see that |Φi| ≥ x ≥ (q + 1)p p!q!

(p+q)! .

Hence, by the choice of p, we can pick for each group i ∈ [t] an efficiently computable
injective mapping κi : {0, 1}β → Φi that maps truth assignments of the i-th variable group
to partial solutions on Ui with the desired structure.

Budget. The budget b = |P| + tp/(q + 1) consists of two parts again. The first part |P|
is allocated to a vertex-disjoint packing P of (q + 1)-critical graphs and the second part
tp/(q + 1) is allocated to the central vertices.

Enforcing Structure on Central Vertices. For every group i ∈ [t] and subset S ⊆ Ui with
|S| = q

q+1p + 1, we add an (q + 1)-critical graph, denoted Li,S , consisting of at least |S|
vertices. For every u ∈ S, we pick a private vertex v in Li,S and add a thin arrow from u

to v. We create 1 + tp/(q + 1) = 1 + (b− |P|) copies of Li,S and the incident arrows. This
concludes the construction of the structure gadget.

13.4 Sparse Setting 253

Decoding Gadgets. For the j-th clause, group i ∈ [t], partial solution φi ∈ Φi, we construct
a decoding gadget Y ji,φi

as follows. The gadget Y ji,φi
consists of a large independent set

joined to a Kq, i.e., adding all edges between both sets. In other words, Y ji,φi
is a complete

(q + 1)-partite graph with one large independent set, and all other independent sets in the
partition are singletons. The large independent set consists of p+ 1 vertices, where one of
these vertices is distinguished and denoted by ŷji,φi

. This concludes the construction of Y ji,φi
.

For the j-th clause, group i ∈ [t], partial solution φi ∈ Φi, vertex u ∈ Ui, we pick a
private vertex v ̸= ŷji,φi

in the large independent set of Y ji,φi
and add the decoding gadget

S{φi(u)}\{⊥}({u}, v) and denote this instance of the decoding gadget by W j
i,φi,u

. Observe
that in the dense setting no twinclasses U with φi(U) ̸= [q] have received decoding gadgets,
whereas there is no such exception in the sparse setting.

Clause Gadgets. For the j-th clause, we add an (q+1)-critical graph, denoted Zj , consisting
of at least n2β vertices. For every group i ∈ [t] and partial solution φi ∈ Φi such that κ−1(φi)
is a partial truth assignment satisfying the j-th clause, we pick a private vertex v in Zj and
add a thin arrow from ŷji,φi

to v. We ensured that Zj is large enough so that we can always
pick such a private vertex. This concludes the construction of G(σ, q, β), cf. Figure 13.11.

Ui Ui′

Li,Si
Li,S′

i

· · ·

Y ji,φi
Y ji,ψi

Y j
′

i,φi
Y j

′

i,ψi
Y ji′,φi′ Y

j
i′,ψi′ Y

j′

i′,φi′ Y
j′

i′,ψi′

color-gadgets BC , |C| ≤ 1:

thin arrows:

Zj Zj
′

thin arrows:

· · · Li′,Si′ Li′,S′
i′ · · ·structure gadgets:

central vertices:

decoding gadgets:

clause gadgets:

(attached to clique F)

Fig. 13.11.: An overview of the construction of the graph G(σ, q, β) for the case q = 2.

Packing. We construct a vertex-disjoint packing P of (q + 1)-critical graphs that fully
explains the budget outside of the central vertices. For every thin arrow from u to v in
the construction, we add the Kq+1 induced by the deletion edge incident to the head v of
the arrow to the packing P. Every S{φi(u)}\{⊥}({u}, v) contains, depending on whether
φi(u) ̸= ⊥ or not, q or q + 1 disjoint Kq+1 corresponding to deletion edges, one of them
being incident to v, and we add all these Kq+1 to the packing P . Finally, for every Y ji,φi

, we
add the Kq+1 induced by ŷji,φi

and the Kq of Y ji,φi
to the packing P. Since, we have added

only (q + 1)-critical graphs to P, the cost of P is simply |P|.

Theorem 13.4.4. Let σ be a SATISFIABILITY instance with n variables and m clauses. Let
G = G(σ, q, β) and P be the graph and packing as constructed above and let b = |P|+tp/(q+1).
If σ has a satisfying truth assignment τ , then there is a solution φ of the DELETION TO

q-COLORABLE instance (G, b).

254 Chapter 13 Lower Bound for Deletion to q-Colorable

Proof sketch. The proof is very similar to the proof of Theorem 13.3.6. Let τi be the partial
truth assignment of variable group i induced by τ . We set φ

∣∣
Ui

= κi(τi) ∈ Φi for all i and
φ(fs) = s for all s ∈ [q]. By definition of Φi, only the budget |P| for the packing P remains,
hence on every graph in P, we can perform exactly one deletion and nowhere else.

We propagate deletions along thin arrows and extend the solution across decoding
gadgets S{φi(u)}\{⊥}({u}, v) as before. For every Y ji,φi

, we delete the distinguished vertex
ŷji,φi

and for every j-th clause, group i, and solution φi ̸= ψi ∈ Φi, we pick one of the
vertices in the Kq of Y ji,φi

and delete it. This concludes the description of the deletions.
It remains to show that the remaining graph can be properly q-colored. Comparing to the

proof of Theorem 13.3.6, the arguments change slightly for Li,S and Y ji,ψi
. Consider some

copy of some Li,S , due to |S| + |φ−1(⊥) ∩Ui| = (q
q+1p+ 1) + p/(q + 1) = p+ 1 > |Ui| there

is a least one u ∈ S with φ(u) = ⊥. Therefore, the thin arrow from u to Li,S propagates a
deletion to Li,S and this (q + 1)-critical graph is resolved.

Consider some Y ji,ψi
with ψi ∈ Φi. If ψi ̸= φi, the argument works as in the proof of

Theorem 13.3.6. If ψi = φi, then we claim that the large independent set of Y ji,φi
is fully

deleted. The large independent set has size p+ 1 = |Ui| + 1. We distributed one deletion to
ŷji,φi

and all other vertices v in the large independent set are hit by some W j
i,φi,u

, u ∈ Ui.
Since φi(u) ∈ {φi(u)}, we see that W j

i,φi,u
= S{φi(u)}\{⊥}({u}, v) propagates a deletion to v

due to Lemma 13.3.5. So, the large independent set is indeed fully deleted and thereby the
complete (q + 1)-partite graph is resolved.

Theorem 13.4.5. Let σ be a SATISFIABILITY instance with n variables and m clauses. Let
G = G(σ, q, β) and P be the graph and packing as constructed above and let b = |P|+tp/(q+1).
If φ is a solution of the DELETION TO q-COLORABLE instance (G, b), then |φ−1(⊥)| = b.
Furthermore, there is a normalized solution ψ with |ψ−1(⊥)| = |φ−1(⊥)| = b and ψ

∣∣
Ui

∈ Φi
for all i ∈ [t].

Proof. Since the packing P consists only of (q+ 1)-critical graphs, at least |P| deletions must
be performed by φ on these graphs. The remainder of the deletions is performed on the
central vertices. Suppose that there is some group i ∈ [t] such that |φ−1(⊥) ∩Ui| < p/(q+1),
then there exists an S ⊆ Ui with |S| = q

q+1p+ 1 and S ∩φ−1(⊥) = ∅. Consider some copy of
the corresponding Li,S and notice that all thin arrows leading to Li,S are passive unless we
pay for extra deletions. Since Li,S is an (q + 1)-critical graph that does not belong to P , we
must perform one additional deletion per copy of Li,S . There are 1 + tp/(q + 1) > b− |P|
copies of Li,S , hence this would exceed the available budget. So, we can conclude that
|φ−1(⊥) ∩ Ui| ≥ p/(q + 1) for all groups i ∈ [t].

Together with |φ−1(⊥)| ≤ b = |P| + tp/(q + 1), we see that |φ−1(⊥)| = b and |φ−1(⊥) ∩
Ui| = p/(q + 1) for all i ∈ [t]. Hence, φ cannot delete any vertex of the central clique F and
by permuting the colors, we obtain the desired normalized solution ψ with ψ

∣∣
Ui

∈ Φi.

Theorem 13.4.6. Let σ be a SATISFIABILITY instance with n variables and m clauses. Let
G = G(σ, q, β) and P be the graph and packing as constructed above and let b = |P|+tp/(q+1).
If the DELETION TO q-COLORABLE instance (G, b) has a solution φ, then σ has a satisfying
truth assignment τ .

13.4 Sparse Setting 255

Proof sketch. This proof is very similar to the proof of Theorem 13.3.8. We first invoke
Theorem 13.4.5, which implies that |φ−1(⊥)| = b and allows us to assume that φ is a
normalized solution with φi := φ

∣∣
Ui

∈ Φi. We only diverge from the proof of Theorem 13.3.8

when proving that φ(ŷji,ψi
) = ⊥ only if ψi = φi.

As before, ŷji,ψi
may only be deleted if the large independent set of Y ji,ψi

is fully deleted.
Now, consider some ψi ∈ Φi \ {φi}. We will distinguish two cases.
1. Suppose that ψ−1

i (⊥) ̸= φ−1
i (⊥). Due to φi, ψi ∈ Φi, there exists some u ∈ Ui with

ψi(u) = ⊥ and φi(u) ̸= ⊥. The associated W j
i,ψi,u

= S∅({u}, v) cannot propagate a
deletion to v in this case by Lemma 13.3.5 and hence the large independent set of Y ji,ψi

is not fully deleted.
2. Suppose that ψ−1

i (⊥) = φ−1
i (⊥), then ψi ̸= φi implies that there exists some u ∈

Ui \ ψ−1
i (⊥) = Ui \ φ−1

i (⊥) with ψi(u) ̸= φi(u). Again, the associated W j
i,ψi,u

=
S{ψi(u)}({u}, v) cannot propagate a deletion to v in this case by Lemma 13.3.5 and,
again, the large independent set of Y ji,ψi

is not fully deleted.
This proves the claim regarding the deletion of ŷji,ψi

.

Theorem 13.4.7. Let G = G(σ, q, β) be the graph as constructed above. The set M =(⋃t
i=1 Ui

)
∪ {fs : s ∈ [q]} is a modulator for G of size tp+ q to treewidth q, i.e., |M | = tp+ q

and tw(G−M) ≤ q.

Proof sketch. The proof is very similar to the proof of Theorem 13.3.9. The notable difference
is that all thick arrows are replaced by thin arrows, but this does not affect the treewidth.
The connected components corresponding to a clause have for the sake of the omniscient
cops-and-robber-game the same structure as before, only the number of W j

i,φi,u
incident to

some Y ji,φi
changes.

Proof of Theorem 13.4.1. Suppose there is some q ≥ 2 and ε > 0 such that DELETION TO

q-COLORABLE can be solved in time O∗((q+ 1 − ε)|M |), where M is a modulator to treewidth
q. We will show that there exists a δ < 1 such that we can solve SATISFIABILITY in time
O(2δn poly(m)) = O∗(2δn) where n is the number of variables. This contradicts CNF-SETH
and hence implies the desired lower bound.

Given a SATISFIABILITY instance σ, we construct the graph G = G(σ, q, β), where β
depends only on q and ε and will be chosen later. We can consider q and ε as constants,
hence also β = β(q, ε) and p = p(β) are constant. As in the proof of Theorem 13.3.1, we
can again see that G has size polynomial in n and m and can be constructed in polynomial
time. Furthermore, we can also obtain a tree decomposition of G′ := G−M from the proof
of Theorem 13.4.7 in polynomial time.

