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Differential algebraic equations (DAEs) are everywhere singular implicit or-
dinary differential equations (ODEs)

J@' (@), 2(t),t) =0, (1)

where f;(y,z,t) is singular for all values of its arguments. If f,(y,z,t) were
nonsingular, (1) could be solved for z’, at least theoretically, and we would have
an explicit ODE. Actuallyy DAEs ARE ODEs but those which cannot be
solved with respect to the z’.

The notion “DAE” represents the fact that (1) consist of differential equations
coupled with pure finite-dimensional (“algebraic”) equations. Other catchwords
for DAEs are e. g.: singular systems, descriptor systems, semistate equations,
differential equations on manifolds.

DAESs arise in various fields of applications. The most popular ones are

— simulation of electrical circuits

— constrained dynamical systems, e.g. Euler-Lagrange equations of rigid bodies
systems, and chemical reactions subject to balance invariants

— optimal control of lumped—parameter systems

— semi—discretization of partial differential equation systems, e. g. the Navier—
Stokes system describing the flow of incompressible viscous fluids

— reduced equations in singularly perturbed systems.

For a fairly detailed survey of applications we refer to [BCP89]. It should be
mentioned that, in the last couple of years, DAEs have developed into a highly
topical subject of applied mathematics. There is a rapidly increasing number of
contributions devoted to DAEs in the mathemtical literature as well as in the
field of mechanical engineering, chemical engineering, system theory, etc. For-
mally, models with singular implicit ODEs have already been known for a long
time (cf. [Dol60], [Ganb9]). It was C. W. Gear ([Gea71]) who proposed to han-
dle such ODEs numerically by backward differentiation formulas (BDF). In the
sequel, powerful codes allowing to simulate large circuits successfully, provided
one has a very special class of DAEs, have been developed. Obviously, for a long
time DAEs were considered not to differ essentially from regular implicit ODEs
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in general. Only since about 1980 the mathematical community has been inves-
tigating DAEs more thoroughly, challenged by computation results that could
not be brought into line with the above supposition, (cf. [SEYE81]). With their
articles “DAE’s revisited” ([GHP81]) and “DAE’s are not ODE’s” ([Pet82]),
C. W. Gear, H. H. Hsu and L. R. Petzold have given rise to the discussion on
mathematical peculiarities of DAEs and on possibilities for their successful nu-
merical treatment, a discussion that will surely be carried on still for a long
time.

DAEs seem to be a typical example of the importance of keeping an eye
upon the mathematical — including the numerical — properties of the arising
mathematical models already upon modelling them.

The fact that, in the meantime, also textbooks imparting general fundamen-
tals of Numerical Analysis, as e. g. [SB90], treat DAE problems corresponds to
the present importance of this field.

First attempts towards a better understanding of the peculiarities of ODEs
referred to linear equations

A (1) + B()a(t) = q(1) 2)

where A(t), B(t) were continuous m x m matrix functions on an interval 7 C R.
The notion of the global index by C. W. Gear and L. R. Petzold has provided an
important essential possibility for classifying ODEs.

The DAE (2) is said to have the global index pug € IN if there are regu-
lar matrix functions E(-) € C, F(-) € C*! such that scaling (2) by E(t) and
transforming z(t) = F(t)y(t) lead to the DAE

[é 3] Yy (t) + [Wo(t) ?] y(t) = E(t)q(t) | (3)

where J is a nilpotent Jordan block matrix J#5x =0, JHE=1 £ 0. Eq. (3) is said
to be the (Kronecker) canonical normal form of (2).

Clearly, this notion is closely related to canonical normal forms of regular matrix
pencils (cf. [Ganb9]). Actually, (3) decouples into the system

u'(t) + W(tu(t) = r(t)
Jo(6) +o(t) = s(t) } : (4)

Now it becomes obvious that only the first part of (4) is regular ODE. The
second part leads immediately to

pr—1

o(t) = D (1Y (Js(0)) . ()

j=0

Clearly, initial value problems for (4) may become solvable for consistent initial
Hr Tl . .

values g, vo = Y. (—1)Y(Js(to))U) only, but for arbitrary wg,vo. This is an
j=0

essential difference to regular ODEs and, in case of ug > 1 this entails consid-

erable numerical problems, which have not been solved by now. For ux = 1 it
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holds that J = 0 and (5) simply provides v(¢) = s(¢). In this case (4) resp. (2)
are similar in behaviour to a regular ODE, and it can be expected that many of
the methods that proved their value for regular ODEs can be suitably modified
for such index 1 DAEs. Much has already been done in this respect (cf. [GM86],
[BCP89] and the papers of Degenhardt and Lamour in this issue).

