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1 Introduction

Usually, lower-index differential-algebraic equations (DAEs)
f@'(t),2(t),t) =0 (1.1)

are integrated by numerical algorithms that have been developed originally for reg-
ular ordinary differential equations (ODEs). There are numerous papers justifying
this by convergence proofs, order results etc. (cf. [1], [2], [3]). In particular, the
backward differentiation formula (BDF)

1 k
f (Ezajxn—jvxnatn) = 07 (12)
j=0

but also implicit Runge-Kutta methods (IRK)

Tp =Tpn_ 1+ h Z ﬁjX;zjv (13 a)
=1
f (Xrlz,i7 T+ DY i Xt 1+ cih) =0, i=1,...,s, (1.3 b)
j=1

are used in applications with really great success. Step by step each method provides
numerical approximations z,, of the true solution values z(t,),t, =t, 1 + h.

The convergence results mentioned above concern the behaviour of the global error
on a compact interval, say [to, T], as the stepsize of the discretization ty < t; < --- <
t, = T tends to zero.

However, what do we know about the error x(t,) — x, if the stepsize h is constant
and n — oo, that is, t, — co? When integrating regular ODEs numerically, one
tries to carefully match the dynamics of the numerical algorithm with the dynamical
behaviour of the true solution. How could this be done in case of DAEs?

Classical linear stability theory is concerned with the analysis of approximating the
so-called scalar linear test equation

Z'(t) = Az(t), ReX <0. (1.4)

Basic notions like the region of absolute stability, error growth function etc., rely on
(1.4) and apply, via similarity transforms, to constant coefficient regular ODEs

z'(t) — Wz(t) = 0. (1.5)
Considering DAEs, the respective constant coefficient system

Az'(t) + Bx(t) = 0 (1.6)



has a singular leading coefficient matrix A, but a regular matrix pencil {A, B}, i. e.,
det(AMA+ B) # 0. There are nonsingular matrices F, F' that transform (1.6) into its
so-called Kronecker normal form

< ! ; ) #'(t) + < - / ) i(t) =0, (1.7)

where FAF = ! 7 ,EBF = < W 7 > , @ = F~'z, and J is a nilpotent

block, ind(J) = ind{A, B}.
Obviously, the solution of the homogeneous equation (1.6) consists of its ”dynamical
part” only, i. e.,

where u(t) solves the regular ODE @'(t) = Wul(t).
On the other hand, we may apply the same transformations E, F' to decouple the
BDF applied to (1.6), that is,

1k
AE > ajz,_j+ Bz, =0

J=0

to
(I )121304-:5 -+<_W >x =0
T ) b= )

Starting with consistent values zg, - -, x5 (such that Flz; = ( : ) ,

j=0,---,k) we obtain

- Up
In—FIn—F< 0 >,

where 4, is given by the BDF applied to the regular ODE @'(t) = Wa(t), i. e.,

k
% Z Oéj’ljn_j = W’LNLn

7=0
In the same way we may proceed with Runge-Kutta methods. Obviously, the rich
world of classical stability theory applies to constant coefficient DAEs (1.6) via
transformation into Kronecker normal form plus similarity transform.
However, unfortunately, the homogeneous coefficient DAE (1.6) does not play a
similar role in the DAE analysis as equation (1.5) does in the regular ODE-theory.
DAESs represent a much more complex class of problems. The constant coefficient
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case (1.6) is only a very poor model, which does not reflect important geometric
features of DAEs at all.

Positive results concerning long term integrations of index-1 DAEs are reported in
[4]. There, the leading nullspace is supposed to remain invariant. Moreover, in [4]
it is stressed that varying subspaces may have its effect.

In [5], the following small example was discussed to show the bad effect of a rotating
nullspace. The linear index-1 DAE

(561 ‘i)t)x’(t)Jru(gj 5t5f1>x(t):0 (1.8)

with real parameters o # 0, 0 # 1 has the solutions

pi(t) = (6 1)1 (1 — 8t)a(t),
wa(t) = exp((0 — p)t)z2(0).

The nullspace of the leading coefficient matrix is
N(t) := {z € IR*: (0 — 1)z + 0tz :0}.

For ¢ # 0, this nullspace varies with . Applying the backward Euler method to
(1.8) yields
Inl1 = (5 — 1)_1(1 — 5tn)xn72,

’

Tn2 = %xnfl,?
Obviously, it holds that z, — 0 (n — oo) if and only if |1 + hd| < |1 + hu|. For
hiy = —1 the method is not feasible at all. Further, there is a large region on
the (hd, hp)-plane where the true solution z(¢,) vanishes asymptotically, but the
numerical approximation grows unboundedly.
Note that the spectrum of the pencil {A(t), B(t)} is time-invariant, namely

o(A(t), B(t) :== {A €@ : det(NA(¢) + B(t)) = 0} = {—pu}.

If we put 6 = 0, we obtain again a constant coefficient DAE and everything is fine
as expected before.

One could think that the strange asymptotic behaviour is due to the rotations of the
nullspace of the leading coefficient A(¢) or the leading partial Jacobian f.,(2', z,t)
in (1.1). Since this matrix has a constant nullspace or is constant itself in most
applications, we can perhaps consider equation (1.8) to be just an academic example.
However, similar phenomena of a ”wrong numerical dynamical behaviour” may arise
even in the case of a constant leading coefficient matrix. Such phenomena are
discussed in [6], where linear index-2 DAEs are considered.
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Roughly speaking, in [6] it is shown that the numerical approximations fit the dy-

namical behaviour of the true solution well, supposed both the characteristic sub-

spaces Ni(t) and S;(t) do not vary with ¢ in fact.