In the construction of G(σ, q, β), we chose p as the smallest integer that is divisible
by (q + 1) and satisfies (q + 1)p p!q!

(p+q)! ≥ 2β . We let γ = ⌈logq+1(2β)⌉ and show that
p ≤ γ + 3q⌈logq+1 γ⌉ + (q + 1). The summand (q + 1) will ensure divisibility. We compute
that

(q + 1)p p!q!
(p+ q)! ≥ (q + 1)p(2p)−q = (q + 1)γγ3q

2q(γ + 3q⌈logq+1 γ⌉ + (q + 1))q ≥ (q + 1)γγ3q

2q(5qγ)q

= (q + 1)γ γ2q

(10q)q ≥ (q + 1)γ ≥ 2β ,

256 Chapter 13 Lower Bound for Deletion to q-Colorable

where we use throughout that β and hence γ is sufficiently large.
Running the assumed algorithm for DELETION TO q-COLORABLE on G decides, by The-

orem 13.3.6 and Theorem 13.3.8, the satisfiability of σ. Since G can be constructed in
polynomial time, we can solve SATISFIABILITY in time

O∗((q + 1 − ε)|M |) = O∗((q + 1 − ε)⌈ n
β ⌉p+q) ≤ O∗((q + 1 − ε)

n
β p)

≤ O∗((q + 1 − ε)
n
β logq+1(2β)(q + 1 − ε)

n
β (3q⌈logq+1(γ)⌉+q+2)).

For the first factor, we see that

O∗((q + 1 − ε)
n
β logq+1(2β)) = O∗((q + 1 − ε)n logq+1(2)) ≤ O∗(2δ1n),

where δ1 < 1. We bound the exponent in the second factor as follows

n

β
(3q⌈logq+1(γ)⌉ + q + 2) ≤ n

β
(6q logq+1(γ)) ≤ n

β
(6q logq+1(p2

0))

= n

β
(12q logq+1(β)) = 12qn

logq+1(β)
β

,

where we use γ ≤ p2
0 in the second inequality. This bound shows that

O∗
(

(q + 1 − ε)
n
β (3q⌈logq+1(γ)⌉+q+2)

)
≤ O∗

((
(q + 1 − ε)12q logq+1(β)

β

)n)
≤ O∗(2δ2n),

where we can choose δ2 arbitrarily close to 0 by making β large enough.
By choosing δ2 so that δ := δ1 + δ2 < 1, we obtain that SATISFIABILITY can be solved in

time O∗ (
2δn

)
, hence CNF-SETH, Conjecture 2.1.1 has to be false.

Corollary 13.4.8. If DELETION TO q-COLORABLE can be solved in time O∗((q + 1 − ε)td(G))
for some q ≥ 2 and ε > 0, then CNF-SETH is false.

Proof. Follows from Theorem 13.4.1 and Corollary 2.4.18.

13.4 Sparse Setting 257

Algorithm for Deletion to
q-Colorable

14
In this section we describe how to solve DELETION TO q-COLORABLE in time O∗((2q)k)
given a k-multi-expression µ for G = (V,E), the case q = 1, i.e., VERTEX COVER, without
costs was already proven by Fürer [79]. We assume that the given costs c(v), v ∈ V , are
polynomially bounded in the number of vertices n = |V | and we perform bottom-up dynamic
programming along the associated syntax tree Tµ. We again view solutions to DELETION TO

q-COLORABLE as functions φ : V (G) → [q] ∪ {⊥} with the property discussed in the outline,
cf. Section 13.1.

Basic Definitions for Dynamic Programming. We extend the definitions for dynamic
programming on clique-expressions given in Section 5.1 to multi-clique-expressions in
the natural way. So, for t ∈ V (Tµ), we denote by µt the subexpression induced by the
subtree of Tµ rooted at t. For a fixed k-multi-clique-expression µ, we define Gt = Gµt

,
Vt = V (Gt), Et = E(Gt), and slabt = slabµt

for any v ∈ V (Tµ). Furthermore, we write
V ℓt = slab−1

t ({S ⊆ [k] : ℓ ∈ S}) for the set of all vertices with label ℓ at node t.

Theorem 14.0.1. Given a k-expression µ for G = (V,E), DELETION TO q-COLORABLE on G
can be solved in time O∗((2q)k).

Proof. Let (G, b) be a DELETION TO q-COLORABLE instance and µ a k-multi-expression
for G. Similar to Courcelle and Olariu [44], we can assume by using local swapping
transformations that between every two union-operations at most O(k2) join-operations,
and O(k) (set-)relabel- and delete-operations occur. Since µ contains O(n) introduce-
and union-operations, this shows that Tµ contains at most O(k2n) = O∗(1) nodes. We
replace every set-relabel operation ρi→S with |S| ≥ 3, S = {ℓ1, . . . , ℓs}, by a sequence of
set-relabel operations ρi→{i,ℓ1}, ρi→{i,ℓ2}, . . . , ρi→{i,ℓs−2}, ρi→{ℓs−1,ℓs}, thus we only need to
handle set-relabels ρi→S with |S| ≤ 2.

For every node t ∈ V (Tµ) and label ℓ, we store the set of colors used on V ℓt . After deleting
the appropriate vertices, the remaining graph should be q-colorable, hence the possible color
sets are precisely the subsets of [q], where ∅ indicates that all vertices are deleted. Since we
use at most k labels at every node, this results in (2q)k possible types of partial solutions
at each node. If the work for each type is only polynomial, then the claimed running time
immediately follows, since there are only a polynomial number of nodes in V (Tµ).

259

For every t ∈ V (Tµ), the family At of partial solutions at t consists of all φ : Vt → [q]∪{⊥}
such that φ induces a q-coloring of Gt − φ−1(⊥). We say that a function f : [k] → P([q]) is a
signature and the set of partial solutions at t compatible with f is defined by

At(f) = {φ ∈ At : φ(V ℓt) \ {⊥} = f(ℓ) for all ℓ ∈ [k]}.

We want to compute the quantity At(f) = min{c(φ−1(⊥)) : φ ∈ At(f)}, where At(f) = ∞
if At(f) = ∅. Let t0 be the root node of the k-expression µ. The algorithm returns true if
there is a t0-signature f such that At0(f) ≤ b and otherwise the algorithm returns false.

Note that f(ℓ) = ∅ implies φ(V ℓt) = {⊥} for all φ ∈ At(f), i.e., all vertices with label ℓ
are deleted. Furthermore, the definition of At(f) implies that At(f) = ∅ and At(f) = ∞
whenever |f(ℓ)| > |V ℓt | for some ℓ ∈ [k]; we will not explicitly mention this edge case again
in what follows and assume that the considered f satisfy |f(ℓ)| ≤ |V ℓt | for all ℓ ∈ [k]. We
proceed by presenting the recurrences to compute At(f) for all nodes t and signatures f
and afterwards show the correctness of these recurrences.

Base Case. If t = ℓ(v) for some ℓ ∈ [k], then At(f) = [f(ℓ) = ∅]c(v), because the solution
cost is c(v) if v is deleted and 0 otherwise.

Delete Case. If t = ϵi(Gt′) for some i ∈ [k], where t′ is the child of t, then we simply need
to try all possible states, i.e., subsets of [q], for label i in the previous table and store the best
result among them, resulting in the recurrence

At(f) = min{At′(f ′) : f ′(ℓ) = f(ℓ) for all ℓ ∈ [k] \ {i}}.

Note that the set on the right-hand side consists of at most 2q = O(1) numbers, hence the
recurrence can be computed in polynomial time.

Simple Relabel Case. If t = ρi→j(Gt′) for some i ̸= j ∈ [k] and where t′ is the child of t,
then the recurrence is given by

At(f) = min{At′(f ′) : f ′(ℓ) = f(ℓ) for all ℓ ∈ [k] \ {i, j} and f ′(i) ∪ f ′(j) = f(j)}.

By assumption, f will always satisfy f(i) = ∅ here, since there are no vertices with label i
in Gt. This recurrence goes over all ways how the colors f(j) used for vertices with label j
in Gt can be split among the vertices with label i and j in the previous graph Gt′ . Observe
that we are taking the minimum over at most (2q)2 = O(1) numbers on the right-hand side,
hence this recurrence can be computed in polynomial time.

Set Relabel Case. Due to the presented transformation, we only have to consider set-
relabels with t = ρi→S(Gt′), where |S| ≤ 2 and t′ is the child of t. The delete case and
simple relabel case already take care of |S| ≤ 1, so it remains to consider |S| = 2. Let
S = {j1, j2}. Similar to the simple relabel case, we have to consider all ways the colors f(j1)

260 Chapter 14 Algorithm for Deletion to q-Colorable

are split among vertices with label i and j1 at the previous node and analogously for f(j2).
So, the recurrence is given by

At(f) = min{At′(f ′) : f ′(ℓ) = f(ℓ) for all ℓ ∈ [k] \ {i, j1, j2},

f ′(i) ∪ f ′(j1) = f(j1) and f ′(i) ∪ f ′(j2) = f(j2)}.

On the right-hand side, we are taking the minimum over at most (2q)3 = O(1) numbers,
hence the recurrence can be computed in polynomial time.

Join Case. If t = ηi,j(Gt′) for some i ̸= j ∈ [k], where t′ is the child of t, and assuming
without loss of generality that V it′ ̸= ∅ and V jt′ ̸= ∅, then

At(f) =

At′(f) if f(i) ∩ f(j) = ∅,

∞ else.

This recurrence filters out all partial solutions where the coloring properties are not satisfied
at some newly added edge. This happens precisely when f(i) ∩ f(j) ̸= ∅, because then there
exists an edge in the join between label i and j whose endpoints get the same color.

Union Case. If t = Gt1 ⊕Gt2 where t1 and t2 are the children of t, then

At(f) = min{At1(f1) +At2(f2) : f1(ℓ) ∪ f2(ℓ) = f(ℓ) for all ℓ ∈ [k]}.

Here, we assume that ∞ + x = x+ ∞ = ∞ + ∞ = ∞ for all x ∈ N. This recurrence goes
for each label ℓ ∈ [k] over all ways how the color set f(ℓ) can be split among the vertices
with label ℓ in the first graph Gt1 and in the second graph Gt2 .

To compute this recurrence, we make use of the following fast cover product algorithm.

Lemma 14.0.2 ([47]). For two functions f, g : P(U) → {−M, . . . ,M}, given all 2|U | values
of f and g in the input, all the 2|U | values of the cover product f ∗c g defined by

(f ∗c g)(X) = min
Y ∪Z=X

f(Y) + g(Z),

can be computed in time 2|U ||U |O(1) · O(|M | log |M | log log |M |).

Lemma 14.0.2 allows us to compute the recurrence for all f simultaneously in time
O∗((2q)k): We interpret the signatures f : [k] → P([q]) as subsets of [k] × [q] in the following
way: S(f) = {(i, c) : i ∈ [k], c ∈ f(i)}. Observe that f1(ℓ) ∪ f2(ℓ) = f(ℓ) for all ℓ ∈ [k] is
equivalent to S(f1) ∪ S(f2) = S(f). Now, At can be considered as a function P([k] × [q]) →
[c(V) + 1] by replacing ∞ with c(V) + 1, since we have At(f) ≤ c(V) whenever At(f) ̸= ∅.
The recurrence of the union case can then be considered as the (min,+)-cover product of
At1 and At2 . By Lemma 14.0.2 with U = [k] × [q] and M = c(V) + 1, we can compute
all values of At in time 2kq(kq)O(1) · nO(1) = O∗((2q)k), since c(V) is polynomial in n by
assumption.