The treatment of all the so—called higher index DAEs with ug > 2 is much
more difficult. In contrast to index l-equations, they cannot be solved for all
continuous ¢(-). For the computation of solutions or only of consistent initial
values, the differentiations given in (5) have to be filled. This causes numerical
difficulties that become the greater, the greater pg is and the stronger the two
parts of (4) are coupled with each other in the original DAE.

In [Mar85], [GM86], [Han89] it is pointed out that higher index DAEs, in
natural function space formulations, lead to essentially ill-posed problems in
the sense of Tichonov. The resulting maps are not Fredholm. Their unbounded
inverses cause numerical methods (discretizations) to become unstable. This is
no surprise if we recall that the differentiation problem in the space of continuous
functions is one of the simplest examples of an ill-posed problem.

For constant coefficient linear higher index DAEs the mentioned instability
1s known to be a weak one only, that is, errors in the initial values or numerical
round-off errors are amplified by factors A*<~1 only, where h is the stepsize (e.
g. [SEYES81], [Cam82], [GM86]).

Are there still further classes DAEs which weak singularities arise for, and
can they be tackled by a suitable application of numerical methods? Fortunately,
there are such classes, among them even those which are relevant for important
applications (e.g. [BE88], [LP86], [BCP89], [Mar90], [HLR8Y]). Surely, it will be
possible to further extend these classes. As another possibility one can ensure
that the direct discretizations do not refer to higher index DAEs, but to a regular
ODE or an index 1 DAE. In order to do this reasonably, one has to know more
about DAESs, of course.

The Kronecker canonical normal form (3) of (2) and the global index g are
highly informative — provided that they are known. Unfortunatley, as a rule E(-),
F(+), and hence, (3) cannot be computed, not even numerically. So other, more
easily accessible forms of linear DAEs have to be searched for. In the paper of B.
Hansen the most important of these forms (standard canonical form, modified
standard canonical form, Hessenberg form) are collected and compared.

A further possibility consists in determining the so—called tractability index
pr € IN by means of the following matrix chain, which can be derived directly

from the coefficients A(-), B(-) of (2):
Ag:= A, By:=B —AP(;
Aip1:= A + BiQi (6)
Bit1 := BiP; — Aiy1(PPy - Piy1)' PP -+ P
P=1-@Q;, Qi) € L(IR™)projects onto
ker(A;(t)),i=0,...,up — 1 .

Here, the projections @); are chosen such that Q;Q); = 0 holds for j > 1.
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The DAE (2) is called tractable with index pr if the matrix 4, (¢) remains
nonsingular, but the previous matrices A;(¢), j < pr, are all singular and have
constant ranks.

It should be mentioned that constructing the matrix chain (6) we aim at a
decoupling of (2) by utilizing the given projections and related subspaces. In
1987 it was only a hypothesis of R. Marz that this might apply to pupr > 3,
too (cf. [Mar87]). Now, B. Hansen has succeeded in proving this ([Han90]). The
decoupling of (2) via (6) yields the solution decomposition

r = Pz + Qox
=PP P+ Py PupoQup—1x+ -+ PoQra + Qox

as well as equations determining each of these components. Thereby, the com-
ponent PP .- P,z satisfies a regular ODE, Py -+ Py —2Qy,—1% is the “al-
gebraic” one. Further, to obtain Fy--- P,._3Q ;2% we have to perform one
differentiation, and so on. Finally, the “worst” component is gz, which includes
a (pr — 1)th derivative.

Note that this decoupling itself is not to represent a numerical method, by no
means. It has to be understood as a means for the corresponding investigation
of the DAE itself as well as of its discretizations. Moreover, it may be useful
for determining consistent initial values (see the related paper of Hansen in this
issue). In the other paper of Hansen (see also [Han90]), an important new result
is reported about: All DAEs having a global index pg possess the tractability
index

BT = PK - (7)
The difference between the two classes of problems consists in slightly weaker

requirements to smoothness for tractable DAEs.
Using the first projector Py from (6), we may rewrite (2) as

A@)(Po(D)2(1))" + (B(t) — A@) Py(1)2(t) = (1) (8)

because of A(t)Py(t) = A(t). This makes clear, that, naturally, solutions belong
to the function space {x € C : Pyxz € C'}, but they do not belong to C! in
general (cf. [GMB86]). The same fact becomes obvious from (4), (5). The matrix
chain concept has been applied, with reasonable success, to several nonlinear
DAEs (1) via linearizations ([Mar89b], [Mar90] and the paper of Marz in this
issue), however, some important problems in this respect have not been solved
yet. In how far can a linearization be successful at all for such ill-posed problems?
The notion of an index most frequently used today is the notion of a differ-
entiation index pp. Following [Gea88], we consider the system of equations

fla', 2, ) =0

P2 = S f 2 e 4= 0 9)

L p(o at) = L (e, ) 4=
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as a system in the separate dependent variables 2/, #(2), ... 2(#*+D with z and ¢
as independent variables.

