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Abstract� In electric circuit simulation the charge oriented modi�ed nodal analysis may lead
to highly nonlinear DAEs with low smoothness properties� They may have index � but they do not
belong to the class of Hessenberg form systems that are well understood�

In the present paper� on the background of a detailed analysis of the resulting structure� it is
shown that charge oriented modi�ed nodal analysis yields the same index as the classical modi�ed
nodal analysis�

Moreover� for index � DAEs in the charge oriented case� a further careful analysis with respect
to solvability� linearization and numerical integration is given�
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�� Introduction� In modern circuit simulation� the so�called charge oriented
modi�ed nodal analysis is preferred for di�erent reasons ��	
� ��
�� The resulting
DAEs have low smoothness properties� They may have index � but they do not have
Hessenberg form at all�

In the Sections  and � of the present paper� by investigating the structural
conditions in more detail� it is shown that both the classical modi�ed nodal analysis
and the charge oriented modi�ed nodal analysis lead to DAEs of the same tractability
index� Furthermore� the constant leading nullspace seems to be an advantage of the
charge oriented formulation�

Moreover� a further analysis of index� DAEs resulting from modi�ed nodal anal�
ysis is given in Section 	� The solvability of initial value problems is stated under low
smoothness� It is shown how the solutions depend on the initial data� The sensitivity
matrix satis�es again the linearized system� In particular� certain relevant projectors
and subspaces are described in detail�

In Section � we discuss the behaviour of the BDF applied to DAEs of the class
under consideration� A more general result from ��
 on weak instability is speci�ed
on the background of the special structure given in Section 	� In particular� also
the error propagation due to the weak instability is considered� Unfortunately� in
nonlinear DAEs all solution components may be a�ected whereas in linear DAEs the
errors are known to be separated� To handle these problems� a defect correction
generalizing the projection technique introduced in �
 for Hessenberg form index�
DAEs is proposed�

�� Simulation of electric circuits� The simulation of electric circuits is of
great interest today� The circuits we want to study here are assumed to be modelled
by an RLC�network that can be devided into a dynamic network and a non�dynamic
one� which are both connected by a b�gate� The non�dynamic network consists of
linear resistors� nonlinear resistors� independent sources� and controlled sources� The
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dynamic network contains linear and nonlinear capacitances and inductances� We
speak of a nonlinear capacitance if there is a nonlinear di�erentiable mapping QC �
��uC� between the charge and voltage of the capacitance� Accordingly� we speak
of a nonlinear inductance if there is a nonlinear di�erentiable mapping �L � ��IL�
between the �ux and current of the inductance� Such networks can be modelled by
di�erential algebraic equations �cf� ���
��

As usually� circuits consist of a large number of elements� The equations have to
be generated automatically� Therefore� we want to study two modern modelling tech�
niques making such an automatic generation possible� namely� the classical approach
and the charge oriented approach of the modi�ed nodal analysis �cf� �	
� ��
� ��
� ��
��

The classical modi�ed nodal analysis provides systems of the form

D�x� �x � f�x� � r�t������

where the vector of unknowns x consists of
� the nodal potentials u and
� the currents I of the voltage�controlled elements�

The system contains the equations derived by Kirchho��s nodal law for each node�
Additionally� the characteristic equations of the voltage�controlled elements belong to
the system� The equations of the current�controlled elements are set into the system
directly�

The charge oriented modi�ed nodal analysis leads to systems of the form

A �q � f�x� � r�t�����

q � g�x� � ������

Here� the vector of unknowns �x� q� contains
� the nodal potentials u�
� the currents I of the voltage�controlled elements�
� the charge Q of the capacitors and
� the �ux � of the inductors�

Equation ���� represents the characteristic equations for charge and �ux�

Both modelling techniques are closely related� Denoting the derivative of the
function g with respect to x by g��x�� the relation

D�x� � Ag��x���	�

is satis�ed� The matrix A is constant and its entries are numbers of the set f��� �� �g�
In general� this matrix is rectangular and not of full rank� The incidence matrix A is
proposed to be formulated properly such that

imAg��x� � imA����

becomes true� Then� the derivative�free equations in ���� are given by

�I � AA���f�x� � r�t�� � ��

while the derivative�free subsystem of �������� consists of

�I �AA���f�x� � r�t�� � ��

q � g�x� � ��
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Remark� If the network is modelled without inductances� ���� reads g�x� � g�u�� If
the network contains neither a capacitance nor an inductance� i�e�� if the circuit does
not have dynamical elements� then equation ���� disappears completely� and the two
modelling techniques lead to the same system f�x� � r�t�� Hence� we may exclude
the latter case when studying the di�erences between both approaches�

For more clarity let us consider an example� Figure � displays a circuit simulating
a NAND�gate �see ���
�� It consists of two n�channel enhancement MOSFETs �ME��
one n�channel depletion MOSFET �MD�� and a load capacitor C �cf� ���
��
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Fig�� NAND�gate model

