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Abstract
Using an approach that has its origins in work of Halanay, we consider

stability in mean square of numerical solutions obtained from the θ–Maruyama
discretization of a test stochastic delay differential equation

dX(t) = {f(t)− αX(t) + βX(t− τ )}dt + {g(t) + η X(t) + µX(t− τ )} dW (t),

interpreted in the Itô sense, where W (t) denotes a Wiener process. We focus
on demonstrating that we may use techniques advanced in a recent report by
Baker and Buckwar to obtain criteria for asymptotic and exponential stability,
in mean square, for the solutions of the recurrence

eXn+1− eXn =θh{fn+1−α eXn+1+β eXn+1−N} +

+(1 − θ)h{fn−α eXn+β eXn−N}+
√

h(gn+η eXn+µ eXn−N )ξn (ξn ∈ N (0, 1)).

θ-Maruyama scheme; asymptotic and exponential stability; stochastic delay
differential & difference equations; Halanay-type inequalities.
AMS Subject Classification: 65C30 60H35 34K20 34K50

1 Introduction

This work is an extension of previous work of Baker & Buckwar [2, 3]. We in-
dicate how results for stability of solutions obtained from a θ–Maruyama method
applied to a linear stochastic delay differential equation (sdde ), that serves as a test
equation, can be derived. The use of such a test equation is commonplace in numer-
ical analysis; see e.g. [1, 5] for deterministic delay differential equations (ddde s);
for stochastic ordinary differential equations (sode s) see e.g. [9]; for sdde s see
[2, 7]. Though it may seem that standard test equations are often chosen for their
amenability to investigation, we here accept without discussion that such simple
equations generate a ‘test-bed’ for obtaining insight into related non-trivial prob-
lems. At the same time, analysis of deterministic problems can yield understanding
of the analysis of stochastic equations, and we exploit this.
We assume a little familiarity with the related literature, but seek to present a
self-contained discussion. We employ a strategy presented for stability analysis in
[3], where we illustrated the investigation of numerical stability by examining the
Euler-Maruyama method. As we remarked in an aside in [3], the technique for
analyzing stability that we illustrated by reference to the Euler-Maruyama method
can also be applied to some other methods, including some that are semi-implicit
(i.e. drift-implicit). We justify this remark here; a number of the other comments
suggest further insight not found (or not easily found) in the existing literature.
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1.1 The test equation

With t0, α, β, η, µ ∈ R and τ ≥ 0, the Itô sdde considered here is written

dX(t) = {f(t) − αX(t) + β X(t − τ)} dt +
+{g(t) + η X(t) + µX(t − τ)} dW (t) (t ≥ t0), (1a)

X(t) = Φ(t), t ∈ J, J := [t0 − τ, t0]. (1b)

(Note the sign attached to α in (1a).) If τ > 0, we can, by a change of variable,
normalize it to unity, and replace {α, β, η, µ, τ} by {ατ, βτ, η

√
τ, µ

√
τ, 1}.

For t ∈ [t0,∞), X(t) ≡ X(Φ; t) denotes the solution of the sdde (1a) for a given
initial function Φ in (1b).
The discussion in [3] was presented in terms of a more general equation

dX(t)=F (t, X(t), X(t−τ)) dt + G(t, X(t), X(t−τ)) dW (t). (2)

We use the linear inhomogeneous sdde (1a), with t0 ≤ t < ∞, as a test equa-
tion for the discussion of stability and (on applying a numerical method) numerical
stability. The functions f(t) and g(t) in (1a) satisfy conditions consistent with
those normally assumed for F and G; their presence implies that the null func-
tion (X(t) ≡ 0 for t ≥ −τ) may not be a solution. We assume the standard
infrastructure and notation [2, 3, 11]: (i) (Ω,F , {Ft}t≥t0 , P) is a complete probabil-
ity space with the filtration {Ft}t≥t0 satisfying the usual conditions, E denotes
expectation with respect to P and W (t) is a one-dimensional standard Wiener
process on that probability space; (ii) the initial function Φ : J × Ω → R has
continuous paths, is independent of the σ-algebra generated by W (t) and sat-
isfies E(supt∈J |Φ(t)|2) < ∞; (iii) there exists a unique strong solution of the
sdde (1) with E({X(t)}2) < ∞ for bounded t. (A strong solution of (2) satisfies