The DAE (1) has the differentiation index pp, if pp is the smallest p for
which (9) can be solved for ' = S(x,1).

It should be mentioned that S. L. Campbell even earlier used the same idea
(e. g. [Cam85], [Cam88]) for linear DAEs. E. Griepentrog has defined the same
notion more precisely (see this issue): Define the compound functions (derivative
arrays)

f(y1a$at)

8
- [y, e, )ya + - -
Fu(yy,x,t) = : ,

%f(ylax,t)yu+1+...

g o= (.. yf_l_l)T, according to (9). Let the partial Jacobians H, (¥, z,t) of
F.(§u, x,t) with respect to g, have constant rank. Define S, to be the manifold
of all pairs (x,t) for which F,(y,, z,t) = 0 is solvable. S, is called the constraint
manifold of order pu. Further, introduce the manifold

M (z,t) := {g, € RUHD™ . P (g, 2, 1) = 0},
M (2,t) = {y1 : Y € My(z, 1)}

for all (z,t) € S,,.

The mapping f(y, x,t) is said to be an indez—p—mapping if S, is non—empty

and M, (z,t) is a singleton for all (,t) € S,, and if u is the smallest integer
with these properties.
The DAE (1) is said to have the index pp if f(y, #,t) is an index—pp-mapping.
The main point (see the paper of Griepentrog) of this new version of the differ-
entiation index is the geometrical background. The DAE (1) with index pp rep-
resents a unique vector field v(z,t) defined on S, satisfying f(v(z,t),z,t) = 0.
The solutions of the initial value problems

g = v(z,t), ((to),to) € Sup (10)

proceed in S, and solve (1).

Thus, there has been established a close relation to the concept of W. Rhein-
boldt and S. Reich (e. g. [Rhe84], the paper of Reich in this issue), which un-
derstands a DAE as an (implicitly defined) vectorfield on an (implicitly given)
manifold. Now, a regular DAE of geometrical index pug (degree pg) defined in
this way 1s nothing but a DAE with the differentiation index

/D = pig (11)

as shown by Griepentrog.

Comparing the global index pug (cf. (3), the tractability index pr (cf. (6))
and pp for linear systems (2) we have now (cf. the papers of Griepentrog and
Hansen)

KD = PG = K = §T (12)
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supposed the coefficients A(t), B(t) are smooth enough so that yp is defined.
It should be emphasized that the ranks of certain matrices are assumed to be
constant for pup as well as for up (for px this results automatically). If this does
not apply, there arise new singularities which may lead, among other things, to
bifurcations or impasse points (see the paper of Marz in this issue and [GM86]).

It should also be mentioned that pp is defined for nonlinear DAEs having
the differentiation index pp < 3 via linearization ([Mar89a], [Mar89b]), and it
holds that

KD = BT (13)

On account of (11)—(13) we will only refer to index g in the following. One of
the most important intentions of the present monograph consists in regarding the
indicated interrelation of the analytical, algebraic and geometrical background
of the DAEs and to make it available for a constructive and numerical treatment.

First monographs on DAEs were written by S. L. Campbell ([Cam80], [Cam82]),
and, almost unknown to the scientific world outside the U.S.S.R, by Ju. E. Bo-
yarincev ([Boy80]). Their books are devoted to linear problems almost exclu-
sively.

A farily detailed discussion of linear and nonlinear problems of index 1, their
solvability, Lyapunov stability, multistep and Runge-Kutta methods for initial
value problems, finite difference methods and shooting methods for boundary
value problems is contained in the monograph of E. Griepentrog and R. Marz
([GM36]).

K. E. Brenan, S. L. Campbell and L. R. Petzold ([BCP89]), in their book,
concentrated upon initial value problems for practically important nonlinear
problems with index g < 3 and their numerical integration up to problems of
implementation and software. The higher index DAEs with ¢ = 2 and 3 that are
investigated are of the so—called Hessenberg form as a rule. The methods dis-
cussed are multistep methods, in particular the BDF and Runge-Kutta methods.
The latest and hitherto last book on DAEs is due to E. Hairer, Ch. Lubich and
M. Roche ([HLR89]) and deals with Runge-Kutta methods for ODEs with index
# < 3 in Hessenberg form.

