Petri Net Based Verification of Distributed Algorithms:
An Example”

Ekkart Kindler, Wolfgang Reisig, Hagen Volzer, Rolf Walter
Humboldt-Universitat zu Berlin'
Institut fur Informatik, D-10099 Berlin,Germany

May 22, 1996

Abstract

A technique to describe and to verify distributed algorithms is suggested. This tech-
nique (based on Petri nets) reduces the modelling- and analysis effort to a reasonable
expenditure. The paper outlines the technique along a typical network alogrithm, the
echo algorithm.

Keywords: Modelling, Correctness, Petri Nets, Verification Techniques, Temporal
Logic.

1 Introduction

A wide class of basic sequential algorithms (such as searching and sorting) can optimally be
formulated in Pascal like programming notation and verified in the style of Hoare logic. A
likewise generally accepted, integrated pair of techniques to formulate and verify distributed
algorithms still remains to emerge. This paper is intended to contribute to this purpose.

A distributed algorithm is adequately represented iff the employed operational prim-
itives focus the essentials of its algorithmic idea. Hence the adequacy of a representation
technique can best be demonstrated by help of a typical example. We have chosen Petri
nets as a modelling technique with atomic actions that receive, synchronize and forward
messages. The representation technique is demonstrated by help of the well-known echo
algorithm [3].

Likewise a distributed algorithm is adequately verified iff the proof argues tightly
along the operational primitives and the structure of the algorithm’s representation (e.g.
(2, 8,9, 13, 14]). We suggest a proof style which exploits standard techniques from Petri
net theory: Invariant properties of the echo algorithm are proven by help of P-invariants of
the corresponding Petri net.

The echo algorithm is a typical algorithm operating on an arbitrary, connected net-
work of agents. A distinguished agent called the initiator eventually takes a decision based
on the participation of all agents without having global knowledge about the network. To
do so, the initiator has to inform every other agent and decides only when he is sure that
every other agent has received and acknowledged this information.

*supported by the DFG—projects ” Verteilte Algorithmen” and ” Konsensalgorithmen”
te—mail {kindler,reisig,voelzer,walter } @informatik.hu-berlin.de

The echo algorithm is used for quite a lot of purposes, e.g. as part of termination
detection [4, 12] or for finding a minimal spanning tree [5]. It is also known as PIF-algorithm
[11] and used for general synchronization tasks in networks. Its intuitive idea is simple, but
formal proofs (e.g.[1]) are rarely found.

The paper is organized as follows. In the first section we introduce the algorithm as
well as the modelling technique. The essential properties are stated in terms of classical linear
time temporal logic. Section 2 introduces some notations. The essence of the used proof
technique is presented in Section 3. Section 4 contains the verification of the echo algorithm.
An appendix elaborates the formal basis of the modelling and verification technique.

2 The echo algorithm

In this section we provide a Petri net representation of the echo algorithm. This serves to
recall the algorithm, as well as to informally introduce high-level Petri nets.

2.1 Modelling the echo algorithm

The echo algorithm works on a connected network of agents. The finite set of agents is
denoted by A and we assume that there is one distinguished agent ¢ € A called initiator.
Two agents z,y € A may be connected by a bidirectional channel. If there is a channel from
z to y we say z and y are neighbours. Figure 1 shows an example of a network of agents
with A = {i,a,b,c,d,e}. The connections between the agents are represented as a set of

N

Figure 1: A network of agents

pairs N C A x A, where a channel from z to y is represented as a pair (z,y). Note, that
for (z,y) € N we also have (y,z) € N, since we assume that channels are bidirectional. For
example, we have (a,i), (i,a) € N for the network of Fig. 1, but (i,d) € N. To sum up, the
static structure of the network of agents is represented as a set of agents A and a set of
edges N. These two sets form the domain of the forthcoming high-level Petri net.

