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Abstract. We consider convex stochastic programs with an (approximate) initial
probability distribution P having finite support supp P, i.e., finitely many scenar-
t0s. Such stochastic programs behave stable with respect to perturbations of P
measured in terms of a Fortet-Mourier probability metric. The problem of optimal
scenario reduction consists in determining a probability measure which is supported
by a subset of supp P of prescribed cardinality and is closest to P in terms of such
a probability metric. Two new versions of forward and backward type algorithms
are presented for computing such optimally reduced probability measures approx-
imately. Compared to earlier versions, the computational performance (accuracy,
running time) of the new algorithms is considerably improved. Numerical experi-
ence is reported for different instances of scenario trees with computable optimal
lower bounds. The test examples also include a ternary scenario tree representing
the weekly electrical load process in a power management model.
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1 Introduction

Many stochastic decision problems may be formulated as convex stochastic
programs of the form

rnin{/Q folw,2)P(dw) : x € X}, (1)

where X C IR™ is a given nonempty closed convex set, {2 a closed subset
of R?, the function fy from 2 x R™ to R is continuous with respect to w
and convex with respect to z, and P is a fixed Borel probability measure on
2, ie., P € P(). For instance, this formulation covers (convex) two- and
multi-stage stochastic programs with recourse.

Typical integrands fo(-,z), z € X, in convex stochastic programming prob-
lems are nondifferentiable, but locally Lipschitz continuous on (2. In the fol-
lowing, we assume that there exist a continuous and nondecreasing function
h : Ry — R4 with h(0) = 0, a nondecreasing function ¢ : Ry — Ry \ {0}
and some fixed element wg € R® such that

[folw,z) = fo(@, 2)| < g([|z[))e(w, @) (2)
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for each z € X, where the function ¢ : 2 x {2 — R is given by
c(w, @) := max{1, h([lw — woll), h([|& — wol) Hlw — &I, Vew, & € 2. (3)

This means that the function h(|| - —wp||) describes the growth of the local
Lipschitz constants of fo(:,2) in balls around wp with respect to some norm
[|- ]| on RE. An important particular case is that the function h grows poly-
nomially, i.e., h(r) = r?~! for r € Ry and some p > 1. For instance, it is
shown in [11] that the choice p = 2 is appropriate for two-stage models with
stochasticity entering prices and right-hand sides.

It is shown in [4,11] that the model (1) behaves stable with respect to small
perturbations in terms of the probability metric

G(P.Q) = sup | | f(w)P(dw) - /Q F(@)Q(dw) (4)

feF. J

where F, is the class of continuous functions defined by
Fe={f:2->R: flw)— f(®) <c(w,®) for all w,w € 12} (5)

and probability measures P and () in the set
Pe(D) = {Q e P(2): [ clwun)Qldw) < 0} (©
o)

(see also the earlier work in [13]). The distance (. is a probability metric on
P.(£2) with (-structure and also called a Fortet-Mourier (type) metric. In this
generality, it is introduced in [14] and further studied in [10,12]. In particular,
the metric (. has dual representations in terms of the Kantorovich-Rubinstein
functional (cf. Section 5.3 in [10] and [12]).

An important instance is that the initial probability measure P is itself dis-
crete with finitely many atoms (or scenarios) or that a good discrete approx-
imation of P is available. Its support may be very large so that, for reasons
of computational complexity and time limitation, this probability measure
is further approximated by a probability measure @ carried by a (much)
smaller subset of scenarios. In this case the distance (.(P, Q) represents the
optimal value of a finite-dimensional linear program. More precisely, from (4)
we obtain for P = Zf\il iy, and Q = E;V:LHJ q¢j0.; that

N N

CC(P7Q) = max{zpiui - ZQJU] TU; — Uy S C(wiij)7Vi7j € {17 .. '7N}}7
i=1 j=1
igJ

where J C {1,..., N} and é,, € P(£2) denotes the Dirac measure placing unit
mass at w. In particular, the metric {, can be used to evaluate distances of
specific probability measures obtained during a scenario-reduction process.
Various reduction rules appear in the literature in the context of recent large-
scale real-life applications. We refer to the corresponding discussion in [4], to
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the recent work [3] on scenario generation and reduction, and to the paper
[9], in which an approach to scenario generation based on Fortet-Mourier
distances is given.

In the present paper, we follow the ap}groach for reducing scenarios of a given
discrete probability measure P =) .", p;0,, developed in [4]. It consists in
determining an index set J. C {1,..., N} of given cardinality #.J. = N —n
and a probability measure Q, = Zjvzl e, qjd.; such that

N
Ce(P,Qu) =min{C(P, Y qjdu,) : JC{l,..., N}, #J=N—n, (7)
jes

> gi=1,q>0j¢J}

JgJ

Problem (7) may be reformulated as a mixed-integer program. In Section 2
we derive bounds for (7) and develop two new algorithms (fast forward se-
lection and simultaneous backward reduction), which constitute heuristics for
solving (7). We study their complexity and their relations to the algorithms
in [4]. Indeed, the fast forward selection algorithm turns out to be an effi-
cient implementation of the forward selection procedure of [4], producing the
same reduced probability measures. In order to compare the performance of
the algorithms we provide, in Section 3, explicit formulas for the minimal
distances (7) in case that P is a regular (binary or ternary) scenario tree
(i.e., a tree having a specific structure) and Q. is a reduced tree with fixed
cardinality n. In Section 4 we report on numerical experience for the reduc-
tion of regular binary and ternary scenario trees. The test trees also include
the ternary scenario tree representing the weekly electrical load process in a
power management model which was considered in [4]. It turns out that the
new implementation of the fast forward selection algorithm is about 10-100
times faster than the earlier version. Furthermore, fast forward selection is
the best algorithm when comparing accuracy. The results of the simultaneous
backward reduction algorithm are more accurate than the backward reduc-
tion variant of [4] in most cases, but at the expense of higher running times.
When comparing running times, fast forward selection (simultaneous back-
ward reduction) is preferable in case that n < & (n > &')(approximately).