X(t) = X(t0) +
∫ t

t0

F (s, X(s), X(s−τ)) ds +
∫ t

t0

G(s, X(s), X(s−τ))dW (s) almost

surely, for t ≥ t0; for a full definition, and sufficient conditions for existence and
uniqueness, see Mao [11] pp. 149–157. The convergence and stability results in [2, 3]
require existence and uniqueness of solutions but do not require the global Lipschitz
conditions in [11]. For a convergence proof for the θ-Maruyama method for general
discrete delay sdde s, including (2), see [6].)

1.2 The θ–Maruyama equations

Suppose that θ ∈ [0, 1] and choose a step h = τ/N where N ∈ N. The Maruyama-
type θ-method applied to (1) generates, where ξn ∈ N (0, 1) (ξn is normally dis-
tributed with zero mean and variance unity), the recurrence

X̃n+1−X̃n = hfθ
n+h

{
θ{−αX̃n+1+βX̃n+1−N} + (1 − θ){−αX̃n+βX̃n−N}

}
+

+
√

h(gn + η X̃n + µ X̃n−N) ξn, (3a)

for approximations X̃n ≈ X(nh), where we use the shorthand notation

tn = t0+nh, gn = g(tn), fn = f(tn) and fθ
n := θfn+1+(1 − θ)fn (n ∈ Z). (3b)

Eq. (3a) is a drift-implicit formula that (if h is not an “exceptional value” – i.e.,
provided 1 + θαh 	= 0) generates the sequence {X̃n}n≥1, when given

X̃−� = Φ(t−�) for � ∈ J where J := {0, 1, · · · , N}. (3c)
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To indicate the dependence on Φ we write X̃n ≡ X̃n(Φ), and our definition of
stability relates to perturbations δX̃n ≡ δX̃n(Φ) := X̃n(Φ + δΦ)− X̃n(Φ), that arise
from perturbations δΦ(t−�) (for � ∈ J ) in the initial data. We will use the notation


0 =
1−(1−θ)αh

1+θαh
, 
1 =

θβh

1+θαh
, 
2 =

(1−θ)βh

1+θαh
, �0 =

η
√

h

1+θαh
, �1 =

µ
√

h

1+θαh
. (4)

From (3a), if 1 + θαh 	= 0 (as we assume),

δX̃n+1 = (
0 + �0ξn)δX̃n+
1δX̃n+1−N +(
2 + �1ξn)δX̃n−N . (5)

2 Exponential Stability of Solutions by a Halanay-
type Technique

There is a variety of approaches to the investigation of stability; we cannot overem-
phasize that each approach has its merits or demerits and each has its adherents.
Halanay [8] provided a technique for examining the exponential stability of solutions
of ddde s. This was modified for difference equations by Tang [12] (see also the re-
lated publications, e.g. [4]). Baker and Buckwar [3] progressed the Halanay-type
theory by applying it to establish conditions for p-th moment exponential stability
of solutions of sdde s and certain discretized versions.

2.1 Stability definitions

Our definitions of stability, asymptotic stability, and exponential stability in mean-
square of solutions of (1) are consistent with usual definitionsa to be found in the
literature; cf. [3], or [10, 11]; they are analogues of the definitions of (asymptotic,
exponential) stability of solutions of stochastic recurrence relations or difference
equations. However, the general stability definitions associated with (2) and its
discretization can be simplified when considering (1), (3).