Next we describe the dynamic behaviour of the echo algorithm by a Petri net. A Petri
net (for an example see Fig. 2) consists of a set of places, which are graphically represented by
ellipses, and a set of transitions, which are represented by squares. Places and transitions
are related to each other by arcs. A state of a Petri net is represented by tokens on the
different places of the Petri net. A state is changed by an occurrence of a transition. In
conventional Petri nets tokens are not distinguishable and considered to be black. Here, we
use high-level Petri nets where tokens are elements of a particular token domain.

quiet t1 waiting t2 terminated

4 P

mailbox

Figure 2: Behaviour of the initiator

For modelling the behaviour of an agent z € A we distinguish two cases: z is the
initiator or z is one of the other agents. The Petri net model for & being the initiator
is shown in Fig. 2. The initiator starts the algorithm by sending a message to each of
his neighbours. Sending a message from agent z to agent y is modelled by putting token
(y,x) on place mailbox — note, that we set y in the first place because the message is
put to y’s mailbox. Then, sending a message from z to each of his neighbours y1,...,y,
is formalized by the arc-inscription M (z) = [(y1,), ..., (yn,2)]. After sending a message
to each of his neighbours the initiator waits (at place waiting) until he receives a message
from each of his neighbours and, then, terminates. According to the above interpretation of
tokens (z, y) on place mailbox, an agent z has received messages from each of his neighbours
Y1, -, Yn, when all tokens M(z) = [(z,y1),. .., (z,ys)] are present on mailbox. Thus, the
arc-inscription M (z) formalizes that the initiator must wait for a message from each of his
neighbours.

The Petri net modelling the behaviour of the other agents is shown in Fig. 3. When an
agent x receives a message of some agent y — represented by a token (z,y) on place mailbox
— he sends a message to all other neighbours. Then, we call y the father of z. Sending
these messages is modelled by the arc-inscription M (z) — (y,«). Sending the message to
his father is delayed (cf. place pending-with) until he has received a message from all other
agents (arc-inscription M (z) — (z,y)). Upon reception of all these messages, r returns a
message to his father y and terminates at place accepted.

Now, we have formalized the behaviour of all agents. To get the complete behaviour
of the network of agents we just have to combine the two Petri nets from Fig. 2 and 3 to

mailbox

O

uninformed t3 pending-with t4 accepted

Figure 3: Behaviour of the other agents

a single Petri net as shown in Fig. 4. Here, we have used Petri nets informally, only. A

quiet t1 waiting t2 terminated
©—X>) :) @
& 4 S @D
mailbox
(x.y) v.X)
\
D &
¥ %,
D Q—J/
D
uninformed t3 pending-with t4 accepted

pending = prl(pending-with)

Figure 4: Petri net X: the echo algorithm

concise definition of high-level Petri nets is given in the appendix. The mathematical theory
of high-level Petri nets can be found in [6].

2.2 Properties of the echo algorithm

Now, we will formalize the essential properties of the echo algorithm, which will be verified
in Sect. 4. Again, we introduce our formalism in an informal way. As usual, we distinguish
safety and liveness properties.

The first property states that the initiator will eventually terminate, which is a liveness
property. More formally, this means that each run of the echo algorithm has a state with a
token ¢ at place terminated. This property is represented in a temporal logic-like notation

by

<& terminated(4) (L)

The second property states that the initiator will not terminate before all other agents
have accepted, which is a safety property. We represent this property by

Ve € A\{i} O terminated(i) — accepted(x) (S)

3 Some verification techniques

The main purpose of this paper is to demonstrate the application of Petri nets for verifying
distributed algorithms. Before we will verify the echo algorithm in Sect. 4, we informally
introduce some specific Petri net verification techniques and some appropriate notations.
Again, a formal presentation can be found in the appendix.

The current state of a high-level Petri net represents, which tokens are present at
the different places of the net. Formally, a state is a mapping from the set of places to
multisets over a given domain. Therefore, we introduce some notations for multisets. A finite
multiset is represented as [a1, as, . .., a,], where multiple occurrences of a single element are
allowed (and relevant). In particular [a] denotes the multiset with exactly one element a; []
represents the empty multiset. For a multiset m and some element a, we denote the number
of occurrences of a in m by m[a]. The addition of two multisets m; and ms is denoted by
my + mqy and defined by (m; + ms)[a] = my[a] + ms[a] for each element a.