Digital MOS�circuits contain no other elements besides the MOSFETs as a rule�
MOSFETs also take the function of controlled resistors� In our example� gate and
source of the depletion transistor MD are connected� i�e�� this MOSFET works as a
controlled resistor here�

The drain voltage of MD is constant at VDD � �V � The bulk voltages are not at
ground� VBB � ���V � The source voltages of both MEs are at ground� The gate
voltages are controlled by the voltage sources V� and V�� The response is only LOW
�FALSE� if both� the input signal V� and the input signal V� are HIGH �TRUE��

The circuit model for the MOSFETs MD and ME is given in Figure � This model
is presented in ���
 and leads to an index� system� It re�ects the physical structure of
the MOSFET well� However� note that the discussion on di�erent MOSFET models
is still going on� e�g� that on regularized versions leading to index � DAEs �e�g� ���
��
The transistors MD and ME di�er only in parameter values �see Table ���
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The current ids �ows from drain to source if and only if the controlling voltage
Ugs between gate and source is larger than a technology dependent threshold voltage
UT � The gate is isolated from the channel DS by a thin SiO��layer� i�e�� the resistance
Rsd between source and drain is almost in�nitely high �� �������

Using the charge oriented modi�ed nodal analysis� we obtain the following DAE
system of dimension �� Kirchho��s nodal law applied to all nodals of the system
leads to

u� � u�
Rs

� u� � u�
Rd

� �Q� �Q�gd � �Q�gs � �

� �Q�gs � �Q�bs �
u� � u�
Rs

�
u� � u�
Rsd

� iDbs�u�� � u��

� iDds�u� � u�� u� � u�� u�� � u�� � �

� �Q�gd � �Q�bd �
u� � u�
Rd

� u� � u�
Rsd

� iDbd�u�� � u��

� iDds�u� � u�� u� � u�� u�� � u�� � �
u� � u�
Rd

� IDD � �

�Q�gd � �Q�gs � I� � �

� �Q�gs � �Q�bs �
u� � u��

Rs

�
u� � u�
Rsd

� iEbs�u�� � u��

� iEds�u� � u�� u� � u�� u�� � u�� � �

� �Q�gd � �Q�bd �
u� � u�
Rd

� u� � u�
Rsd

� iEbd�u�� � u��

� iEds�u� � u�� u� � u�� u�� � u�� � �
�Q�gd � �Q�gs � I� � �

� �Q�gs � �Q�bs �
u�
Rs

�
u� � u�	
Rsd

� iEbs�u�� � u��

� iEds�u�	 � u�� u
 � u�� u�� � u�� � �
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� �Q�gd � �Q�bd �
u�	 � u��

Rd

� u� � u�	
Rsd

� iEbd�u�� � u�	�

� iEds�u�	 � u�� u
 � u�� u�� � u�� � �
u�� � u�

Rs

� u�	 � u��
Rd

� �

�Q�bd � �Q�bs � iDbs�u�� � u�� � iDbd�u�� � u��

� �Q�bd � �Q�bs � iEbs�u�� � u�� � iEbd�u�� � u��

� �Q�bd � �Q�bs � iEbs�u�� � u��� iEbd�u�� � u�	� � IBB � ��

The characteristic equations for the four voltage sources are given by

u� � VDD � �

u�� � VBB � �

u� � V� � �

u
 � V� � ��

The characteristic equations for the capacitances of the system are described by

Q� C u� � �

Q�gd � qgd�u� � u�� � �

Q�gs � qgs�u� � u�� � �

Q�bd � qbd�u�� � u�� � �

Q�bs � qbs�u�� � u�� � �

Q�gd � qgd�u� � u�� � �

Q�gs � qgs�u� � u�� � �

Q�bd � qbd�u�� � u�� � �

Q�bs � qbs�u�� � u�� � �

Q�gd � qgd�u
 � u�	� � �

Q�gs � qgs�u
 � u�� � �

Q�bd � qbd�u�� � u�	� � �

Q�bs � qbs�u�� � u�� � ��

The current through the diode between bulk and source as well as the current through
the diode between bulk and drain is given by the function

ibs�U � � ibd�U � �

�
�is �

�
exp� U

UT
�� �

�
for U � �

� for U � �
�����

The current through the controlled current source between drain and source is mod�
elled by

ids�Uds� Ugs� Ubs� ���
�

� for Ugs � UTE � �
�� � �� � � � Uds� � �Ugs � UTE� for � � Ugs � UTE � Uds
�� �Uds � �� � � �Uds� � ��Ugs � UTE �� Uds
 for � � Uds � Ugs � UTE

with UTE � UT	�� �
�p

�� Ubs �
p
�
�
� The technical parameters for the MOSFETs

MD and ME are given in Table ��
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ME MD
is �����A �����A
UT ����V ����V
UT	 ���V ��	�V
� ���	� � ����A	V� ���� � ����A	V�
� ���

p
V ��

p
V

� ���V�� ���V��

� ����V ���V

Table �� Technical parameters

The values for the resistances are chosen for all MOSFETs as

Rs � Rd � 	�� Rsd � ������

The capacitance between gate and source as well as the capacitance between gate and
drain are modelled as linear capacitors� i�e��

qgs�u� � qgd�u� � C� � u with C� � ��� � �����F�
The capacitance between bulk and drain as well as the capacitance between bulk and
source are modelled by nonlinear capacitances

qbd�u� � qbs�u� �

��
�

C	 � �B �
�
��

q
�� u

�B

�
for u � �

C	 �
�
� � u

��B

�
� u for u � �

with

C	 � ��	 � �����F and �B � ����V�

Ordering the vector q as

q � �Q�Q�gd� Q�gs� Q�bd� Q�bs� Q�gd� Q�gs� Q�bd� Q�bs� Q�gd� Q�gs� Q�bd� Q�bs�
T

we obtain for the incidence matrix

A �

�
BBBBBBBBBBBBBBBBBBBBBBBBBB�

� � � � � � � � � � � � �
� � �� � �� � � � � � � � �
� �� � �� � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � �� � �� � � � �
� � � � � �� � �� � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � �� � ��
� � � � � � � � � �� � �� �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

�
CCCCCCCCCCCCCCCCCCCCCCCCCCA

�

The presented example shows that the charge oriented modelling technique leads to
a system that is highly nonlinear and not of Hessenberg form� Further� the classical
approach also leads to a system with these properties�
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�� Structure and index of electric circuits� It is well�known that the numer�
ical behaviour of integration methods for the solution of DAEs depends essentially on
the index of the system� That�s why the question whether both modelling techniques
lead to the same index or not has been of great interest� This problem was already
studied in ��
 for some examples� In this section� we present some further results� in
particular� for models whose capacitances are reciprocal one�port capacitances� In this
case� each capacitance of the network has two uniquely determined nodals �including
the node of the zero potential� enclosing this capacitance� That means� for each ca�
pacitance of the network the voltage through this capacitance may be expressed by
the di�erence of the nodal potentials of these two uniquely determined nodals� For
these models� the DAEs ���� and �������� have the following special structure

g��x� � R�x�AT�����

if the equations and variables are in proper order� and

R�x� �

�
BBBBBBBBBBBBBBBBBB�

����x� � � � � � � � � � � �
� ����x� � � � � � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � ��nC �x� � � � � � �
� � � � � � ����x� � � � � �
� � � � � � � ����x� � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � � � � � � � ��nL�x�

�
CCCCCCCCCCCCCCCCCCA

is symmetric and positive de�nite� The di�erentiable mappings �i and �j describe
the charge of the capacitance Ci and the �ux of the inductance Lj � respectively� for
i � �� ���� nC and j � �� ���� nL �see page �� Hence� the matrix D�x� has the structure

D�x� � Ag��x� � AR�x�AT �

Remark� The matrix A may be written more precisely as

A �

�
� M � �

� I �
� � �

�
A nu

nL
ns

����

nC nL ns

where M is a matrix with the entries ��� �� � only� It describes the occurrence of
the capacitors in the network� I represents the identity matrix� The dimension ns
denotes the number of voltage controlled sources of the circuit� Let us remark that
some dimensions �e�g� nL� may be zero if the circuit contains not all kinds of elements�
Then� obviously� some rows or columns disappear in the description �����

Lemma ���� The model class described via ����� satis�es

imA � imD�x� and kerD�x� � ker g��x� � kerAT �
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In both systems ����� and ������������ the leading coe	cients D�x� resp�

	
A �
� �



have constant nullspaces�

Proof� Since g��x� � R�x�AT is valid for a symmetric positive de�nite matrix
R�x�� we �nd a symmetric regular matrix Rs�x� such that

R�x� � Rs�x�Rs�x�

is satis�ed� Hence�

rankAR�x�AT � rankARs�x��ARs�x��
T � rankARs�x� � rankA�

This implies imD�x� � imAR�x�AT � imA� Secondly�

rankAR�x�AT � rankARs�x��ARs�x��
T � rank �ARs�x��

T � rankR�x�AT �

Now� the relation kerD�x� � kerAR�x�AT � ker g��x� holds� Taking into account
that R�x� is a nonsingular matrix we obtain the relation

ker g��x� � kerR�x�AT � kerAT �

Hence� it follows that kerD�x� � kerAT is constant�

Next� for investigating the tractability index �cf� ���
� of the two systems ����
and ��������� we introduce the characteristic linear subspaces

N �x� �� kerD�x� � IRm�

S�x� �� fz � f ��x�z � imD�x� � imAg � IRm�

which are related to ����� and further

�N �� f
�
�

z

�
� A� � �g � kerA� IRm � IRm�n�

�S�x� �� f
�
�

z

�
� f ��x�z � imA� � � g��x�zg�

In our context �cf� ������ the two leading nullspaces N �x� and �N have constant
dimension� that is� dimN �x� � m � r� dim �N � m � n� r� where r �� rankA�

Now� we are prepared to apply the well�known criteria for the index�� tractability
�transferability� of our DAEs ���
� ���
�� More precisely� ���� has index � if

N �x� 	 S�x� � f�g
holds true for all x and� similarly� �������� is an index � system if