261

Correctness. We prove the correctness by bottom-up induction along the syntax tree Tµ.
In the base case, Gt only consists of the single vertex v and we can either delete v or assign
some color to v. Together with the edge case handling, this is implemented by the formula
for the base case.

For the delete case, notice that At = At′ , V
i
t = ∅, and V ℓt = V ℓt′ for all ℓ ∈ [k] \ {i}.

If φ ∈ At(f), then φ ∈ At′(f ′), where f ′ = f [i 7→ (φ(V it′) \ {⊥})]. In the other direction,
if φ ∈ At′(f ′), then φ ∈ At(f), where f = f ′[i 7→ ∅]. Therefore, the correctness of the
recurrence for the delete case follows.

For the simple relabel case, notice that Gt = Gt′ , V it = ∅, V jt = V it′ ∪ V jt′ , and V ℓt = V ℓt′

for all ℓ ∈ [k] \ {i, j}. Let f ′ be a candidate in the recurrence of At(f) and φ′ ∈ At′(f ′)
be a minimizer in the definition of At′(f ′), then we also have that φ′ ∈ At(f) since
φ′(V jt) \ {⊥} = (φ′(V it′) \ {⊥}) ∪ (φ′(V jt′) \ {⊥}) = f ′(i) ∪ f ′(j) = f(j). Hence, the
recurrence is an upper bound on At(f).

In the other direction, let φ be a minimizer in the definition of At(f) and consider f ′ with
f ′(ℓ) = φ(V ℓt′) \ {⊥} for all ℓ ∈ [k]. Then f ′ satisfies f ′(i) ∪ f ′(j) = f(j) and φ ∈ At′(f ′), so
f ′ is also considered in the recurrence and the recurrence is a lower bound on At(f).

For the set relabel case, we have the equations Gt = Gt′ , V
j1
t = V it′ ∪V j1

t′ , V j2
t = V it′ ∪V j2

t′ ,
and V ℓt = V ℓt′ for all ℓ ∈ [k] \ {i, j1, j2}, thus allowing for a very similar proof to the simple
relabel case, which we omit here.

For the join case, notice that for φ ∈ At′(f) ⊇ At(f) it holds that φ ∈ At(f) if and only
if φ(V it′) ∩ φ(V jt′) ⊆ {⊥} as otherwise φ cannot induce a coloring of Gt − φ−1(⊥).

For the union case, a feasible solution φ of Gt induces feasible solutions φ1 = φ
∣∣
Vt1

of Gt1 and φ2 = φ
∣∣
Vt2

of Gt2 such that φ1(V ℓt) ∪ φ2(V ℓt) = φ(V ℓt) for all ℓ ∈ [k] and vice
versa.

Together with the lower bound for DELETION TO q-COLORABLE[tcmtw≤q] shown in
Chapter 13 and the parameter relationships in Section 2.4.4, this shows that the base 2q

is optimal for all parameters sandwiched between tcmtw≤q and mcw, which in particular
include clique-width, modular-treewidth, and twinclass-treedepth.

262 Chapter 14 Algorithm for Deletion to q-Colorable

Conclusion and Future Work 15
We have studied in this part how the fine-grained time complexity and space complexity of
graph problems is affected by going beyond width parameters to the more restrictive depth
parameters and modulators. First, we saw how the cut-and-count-technique is the right tool
to obtain polynomial-space branching algorithms for connectivity problems parameterized
by treedepth, while simultaneously maintaining the running time base of the treewidth
algorithms. While we have not given the proofs, our techniques also extend to other
problems like CONNECTED FEEDBACK VERTEX SET and CONNECTED TOTAL DOMINATING SET.

Secondly, we investigated the fine-grained time complexity of several vertex-deletion
problems relative to depth-parameterizations and modulator-parameterizations. By giving
novel lower bound constructions, we have established for several natural problems that a
small modulator to a simple graph class is already as hard as small treewidth. In the dense
setting, something even stronger occurs: A modulator consisting of a few twinclasses is
sufficient to obtain the tight lower bound, as opposed to several disjoint separators or more
involved dense structure than what is captured by twinclasses.

We survey some possible research directions and future work regarding depth parameters
and modulators in this section and additional research topics are discussed in Chapter 17.

Faster Algorithms for Connectivity Problems. We lack tight lower bounds for any of the
connectivity problems parameterized by treedepth. Hence, it is a natural question whether
the running times that we have obtained via the cut-and-count-technique can be beaten,
even faster algorithms using exponential space would be interesting, e.g., can STEINER

TREE[treedepth] be solved in time O∗((3 − ε)k) for some ε > 0? This question extends
to the edge-based connectivity problems considered by Nederlof et al. [137]. A notable
example is HAMILTONIAN CYCLE[treedepth], which is solvable in time O∗((2 +

√
2)k) due to

the corresponding time-optimal algorithm for HAMILTONIAN CYCLE[pathwidth] by Cygan,
Kratsch, and Nederlof [48], but it is open whether this time is also optimal for treedepth.
The polynomial-space algorithm obtained by Nederlof et al. [137] for HAMILTONIAN CY-
CLE[treedepth] has the larger running time O∗(5k); can this running time be improved while
maintaining polynomial space?

Derandomization. As observed by Nederlof et al. [137], the techniques to obtain deter-
ministic algorithms for connectivity problems parameterized by width parameters, i.e., the
rank-based approach and squared determinant approach, see Section 3.1.3, do not seem to
transfer to the polynomial-space treedepth-setting. The rank-based approach stores solution
sets which can have an exponential size and the squared determinant approach leads to
complicated convolutions, where it is unclear how to bring them into the appropriate form
such that they allow for polynomial-space branching algorithms. Consequently, obtaining

263

such deterministic algorithms in this context seems to require novel tools and would be of
great interest. In a similar vein, the inability to apply these techniques also means that we
do not know how to solve counting or (exponentially-)weighted variants of connectivity
problems parameterized by treedepth in single-exponential time and polynomial space.

Dominating Set Parameterized by Treedepth. While we have somewhat remedied the
situation by providing tight lower bounds for VERTEX COVER, ODD CYCLE TRANSVERSAL, and
MAXIMUM CUT parameterized by treedepth, the lack of tight lower bounds for treedepth-
parameterization does extend beyond connectivity problems. A natural benchmark problem
for which we lack such a lower bound is DOMINATING SET[treedepth], i.e., can DOMINAT-
ING SET[treedepth] be solved in time O∗((3 − ε)k) for some ε > 0; the same question
was also asked by Chen et al. [37]. Chen et al. also show that single-pass dynamic pro-
gramming algorithms are not able to achieve such an improvement. A folklore algorithm
obtains running time O∗(2k) for DOMINATING SET[vertex cover], so we do know that
modulator-parameterizations can allow for improved algorithms. What about DOMINAT-
ING SET[feedback vertex set] or DOMINATING SET[modulator to treewidth 2]? We remark
that the O∗(3k)-time and polynomial-space algorithm for DOMINATING SET[treedepth] of
Pilipczuk and Wrochna [155] also counts the number of dominating sets; can one show that
this algorithm is optimal for the counting variant of DOMINATING SET[treedepth]?

Approximating Treedepth. When a treedepth decomposition is not given by other means,
then applying the presented algorithms requires that we compute some treedepth decom-
position first. Czerwiński et al. [52] provide an O(td(G) log3/2 td(G))-approximation for
treedepth in polynomial time and Nadara et al. [135] show that treedepth can be computed
exactly in time 2O(k2)n and polynomial space. However, composing either of those two
algorithms with our single-exponential branching algorithms yields a running time that is
not single-exponential anymore. Hence, it has been repeatedly asked, e.g. by Nederlof et
al. [137] and Czerwiński et al. [52], whether a constant-factor approximation of treedepth
is possible in single-exponential time and, ideally, in polynomial space.

Meta-Theorem for Saving Space Parameterized by Treedepth. Since it can be nontrivial
to obtain polynomial-space algorithms with single-exponential running times parameterized
by treedepth, an interesting question is which problem classes can already be handled by our
current techniques. A starting point for a logic-based meta-theorem could be the results of
Pilipczuk [152], who has presented a logic capturing many of the problems that are solvable
in single-exponential time when parameterizing by treewidth.

Further Exploration of Depth Parameters. Compared to width parameters, the space of
depth parameters is still quite unexplored. Several depth parameters have been put forward
to also capture dense graphs, namely shrub-depth and sc-depth [87, 88], and rank-depth [53];
they are all equivalent in the sense that a graph class F is bounded in any single one of
these depth parameters if and only if F is bounded in all of them [53, 88]. Shrub-depth is
the most well-studied among these three depth parameters [38, 53, 57, 81, 82, 87, 88, 121,
153], with a focus on structural graph theory and finite model theory. However, shrub-depth

264 Chapter 15 Conclusion and Future Work

has the drawback that any finite graph has shrub-depth at most one, indeed it is more useful
as an asymptotic concept distinguishing between graph classes of bounded and unbounded
shrub-depth. Little is known about the fine-grained parameterized complexity with respect
to these dense depth parameters. Do they allow for similar space savings while preserving
the time complexity of their width analogs? Is there a natural dense depth parameter that
nicely fits into the fine-grained parameter hierarchy presented in Section 2.4.4?

Modular-Treedepth. As done for pathwidth and treewidth, we can also bring treedepth
into the dense setting by considering its modular-variant. While modular-treedepth is
a somewhat restricted generalization of treedepth, it is a natural question whether the
running times obtained for connectivity problems parameterized by modular-treewidth in
Chapter 6 can also be achieved by polynomial-space branching algorithms with respect to
modular-treedepth. In regards to this, we remark that the reductions for STEINER TREE

and CONNECTED DOMINATING SET also reduce the case of modular-treedepth to treedepth
and can simply be pipelined with the polynomial-space branching algorithms presented
in this part. For CONNECTED VERTEX COVER[modular-treedepth], the recurrences in the
modular-treewidth-algorithm are simple enough so that such a transfer should be possible,
but more needs to be done for FEEDBACK VERTEX SET[modular-treedepth].

Modulators to Other Graph Classes. We have proven tight lower bounds for VERTEX

COVER[distpw≤2] and DELETION TO q-COLORABLE[disttw≤q], as mentioned in Section 10.2
the pathwidth bound for VERTEX COVER and the treewidth bound for q = 2, i.e., ODD

CYCLE TRANSVERSAL, cannot be improved. Does DELETION TO q-COLORABLE[disttw≤q−1]
also admit an improved algorithm for q > 2? Jaffke and Jansen [109] give a dichotomy
when q-COLORING[distF] admits improved algorithms for families F that exclude some
biclique and are closed under induced subgraphs. Can similar dichotomies be obtained
for VERTEX COVER or ODD CYCLE TRANSVERSAL? For minor-closed families F , Bougeret et
al. [28] give a dichotomy when VERTEX COVER[distF] admits a polynomial kernel; how is
this result related to a dichotomy about improved algorithms? How do these dichotomies
change when considering twinclass-modulators or some other notion of dense modulators
instead?