The Seminar Notes presented here provide a completion to the books men-
tioned above — with respect to analytical and geometrical investigations, the class
of problems treated actually, as well as with respect to numerical methods. We
have already mentioned those results (11) and (12) concerning the notion of an
index that we consider to be important. Completing the two monographs above,
the present one is mainly focused on boundary value problems, and, as a novelty
in this context, on initial value problems for differential algebraic inclusions.

The contributions to this Seminar Notes are grouped around the 3 complexes:

1. analytical and geometric background of DAEs
2. approximating DAEs, numerical methods
3. differential-algebraic inclusions.

Above we have already discussed several aspects from the contributions of E.
Griepentrog and B. Hansen to the complex 1. On the basis of the index concept
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mentioned above (cf. (11)) E. Griepentrog further described and compares var-
ious index reduction methods. S. Reich extends his geometrical understanding
of regular DAEs which we developed in earlier papers for autonomous DAFEs
to the case of nonautonomous DAEs (1). He, too, presents a reduction method
which is taken up and described in a simple way by E. Griepentrog. In contrast
to those reduction methods where differential equations are added, this method
replaces “superflous” differential equations by equations. Equations reduced in
this way have the advantage of correctly reflecting the asymptotic behaviour of
the original DAE. However, their realization is probale to be much more difficult.
We want to add that index reduction by generating algebraic equations is also
reported about in [Mrz87], [BBMP]. Earlier versions of this approach are to be
found in [Cis82].

In her contribution to the complex 1 R. Marz makes a first attempt to gain
also local existence statements, continuations and, finally, criteria for the stability
of equilibria by means of the projector— and subspace technique connected with
the matrix chain (6). First, this attempt is successful for the index 2 DAE

Ax'(t) +g(x(t)) =0

and for a disturbed form, respectively. Here it is essential that all criteria and
conditions are formulated in terms of A, ¢'(xg), 2o fixed, hence they can be uti-
lized in practice.

Let’s now turn to the second complex. It is mainly concerned with some prac-
tical proposals for the direct numerical treatment of DAEs. Above we have tried
to elucidate that the numerical treatment of higher index DAFEs is problematical
in general because of the occurring instabilities in the discretiyations caused by
the ill-posedness of initial as well as boundary value problems. If possible, higher
index DAEs should be avoided upon modelling.

For special higher index DAEs, e. g. for Euler-Lagrange equations describing
constraint mechanical motions, special intergation methods overcoming these
instabilities by an ingenuous utilization of the special structure of this DAE in-
clusively its geometry (e. g. [FAP90] [Yen90], [EFLR90]) have been developed.
In general, however, one has only the possibility to trace back a higher index
problem to an index problem or a regular ODE, or to approximate it by such
a regular ODE. The most evident method in this respect are index reductions,
which are closely related with the index notions (cf. see the paper of Griepen-
trog). However, one must heavily pay for the gain: Computational complexity,
destroying the problem structure, drift—off, change of the stability of the system.

The second way is to approzimate resp. regularize higher index problems by
ones with lower index. In this field, there have only been a few approaches and
results so far, unfortunately (e. g. [Bad88], [Cam88], [HMN88]). Of course, all of
them involve some difficulties and it has not been clarified yet whether they are
sound. In our opinion, new possibilities of this kind should be sought for more
intensively since the difficulties seem to be controllable.

M. Hanke devotes his contribution to such a regularization. In order to arrive
at index 1 DAEs, appropriate small perturbations are introduced. Originally,
the motivation for doing so was purely mathematical, but it turned out that this
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approach 1s closely related to certain pertubation methods in electric engineering
(e. g. [CMI80], [MCKI81]) and in mechanics (e. g. [Bau72], [EH91]). Taking into
account that higher index DAEs are ill-posed in naturally given topologies, one
can successfully analyze the approximate problems in the spirit of regularization
methods. However, actually, we meet singularly perturbed regular ODEs, a fact
calling for establishing asymptotic expansions. This is done for the linear DAE
(2) and, what is more important, for some nonlinear semi-explicit systems. By
a numerical example it is illustrated that competitive extrapolation methods
should work well.

Note also that applying general regularization methods, e. g. to the ill-posed
higher index DAEs seems to be a very heavy gun (cf. [Han88]).