�N 	 �S�x� � f�g�
Do both model classes lead to the same index� Compute

�N 	 �S�x� � f
�
�

z

�
� A� � �� f ��x�z � imA� � � g��x�zg

� f
�
�

z

�
� � � g��x�z� Ag��x�z � �� f ��x�z � imAg��x�g

� f
�
�

z

�
� � � g��x�z� z � N �x� 	 S�x�g�



Recent results in solving index � DAEs in circuit simulation �

hence� dim �N	 �S�x� � dimN �x�	S�x�� Obviously� both systems ���� and ��������
are index�� tractable simultaneously�

However� the classical MNA system ���� may have a leading nullspace N �x� ro�
tating with x while the charge oriented version �������� leads always to the constant
nullspace �N � Recall that an index�� tractable DAE having a leading nullspace varying
with the solution behaves analytically and numerically like an index� tractable DAE
with constant nullspace� It has the perturbation index  �cf� ��	
� then�

Note that the so�called general capacitance interpretation may lead� in fact� to a
non�symmetric matrix D�x� the nullspace of which varies with x ���
�� Hence� from
the point of view of DAE theory� the charge��ux�oriented formulation has a great
advantage� Due to the constant leading nullspace� the tractability index � of ����
���� implies the perturbation index � whereas the perturbation index of ���� is �

For a detailed analysis of quasilinear index�� DAEs whose leading nullspace varies
with x we refer to ��
� ��	
� Fortunately� if the nullspace does not rotate to fast� the
instabilities in numerical integrations caused by the higher perturbation index behave
very weakly�

In the present paper we are mainly interested in equations having tractability
index � We specify criteria resp� results for both ���� and �������� in more detail�
However� index� tractability has been de�ned and investigated for the case of constant
leading nullspace only� yet� This is why we also assume

kerD�x� � N �x� � N�����

to be constant in the following� Note that this assumption is trivially satis�ed in the
symmetric case described by ������

Now� for investigating the tractability index  �cf� ���
� we choose constant pro�
jectors Q onto kerD�x� and QA onto kerA� respectively� Furthermore� we de�ne
P �� I � Q� PA �� I � QA and introduce the linear subspaces

N��x� �� ker �D�x� � f ��x�Q
 � IRm�

S��x� �� fz � f ��x�Pz � imD�x� � im �D�x� � f ��x�Q
g � IRm�

which are related to ���� as well as

�N��x� �� f
�
�

z

�
� A� � f ��x�z � �� QA� � g��x�zg � IRm�n�

�S��x� �� f
�
�

z

�
� 

� � � � � A
� f ��x��� PA� � QA
� g��x��g�

which are related to ��������� Then� ���� is index� tractable if

N��x� 	 S��x� � f�g and dim �N �x�	 S�x�
 � const � �

are ful�lled for all x� Correspondingly� the system �������� is index� tractable if

�N��x� 	 �S��x� � f�g and dim� �N 	 �S�x�
 � const � ��

Recall our notion of index� tractability to be a straightforward generalization of the
corresponding de�nition for the linear case� which� in its turn� represents a gener�
alization of the Kronecker index� On the other hand� nonlinear index� Hessenberg
systems are known to be index� tractable� too�
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Theorem ���� The model class described by ���
� and ����� satis�es the following
assertion�
The system ����� is index�� tractable if and only if the system ����������� is so�

Remarks�

�� Both modelling techniques lead to the same index for the lower index case�
� Since the nullspaces of the leading coe�cients are constant but do not rotate�

we may expect integration methods to work well �cf� ���
� ��
��
�� The network equation system of the NAND�gate example above is index�

tractable �see ��
�� Moreover� it has the di�erential index  �see ��
� ���
� and the
perturbation index  �apply Theorem 	����

Proof� We have already seen above that �N 	 �S�x� has the same dimension as
N �x� 	 S�x�� Therefore� it is su�cient to prove the assertion

N��x� 	 S��x� � f�g � �N��x� 	 �S��x� � f�g�

��� For any
�
�

�z

�
� �N��x� 	 �S��x�� there exist 
� � such that

PA� � QA
� g��x�����	�

� � A
� f ��x�������

are satis�ed� Because of
�
�

�z

�
� �N��x�� we may conclude

�z � kerAg��x� � imQ

if we regard QA� � g��x��z� We introduce z �� �z � P�� Using ���	�� we obtain

Ag��x�z � Ag��x��z � Ag��x�� � �Ag��x�� � A��

Since
�
�

�z

�
� �N��x�� the relation

�A� � f ��x��z � f ��x�Q�z � f ��x�Qz

is ful�lled� The latter two equations lead to

z � N��x�������

Further� we obtain

f ��x�Pz � �f ��x�P� � �f ��x�� � f ��x�Q�

� A
� f ��x�Q� �see ������

� Ag��x�
� � f ��x�Q� �for a certain 
�� since imA � imAg��

� �Ag��x� � f ��x�Q��P
� �Q���

that means�

z � S��x�������

Now� ����� and ����� imply z � �� Because of �z � Q�z� the relation �z � Qz � � is
valid� Further� from ���	� we conclude that