Notions of Dense Modulators. Even more so than for depth parameters, there have been
very few studies on which notions of dense modulators are fruitful. Our study of twinclass-
modulators is in service of capturing very strong structural restrictions that still allow us to
prove tight fine-grained lower bounds and is not focused on their general applicability of the
concept. Any notion of dense modulators has to consider what structure is allowed inside a
modulator and how a modulator is allowed to connect to the remainder of the graph. Eiben,
Ganian, and Szeider [67, 66] study the concept of well-structured modulators, which are
modulators that can be partitioned into few parts, where each part has small rank-width and
induces a split-module of the graph; compared to modules, split-modules are more general
as they can always contain vertices that have no neighbors outside the split-module. We
pose as a concrete question if the O∗((2q − 2)k) lower bound for q-COLORING[linear-clique-
width] by Lampis [123] can be improved to hold already relative to some dense modulator;

265

twinclass-modulators to constant treewidth are not the appropriate concept, as the algorithm
for q-COLORING[twinclass-treewidth] by Lampis [123] implies an improved running time
in that case. A similar question can be asked about the fine-grained results of Ganian et
al. [86] for the more general homomorphism problems parameterized by clique-width.

266 Chapter 15 Conclusion and Future Work

Part IV

Conclusion

Summary 16
In this thesis, we have studied the fine-grained parameterized complexity of various bench-
mark graph problems relative to structural parameters to obtain a precise understanding
of how input structure affects problem complexity. Throughout this thesis, we have seen
how this research is closely tied to the possible problem states at various kinds of separators.
The main class of problems we consider are connectivity problems, whose complexity is
harder to pin down due to the presence of a global connectivity constraint. Motivated by
the success of the cut-and-count-technique by Cygan et al. [51] for obtaining tight algo-
rithms for connectivity problems parameterized by treewidth and pathwidth, we applied the
cut-and-count-technique in the setting of several other structural parameters.

Beginning with the dense width parameters clique-width and modular-treewidth, we
obtain multiple tight results for connectivity problems relative to these parameters, where
we complement the obtained cut-and-count-algorithms with lower bounds following the
construction principle of Lokshtanov et al. [126]. Via a quite generic application of cut-
and-count, we obtain many single-exponential algorithms relative to clique-width. Using
problem-specific insights, we can obtain the optimal running time base for CONNECTED

VERTEX COVER[clique-width] and CONNECTED DOMINATING SET[clique-width]. However,
as discussed in Chapter 9, for other connectivity problems parameterized by clique-width,
optimal bases seem out of reach for our techniques.

For modular-treewidth, we observe that overarching savings are possible in the cut-and-
count-technique compared to clique-width, as it suffices to only consider homogeneous cuts,
see Lemma 6.1.4. In the cases of STEINER TREE and CONNECTED DOMINATING SET, these
savings even allow for a direct reduction to the treewidth-case, thus the more expressive
modular-treewidth can be considered instead of treewidth with no loss in complexity. As
the treewidth-techniques transfer more directly to modular-treewidth, we are able to obtain
further optimal bases for CONNECTED VERTEX COVER[modular-treewidth] and FEEDBACK

VERTEX SET[modular-treewidth]. However, the restrictiveness of modular-treewidth results
in more challenging accompanying lower bound constructions compared to clique-width.

Going beyond width parameters to depth parameters, we apply the cut-and-count-
technique in the context of treedepth. We show that the depth restriction allows us in several
cases to transform the dynamic programming algorithms for treewidth into polynomial-space
branching algorithms relative to treedepth without worsening the running time base. As
previously stated in Chapter 10 and Chapter 15, the lower bound principle of Lokshtanov
et al. [126] generally relies on constructions of arbitrarily large depth, thus making lower
bounds relative to treedepth more difficult to obtain. Since additionally the connectivity
constraint is difficult to handle, we are not able to complement these branching algorithms
with tight lower bounds relative to treedepth.

269

Seeking to remedy this situation, we develop novel lower bound constructions relative
to modulators that transfer to treedepth and its twinclass-variant. As coloring constraints
are more well-behaved than a connectivity constraint or even a domination constraint,
the obtained tight lower bounds apply to the problem DELETION TO q-COLORABLE, which
generalizes VERTEX COVER and ODD CYCLE TRANSVERSAL. Structurally, this shows that for
these problems already a single complex separator is difficult to handle, instead of needing
a large number of disjoint separators as in the lower bounds relative to width parameters.

270 Chapter 16 Summary

Future Work 17
We conclude by listing some further possible directions for future work that are not covered
in Chapter 9 or Chapter 15.

Fine-Grained Meta-Theorems. To obtain a broader understanding of the precise impact of
input structure on problem complexity, meta-theorems determining the optimal bases for a
larger problem class are particularly useful. Most of the known fine-grained meta-theorems
focus on (a variant of) homomorphism problems relative to sparse parameters [63, 72,
145, 146, 151]. Exceptions to this are the meta-theorem of Ganian et al. [86] for homo-
morphism problems parameterized by clique-width; Esmer et al. [68] give a meta-theorem
for homomorphisms problems where edge or vertex deletions are allowed, thus general-
izing DELETION TO q-COLORABLE, parameterized by treewidth; Focke et al. [71] present
a meta-theorem for counting variants of generalized domination problems parameterized
by treewidth; finally, Marx et al. [132] consider general factor problems parameterized by
treewidth. Further meta-theorems relative to dense parameters would be interesting, e.g.,
for the domination problems considered by Focke et al. [71]. Moreover, there is currently no
fine-grained meta-theorem involving connectivity problems.

More Fine-Grained Equivalences. Cygan et al. [46] show for several problems, such
as q-HITTING SET or q-SET SPLITTING parameterized by the size of the ground set, that
improving upon the base 2 in the running time is equivalent to falsifying SETH, see also
Theorem 2.1.2. More directly relevant to our investigations are the results of Iwata and
Yoshida [106], who show for any base α > 1 that the following statements are equivalent:
• SATISFIABILITY[primal-treewidth] can be solved in time O∗(αk),
• INDEPENDENT SET[treewidth] can be solved in time O∗(αk),
• INDEPENDENT SET[clique-width] can be solved in time O∗(αk).
The results of Iwata and Yoshida have several nice features. First, their lower bounds
hold under the assumption that SATISFIABILITY[primal-treewidth] cannot be solved in time
O((2 − ε)k) for any ε > 0, which is a weaker assumption than SETH. Secondly, such
equivalences show that if SETH or the weaker assumption turn out to be false, then we also
obtain faster algorithms for the considered target problems, which is not true for our one-way
reductions. Finally, these equivalences also rule out that, say, only one of the considered
target problems has a faster algorithm. Can more of such equivalences be obtained? In
particular, what about equivalences for problems where the optimal base is conjectured to
be larger than 2?

Further Width Parameters. Even aside from connectivity problems, little is known
about the (very) fine-grained complexity relative to width parameters besides cutwidth,

271

path/treewidth, clique-width, or their twinclass/modular-variants. One could consider
boolean-width, which is smaller than clique-width, where Bui-Xuan et al. [30] show that IN-
DEPENDENT SET[boolean-width] can be solved in time O∗(4k) and DOMINATING SET[boolean-
width] in time O∗(8k); are these bases also optimal under SETH? For other dense width
parameters, we often do not have running times of the form O∗(αk), e.g. INDEPENDENT

SET[rank-width] can be solved in time 2O(k2)nO(1) due to Bui-Xuan et al. [32] and Bergoug-
noux et al. [14] show that the quadratic dependence in the exponent cannot be avoided,
unless ETH fails. For mim-width, essentially all known algorithms have running time nO(k),
see Bergougnoux et al. [10]. Repeated from Chapter 9, can we more precisely understand
the running time exponent for specific problems parameterized by rank-width or mim-width?
Finally, for twin-width, Bonnet et al. [25] show that INDEPENDENT SET can be solved in
time O∗(k2d2k), where k is the solution size and d the twin-width, and DOMINATING SET in
time O∗(22(d2+1)(2+log d)k); how much more can these running times be optimized and what
about other problems, e.g., ODD CYCLE TRANSVERSAL?

Heterogeneous Parameterizations. The parameters considered in this thesis all arise from
homogeneous decomposition schemes, i.e., every separator is measured according to the same
criterion. The recently evolving study of heterogeneous or hybrid parameterizations, see also
Section 10.2, brings forth parameters such as H-treewidth and H-elimination distance, which
essentially extend the base cases of treewidth and treedepth, respectively, to allow for any
graph from the family H. However, not much is known about fine-grained parameterized
complexity relative to such parameters. Jansen et al. [110] show that VERTEX COVER can be
solved in time O∗(2k) and ODD CYCLE TRANSVERSAL in time O∗(3k) when parameterized
by bipartite-treewidth. Eiben et al. [65] show that MAXIMUM CUT[Rw-treewidth] can be
solved in time O∗(2k), where Rw denotes the graphs of rank-width at most w. What results
can be obtained for similar extensions of, say, clique-width? What about heterogeneous
width parameters that do not only extend the base cases, but allow to measure separators
according to two incomparable criteria?

Multi-Clique-Width. Fürer [79] has introduced multi-clique-width and shown that INDE-
PENDENT SET, and hence also VERTEX COVER, can be solved in time O∗(2k) parameterized
by multi-clique-width, thus extending the previously known algorithms for clique-width
without increasing the base. In Chapter 14, we see that the same can be done for the more
general DELETION TO q-COLORABLE. Can the same be done for the algorithms presented
in Part II, which in particular assume an irredundant clique-expression? Is there a natural
problem with a single-exponential algorithm relative to clique-width where going to multi-
clique-width increases the base? Since we have that mcw ⪯ mod-tw ⪯ tw and mcw ⪯ cw,
see Section 2.4.4, algorithms relative to multi-clique-width can unify separate algorithms for
(modular-)treewidth and clique-width with the same base, e.g. VERTEX COVER is a problem
where this applies.

Computing (Multi-)Clique-Width. A big caveat in applying algorithms parameterized
by clique-width is that we are lacking good algorithms for computing clique-expressions.
The currently best algorithms rely on approximating clique-width via rank-width, see Oum

272 Chapter 17 Future Work

and Seymour [149] for the first such algorithm and Fomin and Korhonen [74] for the
most recent one. However, the approximation via rank-width introduces an exponential
error, therefore all single-exponential algorithms parameterized by clique-width become
double-exponential algorithms unless we are given a clique-expression by other means.
A first step towards better approximation algorithms for clique-width could be a fixed-
parameter tractable algorithm with subexponential error. The same issues apply even more
to the more expressive multi-clique-width, where the rank-width approximation leads to a
double-exponential error.

273

Bibliography

[1] Akanksha Agrawal and M. S. Ramanujan. “Distance from Triviality 2.0: Hybrid Parameter-
izations”. In: Combinatorial Algorithms - 33rd International Workshop, IWOCA 2022, Trier,
Germany, June 7-9, 2022, Proceedings. Ed. by Cristina Bazgan and Henning Fernau. Vol. 13270.
Lecture Notes in Computer Science. Springer, 2022, pp. 3–20.

[2] Jochen Alber and Rolf Niedermeier. “Improved Tree Decomposition Based Algorithms for
Domination-like Problems”. In: LATIN 2002: Theoretical Informatics, 5th Latin American
Symposium, Cancun, Mexico, April 3-6, 2002, Proceedings. Ed. by Sergio Rajsbaum. Vol. 2286.
Lecture Notes in Computer Science. Springer, 2002, pp. 613–628.