Now, for a given state the name of a place in some expression or proposition can
be interpreted as the multiset of tokens which currently reside at this place. For example,
in the initial state the simple expression quiet denotes the multiset [{]. This way, we can
argue on states of a Petri net. For example, quiet + waiting + terminated = [i] denotes all
states in which there is exactly one token ¢ on one of the places quiet, waiting, or terminated.
From propositions on states we build two kinds of temporal propositions: for a proposition
p the temporal proposition O p means, that each reachable state of a Petri net satisfies the
proposition p. When O p is satisfied by a Petri net, we say, that p is an invariant of this
Petri net. The temporal proposition <& p means, that in each run there exists a state which
satisfies p. The symbols O and < are called ‘always’ and ‘eventually’ operator, respectively.

For example, the echo algorithm satisfies O quiet +waiting +terminated = [i]. This can
easily be verified by a standard technique in Petri net theory, called P-invariant-analysis.
A P-invariant is an expression, which is built from some place names of the Petri net,
such that an occurrence of a transition does not change the value of this expression. For
example, quiet + waiting + terminated is a P-invariant. To verify a P-invariant we have to
check the validity of one equation for each transition of the Petri net. For a transition ¢ the
left-hand side of the corresponding equation is the P-invariant expression, where each place
name p is substituted by the arc-inscription of the arc from p to t (if there is no arc we
substitute []); the right-hand side of the equation is the P-invariant expression, where each
place name is substituted by the arc-inscription of the arc from t to p. For the P-invariant
quiet+waiting+terminated and transition ¢; and t5 we get the equations [z]+[]+[] = [J+[z]+]]
and [| 4 [z] + [] = [] + [] + [2] respectively, which are obviously valid. For t3 and t4 we get
the trivial equation [J+ [+ [J=[+ [+]

From this P-invariant and the initial state, we immediately get O quiet 4 waiting +
terminated = [i]. Now, we can project this equality on multisets to a single element, which
yields a proposition on numbers. For example, the projection for the initiator i reads:

O quiet[i] + waiting[i] 4 terminated[i] = 1
This invariant will be used in the next section.

Although, many interesting invariants can be proved by P-invariants, some cannot
be proven this way. In this case we use the classical technique of assertional reasoning: for
proving an invariant p we check two conditions:

1. Proposition p must hold initially.

2. When p holds before the occurrence of a transition, then p holds after the occurrence
of this transition, too.

Finally, we introduce an abbreviation that we have already used in the formalization
of the properties of the echo algorithm. When we state that some multiset m contains at
least the element a, we write m(a) — this use of parentheses indicates that multiset m is
interpreted as a predicate. Formally, m(a) is just an abbreviation for m[a] > 1. Thus,
terminated (i) — accepted () is an abbreviation for terminated[i] > 1 — accepted[z] > 1.

4 Verification of the echo algorithm

This section will give a formal proof of the above properties (S) and (L). We start with some
basic properties immediately derivable from the Petri net.

4.1 Basic properties of the echo algorithm

First we observe that tokens on each place always belong to a restricted subset of the token
domain. For example, the place uninformed never contains a token ¢, which represents the
initiator. So, we assign to each place of the net a subset of the token domain of the Petri
net, which we call the type of the corresponding place. We call such an assignment a type
wnvariant of the Petri net iff in each reachable state of the Petri net each place contains only
tokens of its type. Table 1 shows a type invariant for ¥. This type invariant is easily verified
by assertional reasoning. Next we state some more invariants of the algorithm which are

quiet {i} uninformed A\ {i}
waiting {i} pending-with N N ((A\ {¢}) x A4)
terminated {i} accepted A\ {i}
mailbox N

Table 1: A type invariant for X

easily derived from the model by classical Petri net P-invariants.