A� � �Ag��x�� � Ag��x�Pz � �
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is satis�ed� Finally� � � QA� � g��x��z � �� i�e��

�N��x� 	 �S��x� � f�g�
�� For any z � N��x� 	 S��x�� we �nd an 
� such that

f ��x�Pz � Ag��x�
� � f ��x�Q
�������

We consider

� �� PAg
��x�z � g��x��z� �z �� Qz�


 �� PAg
��x�
� � QAg

��x��� � �� Q
� � Pz�

Then�

A� � f ��x��z � Ag��x�z � Ag��x��z � f ��x�Qz

� �Ag��x� � f ��x�Q�z � �

QA� � QAg
��x��z � g��x��z �since PAg

��x�Q � ���

Hence� �
�

�z

�
� �N��x������

is satis�ed� Further�

� � Ag��x�
� � f ��x�Q
� � f ��x�Pz � A
� f ��x�� �see ������

PA� � PAg
��x�z � PAg

��x�Pz � �PAg��x�P� � �PAg��x��
� QAg

��x�� � g��x�� � QA
� g��x���

i�e��
�
�

�z

�
� �S��x�� Together with ������� this leads to

�
�

�z

�
� �N��x� 	 �S��x��

i�e�� � � �z � �� Now� we know

PAg
��x�z � �� Qz � ��

The �rst relation implies z � kerAg��x�� i�e�� z � imQ� Together with the second
relation� we conclude that z � �� i�e��

N��x� 	 S��x� � ��

�� Linearizations and solvability� In this section we give deeper insight into
the analytical background of ���� and ��������� The functions f and g involved in
���� and ������ are supposed to be continuously di�erentiable on their de�nition
domain D � IRm�
Due to ������ equation ���� can be rewritten more precisely as

D�x�t��
d

dt
�Px�t�� � f�x�t�� � r�t� � ���	���
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whereby P � L�IRm� denotes any constant projector matrix projecting along the con�
stant nullspace N � kerD�x�� This reformulation �	��� provides information on what
kind of functions we should accept to be solutions of the DAE ���� in fact� Namely�
such a solution has to be a continuous function with a continuously di�erentiable
P �component� However� the other component should not be expected to belong to
C� in general�

Analogously� the system �������� means more precisely

A
d

dt
�PAq�t�� � f�x�t�� � r�t��

q�t�� g�x�t�� � ��

whereby PA � L�IRm� denotes any constant projector matrix projecting along the
kerA� Hence� the function spaces

C�
N �� fx � C�J � IRm� � Px � C��J � IRm�g�

C�
�N
�� f�x � �x� q� � C�J � IRm�n� � PAq � C��J � IRn�g

result to be natural ones which the solutions of ���� resp� �������� should belong
to� J � IR denotes the given interval�

Remark� The projector PA is easy to compute because of the very special struc�
ture of A�

Our �rst assertion answers the question on the equivalence of the systems ����
and ���������

Theorem ���� �x� q� � C�
�N
is a solution of ����������� if and only if x � C�

N

solves ����� and q�t� � g�x�t�� t�� t � J �

Proof� Denote again Q �� I � P � Clearly� Q projects onto N � The special
structure of g leads to the relation

Ag�x�� Ag�Px� �

Z �

	

Ag��sx � ��� s�Px�Qds � ��

i�e�� Ag�x� � Ag�Px�� x � D�
Now� given a solution x � C�

N of ���� and q�t� � g�x�t��� t � J � Because of
Ag�x�t�� � Ag�Px�t�� and Px � C�� the function PAq is continuously di�erentiable�
too� In particular� we have d

dt
�PAq�t�� � PAg

��x�t�� d
dt
�Px�t��� Thus� the pair �x� q�

belongs to C�
�N
and satis�es ���������

On the contrary� for a given solution �x� q� � C�
�N
of �������� we have x � C� q � C�

PAq � C�� In more detail� the relation Ag�x�t�� � Ag�Px�t�� shows

PAq�t� � PAg�Px�t���

The matrix function Ag��x� has the constant nullspace N and the constant range
imA� Applying the Implicit Function Theorem we �nd the function Px to be as
smooth as PAq� Consequently� now have Px � C�� x � C�

N � Obviously� the DAE
���� is satis�ed�
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Corollary ���� If �x� q� � C�
�N
solves ������������ then we always have Px �

C��

Denote by Q��x� � L�IRm� the orthoprojector onto S�x�� x � D� Recall the
possible representation