[3] Josh Alman and Virginia Vassilevska Williams. “A Refined Laser Method and Faster Matrix
Multiplication”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021. Ed. by Dániel Marx. SIAM, 2021,
pp. 522–539.

[4] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. “Complexity of Finding Embed-
dings in a k-Tree”. In: SIAM Journal on Algebraic Discrete Methods 8.2 (1987), pp. 277–284.
eprint: https://doi.org/10.1137/0608024.

[5] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[6] Brage I. K. Bakkane and Lars Jaffke. “On the Hardness of Generalized Domination Problems
Parameterized by Mim-Width”. In: 17th International Symposium on Parameterized and Exact
Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany. Ed. by Holger Dell and
Jesper Nederlof. Vol. 249. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
3:1–3:19.

[7] Eric T. Bax. “Inclusion and Exclusion Algorithm for the Hamiltonian Path Problem”. In: Inf.
Process. Lett. 47.4 (1993), pp. 203–207.

[8] Mahdi Belbasi and Martin Fürer. “A Space-Efficient Parameterized Algorithm for the Hamilto-
nian Cycle Problem by Dynamic Algebraization”. In: Computer Science - Theory and Applications
- 14th International Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Russia, July
1-5, 2019, Proceedings. Ed. by René van Bevern and Gregory Kucherov. Vol. 11532. Lecture
Notes in Computer Science. Springer, 2019, pp. 38–49.

[9] Benjamin Bergougnoux. “Matrix decompositions and algorithmic applications to (hyper)graphs.”
PhD thesis. University of Clermont Auvergne, Clermont-Ferrand, France, 2019.

[10] Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. “A logic-based algorithmic meta-theorem
for mim-width”. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 3282–3304. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.
9781611977554.ch125.

[11] Benjamin Bergougnoux and Mamadou Moustapha Kanté. “Fast exact algorithms for some
connectivity problems parameterized by clique-width”. In: Theor. Comput. Sci. 782 (2019),
pp. 30–53.

275

https://doi.org/10.1137/0608024
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch125
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch125

[12] Benjamin Bergougnoux and Mamadou Moustapha Kanté. “More Applications of the d-
Neighbor Equivalence: Acyclicity and Connectivity Constraints”. In: SIAM J. Discret. Math.
35.3 (2021), pp. 1881–1926.

[13] Benjamin Bergougnoux, Mamadou Moustapha Kanté, and O-joung Kwon. “An Optimal XP
Algorithm for Hamiltonian Cycle on Graphs of Bounded Clique-Width”. In: Algorithmica 82.6
(2020), pp. 1654–1674.

[14] Benjamin Bergougnoux, Tuukka Korhonen, and Jesper Nederlof. “Tight Lower Bounds for
Problems Parameterized by Rank-Width”. In: 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany. Ed. by Petra
Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté. Vol. 254. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 11:1–11:17.

[15] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. “Trimmed Moebius
Inversion and Graphs of Bounded Degree”. In: Theory Comput. Syst. 47.3 (2010), pp. 637–
654.

[16] Andreas Björklund, Thore Husfeldt, Petteri Kaski, et al. “Fast Zeta Transforms for Lattices
with Few Irreducibles”. In: ACM Trans. Algorithms 12.1 (2016), 4:1–4:19.

[17] Hans L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth”. In: SIAM J. Comput. 25.6 (1996), pp. 1305–1317.

[18] Hans L. Bodlaender. “A Partial k-Arboretum of Graphs with Bounded Treewidth”. In: Theor.
Comput. Sci. 209.1-2 (1998), pp. 1–45.

[19] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. “Deterministic single
exponential time algorithms for connectivity problems parameterized by treewidth”. In: Inf.
Comput. 243 (2015), pp. 86–111.

[20] Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, et al. “Rankings of Graphs”. In: SIAM
J. Discret. Math. 11.1 (1998), pp. 168–181.

[21] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. “Approximating
Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree”. In: J. Algorithms 18.2 (1995),
pp. 238–255.

[22] Hans L. Bodlaender and Klaus Jansen. “On the Complexity of the Maximum Cut Problem”. In:
Nord. J. Comput. 7.1 (2000), pp. 14–31.

[23] Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M. M. van Rooij, and Martin Vatshelle.
“Faster Algorithms on Branch and Clique Decompositions”. In: Mathematical Foundations of
Computer Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings. Ed. by Petr Hlinený and Antonín Kucera. Vol. 6281. Lecture
Notes in Computer Science. Springer, 2010, pp. 174–185.

[24] Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. “Tight Bounds for Connec-
tivity Problems Parameterized by Cutwidth”. In: 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, Hamburg, Germany, March 7-9, 2023. To appear.

[25] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
“Twin-width III: Max Independent Set, Min Dominating Set, and Coloring”. In: 48th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16,
2021, Glasgow, Scotland (Virtual Conference). Ed. by Nikhil Bansal, Emanuela Merelli, and
James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
35:1–35:20.

276 Bibliography

[26] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. “Twin-width I:
Tractable FO Model Checking”. In: J. ACM 69.1 (2022), 3:1–3:46.

[27] Glencora Borradaile and Hung Le. “Optimal Dynamic Program for r-Domination Problems
over Tree Decompositions”. In: 11th International Symposium on Parameterized and Exact
Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark. Ed. by Jiong Guo and Danny
Hermelin. Vol. 63. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 8:1–8:23.

[28] Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. “Bridge-Depth Characterizes which Minor-
Closed Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel”. In: SIAM J.
Discret. Math. 36.4 (2022), pp. 2737–2773.

[29] Cornelius Brand, Esra Ceylan, Robert Ganian, Christian Hatschka, and Viktoriia Korchemna.
“Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts”.
In: Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022,
Tübingen, Germany, June 22-24, 2022, Revised Selected Papers. Ed. by Michael A. Bekos and
Michael Kaufmann. Vol. 13453. Lecture Notes in Computer Science. Springer, 2022, pp. 98–
113.

[30] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. “Boolean-width of graphs”. In:
Theor. Comput. Sci. 412.39 (2011), pp. 5187–5204.

[31] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. “Fast dynamic programming for
locally checkable vertex subset and vertex partitioning problems”. In: Theor. Comput. Sci. 511
(2013), pp. 66–76.

[32] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. “H-join decomposable graphs
and algorithms with runtime single exponential in rankwidth”. In: Discret. Appl. Math. 158.7
(2010), pp. 809–819.

[33] Jannis Bulian and Anuj Dawar. “Fixed-Parameter Tractable Distances to Sparse Graph Classes”.
In: Algorithmica 79.1 (2017), pp. 139–158.

[34] Jannis Bulian and Anuj Dawar. “Graph Isomorphism Parameterized by Elimination Distance
to Bounded Degree”. In: Algorithmica 75.2 (2016), pp. 363–382.

[35] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “The Complexity of Satisfiability
of Small Depth Circuits”. In: Parameterized and Exact Computation, 4th International Workshop,
IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers. Ed. by
Jianer Chen and Fedor V. Fomin. Vol. 5917. Lecture Notes in Computer Science. Springer,
2009, pp. 75–85.

[36] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. “Strong computational lower bounds
via parameterized complexity”. In: J. Comput. Syst. Sci. 72.8 (2006), pp. 1346–1367.

[37] Li-Hsuan Chen, Felix Reidl, Peter Rossmanith, and Fernando Sánchez Villaamil. “Width, Depth,
and Space: Tradeoffs between Branching and Dynamic Programming”. In: Algorithms 11.7
(2018), p. 98.

[38] Yijia Chen and Jörg Flum. “FO-Definability of Shrub-Depth”. In: 28th EACSL Annual Conference
on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. Ed. by Maribel
Fernández and Anca Muscholl. Vol. 152. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 15:1–15:16.

[39] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

Bibliography 277

[40] Derek G. Corneil and Udi Rotics. “On the Relationship Between Clique-Width and Treewidth”.
In: SIAM J. Comput. 34.4 (2005), pp. 825–847.

[41] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Vol. 138. Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

[42] Bruno Courcelle, Pinar Heggernes, Daniel Meister, Charis Papadopoulos, and Udi Rotics.
“A characterisation of clique-width through nested partitions”. In: Discret. Appl. Math. 187
(2015), pp. 70–81.

[43] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. “Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width”. In: Theory Comput. Syst. 33.2 (2000), pp. 125–
150.

[44] Bruno Courcelle and Stephan Olariu. “Upper bounds to the clique width of graphs”. In: Discret.
Appl. Math. 101.1-3 (2000), pp. 77–114.

[45] Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. “A Tight Lower Bound for Counting
Hamiltonian Cycles via Matrix Rank”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018.
Ed. by Artur Czumaj. SIAM, 2018, pp. 1080–1099.

[46] Marek Cygan, Holger Dell, Daniel Lokshtanov, et al. “On Problems as Hard as CNF-SAT”. In:
ACM Trans. Algorithms 12.3 (2016), 41:1–41:24.

[47] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, et al. Parameterized Algorithms. Springer,
2015.

[48] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. “Fast Hamiltonicity Checking Via Bases of
Perfect Matchings”. In: J. ACM 65.3 (2018), 12:1–12:46.

[49] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, et al. “Solving Connectivity Problems
Parameterized by Treewidth in Single Exponential Time”. In: IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011.
Ed. by Rafail Ostrovsky. IEEE Computer Society, 2011, pp. 150–159.

[50] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, et al. “Solving connectivity problems pa-
rameterized by treewidth in single exponential time”. In: CoRR abs/1103.0534 (2011). arXiv:
1103.0534.

[51] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, et al. “Solving Connectivity Problems
Parameterized by Treewidth in Single Exponential Time”. In: ACM Trans. Algorithms 18.2
(2022), 17:1–17:31.

[52] Wojciech Czerwinski, Wojciech Nadara, and Marcin Pilipczuk. “Improved Bounds for the
Excluded-Minor Approximation of Treedepth”. In: SIAM J. Discret. Math. 35.2 (2021), pp. 934–
947.

[53] Matt DeVos, O-joung Kwon, and Sang-il Oum. “Branch-depth: Generalizing tree-depth of
graphs”. In: Eur. J. Comb. 90 (2020), p. 103186.

[54] Josep Díaz, Jordi Petit, and Maria J. Serna. “A survey of graph layout problems”. In: ACM
Comput. Surv. 34.3 (2002), pp. 313–356.

[55] Reinhard Diestel. Graph Theory, 4th Edition. Vol. 173. Graduate texts in mathematics. Springer,
2012.

278 Bibliography

https://arxiv.org/abs/1103.0534

[56] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013.

[57] Jan Dreier. “Lacon- and Shrub-Decompositions: A New Characterization of First-Order Trans-
ductions of Bounded Expansion Classes”. In: 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 2021, pp. 1–13.

[58] Andrew Drucker, Jesper Nederlof, and Rahul Santhanam. “Exponential Time Paradigms
Through the Polynomial Time Lens”. In: 24th Annual European Symposium on Algorithms,
ESA 2016, August 22-24, 2016, Aarhus, Denmark. Ed. by Piotr Sankowski and Christos D.
Zaroliagis. Vol. 57. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 36:1–
36:14.

[59] Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. “New Algorithms for Mixed Domi-
nating Set”. In: Discret. Math. Theor. Comput. Sci. 23.1 (2021).

[60] Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. “Upper Dominating Set: Tight
algorithms for pathwidth and sub-exponential approximation”. In: Theor. Comput. Sci. 923
(2022), pp. 271–291.