2 Scenario Reduction

We consider the stochastic program (1) and select the function ¢ of form (3)
such that the Lipschitz condition (2) is satisfied. Let the initial probability
distribution P be discrete and carried by finitely many scenarios w; € 2 with
weights p; > 0,7 = 1,...,N, and Y0 p; = 1, ie, P = YN, pid,. Let
neN,n<N,JC{l,...,N} with #J = N —n and consider the probabil-
ity measure () having scenarios w; with probabilities ¢;, j € {1,...,N}\J,
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i.e., compared to P, the measure () = ngl ¢j0w; is reduced by deleting all
scenarios wj, j € J, and by assigning new probabilistic weights ¢; to each sce-
nario wj, j € J. The optimal reduction concept described above recommends
to consider the probability distance

N
D(J;0) = G _pidoss D 4jds;) - (8)

JigJ

depending on the index set J and ¢. The optimal reduction concept (7)
says that the index set J, and the optimal weight ¢, are selected such
that D(J.;q.) = min{D(J;q) : J C {L,...,. N} #J = N —mn,> ., ;q; =
1,¢; > 0,7 ¢ J}. First we recall the following bounds for min, D(J;q) =
min{D(J;q) : ZJEJ ¢; =1,¢; >0,j ¢ J} when the index set J C {1,...,N}
is fixed ([4], Theorem 3.1).

Theorem 2.1 (redistribution)
For any index set J C {1,..., N} it holds that

1 . . _ .
e gm min e(wi,wj) < min D(J3q) < D(J;q) < ;pi min c(wi, ), (9)

where C: max {1, h(|lwi —wol])} and

i€{1,...,N}
gi == p; + i, ] € J, 7() € argminc(w;,w;), ¢ € J. (10
qj =1 ;p JE 7, (i) € argminc(w;, w)) (10)
iG)=j

Furthermore, we have equality in (9) and, hence, optimality of q if h = 1.

For convenience of the reader the proof of Theorem 2.1 is displayed in the
Appendix. The interpretation of the formula (10) is that the new probability
of a preserved scenario is equal to the sum of its former probability and of
all probabilities of deleted scenarios that are closest to it with respect to c.
If h =1, we call (10) the optimal redistribution rule.

Next we discuss the optimal choice of an index set J for scenario reduction
with fixed cardinality #.J. Theorem 2.1 motivates to consider the following
formulation of the optimal reduction problem for given n € N, n < N:

min{D := Zpi Ijréi}lc(whwj) cJc{l,...,NL,#J =N —n} (11)
i€J

Problem (11) means that the set {1,..., N} has to be covered by two sets
JcA{l,...,N}and {1,..., N}\J such that .J has fixed cardinality N —n and
the cover has minimal cost D ;. Thus, (11) represents a set-covering problem.
It may be formulated as a 0-1 integer program (cf. [7]) and is A"P-hard. Since
efficient solution algorithms are hardly available in general, we are looking
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for (fast) heuristic algorithms exploiting the structure of the costs D ;. In the
specific cases of n =1 and n = N — 1, solving (11) becomes quite easy.
In case that #.J = 1, the problem (11) takes the form

i ) (a2
If the minimum is attained at [, € {1,..., N}, i.e., the scenario w;, is deleted,
the redistribution rule (10) yields the probability distribution of the reduced
measure Q. If j, € argminj, c(w,,w;), then it holds that g;, = p;, + p.
and @ = p; for all [ & {l.,j.}. Of course, the optimal deletion of a single
scenario may be repeated recursively until a prescribed number N — n of
scenarios is deleted. This strategy recommends a conceptual algorithm called
backward reduction.

In case that #.J = N — 1, the problem (11) is of the form

N
min (Wi, Wy) . 13

uefl,..,N} ;pl (@i, wu) (13)

If the minimum is attained at u. € {1,..., N}, only the scenario w,, is kept

and the redistribution rule (10) provides ¢y, = pu. + >4, Pi = 1. This
strategy provides the basic concept of a second conceptual algorithm called
forward selection.