The first invariant states that the initiator is always in exactly one of the three local
states quiet, waiting or terminated. We denote this by:
O quiet[i] + waiting[i] 4+ terminated[i] = 1 (1)
An analogous statement holds for all other agents of the network Each of them is
always in exactly one of the three local states uninformed, pending® or accepted:
Ve € A\ {i} O uninformed[z]+ pending[z] + accepted[z] = 1 (2)

Finally, we derive from another P-invariant a more sophisticated invariant property
covering the life-cycle for messages. Each possible message (z,y) € N is in exactly one of
the following five local states:

1. (z,y) is not yet sent, i.e. (z,y) is virtually still with the sender, i.e. either quiet(y) or
uninformed(y) holds.

2. (z,y) is in the mailbox of z, i.e. mailbox(z,y) holds.
3. (z,y) is received as a wake-up-message, i.e. pending-with(z, y) holds.

4. (x,y) is put aside for later sending, i.e. pending-with(y, z) holds.

1Formally, the multiset pending is defined (as indicated in Fig. 4) as the projection on the first component
applied to the elements of the multiset pending-with. Thus, pending is a multiset over A and will be interpreted
as a predicate over agents.

5. (z,y) is received as a non-wake-up-message, i.e. either terminated(z) or accepted(z)

holds.

This property of messages is represented by the proposition:

V(z,y) € N 0O quiet[y] + uninformed[y] + mailbox[(z, y)] + pending-with[(z, y)] + (3)
pending-with[(y, z)] + terminated[z] + accepted[z] = 1

This invariant covers almost the whole net. Note, that invariant (3) has already some
interesting implications. For example, (3) shows that it never happens that one of two
neighbours has already accepted while the other one is still uninformed.

4.2 The safety property of the echo algorithm

At first we show the validity of property (S). A key argument for the whole proof is derivable
from looking at the place pending-with. This place always contains pairs of agents. In the
sequel, this set of pairs will be considered as a graph, called the pending-graph. Due to Table
1 the pending-graph is a subgraph of N. We prove now that the pending-graph is always
acyclic:

1 Lemma In ¥ holds:
O acyclic(pending-with) (4)

Proof: by assertional reasoning

1. (4) holds initially, since pending-with is initially empty.

2. Now we assume a state where the pending-graph is acyclic. We have to show that this
doesn’t change when a transition occurs.

(a) Occurrence of transitions t1 and t2 does not change the pending-graph.
(b) Occurrence of t4 leaves the pending-graph acyclic, since t4 retracts edges only.

(c) We consider now occurrence of t3 in mode [x = a,y = b]. This event is en-
abled only if uninformed(a) holds. Then, due to (3) and Table 1 proposition
-3z pending-with(z, @) must hold as well. That means that there is no edge di-
rected to a in the pending-graph when t3 occurs in mode [= a,y = b]. Thus,
occurrence of t3 cannot establish a cycle in the graph.

a

To show that the initiator terminates only if all other agents have accepted it suffices
to show that if the initiator is terminated then no agent is still uninformed or pending. We
prove the latter with the next two lemmata.

2 Lemma In ¥ holds
O pending(z) — —terminated (i) (5)

Proof: First we gain from (3):
V(z,y) € N 0O pending-with(z, y) — (—uninformed(y) A —accepted(y)) (6)
and from (2):
Vye A\ {i} 0O —(uninformed(y) A —accepted(y)) — pending(y) (7)
We derive from (6) and (7):
V(z,y) € N O pending-with(z,y) — (pending(y) Vy =) (8)
Proposition (8) means the following: For each pending agent z another agent y, who is the
father of z, is pending as well if y is not the initiator. By repetition of this argument we
obtain a sequence of pending agents. That sequence is by construction a path of the pending-
graph and is therefore acyclic by lemma 1. Moreover, the pending-graph and therewith every

path in it is finite. Due to (8) an end of the sequence must be the initiator. Therefore, the

following holds:

O pending(z) — 3z pending-with (z, ©) 9)

We know by (3) that pending-with(z,¢) implies —terminated(é). Thus, we obtain (5)
immediately from (9). O

Lemma In ¥ holds
O uninformed(z) — —terminated(:) (10)

Proof: by induction over reachability of nodes from 7 in (A4, N), i.e.