[61] Guillaume Ducoffe. “Maximum Matching in Almost Linear Time on Graphs of Bounded
Clique-Width”. In: Algorithmica 84.11 (2022), pp. 3489–3520.

[62] Guillaume Ducoffe. “Optimal Centrality Computations Within Bounded Clique-Width Graphs”.
In: Algorithmica 84.11 (2022), pp. 3192–3222.

[63] László Egri, Dániel Marx, and Pawel Rzazewski. “Finding List Homomorphisms from Bounded-
treewidth Graphs to Reflexive Graphs: a Complete Complexity Characterization”. In: 35th
Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March
3, 2018, Caen, France. Ed. by Rolf Niedermeier and Brigitte Vallée. Vol. 96. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 27:1–27:15.

[64] Eduard Eiben, Robert Ganian, Thekla Hamm, Lars Jaffke, and O-joung Kwon. “A Unifying
Framework for Characterizing and Computing Width Measures”. In: 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley,
CA, USA. Ed. by Mark Braverman. Vol. 215. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 63:1–63:23.

[65] Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. “Measuring what matters:
A hybrid approach to dynamic programming with treewidth”. In: J. Comput. Syst. Sci. 121
(2021), pp. 57–75.

[66] Eduard Eiben, Robert Ganian, and Stefan Szeider. “Meta-kernelization using well-structured
modulators”. In: Discret. Appl. Math. 248 (2018), pp. 153–167.

[67] Eduard Eiben, Robert Ganian, and Stefan Szeider. “Solving Problems on Graphs of High
Rank-Width”. In: Algorithmica 80.2 (2018), pp. 742–771.

[68] Baris Can Esmer, Jacob Focke, Dániel Marx, and Pawel Rzazewski. “List homomorphisms
by deleting edges and vertices: tight complexity bounds for bounded-treewidth graphs”. In:
CoRR abs/2210.10677 (2022). arXiv: 2210.10677.

[69] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. “Clique-Width is
NP-Complete”. In: SIAM J. Discret. Math. 23.2 (2009), pp. 909–939.

[70] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006.

Bibliography 279

https://arxiv.org/abs/2210.10677

[71] Jacob Focke, Dániel Marx, Fionn Mc Inerney, et al. “Tight Complexity Bounds for Counting
Generalized Dominating Sets in Bounded-Treewidth Graphs”. In: Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2023, pp. 3664–3683.

[72] Jacob Focke, Dániel Marx, and Pawel Rzazewski. “Counting list homomorphisms from graphs
of bounded treewidth: tight complexity bounds”. In: Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022. Ed. by Joseph (Seffi) Naor and Niv Buchbinder. SIAM, 2022, pp. 431–
458.

[73] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. “Intractability of
Clique-Width Parameterizations”. In: SIAM J. Comput. 39.5 (2010), pp. 1941–1956.

[74] Fedor V. Fomin and Tuukka Korhonen. “Fast FPT-approximation of branchwidth”. In: STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022. Ed. by Stefano Leonardi and Anupam Gupta. ACM, 2022, pp. 886–899.

[75] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. “Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms”. In: 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012. IEEE Computer Society, 2012, pp. 470–479.

[76] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. “Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms”. In: J.
ACM 63.4 (2016), 29:1–29:60.

[77] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. “Representative
Families of Product Families”. In: ACM Trans. Algorithms 13.3 (2017), 36:1–36:29.

[78] Martin Fürer. “Faster Computation of Path-Width”. In: Combinatorial Algorithms - 27th
International Workshop, IWOCA 2016, Helsinki, Finland, August 17-19, 2016, Proceedings. Ed.
by Veli Mäkinen, Simon J. Puglisi, and Leena Salmela. Vol. 9843. Lecture Notes in Computer
Science. Springer, 2016, pp. 385–396.

[79] Martin Fürer. “Multi-Clique-Width”. In: 8th Innovations in Theoretical Computer Science Con-
ference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA. Ed. by Christos H. Papadimitriou.
Vol. 67. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 14:1–14:13.

[80] Martin Fürer and Huiwen Yu. “Space Saving by Dynamic Algebraization Based on Tree-Depth”.
In: Theory Comput. Syst. 61.2 (2017), pp. 283–304.

[81] Jakub Gajarský and Stephan Kreutzer. “Computing Shrub-Depth Decompositions”. In: 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13,
2020, Montpellier, France. Ed. by Christophe Paul and Markus Bläser. Vol. 154. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 56:1–56:17.

[82] Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, et al. “First-Order Interpretations of
Bounded Expansion Classes”. In: ACM Trans. Comput. Log. 21.4 (2020), 29:1–29:41.

[83] Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. “Parameterized Algorithms for
Modular-Width”. In: Parameterized and Exact Computation - 8th International Symposium,
IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers. Ed. by
Gregory Z. Gutin and Stefan Szeider. Vol. 8246. Lecture Notes in Computer Science. Springer,
2013, pp. 163–176.

[84] Tibor Gallai. “Transitiv orientierbare graphen”. In: Acta Mathematica Hungarica 18.1-2 (1967),
pp. 25–66.

280 Bibliography

[85] Robert Ganian. “Using Neighborhood Diversity to Solve Hard Problems”. In: CoRR abs/1201.3091
(2012). arXiv: 1201.3091.

[86] Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov.
“The Fine-Grained Complexity of Graph Homomorphism Parameterized by Clique-Width”. In:
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff.
Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 66:1–66:20.

[87] Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, and Patrice Ossona de Mendez.
“Shrub-depth: Capturing Height of Dense Graphs”. In: Log. Methods Comput. Sci. 15.1 (2019).

[88] Robert Ganian, Petr Hlinený, Jaroslav Nesetril, et al. “When Trees Grow Low: Shrubs and
Fast MSO1”. In: Mathematical Foundations of Computer Science 2012 - 37th International Sym-
posium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings. Ed. by Branislav
Rovan, Vladimiro Sassone, and Peter Widmayer. Vol. 7464. Lecture Notes in Computer Science.
Springer, 2012, pp. 419–430.

[89] Robert Ganian and Viktoriia Korchemna. “Slim Tree-Cut Width”. In: 17th International Sym-
posium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam,
Germany. Ed. by Holger Dell and Jesper Nederlof. Vol. 249. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022, 15:1–15:18.

[90] Robert Ganian, Friedrich Slivovsky, and Stefan Szeider. “Meta-kernelization with structural
parameters”. In: J. Comput. Syst. Sci. 82.2 (2016), pp. 333–346.

[91] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[92] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some Simplified NP-Complete
Graph Problems”. In: Theor. Comput. Sci. 1.3 (1976), pp. 237–267.

[93] William I. Gasarch. “Guest Column: The Third P=?NP Poll”. In: SIGACT News 50.1 (2019),
38–59.

[94] Bas A. M. van Geffen, Bart M. P. Jansen, Arnoud A. W. M. de Kroon, and Rolf Morel. “Lower
Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth”. In: J. Graph
Algorithms Appl. 24.3 (2020), pp. 461–482.

[95] Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. “Tight Bounds
for Counting Colorings and Connected Edge Sets Parameterized by Cutwidth”. In: 39th
International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March
15-18, 2022, Marseille, France (Virtual Conference). Ed. by Petra Berenbrink and Benjamin
Monmege. Vol. 219. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 36:1–
36:20.

[96] Jiong Guo and Danny Hermelin, eds. 11th International Symposium on Parameterized and
Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark. Vol. 63. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[97] Michel Habib and Christophe Paul. “A survey of the algorithmic aspects of modular decompo-
sition”. In: Comput. Sci. Rev. 4.1 (2010), pp. 41–59.

[98] György Hajós. “Über eine Konstruktion nicht nn-färbbarer Graphen”. In: Wiss. Z. Martin
Luther Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), pp. 116–117.

Bibliography 281

https://arxiv.org/abs/1201.3091

[99] Falko Hegerfeld and Stefan Kratsch. “Solving Connectivity Problems Parameterized by
Treedepth in Single-Exponential Time and Polynomial Space”. In: 37th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier,
France. Ed. by Christophe Paul and Markus Bläser. Vol. 154. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, 29:1–29:16.

[100] Falko Hegerfeld and Stefan Kratsch. “Tight algorithms for connectivity problems parameter-
ized by clique-width”. In: CoRR abs/2302.03627 (2023). arXiv: 2302.03627.

[101] Falko Hegerfeld and Stefan Kratsch. “Tight Algorithms for Connectivity Problems Parameter-
ized by Modular-Treewidth”. In: CoRR abs/2302.14128 (2023). arXiv: 2302.14128.

[102] Falko Hegerfeld and Stefan Kratsch. “Towards Exact Structural Thresholds for Parameterized
Complexity”. In: 17th International Symposium on Parameterized and Exact Computation,
IPEC 2022, September 7-9, 2022, Potsdam, Germany. Ed. by Holger Dell and Jesper Nederlof.
Vol. 249. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 17:1–17:20.

[103] Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. “Elimination Distances, Blocking Sets,
and Kernels for Vertex Cover”. In: SIAM J. Discret. Math. 36.3 (2022), pp. 1955–1990.

[104] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of k-SAT”. In: J. Comput.
Syst. Sci. 62.2 (2001), pp. 367–375.

[105] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Problems Have Strongly
Exponential Complexity?” In: J. Comput. Syst. Sci. 63.4 (2001), pp. 512–530.

[106] Yoichi Iwata and Yuichi Yoshida. “On the Equivalence among Problems of Bounded Width”.
In: Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September
14-16, 2015, Proceedings. Ed. by Nikhil Bansal and Irene Finocchi. Vol. 9294. Lecture Notes in
Computer Science. Springer, 2015, pp. 754–765.

[107] Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. “Structural Parameteriza-
tions with Modulator Oblivion”. In: Algorithmica 84.8 (2022), pp. 2335–2357.

[108] Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. “Close Relatives (Of
Feedback Vertex Set), Revisited”. In: 16th International Symposium on Parameterized and
Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal. Ed. by Petr A. Golovach
and Meirav Zehavi. Vol. 214. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
21:1–21:15.

[109] Lars Jaffke and Bart M. P. Jansen. “Fine-grained parameterized complexity analysis of graph
coloring problems”. In: Discret. Appl. Math. 327 (2023), pp. 33–46.

[110] Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. “Vertex deletion parameterized
by elimination distance and even less”. In: STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by Samir Khuller and
Virginia Vassilevska Williams. ACM, 2021, pp. 1757–1769.

[111] Bart M. P. Jansen and Jesper Nederlof. “Computing the chromatic number using graph
decompositions via matrix rank”. In: Theor. Comput. Sci. 795 (2019), pp. 520–539.

[112] Ojvind Johansson. “Clique-decomposition, NLC-decomposition, and modular decomposition-
relationships and results for random graphs”. In: Congressus Numerantium (1998), pp. 39–
60.

[113] Meir Katchalski, William McCuaig, and Suzanne M. Seager. “Ordered colourings”. In: Discret.
Math. 142.1-3 (1995), pp. 141–154.

282 Bibliography

https://arxiv.org/abs/2302.03627
https://arxiv.org/abs/2302.14128

[114] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. “Structural parameters, tight
bounds, and approximation for (k, r)-center”. In: Discrete Applied Mathematics 264 (2019),
pp. 90–117.

[115] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. “Structurally parameterized
d-scattered set”. In: Discret. Appl. Math. 308 (2022), pp. 168–186.