First, we take a closer look at the backward reduction strategy. A backward
type algorithm was already suggested in [4,6]. It determines a reduced sce-
nario set by reducing N — n scenarios from the original set of scenarios as
follows. Let the indices [; be selected such that

li € arg minc(wy,w;),i=1,...,N —n. (14)

min
le{l NP tir} o

It can be shown that

N—n
lb:= . min c(wy; , wj 15
> il ) (15)

is a lower bound of the optimal value of (11). Furthermore, it holds that the
index set {l1,...,In_pn} is a solution of (11) if foralli =1,..., N —n, the set
argmin;, c(wy,,w;)\{l1,.-.,li=1,lit1,-..,In—p} is nonempty ([4,6]). This
property motivates the following algorithm. In the first step, an index n; with
n < n; < N is determined using formula (14) such that J; = {l1,...,In—n, }
is a solution of (11) for n = n;. Next, the redistribution rule of Theorem 2.1 is
used. This leads to the reduced probability measure P; containing all scenar-
ios indexed by {1,...,N}\ Ji. If n < nq, the measure P; is further reduced
by deleting all scenarios belonging to some index set Jo with #J> =ny —ns
and n < ng < ny, which is obtained in the same way using formula (14).
This procedure is continued until, in step r, we have n, =n and J = U]_, J;.
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Finally, the redistribution rule (10) is used again for the index set J. This
algorithm is called backward reduction of scenario sets. There are still many
degrees of freedom to choose the next scenario in each step. Often there exist
several candidates for deletion. In Section 4 we use one particular implemen-
tation of backward reduction of scenario sets.

Another particular variant consists in the case that #.J; = 1 for each i =
1,..., N —n. This variant (without the final redistribution) was already an-
nounced in [2,5]. However, numerical tests have shown that the backward
reduction of scenario sets provides slightly more accurate results compared
to backward reduction of single scenarios.

Next we are going to present a new modification of the backward reduction
principle. The major difference is to include all deleted scenarios into each
backward step simultaneously. Namely, the next index [; is determined as a
solution of the optimization problem

l; € arg min min  c(wg,w;)- 16
i gleJ[H] Z pkjeﬂifllu{l} (Wi, wj) (16)
keJli-1u{i}

A more detailed description of the whole algorithm, which will be called
simultaneous backward reduction, is given in

Algorithm 2.2 (simultaneous backward reduction)

Step 1: ckj = c(wk,wj), k,j=1,...,N,
Sorting of {cx; :j=1,...,N}, k=1,...,N,
= miney,l=1,...,N
T r]n;lllc,], ooy N,

zl[l] ::plcﬁ],lzl,...,N,

[y € arg min zl[l] , Ji = {lLi}.

le{1,...,N}
.. il . _ : ) [i—1] [i—1]
Step i: Chp ngliHPlIllu{l} chj, LEJ Jkeld u{l},
zl{i] = Z pkcgﬁ, 1 g Jti—1,
keJiE-1u{1}

) ; il gli) . gli—1] )
l; € argler%r_lu 2, JM =T u{L}.
Step N-n+1: Redistribution by (10).

Algorithm 2.2 allows the following interpretation. Its first step corresponds
to the optimal deletion of only one scenario. For ¢ > 1, [; is chosen such that

Premioy = oty Prnoay an

where D jii-1yqy is defined in (11). Hence, the index /; is defined recursively
such that the index set {l1,...,l;_1,[;} is optimal subject to the constraint
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that the previous indices {l1,...,l;_1} are fixed.

Since running times are important characteristics of scenario reduction al-
gorithms, we study the computational complexity, i.e., the number of ele-
mentary arithmetic operations, of Algorithm 2.2. It is shown in [6] that a
proper implementation (without sorting) of backward reduction of scenario
sets requires a complexity of O(N?) operations which holds uniformly with
respect to n. When comparing formulas (14) and (16), one notices an increase
of complexity in the cost structure of (16) for determining /;. More precisely,
step 1 requires the computation of N — i 4+ 1 sums each consisting of i sum-
mands and N —i+ 1 comparisons. Each summand represents a product of two
numbers. One of these factors requires about 2 operations for determining
the minimum. The sorting process in step 1 requires O(N?log N) operations
([1], Chapter 1). When excluding the complexity of evaluating the function
¢ and of the redistribution rule, altogether we obtain

N—n
by(n) := O(N*logN) + > (3i +1)(N —i+1) (18)
= i~ (GN 4+ 3) = n(N +1) + a(N)

N3 3
where a(N) := - + O(N?log N) +2N? + §N

operations for selecting a subset of n scenarios. Hence, we have

Proposition 2.3 The computational complezity for reducing a set of N € N
scenarios to a subset containing n € {1,..., N} scenarios consists of by (n)
(see (18)) operations when using simultaneous backward reduction.

Hence, the complexity of simultaneous backward reduction is increasing with
decreasing n and is, of course, minimal at n = N. This result corresponds to
the running time observations of our numerical tests reported in Section 4.

Next, we describe a strategy that is just the opposite of backward reduction.
Its conceptual idea is based on formula (13) and consists in the recursive
selection of scenarios that will not be deleted. The basic concept of such
an algorithm is given in [4] and called forward selection. Forward selection

determines an index set {uy,...,u,} such that
u; € arg min E pr min  c(wg,wj), (19)
li-1] i gii=11
weB ity % \u}

fori=1,...,n, where JU-" = {1,... , NW\{uy,...,u; 1}. The first step of
this procedure coincides with solving problem (13). After the last step, the
optimal redistribution rule has to be used to determine the reduced prob-
ability measure. Formula (19) allows the same interpretation as in case of
simultaneous backward reduction. It is again closely related to the structure
of Dy in (11). Now, let us consider the following algorithm, which is easy to
implement and is called fast forward selection.
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Algorithm 2.4 (fast forward selection)

Step 1: cgji = c(wg,wy), kybu=1,...,N |
[1] —Zpkcku,uzl,...,]\f,

k#u
i ot =11, N .
up € argue{rfl,ln,N} 2y { ) ) }\{ul}
Step i: CE:] = mln{cZ 1 cku 1 ke Jli=t
z,[f] = Z pkcEcL7 u e Ji=1l ,
keJli—1\ {u}
u; € arg min 2l U= g £y,
ueJli—1]
Step n+1: Redistribution by (10).