1. (10) holds for = i due to Table 1: The initiator is never uninformed.

2. We assume now (a,b) € N and the validity of (10) for z = a. Assuming uninformed(b)
we conclude —accepted(a) by (3). By (2) we distinguish three cases:

(a) @ =4: Then, —terminated(?) follows by (3) (taking « = 7 and y = b).
(b) pending(a): Then, —terminated(?) follows by lemma 2.

(c) uninformed(a): Then, —terminated(¢) follows by induction hypothesis.

Since the graph (A, N) is connected, the induction reaches every agent in the network. 7]

Theorem Petri net ¥ satisfies property (S).

Proof: Let z € A\ {i}. We fix a reachable state where terminated (i) holds. By lemmata
2 and 3 we get —uninformed(z) A —pending(z). Then, due to (1) accepted (z) must hold. 7]

4.3 The liveness property of the echo algorithm

Proposition (L) will be proven in two steps. First we show that the algorithm terminates.
We define a state proposition lockouty that holds in every state which doesn’t enable any
transition of the Petri net . Then, termination is denoted by

<& lockoutsy; (11)

The proposition
O lockouts, — terminated(¢) (12)

expresses that whenever the Petri net terminates, the initiator must be terminated. This
will be shown as a second step.

We show <& lockouts; by help of a descending variant. In analogy to P-invariants,
a descending variant is a state expression which contains names of places of the net. Its
value is a natural number. Each occurrence of a transition of the Petri net strictly decreases
that value. Thus, transition occurrences can happen only finitely many times. A suitable
descending variant for X is the simple expression

2||quiet|| + 1||waiting|| + 2||uninformed|| + 1||pending-with]|

where ||m|| € IN denotes the cardinality of the multiset m. This descending variant has an
intuitive interpretation: Tokens which represent agents are restricted to flow from left-hand
side to right-hand side of the net, where finally no more flow is possible. Formal verifica-
tion of that descending variant is similar to the verification of P-invariants as described in
section 2.2. A concise presentation is given in the appendix.

In order to prove (L) proposition (12) remains to be proven. We start with two
lemmata which state that in case of termination the places uninformed and pending-with are
empty.

5 Lemma In ¥ holds:

O uninformed(z) — —lockouty (13)
Proof: again by induction over reachability in (A4, N):

1. (13) holds for « = 7, because the initiator is never uninformed due to Table 1 .

2. We assume now (a,b) € N and the validity of (13) for z = a. Assuming uninformed(b)
we conclude —terminated(b) by Table 1, —accepted(b) by (2) and Table 1, furthermore
—pending-with (a, b) and —pending-with (b, a) by (3). Again by (3) we obtain quiet(a) V
mailbox(b, a) V uninformed(a).

(a) In case of quiet(a), transition t1 may occur in mode [z = a]. (Remember that
enabling of any transition in any mode implies —lockouty, .

(b) In case of mailbox(b, a), transition t3 may occur in mode [z = b, y = a], since we
assumed uninformed(b).

(c) In case of uninformed(a), we conclude —lockouts by induction hypothesis.

Since the graph (A, N) is connected, the induction reaches every agent in the network. 7]

6 Lemma In ¥ holds:

O pending(z) — —lockouty (14)

Proof: Assume a reachable state where at least one agent is pending, i.e. the pending-
graph is not empty. Due to lemma 1 we can find always a leaf in that graph, i.e. an agent
b with the property Jc : pending-with (b, ¢) A Vo : —pending-with(z,).