[116] Ton Kloks. Treewidth, Computations and Approximations. Vol. 842. Lecture Notes in Computer
Science. Springer, 1994.

[117] Tuukka Korhonen. “A Single-Exponential Time 2-Approximation Algorithm for Treewidth”. In:
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022. IEEE, 2021, pp. 184–192.

[118] Tuukka Korhonen and Daniel Lokshtanov. “An Improved Parameterized Algorithm for Treewidth”.
In: CoRR abs/2211.07154 (2022). To appear at STOC 2023. arXiv: 2211.07154.

[119] Stefan Kratsch and Florian Nelles. “Efficient and Adaptive Parameterized Algorithms on
Modular Decompositions”. In: 26th Annual European Symposium on Algorithms, ESA 2018,
August 20-22, 2018, Helsinki, Finland. Ed. by Yossi Azar, Hannah Bast, and Grzegorz Herman.
Vol. 112. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 55:1–55:15.

[120] Stefan Kratsch and Florian Nelles. “Efficient parameterized algorithms on graphs with het-
erogeneous structure: Combining tree-depth and modular-width”. In: CoRR abs/2209.14429
(2022). arXiv: 2209.14429.

[121] O-joung Kwon, Rose McCarty, Sang-il Oum, and Paul Wollan. “Obstructions for bounded
shrub-depth and rank-depth”. In: J. Comb. Theory, Ser. B 149 (2021), pp. 76–91.

[122] Michael Lampis. “Algorithmic Meta-theorems for Restrictions of Treewidth”. In: Algorithmica
64.1 (2012), pp. 19–37.

[123] Michael Lampis. “Finer Tight Bounds for Coloring on Clique-Width”. In: SIAM J. Discret. Math.
34.3 (2020), pp. 1538–1558.

[124] John M. Lewis and Mihalis Yannakakis. “The Node-Deletion Problem for Hereditary Properties
is NP-Complete”. In: J. Comput. Syst. Sci. 20.2 (1980), pp. 219–230.

[125] Jason Li and Jesper Nederlof. “Detecting Feedback Vertex Sets of Size k in O⋆ (2.7k) Time”.
In: ACM Trans. Algorithms 18.4 (2022), 34:1–34:26.

[126] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Known Algorithms on Graphs of
Bounded Treewidth Are Probably Optimal”. In: ACM Trans. Algorithms 14.2 (2018), 13:1–
13:30.

[127] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Lower bounds based on the Exponential
Time Hypothesis”. In: Bull. EATCS 105 (2011), pp. 41–72.

[128] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. “Faster Parameterized Algorithms Using Linear Programming”. In: ACM Trans.
Algorithms 11.2 (2014), 15:1–15:31.

[129] Daniel Lokshtanov and Jesper Nederlof. “Saving space by algebraization”. In: Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010. Ed. by Leonard J. Schulman. ACM, 2010, pp. 321–330.

[130] Loïc Magne, Christophe Paul, Abhijat Sharma, and Dimitrios M. Thilikos. “Edge-trewidth:
Algorithmic and combinatorial properties”. In: CoRR abs/2112.07524 (2021). arXiv: 2112.
07524.

Bibliography 283

https://arxiv.org/abs/2211.07154
https://arxiv.org/abs/2209.14429
https://arxiv.org/abs/2112.07524
https://arxiv.org/abs/2112.07524

[131] Dániel Marx, Govind S. Sankar, and Philipp Schepper. “Anti-Factor Is FPT Parameterized
by Treewidth and List Size (But Counting Is Hard)”. In: 17th International Symposium on
Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany.
Ed. by Holger Dell and Jesper Nederlof. Vol. 249. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 22:1–22:23.

[132] Dániel Marx, Govind S. Sankar, and Philipp Schepper. “Degrees and Gaps: Tight Complexity
Results of General Factor Problems Parameterized by Treewidth and Cutwidth”. In: 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16,
2021, Glasgow, Scotland (Virtual Conference). Ed. by Nikhil Bansal, Emanuela Merelli, and
James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
95:1–95:20.

[133] Stefan Mengel. “Parameterized Compilation Lower Bounds for Restricted CNF-Formulas”. In:
Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings. Ed. by Nadia Creignou and Daniel Le Berre.
Vol. 9710. Lecture Notes in Computer Science. Springer, 2016, pp. 3–12.

[134] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. “Matching is as easy as matrix
inversion”. In: Combinatorica 7.1 (1987), pp. 105–113.

[135] Wojciech Nadara, Michal Pilipczuk, and Marcin Smulewicz. “Computing Treedepth in Polyno-
mial Space and Linear FPT Time”. In: 30th Annual European Symposium on Algorithms, ESA
2022, September 5-9, 2022, Berlin/Potsdam, Germany. Ed. by Shiri Chechik, Gonzalo Navarro,
Eva Rotenberg, and Grzegorz Herman. Vol. 244. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 79:1–79:14.

[136] Jesper Nederlof. “Algorithms for NP-Hard Problems via Rank-Related Parameters of Matrices”.
In: Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion
of His 60th Birthday. Ed. by Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen.
Vol. 12160. Lecture Notes in Computer Science. Springer, 2020, pp. 145–164.

[137] Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. “Hamilto-
nian Cycle Parameterized by Treedepth in Single Exponential Time and Polynomial Space”.
In: Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020,
Leeds, UK, June 24-26, 2020, Revised Selected Papers. Ed. by Isolde Adler and Haiko Müller.
Vol. 12301. Lecture Notes in Computer Science. Springer, 2020, pp. 27–39.

[138] Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. “Isolation
Schemes for Problems on Decomposable Graphs”. In: 39th International Symposium on
Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France
(Virtual Conference). Ed. by Petra Berenbrink and Benjamin Monmege. Vol. 219. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 50:1–50:20.

[139] Jesper Nederlof and Johan M. M. van Rooij. “Inclusion/Exclusion Branching for Partial
Dominating Set and Set Splitting”. In: Parameterized and Exact Computation - 5th International
Symposium, IPEC 2010, Chennai, India, December 13-15, 2010. Proceedings. Ed. by Venkatesh
Raman and Saket Saurabh. Vol. 6478. Lecture Notes in Computer Science. Springer, 2010,
pp. 204–215.

[140] Jesper Nederlof, Johan M. M. van Rooij, and Thomas C. van Dijk. “Inclusion/Exclusion Meets
Measure and Conquer”. In: Algorithmica 69.3 (2014), pp. 685–740.

[141] Jaroslav Nesetril and Patrice Ossona de Mendez. “On Low Tree-Depth Decompositions”. In:
Graphs Comb. 31.6 (2015), pp. 1941–1963.

284 Bibliography

[142] Jaroslav Nešeťril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms.
Vol. 28. Algorithms and combinatorics. Springer, 2012.

[143] Jaroslav Nesetril and Patrice Ossona de Mendez. “Tree-depth, subgraph coloring and homo-
morphism bounds”. In: Eur. J. Comb. 27.6 (2006), pp. 1022–1041.

[144] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[145] Karolina Okrasa, Marta Piecyk, and Pawel Rzazewski. “Full Complexity Classification of the
List Homomorphism Problem for Bounded-Treewidth Graphs”. In: 28th Annual European
Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference).
Ed. by Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders. Vol. 173. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 74:1–74:24.

[146] Karolina Okrasa and Pawel Rzazewski. “Fine-Grained Complexity of the Graph Homomor-
phism Problem for Bounded-Treewidth Graphs”. In: SIAM J. Comput. 50.2 (2021), pp. 487–
508.

[147] Sang-il Oum. “Approximating rank-width and clique-width quickly”. In: ACM Trans. Algorithms
5.1 (2008), 10:1–10:20.

[148] Sang-il Oum. “Rank-width is less than or equal to branch-width”. In: J. Graph Theory 57.3
(2008), pp. 239–244.

[149] Sang-il Oum and Paul D. Seymour. “Approximating clique-width and branch-width”. In: J.
Comb. Theory, Ser. B 96.4 (2006), pp. 514–528.

[150] Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. “Model Counting for CNF Formulas
of Bounded Modular Treewidth”. In: Algorithmica 76.1 (2016), pp. 168–194.

[151] Marta Piecyk and Pawel Rzazewski. “Fine-Grained Complexity of the List Homomorphism
Problem: Feedback Vertex Set and Cutwidth”. In: 38th International Symposium on Theoretical
Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual
Conference). Ed. by Markus Bläser and Benjamin Monmege. Vol. 187. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, 56:1–56:17.

[152] Michal Pilipczuk. “Problems Parameterized by Treewidth Tractable in Single Exponential
Time: A Logical Approach”. In: Mathematical Foundations of Computer Science 2011 - 36th
International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings.
Ed. by Filip Murlak and Piotr Sankowski. Vol. 6907. Lecture Notes in Computer Science.
Springer, 2011, pp. 520–531.

[153] Michal Pilipczuk, Patrice Ossona de Mendez, and Sebastian Siebertz. “Transducing paths
in graph classes with unbounded shrubdepth”. In: CoRR abs/2203.16900 (2022). arXiv:
2203.16900.

[154] Michal Pilipczuk and Sebastian Siebertz. “Polynomial bounds for centered colorings on proper
minor-closed graph classes”. In: J. Comb. Theory, Ser. B 151 (2021), pp. 111–147.

[155] Michal Pilipczuk and Marcin Wrochna. “On Space Efficiency of Algorithms Working on
Structural Decompositions of Graphs”. In: ACM Trans. Comput. Theory 9.4 (2018), 18:1–
18:36.

[156] Willem J. A. Pino, Hans L. Bodlaender, and Johan M. M. van Rooij. “Cut and Count and Repre-
sentative Sets on Branch Decompositions”. In: 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark. Ed. by Jiong Guo
and Danny Hermelin. Vol. 63. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016, 27:1–27:12.

Bibliography 285

https://arxiv.org/abs/2203.16900

[157] Alex Pothen. “The complexity of optimal elimination trees”. In: Technical Report (1988).

[158] Michaël Rao. “Clique-width of graphs defined by one-vertex extensions”. In: Discret. Math.
308.24 (2008), pp. 6157–6165.

[159] Michaël Rao. “Décompositions de graphes et algorithmes efficaces”. Theses. Université Paul
Verlaine - Metz, June 2006.

[160] Neil Robertson and Paul D. Seymour. “Graph Minors. II. Algorithmic Aspects of Tree-Width”.
In: J. Algorithms 7.3 (1986), pp. 309–322.

[161] Neil Robertson and Paul D. Seymour. “Graph minors. X. Obstructions to tree-decomposition”.
In: J. Comb. Theory, Ser. B 52.2 (1991), pp. 153–190.

[162] Johan M. M. van Rooij. “A Generic Convolution Algorithm for Join Operations on Tree
Decompositions”. In: Computer Science - Theory and Applications - 16th International Computer
Science Symposium in Russia, CSR 2021, Sochi, Russia, June 28 - July 2, 2021, Proceedings.
Ed. by Rahul Santhanam and Daniil Musatov. Vol. 12730. Lecture Notes in Computer Science.
Springer, 2021, pp. 435–459.

[163] Johan M. M. van Rooij, Hans L. Bodlaender, Erik Jan van Leeuwen, Peter Rossmanith,
and Martin Vatshelle. “Fast Dynamic Programming on Graph Decompositions”. In: CoRR
abs/1806.01667 (2018). arXiv: 1806.01667.