Q��x� � I � ��I � AA��f ��x�
��I �AA��f ��x��

Theorem ���� Let the subspaces S�x� � IRm and S�x� 	N � IRm� x � D� have
constant dimensions r and �� respectively� r �� rank A�
Then� the system ����������� is index�� tractable if and only if� for x � D�

z � N 	 S�x�� f ��x�z � imAg��x�Q��x� imply z � ���	��

Proof� Reformulate �������� in standard DAE form

�A ��x�t� � �g��x�t�� � �r�t� � ���	���

with a quadratic leading coe�cient matrix �A�

�A �

	
A �
� �



� �x �

	
q
x



� �g��x� �

	
f�x�

q � g�x�



�

Introduce the projector �Q ��

	
QA �
� I



� L�IRm�n� onto the nullspace �N � ker �A�

Next� de�ne for x � D

�A��x� � �A� �g��x��x� �Q �

	
A f ��x�
QA �g��x�



�

whose nullspace reads

�N��x� � ker �A��x� � f
�
�

z

�
� IRm�n � z � N 	 S�x�� � � �A�f ��x�zg�

Hence� this nullspace has also constant dimension dim �A��x� � dim S�x� 	 N � ��
By the de�nitions �e�g� ��	
�� �	��� �resp� ��������� is index� tractable if �A��x� has
constant rank � m � n and ker �A��x� 	 �S��x� � f�g�

�S��x� � f�z �
�
�

z

�
� IRm�n � �g��x��x�

�P �z � im �A��x�g

� f
�
�

z

�
� IRm�n � A� � imAg��x�Q��x�g�

Note that �N��x� as well as �S� are exactly the subspaces introduced in Section ��
however� in di�erent representation�

In particular� for
�
�

z

�
� ker �A��x� 	 �S��x� it holds that z � S�x�� hence

A� � �AA�f ��x�z � �f ��x�z�

Now the assertion follows immediately�
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Let us turn to a linearization of �������� taken along a �xed function �x� �
�q�� x�� � C�

�N
whose trajectory remains in D � IRn� Consider the linearized DAE

A �p�t� � f ��x��t��z�t� � s��t���	�	�

p�t� � g��x��t��z�t� � s��t���	���

which is also index� tractable if �������� is so �cf� ��	
�� Unfortunately� the reverse
is not true in general� �	�	���	��� may have index  whereas �������� is rather a
singular index�� problem� This kind of singularities needs some special e�ort even
in view of numerical computations �e�g� ���
� �
�� In the present paper we avoid
these situations by supposing additional structural conditions ensuring to have index�
 tractability in a neighbourhood of the trajectory of �x�� too�

For more clarity� we restrict ourselves to specifying the structural condition dis�
cussed in ���
 and ��	
� Further conditions will be considered in ��
� The next Lemma
follows immediately from Lemma 	�� in ��	
�

Lemma ���� Let ���������
� be index�� tractable and let the matrix

M�y� ��

	
� �I � AA��f ��y�
QA �g��y�



� y � D�	���

have constant range�
Then ���������
� is index�� tractable at least in a neighbourhood of the trajectory of
x�� i�e�� the system ����������� is index�� tractable in this neighbourhood�

In the very special case of �������� being linear� that is� f ��y� � F � g��y� � G�
the matrixM�y� has constant range� trivially� However� even in this case ��������
is not in Hessenberg form�

Theorem ���� Given a solution �x� � �q�� x�� � C�
�N
of ������������ J a com�

pact interval� t	 � J � Let the DAE linearized along �x� be index�� tractable� and let
the matrix M�y� have a constant range� Moreover� let �I � AA��f and g be twice
continuously di�erentiable but �I � AA��r � C��J � IRm��

�i� Then� the perturbed initial value problems

A �q�t� � f�x�t�� � r�t� � ��t��

q�t� � g�x�t�� � ��

��t	��q�t	� � q	� � ��	���

are uniquely solvable on C�
�N
�J � IRm�n� supposed j��t	��q	�q��t	�j as well as

k�k� � k d
dt
����k� are su	ciently small� � � C�J � IRm�� �� � C��J � IRm��

q	 � IRn� Thus� ��t	� and ��t� are certain matrices described below �cf� �����
��������

�ii� For the solution of �i� the inequality

kx� x�k� � kq � q�k� � k d
dt
�PAq� � d

dt
�PAq��k�

� Kfk�k� � k d
dt
����k� � j��t	��q�t	� � q��t	��jg

is given with a constant K � ��
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Proof� The assertion follows from ��	
� Theorem 	�	 by providing the right projec�
tors used therein for our system ��������� Choosing a continuous matrix function
R��x� �e�g� �Ag��x�
�A� satisfying

Ag��x�R��x� � A and R��x�PA � R��x��

and regarding the relations

PR�g
� � P� Q�Q� � ��

the canonical projector �Q��x� onto �N� along �S� has the form

�Q��x� �

	
PAg

��x�Q��x�R��x� �
QQ��x�R��x� �



�

where Q� is the canonical projector Q� onto N� along S�� We refer to ��
 for technical
computations� Now� we have

�P �P��x� �

	
PA � PAg

��x�Q��x�R��x� �
� �



�

but� in particular

�P �P��x��t	�� �

	
PA � PAg

��x��t	��Q��x��t	��R��x��t	�� �
� �



�

It follows that

��t	� � PA � PAg
��x��t	��Q��x��t	��R��x��t	���	���

should be chosen to state the initial condition� ��t	� may be shown to be a projector
again� Furthermore� to apply Theorem 	�	 mentioned above we use the representation