Theorem 2.5 The index set {u,...,u,} determined by Algorithm 2.4 is a
solution of the forward selection principle, i.e., u; satisfies condition (19) for

eachi=1,...,n. Furthermore, zq[f] = D ;i holds for each i =1,...,n, where
Dy is defined in (11).

Proof: For ¢ = 1 the result is immediate. For ¢ = 2,..., N, it holds that

u; € arg min 2 = arg min Z kaEcL
we Jli—1] ueJli=1] :
keJli=1\{u}
[i-1]
= arg m{ln 1] Z Pk mln{cku cku 1}
cJli- , o
“ keJE=1\{u}
i-2] fi=2]  [i-2]
= arg HJI[IIl] Z Dk mln{c Chus 12 Chug o )
eJli-1 ‘
“ keJU=1\{u}
[1] A
= arg er]tJl{lpl Z Pk mm{cku,ckul e Chug
“ kEJIE=1\{u}
= arg min Z D min = c(wg,w;)
cJli—1] . jg Jli—1]
u kGJ[l_I]\{u} Jg \{U}
—arg min D -1 20
gueJ[i—ll T\ {u} (20)

Hence, the index w; satisfies condition (19) and it holds that
zl[f] = Z Dk m1n c(wr,wj)=Dymsy (i=1,...,n). O
weqtn I

The conditions (17) and (20) show that both algorithms are based on the
same basic idea for selecting the next (scenario) index. The only difference
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consists in the use of backward and forward strategies, respectively, i.e., in
determining the sets of deleted and remaining scenarios, respectively.

As in the case of backward reduction, the computational complexity of Algo-
rithm 2.4 is of interest. Step i requires (N —i + 1)? operations for computing
CE:L (k,u € Ji=1), (N — i+ 1)(N — 4) operations for z} (u € JIi~1) and
N — i+ 1 operations for determining u;. Altogether, we obtain

n

fn(n) = ZQ(N —i+1)?= §n3 —n*(2N + 1) + n(2N? + 2N + %) (21)

i=1
operations for selecting a subset of n scenarios. Hence, we have

Proposition 2.6 The computational complexity of fast forward selection for
reducing a set of N € N scenarios to a subset containing n € {1,...,N}
scenarios consists of fn(n) (see (21)) operations.

Hence, the complexity of fast forward selection is increasing with increasing
n and is maximal if n = N. Thus, the use of fast forward selection is rec-
ommendable if the number n of remaining scenarios satisfies the condition
fn(n) < bn(n). The number n, = n,(N) such that fy(n.) = by (n.) holds,
is a zero of a polynomial of degree 3 which depends nonlinearly on N. It turns
out that n, ~ I for large N.

3 Minimal distances of scenario trees

All algorithms discussed in the previous section provide only approximate
solutions of (11) in general. Since error estimates for these algorithms are not
available, we need test examples of discrete original and reduced measures
of different scale with known (optimal) (.-distances. Because of their practi-
cal importance, we consider probability measures with scenarios exhibiting a
tree structure. In particular, we derive optimal distances of certain regularly
structured original scenario trees and of their reduced trees containing dif-
ferent numbers of scenarios.

We consider a scenario tree that represents a discrete parameter stochastic
process with a parameter set {0, 1,..., K} for some K € N and with scenar-
ios (or paths) branching at each parameter k € {0,1,..., K} with branching
degree d (i.e., each node of the tree has d successors). In case of d = 2 and
d = 3, the tree is called binary and ternary, respectively. Hence, the tree

consists of N := d¥ scenarios w; = (w?,...,wkK), i = 1,...,d¥, and has
w) = ... =wlx as its root node. Furthermore, we let all scenarios have equal
probabilities p; = 7, = 1,...,d". Such a scenario tree is called regular if,

for each k € {0,..., K}, there exist symmetric sets Vj, := {0F,...,6¥} C R
such that

k
wi=>"6l (ke{0,...,K}), (22)
j=0
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where a (K + 1)-tuple of indices (ig,...,ix) € {1,...,d}* ! corresponds
to each index i = 1,...,d"¥. We say that V}, is symmetric if § € V}, implies
—6 € Vi. In case of d = 2 and d = 3, this means that the sets V} are
of the form Vj, = {—0* 6%} and V;, = {—6%,0,6*}, respectively, for some

§F € Ry. Clearly, it holds that 62 = ... = §5 = 0 for regular trees. Figure 1
=0
=2
=1
§*=3
PN T T T T R ST T S R
-5 0 5

Figure 1: Binary scenario tree

shows an example of a regular binary scenario tree with K = 3 and N = 23
scenarios. We specify the function ¢ in (3) by setting A = 1 and by choosing
the maximum norm || - ||oc on RE*! ie.,
c(w,@) = |w = D||ee = max |wF —&F (w,& € N).

k=0,...,K
Our first result provides an explicit formula for the minimal distance between
a regular binary tree and reduced subtrees with at least n = % scenarios.
Proposition 3.1 (3/4-solution)
Let a regular binary scenario tree with N = 25 scenarios and K > 3 be given.
Let ko € argmini<g<x 0%, ko < K — 2 and max{§kett sko+2} < 26k0. Then
it holds for each n € N with % <n<N:

N —n

DM = min{D;: #J =N —n} = 26%°. (23)

Proof: We use the representation (22) of each scenario w; for i =1,..., N.
Let i,5 € {1,...,N}, i # j, and let (ig,...,ix) and (jo,...,Jr) denote the
corresponding (K + 1)-tuples of indices. Let I € {1,..., K} be such that
iy # 51 and i, = j, for r =0,...,1 — 1. Then we obtain

k
— k k|
o = willoo = max fuwf —wf| = max |3 (5 ;)]
r=0
l
l k
>y (67, —67)| = 26" > 20%.

r=0
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Hence, it holds for each J C {1,..., N} with #J = N — n that

N—n
Dy = Zpl mm lwi — wjlleo > Z N25k° = T%k" .
ieJ

It remains to show that there exists an index set .J, such that #.J, = N —n
and that the lower bound is attained, i.e., D;, = %2(5’“0. To this end, we
consider the index set

L:={ie{l,....,N}: sign(6fk°0) = —sign(6F 1) = —sign(sFo )1

kg +1 kg +2

and define J, := {1,...,N} \ L.. Let Tr. denote the tree consisting of all
scenarios w; for ¢ € I.. Figure 2 illustrates a detail of T'r, starting at a node

5*0
sko+1

sko+2

Figure 2: Detail of the subtree Tr«

at level kg — 1 and ending at level kg + 2. Hence, for the cardinality of I, and
J. we obtain that

1, N 3
—ok = . =N—#I, =-N.
1 1 and #.J. # 1

#I* — 2k0—1 .9 2]\'—]90—2 —
Now we want to show that for each j € J,, there exists an index i € I, such
that ||w; — wj]leo = 26% holds. Let j € J. and w; be the related scenario. Let
us consider the behaviour of w; on the branching levels ko, ko + 1 and ko + 2.
Since j & I., we have to distinguish three cases each for 5;?:0 = §k0 (resp.

gyp = —gko):

Case (1): 5;“3;11 = 5ko+1 A 5;6’31:22 - (;) Sho+2
Case (2): 5;“3;11 - )5’€0+1 A 5;6:1122 = (+) ghot2
Case (3): 5;“:;11 — (D ghotl A 5;63122 — (jr) Sho+2
Now, we consider the following (K + 1)-tuple (i, ...,ix) where i, = j;, for

all k & {ko,ko+ 1,ko + 2} and

5k0 _ (+)6k:0 A 6k0+1 _

ko+1 ko+2 __
lho+1 5 A 5% 42

(;) Skot+2
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Let i € {1,...,d%} denote the corresponding index. Clearly, i € I, and,
consequently, it holds for the distance between w; and w; that

k
||wi - wj”oo = maXK | 2(62 - 6;r)|

EE R

r=0
k

ke{ko k0+1 k:0+2 zk:

|26F0 | , in case (1)
max{|26F0 |, |20%0 — 26%0+2|} | in case (2)
max{|2§%0 |, |26%0 — 260+ in case (3)

= 24ko

The latter equation holds due to the assumption that §%¢ < max{§ke+1, sko+2}
< 26%0 . Hence, DJ = #Je96k0 = 35k0. By considering subsets of .J, having

cardinality in [17 7 N1, the result follows for the general case, too. |

The second result provides a similar formula for the minimal distance between
a regular ternary tree and reduced subtrees containing n > %N scenarios.

Proposition 3.2 (7/9-solution)

Let a regular ternary scenario tree with N = 3% scenarios and K > 3 be
given. Let ko € argming << 6% with ko < K —2, max{groFL, gkot2} < 25k0,
Then it holds for each n € N with %N <n<N:

DMIn — mmin{ Dy 4] = N —n} = ko, (24)
Proof: Similarly as in Proposition 3.1 we obtain
lwi = wjlloo > 8%
forall i,j € {1,...,N}, i # j, and, hence,
N — ™ sko

Dy = Zplmlnﬂwz — wWjlloo >
Jj¢J
ieJ
for each subset J of {1,..., N} with #J = N — n. Again we have to show

that there exists an index set .J,, such that #.J,. = N —n and that the lower
bound %(5’“0 is attained with D ,,. We consider the index set

Lui={i € {1,...,N} : (62 =0 A 2%} £0 A 6247 #0)
k ko+1 ko+2
V(i A0 A G =0 A 51 =0))

and define Jy. := {1, ..., N}\ L. Let T'r.. denote the tree consisting of all
scenarios w; for i € I,,. Figure 3 illustrates a detail of T'r,, starting at a
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sko
sko+1

sko+2

Figure 3: Detail of the subtree Tr«

node at level kg — 1 and ending at level kg + 2. We obtain for the cardinality
of I, and J,.. that
ko—1 K-ko-2 _ 20K _ 2 7
#L,.=3""".6-3"7" :§3 :§N and #J**:N—#I**:§N.

Similarly as in Proposition 3.1 it can be shown that for each j € J.., there
exists an index i € I,. such that it holds that |lw; — wj|lec = 0*. Hence,
Dy, = #=gko = £6™ . By considering subsets of J,, having cardinality in
[1, %N], the result follows for the general case, too. a
Similar results are available under additional assumptions in case of the Eu-
clidean norm instead of the maximum norm (see also [6]).