[164] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. “Dynamic Programming on
Tree Decompositions Using Generalised Fast Subset Convolution”. In: Algorithms - ESA 2009,
17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings.
Ed. by Amos Fiat and Peter Sanders. Vol. 5757. Lecture Notes in Computer Science. Springer,
2009, pp. 566–577.

[165] Sigve Hortemo Sæther and Jan Arne Telle. “Between Treewidth and Clique-Width”. In:
Algorithmica 75.1 (2016), pp. 218–253.

[166] Paul D. Seymour and Robin Thomas. “Graph Searching and a Min-Max Theorem for Tree-
Width”. In: J. Comb. Theory, Ser. B 58.1 (1993), pp. 22–33.

[167] Noam Ta-Shma. “A simple proof of the Isolation Lemma”. In: Electron. Colloquium Comput.
Complex. 22 (2015), p. 80.

[168] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. “Mixed Searching and Proper-Path-Width”.
In: Theor. Comput. Sci. 137.2 (1995), pp. 253–268.

[169] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. “Simpler Linear-Time
Modular Decomposition Via Recursive Factorizing Permutations”. In: Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games. Ed. by Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, et al. Vol. 5125. Lecture Notes in Computer
Science. Springer, 2008, pp. 634–645.

[170] Jan Arne Telle and Andrzej Proskurowski. “Practical Algorithms on Partial k-Trees with an
Application to Domination-like Problems”. In: Algorithms and Data Structures, Third Workshop,
WADS ’93, Montréal, Canada, August 11-13, 1993, Proceedings. Ed. by Frank K. H. A. Dehne,
Jörg-Rüdiger Sack, Nicola Santoro, and Sue Whitesides. Vol. 709. Lecture Notes in Computer
Science. Springer, 1993, pp. 610–621.

[171] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. “Cutwidth I: A linear time
fixed parameter algorithm”. In: J. Algorithms 56.1 (2005), pp. 1–24.

286 Bibliography

https://arxiv.org/abs/1806.01667

[172] Martin Vatshelle. “New width parameters of graphs”. In: Doctoral Dissertation, The University
of Bergen (2012).

[173] Egon Wanke. “k-NLC Graphs and Polynomial Algorithms”. In: Discret. Appl. Math. 54.2-3
(1994), pp. 251–266.

[174] Michal Wlodarczyk. “Clifford Algebras Meet Tree Decompositions”. In: Algorithmica 81.2
(2019), pp. 497–518.

[175] Gerhard J. Woeginger. “Space and Time Complexity of Exact Algorithms: Some Open Problems
(Invited Talk)”. In: Parameterized and Exact Computation, First International Workshop, IWPEC
2004, Bergen, Norway, September 14-17, 2004, Proceedings. Ed. by Rodney G. Downey, Michael
R. Fellows, and Frank K. H. A. Dehne. Vol. 3162. Lecture Notes in Computer Science. Springer,
2004, pp. 281–290.

[176] Paul Wollan. “The structure of graphs not admitting a fixed immersion”. In: J. Comb. Theory,
Ser. B 110 (2015), pp. 47–66.

[177] Michal Ziobro and Marcin Pilipczuk. “Finding Hamiltonian Cycle in Graphs of Bounded
Treewidth: Experimental Evaluation”. In: ACM J. Exp. Algorithmics 24.1 (2019), 2.7:1–2.7:18.

Bibliography 287

Appendix A
A.1 Problem Definitions

In this section, we define all problems appearing in this thesis. Usually, we denote cost/ob-
jective functions by c, the cost/cardinality constraint by b (short for budget), and solution
sets are denoted by X.

A.1.1 Graph Problems

VERTEX COVER

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that G−X contains no edges?

INDEPENDENT SET

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≥ b, such that G[X] contains no edges?

ODD CYCLE TRANSVERSAL

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , |X| ≤ b, such that G−X is bipartite?

DOMINATING SET

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that N [X] = V ?

TOTAL DOMINATING SET

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that N(v) ∩X ̸= ∅ for all v ∈ V ?

q-COLORING

Input: An undirected graph G = (V,E).
Question: Is χ(G) ≤ q?

289

LIST q-COLORING

Input: An undirected graph G = (V,E) and lists Λ(v) ⊆ [q] for all v ∈ V .
Question: Is there a q-coloring φ : V → [q] of G usch that φ(v) ∈ Λ(v) for all v ∈ V ?

DELETION TO q-COLORABLE

Input: An undirected graph G = (V,E), a cost function c : V → N>0 and an
integer b ∈ N.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that G−X is q-colorable?

MAXIMUM CUT

Input: An undirected graph G = (V,E) and an integer b.
Question: Is there a set X ⊆ V , such that |{{u, v} ∈ E : u ∈ X, v /∈ X}| ≥ b?

H -FREE DELETION

Input: An undirected graph G = (V,E) and an integer b.
Question: Is there a set X ⊆ V , |X| ≤ b, such that G − X contains no subgraph

isomorphic to H?

A.1.2 Connectivity Problems

(NODE) STEINER TREE

Input: An undirected graph G = (V,E), a set of terminals K ⊆ V , a cost function
c : V → N \ {0} and an integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that K ⊆ X and G[X] is connected?

CONNECTED VERTEX COVER

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that G−X contains no edges and
G[X] is connected?

CONNECTED DOMINATING SET

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that N [X] = V and G[X] is
connected?

CONNECTED ODD CYCLE TRANSVERSAL

Input: An undirected graph G = (V,E), a cost function c : V → N>0 and an
integer b ∈ N.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that G[X] is connected and G−X

is 2-colorable?

290 Appendix A Appendix

CONNECTED DELETION TO q-COLORABLE

Input: An undirected graph G = (V,E), a cost function c : V → N>0 and an
integer b ∈ N.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that G[X] is connected and G−X

is q-colorable?

FEEDBACK VERTEX SET

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≤ b, such that G−X contains no cycles?

INDUCED FOREST

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and an
integer b.

Question: Is there a set X ⊆ V , c(X) ≥ b, such that G[X] contains no cycles?

A.1.3 Satisfiability and Hitting Set

SATISFIABILITY

Input: A boolean formula σ in conjunctive normal form.
Question: Is there a satisfying assignment τ for σ?

q-SATISFIABILITY

Input: A boolean formula σ in conjunctive normal form with clauses of size at
most q.

Question: Is there a satisfying assignment τ for σ?

q-HITTING SET

Input: A universe U and a set family F over U of sets of size at most q and an
integer h.

Question: Is there a set H ⊆ U , |H| ≤ h, such that H ∩ S ̸= ∅ for all S ∈ F?

A.1 Problem Definitions 291

Selbstständigkeitserklärung

„Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von
mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr.
42/2018 am 11.07.2018 angegebenen Hilfsmittel angefertigt habe.“

Berlin, 24.04.2023

Falko Hegerfeld

	Titlepage
	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	1 Introduction
	1.1 Width Parameters
	1.1.1 A Case Study: 3-Coloring

	1.2 Depth Parameters and Modulators
	1.3 Connectivity Problems
	1.4 Organization of the Thesis

	I Basics
	2 Preliminaries
	2.1 Notation
	2.2 Complexity
	2.3 Parameterized Complexity
	2.4 Graph Parameters
	2.4.1 Width Parameters
	2.4.2 Beyond Width Parameters
	2.4.3 Lifting to Twinclasses and Modules
	2.4.4 Parameter Relationships

	3 Techniques
	3.1 Connectivity Problems and Cut-and-Count
	3.1.1 Connectivity Problems
	3.1.2 Cut-and-Count-Technique
	3.1.3 Related Work and Techniques

	3.2 SETH-Lower Bounds Relative to Width Parameters
	3.2.1 General Lower Bound Principle
	3.2.2 Lower Bound for Total Dominating Set [cutwidth]
	3.2.3 Lower Bound for Dominating Set [tc-cutwidth]

	II Connectivity Problems on Dense Width Parameters
	4 Introduction
	4.1 Connectivity Problems Parameterized by Clique-Width
	4.2 Connectivity Problems Parameterized by Modular-Treewidth
	4.3 Fine-Grained Complexity Landscape
	4.4 Related Work
	4.5 Organization

	5 Algorithms Parameterized By Clique-Width
	5.1 Dynamic Programming on Clique Expressions
	5.1.1 Algorithmic Techniques
	5.1.2 Nice Clique-Expressions

	5.2 Fast Convolution Algorithms
	5.2.1 Trimmed Subset Convolution
	5.2.2 Lattice-based Convolution

	5.3 Connected Vertex Cover Algorithm
	5.4 Connected Dominating Set Algorithm
	5.5 Connected Deletion to q-Colorable Algorithm
	5.6 Steiner Tree Algorithm

	6 Algorithms Parameterized By Modular-Treewidth
	6.1 Dynamic Programming for Modular-Treewidth
	6.1.1 Cut and Count for Modular-Treewidth

	6.2 Independent Set Algorithm
	6.3 Steiner Tree Reduction
	6.4 Connected Dominating Set Reduction
	6.5 Connected Vertex Cover Algorithm
	6.5.1 Dynamic Programming for Prime Nodes

	6.6 Feedback Vertex Set Algorithm
	6.6.1 Structure of Optimum Induced Forests
	6.6.2 Application of Isolation Lemma
	6.6.3 Detecting Acyclicness
	6.6.4 Outer Dynamic Programming Algorithm
	6.6.5 Inner Dynamic Programming Algorithm

	7 Lower Bounds Parameterized By Clique-Width
	7.1 General Approach
	7.2 Connected Vertex Cover Lower Bound
	7.2.1 Path Gadget
	7.2.2 Complete Construction

	7.3 Connected Dominating Set Lower Bound
	7.3.1 Path Gadget
	7.3.2 Complete Construction

	8 Lower Bounds Parameterized By Modular-Treewidth
	8.1 General Approach
	8.2 Connected Vertex Cover Lower Bound
	8.2.1 Path Gadget Construction and Analysis
	8.2.2 Complete Construction

	8.3 Feedback Vertex Set Lower Bound

	9 Conclusion and Future Work

	III Beyond Width Parameters
	10 Introduction
	10.1 Connectivity Problems Parameterized By Treedepth
	10.2 Tight Lower Bounds Under Modulator-Parameterizations
	10.3 Organization

	11 Branching Algorithms on Treedepth Decompositions
	11.1 Overview
	11.2 Steiner Tree
	11.2.1 Adapting the Algorithm to Other Problems

	11.3 Connected Deletion to q-Colorable
	11.4 Connected Dominating Set
	11.5 Feedback Vertex Set

	12 Modulator Lower Bound for Vertex Cover
	12.1 Lower Bound
	12.2 Further Consequences

	13 Lower Bound for Deletion to q-Colorable
	13.1 Outline of Modulator Lower Bounds
	13.1.1 Technical Obstacle
	13.1.2 Outline of Construction
	13.1.3 Sparse Setting
	13.1.4 Dense Setting

	13.2 Construction of Critical Graphs
	13.3 Dense Setting
	13.3.1 Preliminary Gadgets
	13.3.2 Complete Construction
	13.3.3 Proofs

	13.4 Sparse Setting

	14 Algorithm for Deletion to q-Colorable
	15 Conclusion and Future Work

	IV Conclusion
	16 Summary
	17 Future Work
	Bibliography
	A Appendix
	A.1 Problem Definitions
	A.1.1 Graph Problems
	A.1.2 Connectivity Problems
	A.1.3 Satisfiability and Hitting Set

	Selbstständigkeitserklärung