From pending-with (b, ¢) we conclude —terminated(b), maccepted(b) by (3) and for 2 # ¢
we conclude —pending-with (b,) by (2). Then, by (3) we gain quiet(z) V mailbox(b, z) V
uninformed(z) for those « with (2,b) € N and z # ¢. Again we distinguish:

1. In case of quiet(z) for any z, t1 may occur.
2. In case of uninformed(z) for any &, we conclude —lockouty by lemma 5.

3. In case of mailbox(b, z) for all z, t4 may occur in mode [z = b, y = ¢], since we assumed
pending-with (b,c).

Therewith (14) is proven. O

7 Theorem Petri net X satisfies property (L).

Proof: Obviously, (11) and (12) imply (L), where (11) is already shown. Thus, we prove
(12) now. We assume a state where lockouty holds. In such a state the place quiet is
obviously empty and due to lemma 5 and lemma 6 the places pending-with and uninformed
are empty as well. To sum it up we state:

O lockouty, — —quiet(z) A —uninformed(z) A —pending(z) (15)
Especially —quiet(7) holds when lockouts, holds and by (1) we gain:

O lockouts, — waiting(¢) V terminated (¢) (16)

Furthermore we know from Table 1 that the initiator is never in the local state accepted.
Thus, we gain by (3) from (15) for arbitrary neighbours z of the initiator:

V(i,z) € N O lockouts, — mailbox(i, z) V terminated(7) (17)

Combining (16) and (17) we gain:
V(i,z) € N 0O lockouts; — (mailbox(z, z) A waiting(?)) V terminated () (18)
In case of waiting(i) A mailbox(i, z) for all neighbours z of the initiator, t2 may occur

which contradicts lockouts,. Therefore, at least for one x this is not the case and there-

with terminated(?) follows by (18). O

With theorem 7 we have finished the proof of the liveness property (L) and the
verification of the echo algorithm is complete.

10

5 Conclusion

The echo-algorithm was discussed as an example showing that Petri nets are a feasible model
for the description of distributed algorithms. The correctness proof was carried out by help
of formal verification techniques that are tightly connected to the employed operational
model.

The presented proof follows the general aim of the approach to diminish the frequently
observed trade-off between technical precision and intuitive simplicity. The use of Petri nets
supports this aim, abstracting from a concrete programming notation together with the use
of techniques based on multisets and state expressions over the places of the Petri net.

Studies have shown that a lot of distributed algorithms fit to the proposed proof style,
e.g. [7, 10].

References

[1] L. Bougé. Modularité et Symétrie pour les Systéemes Répartis; Application au Langage
CSP. Rept. No. 87-2, LIENS, Univ. Paris 7, 1987.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[3] E.J.H. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE
Transactions on Software Engineering, SE-8(4):391-401, 1982.

[4] E. W. Dijkstra and C. S. Scholten. Diffusing computations. Information Processing
Letters, 1981.

[5] R. G. A. Gallager, P. Humblet, and M. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Systems,

5(1):66-77, 1983.

[6] K. Jensen. Coloured Petri Nets, Volume 1 of EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, 1992.

[7] E. Kindler and R. Walter: ”‘Message Passing Mutex”’. In Desel, J. (Ed.): Proceedings
of STRICT. Workshops in Computing. Springer-Verlag London: 1995: 205-219.

[8] L. Lamport. A temporal logic of actions. SRC Research Report 57, Digital Equipment
Corporation, Systems Research Center, April 1990.

[9] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly,
3(2):219-246, 1989.

[10] W. Reisig: ”‘Petri Net Models of Distributed Algorithms”’. In Leeuven, Jan van (Ed.):
Computer Science Today. Recent Trends and Developments. Lecture Notes in Computer
Science 1000. Berlin: Springer-Verlag: 1995: 441-454.

[11] A. Segall. Distributed network protocols. IEEE Transactions on Information Theory,
1T29-1:23-35, 1983.

[12] N. Shavit and N. Francez. A new approach to detection of locally indicative stability. In
L. Kott, editor, Proc. of th 13th ICALP, volume 226 of LNCS, pages 344-358. Springer-
Verlag, 1986.