�Q��x� �G
��
� �x�

	
�
�



�

	
PAg

��x�Q��x�H���x��
QQ��x�H���x��



��	���

where

H�x� �� D�x� � f ��x��Q� PQ��x�


is regular since the system ���� is index� tractable� Hence� with �	��� and

��t� �� Q��x��t��H
���x��t���	����

our assertion follows immediately from ��	
� Theorem 	�	�

Remarks�

�� The inequality �ii� shows the perturbation index of �������� also to be 
�cf� ��
��

� The projector ��t	� gives an idea of which of the variables involved in ����
���� are actually the state variables� Since in the index� case� we have an additional
hidden constraint besides the obvious constraint

�I �AA��ff�x�t�� � r�t�� ��t�g � ��

q�t�� g�x�t�� � ��

we cannot further expect PAq to be the state variable� but only a certain part of it�
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�� In numerical computations the components

�P �Q� �

	
PAg

�Q�R� �
� �




play an important role� These are the components that are subjected to an inherent
di�erentiation causing numerical di�culties �cf� Section ���

The solution �x�t� p	� of the initial value problem ��������� �	��� depends con�
tinuously on p	� but the partial derivative

�Z�t� ��
�x

p	
�t� p	� �

	
 �t�
Z�t�




satis�es the �rst variation system

A ��t� � f ��x�t� p	��Z�t� � ��

 �t� � g��x�t� p	��Z�t� � ��

��t	�� �t	� � I� � ��

This makes clear that linearization works well in this situation� too� However� we
should keep in mind that the sensitivity matrix �Z�t� does not have full rank� but

ker �Z�t� � ker ��t	��

dim ker ��t	� � r � ��

In a similarway we may treat also the equations �������� which depend on additional
parameters�

�� BDF� One of the most frequently used methods is the BDF� which we want
to investigate in more detail for the special systems of the circuit simulation ����
����� Supposed the system �������� has index �� the BDF is known to work well�
Good experience on treating index  Hessenberg form DAEs is reported e�g� in ��
�
However� what about the BDF applied to those nonlinear index  DAEs ��������
that are not in Hessenberg form�

In the following we specify the more general considerations given in ���
 and ��

to the circuit simulation systems �������� that are of interest here�

Let �q�� x�� be a solution of the system �������� and let the DAE �������� be
index� tractable locally around �q�� x��� Further� let � be a partition of the closed
interval �t	� T 
 with the following properties

� � t	 � t� � ��� � tN � T

� � hmin � t� � t��� � hmax� � � �������

�� � h���
h�

� ��� � � �

where �� and �� are suitable constants and the variable stepsize and variable order
BDF is stable for explicit ODE�s�

The variable order� variable stepsize BDF for DAEs of the form �������� reads

A
�

h�

kX
i	


�iq��i � f�x��� r�t�� � �������

q� � g�x�� � �������
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Here� �� represents the perturbations in the ��th step caused by the rounding errors
and the defects arising when solving the nonlinear equations numerically �e�g� by the
Newton method�� Applying Theorem ��� of ��
 and regarding relation �	��� we obtain
the following result�

Theorem ���� Let the assumptions of Theorem ��
 be ful�lled� Supposed there
is a constant C � � such that the starting values satisfy the relation

kq� � q��t��k � Ch�� � � k�

the following statements are true�
�i� There are constants � � � and r � � so that for all partitions �
��� with

su	ciently small stepsizes the BDF with

k��k � �� � � k and kQ��H
��
�
��k � h� �� � � �

is feasible in a neighbourhood of the trajectory �q�� x�� with a constant radius
r�

�ii� Supposed there is a constant C� � � with

k��k � C�h�� � � k� kQ��H
��
� ��k � C�h

�
� � � � ��

we �nd a constant C� � � such that the following error estimation holds�

max
��k

����
	

x� � x��t��
q� � q��t��


���� � C�

h
max
��k

kq� � q��t��k �max
��k

k��k

�max
��k

k��k�max
��	

�

h�
kQ��H

��
� ��k

i
�

where �� represents the local discretization error�

Recall that we have

�� � A

�
�

h�

kX
i	


�iq��t��i�� q���t��

�
�

Feasibility means that the nonlinear equations to be solved per integration step are
locally uniquely solvable� and the Newton method applies�

Let us return to the above model of the NAND�gate� We have tested the variable
order and variable stepsize BDF with the input voltages shown in Figure ��
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10 20 30 40 50 60 70 80
time[ns]

input V1
input V2

Fig� �� Input signals V� and V�
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The simulation results re�ect the real output of the NAND�gate� The voltage u�
at node � is low if and only if the input voltages V� and V� are high� Figure 	 shows
the numerical results� The regions ���ns� ��ns
 and ���ns� ��ns
 are critical� Both
signals� V� and V� are relatively high around the time points ���ns and ���ns�

0
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10 20 30 40 50 60 70 80
time[ns]