Definition 1 A solution of (3) is said to be (a) stable in mean-square (sms ) if,
for each ε > 0, there exists a corresponding value δ+ > 0 such that E(| δX̃n|2) < ε
for n ∈ N, whenever E(supn∈J | δΦ(tn)|2) < δ+; (b) asymptotically stable in mean-
square (asms ) if it is stable in mean-square and E(| δX̃n|2) → 0 as n → ∞, whenever
E(supn∈J | δΦ(tn)|2) is bounded; (c) exponentially stable in mean-square (esms )
if it is stable in the mean-square and if, given δ+ > 0, there exist a finite C > 0,
and a value ν+

h > 0 such that, whenever E(supn∈J | δΦ(tn)|2) < δ+, E(|δX̃n|2) ≤
C exp{−ν+

h (tn− t0)} for all n sufficiently large. Given such a ν+
h > 0, we then term

the solution ν+
h -esms , or esms with exponent −ν+

h .

Emphasis in the numerical analysis literature is concentrated on (a) and (b) rather
than (c); we consider results for ν-exponential stability (ν-esms ). The definitions
of stability for the analytical solution X(Φ; t) of (1) are natural analogues of those
in Definition 1. Thus, exponential stability is defined as follows:

Definition 2 The solution X(Φ; t) of the problem (1) is exponentially mean-square
stable, with exponent −ν+ (ν+-esms ), if it is stable in the mean-square and if,
given δ+ > 0, there exist a finite C > 0 and a value ν+ > 0 such that, when-
ever E(supt∈J | δΦ(t)|2) < δ+, E(|δX(t)|2) ≤ C exp{−ν+(t − t0)}(where δX(t) :=
X(Φ + δΦ; t) − X(Φ; t)) for all t sufficiently large.

aDifferent notions of stability will not be considered here. (Other notions relate to almost sure

behaviour of {δeXn}, or stability in probability; another class of definitions correspond to persistent
perturbations – perturbations in the inhomogeneous terms – e.g. in {fn} – rather than in Φ.)
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The terms ν+-esms and exponent −ν+ appear to be nonstandard. The restriction
of the definitions to solutions of ddde s (omitting the words “mean square”) is clear.

2.2 A discrete inequality of Halanay type

We appeal to some results used in [3], to which we refer for discussion and proofs.

Lemma 1 Denote by RN (ζ; a, b) the polynomial in ζ:

RN (ζ; a, b) := ζN+1 − (1 − ah)ζN − bh (a, b ∈ R; N ∈ N), (6a)

where h = τ/N > 0. If 0 ≤ βh < αh and 0 < αhh < 1, the polynomial
RN (ζ; αh, βh) has a single positive zero ζ+

h where

ζ+
h ∈ (1 − (αh − βh)h, 1), if βh > 0, and ζ+

h = 1 − αhh, if βh = 0; (6b)

further, ζ+
h = exp(−ν+

h h) where ν+
h = −�n(ζ+

h )/h lies in (0, αh].

Theorem 1 Suppose, for some fixed integer N ≥ 0, that tn = t0 + nh for some
h > 0 and {vn}∞−N is a sequence of positive numbers that satisfies, where

0 ≤ βh < αh and 0 < αhh < 1, (7a)

the relation
vn+1 − vn

h
≤ −αhvn + βh max

�∈J
vn+� for n ∈ N (7b)

with N = 0 if βh = 0. Then vn ≤ {
max�∈J v�

}
exp{−ν+

h (tn − t0)} where ν+
h > 0

is the value occurring in Lemma 1.

Theorem 1 is similar in spirit to a result obtained by Halanay [8] in the context of
ddde s. The form of the result 0 < ν+

h ≤ αh explains the presence of the scaling
factor 1/h in (7b) – so that {vn+1 − vn}/h then simulates a derivative.