11

[13] F. Stomp and W. P. de Roever. A principle for sequential phased reasoning about
distributed algorithms. Formal Aspects of Computing, 6:716-737, 1994.

[14] G. Tel. Topics in Distributed Algorithms, volume 1 of Cambridge International Series
on Parallel Computation. Cambridge University Press, 1991.

12

Appendix

A: System model

There are many different ways to formalize high-level Petri nets. Here we choose a notation
which allows for syntactic manipulation of {erms to derive properties from a given algebra.
We start with some notations for multisets, algebras, and terms. High-level Petri nets and
their dynamic behaviour follow.

Multisets For a countable set A, a mapping m : A — IN is called a multiset over A. The
set of all multisets over A is denoted MS(A). For better readability we write m[a] instead
of m(a) for a multiset m € MS(A) and a € A. The empty multiset O is defined by Ofa] = 0
for each a € A. The cardinality ||m|| of a multiset m € MS(A) is ||m| = 3 ., m[a]. A
multiset m € MS(A) is finite iff [|m|| € IN. The set of finite multisets over A is denoted by
MS;, (A4).

For two multisets m and m’ we define the relation m > m’ and the addition m + m’
pointwise: m > m’ iff for each a € A holds m[a] > m'[a] and (m + m')[a] = m[a] + m/[a].
For m > m' we define the difference m — m’ pointwise by (m — m’)[a] = m[a] — m/[a].

Algebras An algebra A = (A, OP) consists of a countable base set A of objects and a
finite set OP of total operations f : Ay x ... x A, — Ap41 for some n € IN where A; C A.

Variables, terms and assignments Let X be a set of symbols? and A = (A,OP) an
algebra. A pair X = (X, dom) is called variable set for A iff dom : X — 24 is a mapping,
that associates to each € X a sort dom(z) C A. We define the set of terms with respect to
a particular sort A’ C A of a given algebra: The set of terms over algebra .4 and a variable
set X = (X, dom) is denoted by T 4(X', A’) and inductively defined by:

1. 2 € Ta(X, A iff dom(z) C A,

2.If f: Ay x ... x A, — An41 is an operation of A, A,y1 C A’ and uy,...,u, €
T (X, Aj), then f(ug, ..., u,) € Ta(X, A

Note that we distinguish here between an operation f and the corresponding operation
symbol f by using a different type face. But we do not strictly keep up this distinction in
the paper. The distinction is necessary for technical reasons in the following definition of 3,
only.

Now we introduce assignments in order to evaluate terms. For a variable set X' =
(X, dom) amapping 3 : X — A is an assignment for X in A = (A4, OP), if §(z) € dom(z) for
each z € X. The set of all assignments for X in A is denoted by ASS(X', A). An assignment
B8 : X — A can be extended to the set of all terms 3 : T4 (X, A) — A inductively over the
structure of terms:

1. for x € X let B(z) = B(x)

2. for f(ug,...,un) € Ta(X,A) let B(f(uy,...,un)) = F(B(u1), ..., B(un))

2We assume that X is disjoint from all other sets of symbols.

13

High-level Petri nets A (high-level) Petri net ¥ consists of

e anet N=(P,T;F),ie. two disjoint and finite sets P and T of places and transitions
related by a flow relation FF C (P x T) U (T x P). Elements of F are called arcs.

e an algebra A = (A,OP) and

o a distinguished token domain D C A with MSy;, (D) C A
o a variable set X = (X, dom) for A,

o an arc inscription i : F — T 4(X, MS in (D))

o the initial state My € M(P, D), where M(P,D) = {M | M : P — MS;;,(D)} is the
set of all states of X.

The relation > and the operations + and — can be extended to states place-wise.
For M,M' € M(P,D) we define: M > M’ iff for each p € P holds M(p) > M'(p);
(M + M'Y(p) = M(p) + M'(p). For M > M’ we define M — M' by (M — M')(p) =
M(p) — M'(p).