Output at node 1

Fig� 	� Response at node �

Figure � shows the result for I� and Figure � shows the result for I��
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In both cases� the current vanishes in the intervals ��ns� ��ns
� ���ns� �ns
�
��ns� ��ns
� ���ns� 	�ns
� �	�ns� ��ns
� ���ns� ��ns
� ���ns� ��ns
� and ���ns� ��ns
� In
these intervals� both input signals V� and V� are constant�
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All calculations were carried out by the BDF code DAESOL ����
�� which con�
trolled order and stepsize via the smooth component

�P �x� �

	
PA �
� �


	
q�
x�



�

	
PAq�
�



�

where

PA �

�
BBBBBBBBBBBBBBBBBBBB�

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� �� � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � �� � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � �� � � �

�
CCCCCCCCCCCCCCCCCCCCA

�

From our experience� this control works essentially more e�ective than that of the
complete value �x��

As far as the weak instability term �

h�
Q��H

��
� �� involved in the error estimation

of Theorem ��� is concerned� this e�ect is even typical for index� DAEs� Besides the
usual error propagation expected from the index � case� a certain defect component
ampli�ed by h��� in�uences the computation strongly�

In case of linear index  DAEs only the nullspace component of the solution �Q�x�
is a�ected by that weak instability term �e�g� ���
�� However� in nonlinear systems the
situation is di�erent� By means of a small academic example even in Hessenberg form�
in ���
 and ��
 it is shown how weak instability may a�ect all solution components�
A similar experience is reported in ��
�

By the following table we realize those instability e�ects once more� The table
shows the values computed by the constant stepsize backward Euler method with
di�erent stepsizes for approximating the currents I��T � � �� I��T � � �� IDD�T � � ��
and IBB �T � � �� which have to vanish at the �nal point T � �� ������ The produced
values re�ect the theoretical results as expected� If we decrease the stepsize� the error
becomes smaller up to the stepsize e���� The error increases for stepsizes smaller
than e� ��� This clearly re�ects the weak instability�

stepsize I� I� IDD IBB

�e��� ��	�e��� ���e��� ���e��� ���e���
�e��� ���e��� ���e��� ����e��� ��		e���
e��� ����e��� ����e��� ���e��� ����e���
�e��� ����e��� ��e��� 	���e��� ����e���
�e��� ��	e��� ��e��� ��e��� ���	e���

Sometimes it might be possible to handle the weak instability more e�ctively by
improving the �P �Q����components of the approximations after each steps� or� which is
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in fact the same� by reducing the most dangerous parts of the defects� that is� those
parts belonging to the range of �Q���

�G��
��� and of Q���H

��
� � respectively �cf� �	�����

More precisely� for a given approximation �x	� to �x��t�� we try to determine the
new approximation �x��

�x� � �I � �P �Q�����x
	
� �

�P �Q����z����	�

by solving the equation

�Q���
�G��
�����g��x�� � �r�t��� � ������

with respect to the correction term �P �Q����z� we are looking for� This defect correction
is nothing else but a generalization of the back�projection onto the right manifold�
which was proposed by Ascher and Petzold ��
� for Hessenberg systems�

Theorem ���� Under the conditions of Theorem ��
� equation �
�
� is linear and
it uniquely determines

�P �Q����z� � �P �Q����x��t���

Proof� The structural conditions lead to the two relations

�Q���
�G��
�����g��x�� � �g� �P �x��� � �

and

�Q���
�G�������g��x��t��� � �g� �P �x��t���� � ��

With the notations given in the proof of Theorem 	�� we have

�Q���
�G����� �

	
PAg

�
�Q���H

��
� PAg

�
�Q���R���

QQ���H
��
� QQ���R���



�

Putting �z� �

	
��
z�



we obtain

�P �Q����z� �

	
PAg

�
�Q���R�����

�



�

further� from ������

Q���R����� � Q���R���g���� Q���H
��
� �f��� � r�t���������

On the other hand� the relation �Q���
�G�������g�x��t��� � �r�t��� � � given for the exact

DAE solution leads to

Q���R���q��t�� � Q���R���g��� �Q���H
��
� �f��� � r�t����

Remark� In practical computations we do not have the exact projectors �Q��� �
�Q��x��t��� etc�� but instead we have to use the approximations �Q��x	��� If im

�Q��y�
does not rotate too quickly and if �x	� is close enough to x��t��� we may expect the
defect correction to work well�



Recent results in solving index � DAEs in circuit simulation �

�� Final Remark� For the classical formulation ����� one can think of de�ning
index� tractability also for nullspaces N �x� rotating with x� But� again we should
expect a higher perturbation index and consequently much harder numerical di�cul�
ties� On the other hand� the BDF is known to fail for index� systems with rotating
leading nullspaces� even for very simple systems� It is known that the exponential
numerical instability is the reason for that�

Hence� there is only some hope to handle more general index� systems ����
which do not satisfy ����� by means of the BDF if the nullspace remains somewhat
restricted to certain index�� parts of the system� Possibly� then only weak instabilities
will arise� However� this question needs a further great theoretical e�ort as well as a
very deep insight into the circuit structure�

It should be stressed once more that the charge��ux oriented formulation ����
���� stands out for its constant leading nullspace�
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