4 Numerical Results

The aim of this section is to report on numerical experience of testing and
comparing the algorithms described in Section 2, namely, backward reduction
of scenario sets, simultaneous backward reduction, fast forward selection. All
algorithms were implemented in C'. The test runs were performed on an HP
9000 (780/J280) Compute-Server with 180 MHz frequency and 768 MByte
main memory under HP-UX 10.20, i.e., the same configuration as for the nu-
merical tests in [4]. We consider the situation where the function c is defined
by c(w,®) = [jw — ¥||ec (Vw,& € 2) and the original discrete probability
measure P is given in scenario tree form. More precisely, we use a test bat-
tery of three binary and ternary scenario trees, respectively. All test trees
are regular and, thus, the results of Section 3 apply. They provide minimal
(Fortet-Mourier) distances of P to reduced measures supported by n scenar-
ios when n is not too small.

Example 4.1 (binary scenario tree)

Let K =10,d=2,N =29 =1024,p; = %,i=1,...,N, and (8*,...,6') =
(0.5,0.6,0.7,0.9,1.1,1.3,1.6,1.9,2.3,2.7). Figure 4 illustrates the original sce-
nario tree. Proposition 3.1 applies with kg = 1 and D" = % holds for
each%:256§n<N.

Example 4.2 (ternary scenario tree)

Let K=6,d=3, N=3=729,p; =%, i=1,...,N, and (§*,...,6% =
(0.7,0.9,1.2,1.5,2.6, 3.3). The tree is shown in Figure 5. Proposition 3.2 ap-
plies with ko = 1 and D™ = 0.7N§” holds for each % =162<n < N.
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Example 4.3 (ternary load scenario tree)

We consider the scenario tree construction in Section 4 of [4] for the weekly
electrical load process of a German power utility (see also [5,8] for a descrip-
tion of a stochastic power management model and its solution by Lagrangian
relazation). The original construction is based on an hourly discretization of
the weekly time horizon with branching points at t;, = 24k for k =1,...,6,
and on a piecewise linear interpolation between the ti. The corresponding
mean shifted tree is illustrated in Figure 6. For a moment, we disregard all
non-branching points of the time discretization and consider the correspond-
ing mean shifted tree. The latter tree is a regular ternary scenario tree with
K=6N=3 =172,p =% fori=1,....N and 6" = o,/ 55+
for k = 1,...,6, where oy denotes the standard deviation of the stochas-
tic load process at time t. Since in this case oy increases with increasing t,
Proposition 3.2 applies with ko = 1 and it holds that D" = 51% for
% =162 < n < N. Finally, it remains to remark that, due to the piecewise
linear structure of the scenarios and the choice of the mazimum norm for
defining c, the minimal distance D™™ does not change when including all
non-branching points.

The original scenario trees of the Examples 4.1-4.3 were reduced to trees con-
taining n scenarios by using all 3 reduction algorithms. The corresponding
tables contain the relative accuracy and the running time of each algorithm
needed to produce a reduced tree with n scenarios. In addition, the tables
provide the (relative) lower bound (15) and the (relative) minimal distance
D™ in percent if available. Here, “relative” always means that the corre-
sponding quantity is divided by the minimal (.-distance of P and one of its
scenarios endowed with unit mass. In particular, the relative accuracy is de-
fined as the quotient of the (.-distance of the original measure P and the
reduced measure @,, (having n scenarios) and of the (.-distance of P and the
measure J,,., i.e.,
_ Ge(P,Qn)
CC (P7 60-11'* ) ’

where {w;}i=1, .~ denotes the set of scenarios of P and w;» is defined by

GNP, Qn) : (25)

Ce(P,dy,.) =min{Dy : #J =N -1} = ) min (P, 6y,)- (26)

e{1,..,N} Ce

Our numerical experience shows that all algorithms work reasonably well.
All algorithms reduce 50% of the scenarios of P in an optimal way. As ex-
pected, simultaneous backward reduction and fast forward selection produce
more accurate trees than backward reduction of scenario sets at the expense
of higher running times. Our results also indicate that fast forward selection
is slightly more accurate than simultaneous backward reduction, although
both backward reduction variants are sometimes competitive. Fast forward
selection works much faster than the implementation of forward selection in
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Figure 4: Original binary scenario tree