Dynamic behaviour of high-level nets Figure 5 illustrates an occurrence of a transition
and the corresponding state change. In the left part of the figure, transition ¢3 is enabled
in an occurrence mode, where agent a may receive a message from agent b as well as from
i. The right figure shows the state after reception of the message from b. We introduce the

mailbox mailbox

uninformed t3 pending-with uninformed t3 pending-with

Figure 5: An occurrence of transition ¢3 in mode [z = a,y = b]

convention, that for f ¢ F :i(f) = O. Now, for each transition ¢ € T and each occurrence
mode 8 : X — D we define the enabling-condition ty € M(P, D) and the post-condition
t;’ € M(P, D) of transitiog t in mode 3 by t5 (p) = B(i(p,t)) and t;'(p) = A(i(t,p)) for each
p € P. Formally, both notions are states of the net.

A transition ¢ is enabled in occurrence mode 3 at state M if the enabling condition
holds, i.e. M > ts- Then, t may occur in mode (3 resulting in a follower state M’ =
(M- tg) +t}, written M — M'. Note, that in the follower state holds the post-condition

/ +
M Ztﬁ.

A run of a Petri net is a (possibly infinite) sequence of states ¢ = My, My, ... such
that for each index n holds: M,, — Mp41. If 0 = My ... My, is finite, then M}, does not
enable any transition in any mode. Note, that each run starts with the initial state of the
Petri net.

14

B: Propositions and Proof Techniques

In the sequel the semantics of propositions is defined and the classical P-invariant theory is
formalized. Let ¥ = ((P,T; F'), A, D, X, i, M) be a Petri net.

Temporal proposition Let ¢ be a state proposition. Then, Op and g are called
temporal propositions. A temporal proposition is valid for a Petri net iff it is valid for each
run of the Petri net. A temporal proposition O is valid for a run iff ¢ holds in each state
M; of 0. A temporal proposition Oy is valid for a run iff there exist a state M; in o where

© holds.

State expressions A state expressiony € T 4((P,dom), B) is a term that uses as variables
the places of the net where dom(p) = MSy;, (D) for each p € P where B C A is some set,
called the type of y. The wvalue of vy in some state M € M(P, D) is denoted by (M) and
defined by v(M) = By () where By € ASS(P,MSy;, (D)) is defined by B (p) = M (p) for
each p € P. A state expression is called linear® iff for all My, Ms € M(P, D) : v(M1+M>) =
Y(M1)+~(M2). A linear state expression is called a P-invariant of X if its type is MS};, (D)
and iff for all t € T and all § € ASS(X, D) : y(t;) = 'y(t;).

Theorem: If v is a P-invariant for X, then Oy = v(Mpy) is a valid proposition for X.

A linear state expression is called descending variant for X if its type is IN and iff for
each t € T" and each 8 € ASS(X', D) holds y(t5) > 'y(tg).

Theorem: If v is a descending variant for X, then $lockouty is a valid proposition for X,
where lockouty denotes the state predicate valid in all the states that do not enable any
transition of X.

Finally, we introduce an equivalent characterization of a P-invariant, which allows to
check a P-invariant by checking the validity of one equation for each transition. Let t € T'
be a transition of the net. With ¢t=,¢* : P — T 4(X,MSy;, (D)) we denote the following
substitutions:

t=(p) =i(p,t) and t*(p) =i(t,p)

The application of these substitutions to a linear state expression v is straight-forward.
We denote these applications with ¢~ () and ¢* (7).

Proposition A linear state expression 7 is a P-invariant of X iff for each transition ¢ of &
the equation ¢~ (y) = t*(v) is valid in algebra A.

Similarly, we can characterize descending variants as follows:

Proposition A linear state expression v € T 4(P,IN) is a descending variant of 3, iff for
each transition ¢ of X the in-equation ¢~ (y) > ¢*(v) holds in the algebra A.

3 All state expressions used in this paper are linear by construction, but we do not elaborate on that here.

15