3 Deterministic Insight

Results for deterministic problems yield insight. Consider the ddde

x′(t) = f(t) − αx(t) + βx(t − τ) (α, β ∈ R). (8)

Theorem 2 Given ν+ > 0, solutions of (8) are ν+–exponentially stable if and
only if the zeros of the function Q(ζ; α, β, τ) := ζ + α − β exp(−ζτ) lie in the
left half–plane 
(ζ) ≤ −ν+; a sufficient condition for ν+-esms for some ν+ > 0 is
|β| < −α.

Remark: The special form of (3.1) allows use of a type of “method of D-
partitions” (a boundary locus technique, cf. [10]) to determine, given ν+ > 0,
exact regions in (ατ, βτ) parameter space for which solutions are ν+-exponentially
stable.

In the following proof of Theorem 3, we give an analysis for the deterministic case
that can be modified for the stochastic case. Suppose Nh = τ (N ∈ N) and
1 + αhθ 	= 0. The θ–method for (8) gives

xn+1 − xn = hfθ
n − αh{θxn+1 + (1 − θ)xn} + βh{θxn+1−N + (1 − θ)xn−N}. (9)

Perturbing {x�}�∈J , we find the consequent perturbations {δx�}�≥1 satisfy

δxn+1 =
1 + (1 − θ)αh

1 + θαh
δxn +

βhθ

1 + αhθ
δxn+1−N +

(1 − θ)βh

1 + αhθ
δxn−N , (10)
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for n ≥ 0. With ρ0,1,2 as in (4), δx2
n+1 − δx2

n can be expressed as
(
{
0 + 1}δxn +


1δxn+1−N + 
2xn−N

)
×

(
{
0 − 1}δxn + 
1δxn+1−N + 
2δxn−N

)
; we deduce that

δx2
n+1−δx2

n =(
2
0 − 1) δx2

n+2
0
1 δxnδxn−N+1+2
0
2 δxnδxn−N

+2
1
2 δxn+1−Nδxn−N +
2
1 δx2

n+1−N +
2
2 δx2

n−N . (11)

If uv 	= 0, |suv| ≤ 1
2{v2 + s2u2}, with equality if, and only if, s = v/u. Thus

|uv| = infs∈(0,∞)
1
2s

{v2 + s2u2} ≤ 1
2{

v2

r
+ ru2} for all r ∈ (0,∞). Then,

|
r
sδxjδxk| ≤ |
r
s|
2

{rjkδx2
j +

1
rjk

δx2
k} for arbitrary rjk ∈ (0,∞), (12)

with equality for some rjk. From (11) and (12) we obtain the inequality

δx2
n+1−δx2

n≤(
2
0 − 1) δx2

n+|
0
1|{1
r
δx2

n + rδx2
n−N+1}+|
0
2|{ 1

r′
δx2

n+ r′δx2
n−N}

+|
1
2|{ 1
r′′

δx2
n+1−N +r′′δx2

n−N}+
2
1 δx2

n+1−N +
2
2 δx2

n−N , (13)

for arbitrary r, r′, r′′ ∈ (0,∞). Hence,

δx2
n+1 − δx2

n

h
≤ −A� δx2

n + B� max
�∈J

δx2
n−� (J = {0, 1, · · · , N}), (14)

where, for arbitrary positive numbers {r, r′} (and choosing r′′ = 1) we may set

A�
h ≡ A�

h(r, r′) = − 1
h

{

2
0 − 1 +

|
0
1|
r

+
|
0
2|

r′
}
, (15a)

B�
h ≡ B�

h(r, r′) =
1
h
{|
0
1|r + |
0
2|r′ + (|
1| + |
2|)2}. (15b)

(A�
h and B�

h are functions of h and are O(1) as h → 0.) We deduce:

Theorem 3 For the deterministic case, the recurrence (9) is ν+–exponentially sta-
ble for some ν+ > 0 if, for any choice of positive r,r′, the values in (15) satisfy the
conditions hA� ∈ (0, 1) and 0 ≤ B� < A�.