Number | Backward of |Simultaneous Fast Lower | Minimal
n of |Scenario Sets| Backward Forward Bound | Distance
Scenarios| (7 |Time| ¢ |Time| ¢2¢ |Time
1 116.01 %| 2s |111.93 %| 96 s [100.00 %| 2 s [19.01 %|100.00 %
2 102.86 %| 2s |75.45 % |96 s [79.16 % | 2 s |18.99 % *
3 7854 % | 2s |66.54 % | 96s|63.96 % | 2s [18.97 % *
4 66.35 % | 2s [61.69 % | 96s |59.04 %| 3s [18.95 % *
5 64.81 % | 2s [57.95% |96 s |54.51 % | 3 s [18.92 % *
10 53.68 % | 2s |48.21 % | 95s|44.39 % | 4s (1881 % *
20 39.16 % | 2s [40.15 % | 95s |35.84 % | 7s 1859 % *
30 35.61 % | 2s [34.70 % | 94 s |31.56 % |10 s |18.37 % *
50 31.55 % | 2s [29.11 % |93 s |26.75 % | 15s(17.93 % *
100 22.68 % | 2s |21.73 % | 89 s |20.97 % | 27 s [16.98 % *
150 1848 % | 2s |18.16 % | 85 s | 18.02 % | 38 s [16.06 % *
200 16.70 % | 2s |16.50 % | 81 s |16.11 % | 48 s [15.14 % *
250 1523 % | 2s |15.21 % | 76 s | 14.55 % | 56 s [14.22 % *
260 14.97 % | 2s |14.97 % | 75 s | 14.26 % | 58 s (14.04 %| 14.04 %
270 14.75 % | 2s |14.75 % | 74 s | 14.00 % | 60 s [13.86 %| 13.86 %
280 1453 % | 2s |14.53 % | 72s|13.76 % | 61 s |13.67 %| 13.67 %
290 14.30 % | 2s |14.30 % | 71 s | 13.54 % | 63 s (13.49 %| 13.49 %
300 14.08 % | 2s |14.08 % | 70 s |13.32 % | 64 s [13.30 %| 13.30 %
350 1298 % | 2s |12.98 % | 64s|12.39 % | 71 s [12.39 %| 12.39 %
400 11.88 % | 2s |11.88 % | 57 s |11.47 % | 76 s (11.47 %| 11.47 %
450 10.78 % | 2s |10.78 % | 51 s | 10.55 % | 81 s [10.55 %| 10.55 %
500 9.67 % | 2s | 9.67T% |45s| 9.63 % |85 s|9.63 % | 9.63 %
600 7T79% | 28 | 779% |33s | 7.79 % |91s|7.79 % | 7.79 %
700 595 % | 2s | 595% |22s| 5.95% |95s(5.95%| 5.95 %
800 412 % | 2s | 412 % |12s| 412 % |97 |4.12 % | 4.12 %

Table 1: Results of binary scenario tree reduction
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Figure 5: Original ternary scenario tree

Number | Backward of |Simultaneous Fast Lower | Minimal
n of |Scenario Sets| Backward Forward Bound | Distance
Scenarios| (7 |Time| ¢ |Time| ¢2¢ |Time
1 164.68 %| 1s |164.68 %| 32 s [100.00 %| 1 s |18.66 %|100.00 %
2 93.02 % | 1s [89.29 % |32s |80.70 % | 1s [18.63 % *
3 72.84 % | 1s |69.77 % | 32s|61.40 % | 1s [18.60 % *
4 56.27 % | 1s |56.27 %|32s|56.59 % | 1s [18.56 % *
5 53.56 % | 1s |53.56 %|31s|51L.78 %| 1s (1853 % *
6 50.85 % | 1s |50.85 % |31s[49.26 %| 1s |18.50 % *
10 45.27 % | 1s [44.69 % |31 s [41.78 % | 2 s 1837 % *
15 39.72 % | 1s [38.83 % |31s|36.09%| 3s (1820 % *
20 3392 % | 1s 3474 % | 31s|32.67%| 3s |18.06 % *
30 3022 % | 1s [30.74 % | 31s |28.41 % | 5s |17.77 % *
40 2720 % | 1s |27.56 %|31s|25.63%| 6s [17.50 % *
50 25.00 % | 1s |25.04 %|30s|23.44 % | 7s [17.25 % *
100 1848 % | 1s |17.58 % | 29s|17.88 % |13 s [15.98 % *
150 1538 % | 1s |15.33 % | 26s|15.25 % | 18 s [14.71 % *
162 14.99 % | 1s |14.89 % | 26 s | 14.74 % | 19 s (14.40 %| 14.40 %
200 13.75 % | 1s |13.62 % | 24 s |13.52 % |22 s (13.44 %| 13.44 %
220 13.10 % | 1s [13.01 % | 23 s |12.94 % | 24 s (12.93 %| 12.93 %
230 12.77 % | 1s [12.72 % | 225 |12.68 % | 24 s [12.68 %| 12.68 %
240 1244 % | 1s [1243 % | 22 s |12.42 % | 25 s [12.42 %| 12.42 %
250 1217 % | 1s |1217 % | 21 s |12.17 % | 26 s [12.17 %| 12.17 %
300 10.90 % | 1s |10.90 % | 18 s | 10.90 % | 28 s [10.90 %| 10.90 %
350 963 % | 1s | 9.63% |15s| 9.63 % |31s|9.63%| 9.63 %
400 836 % | 1s | 836 % |12s| 836 % |32s(8.36 % | 8.36 %
500 582 % | 1s | 582 % | 7Ts | 5.82% | 345|582 %| 5.82 %
600 328% | 1s | 328% | 3s | 3.28% |35s(3.28% | 3.28%

Table 2: Results of ternary scenario tree reduction
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Figure 6: Original load scenario tree