As shown above (cf. (10)) one of the problems with DAEs is the computation
of consistent initial values (xg,t0) € S, . This problem has not been solved yet
since the manifold S, is implicitly given and accessible only with difficulties in
practice. In [LPG] it is discussed how one can fall back on the definition of up
(cf. (9)) for this purpose.

B. Hansen sketches two new methods providing consistent initial values for
a class of nonlinear index 2 DAEs. The first one uses the matrix chain and
projector technique (cf. (6)). On this background, B. Hansen proposes a special
transformation to decompose the DAE into a regular explicit ODE and two
nonlinear equations. This method requires symbolic calculations. It seems not to
be effective. The second method uses special index reduction propsed in [Gri90]
and [Gea88], as well as the fact that consistent initial values for index 1 DAEs
may be computed more or less easily.

Although index 1 DAEs appear as simplest DAEs above, they also have
their peculiarities, which have to be taken into account especially in the nu-
merical treatment. Fundamental solution marices become singular, and in the
consequence, the traditional shooting matrices, too. Standard symmetric finite
difference schemes applied to index 1 DAE become unstable etc. (e. g. [GM86]).
In any case, an uncritical generalization of methods aproved for regular ODEs
should be avoided. The behaviour of DAEs should be regarded carefully. A. De-
genhardt proposes a collocation method for solving boundary value problems
in transferable DAEs (that is index 1 DAEs) (1), where the partial Jacobian
fy(y,z,t) is assumed to have a constant nullspace N.

Due to the solution concept proposed in [GM86] (cf. also (8)) allowing dif-
ferent smoothness for the solution components in N and out of N a colloca-
tion method is created which approximates the nullspace and the non—nullspace
components by piecewise polynomials of different degrees. For regular ODEs,
this method reduces to the well-known piecewise polynomial collocation (e. g.
[ACRS1]). By this, some results of [Asc87] are generalized. The resulting equiv-
alent Runge-Kutta methods are symmetric. A. Degenhardt uses different basis
representations leading to different implementation strategies. Feasibility, con-
vergence and even superconvergence are proved.

The paper of R. Lamour also deals with boundary value problems in index
1 DAEs. Generalizing results of [GM86], the well-posedness of problems with
general boundary conditions, including multipoint and integral conditions, is
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stated. To handle autonomous oscillations, it is carefully investigated how to
turn to an equivalent well-posed problem in a similar way as one used to do for
regular ODEs. Special interest is devoted to oscillations in constraint mechanical
systems. Since this DAE has originally index 3, an index reduction method is
used. It is pointed out that index reduction has to be coupled with a careful
selection of the additional initial and end conditions, respectively. Besides the
periodicity condition and phase normalization, properly selected conditions like
energy conservation are appropriate to ensure equivalence of the index reduction
process. Finally, let us turn to complex 3. A great variety of dynamical systems
with discontinuities can be modelled by DAEs, where discontinuities with re-
spect to the state variable do arise. Among them, we have control systems with
discontinuous feedback (e. g. robotics, aircraft control), mechanical systems with
dry friction, electric circuits with switch elements etc. One way to model such
systems 1s to replace the discontinuous characteristics of a system component by
a multivalued one, which leads to a differential-algebraic inclusion (DAT) like

A@)a'(t) + B(t)a(t) € g(w(t),1) - (14)
D. Niepage’s contribution starts with the DAE
A2’ (t) + B(t)z(t) = h(x(t),t) , (15)

where the left hand part is index 1 and A is discontinuous. By the use of Filip-
pov’s regularization ([Fil60]), (15) is transformed into a DAT (14). Via the usual
splitting technique (cf. [GM86]), solvability is proved. Moreover, on the basis of a
discretization theoretical approach for DATIs ([Nie87], [NW8T]), multistep meth-
ods and Runge-Kutta—methods are shown to converge. The contribution of W.
Wendt is devoted to a system of differential and algebraic inclusions of monotone
type, which is obtained when using set—valued characteristics for diodes in elec-
trical networks consisting of resistors, inductors, diodes (switches) and sources.
The unique solvability of initial value problems is proved by the well-known
Rothe method. Moreover, for a class of appropriate discrete approximations,
stability and convergence orders are verified. By this, results of Elliott ([ElI85])
for ordinary differential inclusions are generalized, and stronger results as in
[Nie89] are derived. Further, a nice method for computing the solution step by
step 1s proposed and illustrated by an example.

In our opinion, especially the contribution of W. Wendt shows that even
modelling with inclusions may be of practical importance and use, which 1s still
doubted quite often. Of course, the problem of really efficient numerical methods
still remains open, here too. We hope that we will be wiser in this respect as
well as concerning the above problems in the future.
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