Remark: Theorem 3 provides a sufficient condition for ν+–esms , for some ν+ >
0. However, the recurrence (10) is special; it yields xn+1 = 
0xn + 
1xn+1−N +

2xn−N + hfθ

n/{1 + αhθ} (where τ = Nh) and, given ν+ > 0, its solutions are
ν+–exponentially stable if and only if the zeros of SN (ζ; α, β, τ) := ζN+1−
0ζ

N −

1ζ − 
2 lie within or on the circle in the complex plane that is centered on 0 and
has radius exp(−ν+h), any on the circle being simple. Thus, the parameters that
correspond to ν+–exponential stability can here be computed by a boundary-locus
technique.

4 Simulation of Stability of X(t) by that of {X̃n}.
We now advance to the stochastic problem. It is natural to ask to what extent the
stability of {Xn(Φ)} corresponds to the stability of the true solution X(Φ; t) that
it is assumed to approximate. For (1) we have the following result (see, e.g. [3]).

Theorem 4 Every solution of (1) is ν+-esms for some ν+ > 0 when (i) |β| <
α − {|η|2 + |µ|2}, or (ii) µ = 0 and |β| < α − 1

2 |η|2.
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We seek an analogue of Theorem 4 for stability of the numerical solutions, given
1+θαh 	= 0. To analyze mean-square stability we first derive a relationship between
the expectations {E(δX̃2

n)}, starting from (5). We seek a suitable relationship

E(δX̃
2

n+1) − E(δX̃
2

n) ≤ −αhhE(δX̃
2

n) + βhh max
�∈J

E(δX̃
2

n−�). (16)

Lemma 2 E( δX̃
2

n+1) − E( δX̃
2

n) can be written{
(
2

0 − 1) E( δX̃
2

n) + 2
0
2E( δX̃n δX̃n−N ) + 2
0
1E( δX̃n δX̃n+1−N ) +

+2
1
2E( δX̃n−N δX̃n+1−N ) + 
2
2E( δX̃

2

n−N ) + 
2
1E( δX̃

2

n+1−N )
}

+
(
�2

0E( δX̃
2

n) + 2�0�1E( δX̃n−N δX̃n+1−N ) + �2
1E( δX̃

2

n−N )
)
. (17)

Proof: δX̃n+1 ± δX̃n = (
0 ± 1 + �0ξn)δX̃n + 
1δX̃n+1−N + (
2 + �1ξn) δX̃n−N .
Hence, for appropriate coefficients ai etc. that are functions of {
i} and {�j} (and

hence of α, β, η, µ, and h), δX̃
2

n+1 − δX̃
2

n = {a0 + a1ξn + a2ξ
2
n}δX̃

2

n + {b′0 + b′1ξn +
b′2ξ

2
n}δX̃nδX̃n+1−N+ {b′′0+b′′1ξn+b′′2ξ2

n}δX̃nδX̃n−N+ {b′′′0 +b′′′1 ξn+b′′′2 ξ2
n}δX̃n−NδX̃n−N+1

+{c0 + c1ξn + c2ξ
2
n}δX̃

2

n+1−N +{d0 +d1ξn +d2ξ
2
n}δX̃

2

n−N . (We note that b′2 = b′′′2 =
c2 = 0, and the coefficients with index 0 arise in the deterministic case.) If −N ≤
r, s ≤ n (r, s ∈ N), we have E(ξnδX̃rδX̃s) = 0 and E(ξ2

nδX̃rδX̃s) = E(δX̃rδX̃s), and
so the coefficients with index 1 vanish when we take expectations in the expression
for δX̃

2

n+1 − δX̃
2

n, and obtain

E( δX̃
2

n+1) − E( δX̃
2

n) =

{a0 + a2} E( δX̃
2

n) + b′0E( δX̃n δX̃n−N ) + (b′′0 + b′′2)E( δX̃n δX̃n+1−N ) +

b′′′0 E( δX̃n−N δX̃n+1−N ) + c0E( δX̃
2

n+1−N ) + {d0 + d2}E( δX̃
2

n−N ). (18)

Expressing the coefficients in (18) in terms of (4) we establish the lemma.