Number | Backward of |Simultaneous Fast Lower | Minimal
n of |Scenario Sets| Backward Forward Bound | Distance
Scenarios rel | Time rel | Time rel | Time
1 121.09 %| 1s |117.85 %| 31 s [100.00 %| 1 s [16.31 %|100.00 %
2 98.80 % | 1s [90.19 % |31s|80.83%| 1s [16.28 % *
3 75.88 % | 1s |72.25 % |31s|61.65%| 1s [16.24 % *
4 7375 % | 1s |59.71 % |31s|56.94 % | 1s [16.21 % *
5 62.04 % | 1s [55.45 % |31s|5222%| 1s [16.18 % *
6 56.57 % | 1s |52.24 % | 31s|49.57 % | 1s [16.14 % *
10 46.86 % | 1s [45.20 % |31 s |41.93 % | 2 s [16.01 % *
15 39.69 % | 1s [40.22 % |30s |35.76 % | 3 s |15.85 % *
20 35.16 % | 1s [36.75 % |30s[32.32%| 3s [15.69 % *
30 30.08 % | 1s [31.20% | 30s |28.11 % | 5s [15.36 % *
40 2777 % | 1s |27.74 % | 30s|25.25 % | 6s [15.13 % *
50 2558 % | 1s 2513 %|29s|23.02% | 7s [14.90 % *
100 1952 % | 1s |17.31 % | 28 s|16.86 % | 13 s [13.76 % *
150 1452 % | 1s |13.96 % | 25 s|13.67 % | 18 s [12.67 % *
162 1329 % | 1s |13.26 % | 25 s|13.15 % | 19 s [12.40 %| 12.40 %
200 12.04 % | 1s |11.77 % | 23 s |11.74 % | 22 s [11.57 %| 11.57 %
220 11.39 % | 1s |11.16 % | 22 s | 11.18 % | 24 s [11.13 %| 11.13 %
230 11.06 % | 1s |10.93 % | 22s|10.95 % | 24 s [10.91 %| 10.91 %
240 10.73 % | 1s |10.70 % | 21 s [10.72 % | 25 s [10.70 %| 10.70 %
250 10.48 % | 1s |10.48 % | 21 s |10.49 % | 26 s [10.48 %| 10.48 %
300 938 % | 1s | 938 % |18s| 9.38% |28s(9.38%| 9.38 %
350 829 % | 1s | 829 % |15s| 829 % |31s|829 % | 829 %
400 720 % | 1s | 720% | 12s| 7.20% [32s|7.20% | 7.20 %
500 501 % | 1s | 501 % | 7s | 5.01 % | 34s|5.01 %| 5.01 %
600 282 % | 1s | 282% | 3s | 282 % |35s(2.82 %] 2.82 %
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Table 3: Results of load scenario tree reduction
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[4]. For instance, fast forward selection required 35 seconds to determine a
load scenario subtree (Example 4.3) containing 600 scenarios instead of 8149
seconds reported in [4]. Especially, in the case of deeply reduced trees, fast
forward selection works very fast and accurately.

Furthermore, it turned out that the lower bound is very good (even optimal)
for large n, but extremely pessimistic for small n. Another observation is
that the reduction of half of the scenarios implies only a loss of about 10%
of the relative accuracy. For instance, in case of Example 4.2 it is possible to
determine a subtree containing just 6 out of the originally 729 scenarios that
still carries about 50% of the relative accuracy.

Finally, we take a closer look at the numerical results of the load scenario
tree reduction. In particular, we compare the running times of simultaneous
backward reduction and fast forward selection in this case. Figure 7 displays

40 F I I I fast forward ]

simultaneous backward -------

Time in seconds

0 1 1 1 1 1

0 100 200 300 400 500 600
Number of scenarios

Figure 7: Running time for reducing the load scenario tree

the running times of both algorithms and shows clearly their opposite algo-
rithmic strategies. It reflects the corresponding theoretical complexity results
(Propositions 2.3 and 2.6) and shows that the running time of fast forward
selection is smaller if n < % (approximately). This confirms again that the
forward selection concept is favourable if n is small. Figures 8 9 and 10
show the reduced load trees with 15 scenarios obtained by all algorithms.
The figures display the scenarios with line width proportional to scenario
probabilities.
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Figure 10: Fast forward selection / load tree
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Appendix

Proof (Theorem 2.1): Let J C I := {1,..., N} be an arbitrary index set.
We set ¢;; = c(w;,wj) for 4,5 € {1,...,N} and ¢; := 0 for j € J. Linear
programming duality implies for any feasible ¢

N N
D(J;q) = max{)_piui — Y _ qju; :u; —uj < cij, Vi, j € I}
=1 j=1

N N N
:min{z CijNij * Mij = 0, Znij_znki =pi—qi,Viel}.
=1 k=1

i,j=1

DPi ,j:j(i),iG J,
In particular, we consider 7;; := < p; ,i =j &€ J,
0 ,otherwise.

N N
It holds ¢; = )~ 7x; and p; = > 7;; for each ¢ € I. Hence, we obtain

k=1 j=1
D(J:q) < Zczjﬁzj = Zpi r]%i?c” .
(2 icJ

Next, we set u; := rlcrg? ||w; — wg]|| for each ¢ € I. Noting that u; = 0, for any

i € J,weobtainu;—uj =u; <¢jforalli € Jand j € J, u;—uj <0 < ¢y for
alle € J,j €I, and uj—uj < r]?é?||wi—wk||—r]?é?||wj—wk|| < HNw; —wj|| < ei5

for all i, j € J. Hence, we obtain for any feasible ¢ that
D(Jiq) =Y piui 2 Y pi I,T;Zi?HWi - wj|
ieJ ics 7

1 .
> 5 > pi min max{1, h([|wi = woll), A(llw; = woll) }lwi = wj|
i€

1 .
= & 2 pimine(w, w;),
ieJ
and the proof is complete. O
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