4.1 Application of the general Halanay-type theory

Eq. (17) reduces to (11) in the deterministic case, and the first term – the term in
braces

{ }
– in (17) can be treated in the manner used to prove (13) from (11),

when obtaining (14). We now bound the terms in (18) that involve �0,1, using

|2E( δX̃n−N δX̃n+1−N )| ≤ E( δX̃
2

n−N ) + E( δX̃
2

n+1−N ), to obtain

∣∣�2
0E( δX̃

2

n) + 2�0�1E( δX̃n−N δX̃n+1−N ) + �2
1E( δX̃

2

n−N )
∣∣ ≤

(�2
0 + 2|�0�1| + �2

1) sup
{
E( δX̃

2

n), E( δX̃
2

n+1−N ), E( δX̃
2

n−N )
}
. (19)

We thus obtain a delay-difference inequality of Halanay type, and hence, using
Theorem 1, a condition for ν+-esms :

Theorem 5 Given arbitrary positive numbers {r, r′}, set Ah(r, r′) = A�
h(r, r′),

Bh(r, r′) = B�
h(r, r′) + (|�0| + |�1|)2, where A�

h(r, r′) and B�
h(r, r′) are the values

in (15), the deterministic case. Then

E(δX̃
2

n+1) − E(δX̃
2

n)
h

≤ −Ah(r, r′) E(δX̃
2

n) + Bh(r, r′) max
�∈J

E(δX̃
2

n−�), (20)

where J = {0, 1, · · · , N}. If, for any r, r′ ∈ (0,∞), 0 < hAh(r, r′) < 1 and
0 ≤ Bh(r, r′) < Ah(r, r′), {X̃n(Φ)} is ν+(r, r′)-esms for a value ν+(r, r′) > 0.
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The condition hAh(r, r′) ∈ (0, 1) is a condition in Theorem 3.
Given (r, r′) for which hAh(r, r′) ∈ (0, 1) and Bh(r, r′) ∈ (0, Ah(r, r′)), an es-
timate of ν+(r, r′) can obtained (by Lemma 1) from the positive zero ζ+(r, r′)
of RN (ζ; Ah(r, r′), Bh(r, r′)); in principle, one can then seek the maximum value
ν+(r, r′) over all such pairs (r, r′).
It is clear that to emulate the result |β| < −α + |η|2 + |µ|2, with α ∈ (0,∞), that
holds in the case of the test equation (1) (cf. Theorem 4 (i)) it is advantageous
if 
0 → 0 as α → ∞. Thus, when considering ν-esmsproperties, it appears that
θ ∈ (1

2 , 1] (corresponding to an underlying L-stable deterministic θ-formula) may be
preferable to θ = 1

2 (where the deterministic formula is only A-stable and |
0| → 1
as α → ∞) or to θ ∈ [0, 1

2 ). However, an L-stable formula can be stable when the
ddde is unstable.

5 Summary

Affine constant-coefficient test equations with constant lags (such as that in (1))
are special, and they allow a more complete stability analysis than is in general
possible. A justification of the use of (1a) for insight for more general equations can
be formulated if the theory of approximating linear equations is analyzed; theories
involving approximation by deterministic problems can also be found in the liter-
ature [10]. Theorems 3 and 5 are new, and they accomplish our main objective of
demonstrating the applicability of Halanay-type inequalities. However, restrictions
on space have limited our discussion; it has not been possible to demonstrate the
advantages of an approach based upon Halanay-type inequalities. These lie in the
opportunity to consider solutions of test equations with time-dependent coefficients
and lags and certain types of non-linearity. On the other hand, the perceived ad-
vantages come at a price, e.g. some loss of precision in special cases such as those
where necessary and sufficient conditions can be found from other approaches.
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