The aim of the present paper is to show that the same invariance condition for Sy (¢)

will do. This weaker sufficient condition ensures also an appropriate reflection of
the exponential decay. Since e.g. in circuit simulation Si(¢) is often invariant but

Ni(t) is not, our new approach is of particular interest for those applications.

This paper is organized as follows. In Section 2 the related analytical background

is given. Useful analytical decoupling and reduction techniques are discussed. As

a by product, Theorem 2.2 provides new solvability results with respect to weaker

smoothness demands. Also contractivity is now discussed under those weaker smooth-
ness conditions.

In Section 3 the analytical decoupling and reduction techniques are applied to BDF

and IRK methods, to prove that the time invariance of the subspace S;(t) will do

in fact.

Finally we demonstrate by two characteristic examples that are even in Hessenberg

form, how a rotating subspace S;(t) effects the dynamic reflection.

2 Analysis of linear index-2 DAE’s

2.1 Fundamentals
Consider the linear equation
A(t)x'(t) + B(t)x(t) = q(t), t € J := [ty, 00), (2.1)

where the coefficients are continuous and the matrix A(t) € L(IR™) is singular for
all t € J, but has constant rank r. Introduce the basic subspaces

N(t) := ker A(t),

S(t):= {ze€R™:B(t)z € im A(t)}.

Obviously, each solution of the homogeneous equation satisfies x(t) € S(t),t € J.

In the following, we assume N(t) to be spanned by m —r continuously differentiable
base functions. Then, there is a C* matrix function @ : J — L(IR™) that projects
IR™ pointwise onto N(t), i. e., Q(t)*> = Q(t), im Q(t) = N(t),t € J.

In what follows, @ denotes such a C* projector function onto N, and P :=1 — Q.
Recall (e.g. [2]) the equation

A{(Pz)'(t) = P'(t)x(t)} + B(t)z(t) = q(t), teJ, (2.2)



to be the precise formulation of (2.1). We are looking for continuous functions
z(+) : J — IR™ that have continuously differentiable parts (Pz)(-), and that satisfy
(2.2) pointwisely. Denote this function space by

Cx={yeC(JR"): Pye C'(J,R™)}.

Next, we introduce further subspaces which are relevant for index-2 DAEs [2],
namely

Nl(t) = kerAl(t),
Si(t) = {ze R™:B{P{t)z € im A ()},

Ai(t) = A(t)+ (B(t) — A{t)P'(t)Q(t), teJ.
Definition: The DAFE (2.1) is said to be indez-2 tractable if
dim(N(t)NS(t)) =v >0, Ni(t) N Si(t) = {0}, teJ.

Recall that index-2 tractability generalizes the case of Kronecker index 2. Let Q1(t)
denote the projector onto Ny(t) along S;(¢),t € J.

Due to [4], Lemma A.13, the matrix
Ga(t) := As(t) + B(t) P(1)Q1(¢)

remains nonsingular now and it holds that Q(t) = Q(t)G2(¢t)"'B(t)P(t) on J.
Since we may represent

ker Ay (t) = (I — P(t)A(t)"(B(t) — A()P'(1)Q(t)) (N(t) N S(2)),

we know Np(t) to have the same constant dimension v as N(t) N S(t).

In the following, we drop the argument ¢ if possible.
By straightforward calculations we prove the relations

G;1A2P1P7 G;lB:GEIBPP1+Q1+Q+P1PPIQ
Hence, scaling equation (2.1) by G5 leads to
P P((Px)' — P'z) + G;'BPPiz + Qiz + Qr + PLPP'Qr = G5 'q. (2.3)

Multiplying (2.3) by PPy, QP; and @1, respectively, and carrying out simple com-
putations we obtain the decoupled system

PPy(Px) + PPGy;'BPPix = PPGy'q, (2.4)
—QQ:1(Px)' + QP,G,'BPPx +Qr = QPG,'q, (2.5)
Qiz = iGylq. (2.6)



The System (2.4), (2.5), (2.6) provides the basic idea of what the solutions of the
DAE (2.1) look like in case of PP, PQ; and PQ,G5"q being C. Then (2.4), (2.5)

may be rewritten as

(PPyz) — (PP) PPz + PP,Gy;"BPPix = PP,G5'q + (PP)' PQ:G5'q (2.47)

Qr = —(QPG3'B + QQ1(PQ1) )PPz + QQ1(PQi1G3'q) + QPG5 'q
— QQ1(PQ1)PQ1G3'q (2.5")

and the solution is composed by x = PPix + PQx + Qx, where the component
PPz solves the inherent regular ODE (2.4"), Qz and PQqz are given by (2.5") and
(2.6), respectively. (cf. [2]).

In the next section, we will generalize the solvability results given in [8] in the sense
that we will do with lower smoothness. The new inherent regular ODE, which
uses a different projector instead of PP;, permits to obtain new insights into the
asymptotic stability behaviour of numerical approximations (Section 3).

Note that, by construction, P(t)Pi(t) projects onto P(t)S1(t) along N(t) & Ny(t),
i. e., it is related to the decomposition

R™ = P()S:(t) & N(t) & Ny (t). (2.7)

2.2 Solvability and decoupling

Now we also use the orthoprojector V' (t), which projects along Si(t). Then, I —V (¢)
is the orthoprojector onto Sy (t). Because of N (t) C Si(¢), it holds that V' (¢)Q(t) = 0,
and

[(t) == P(t)(I — V(1)

is a projector, too. Obviously, we have im II(¢t) = P(¢)S1(¢). Since the two pro-
jectors II(t) and P(t)Pi(t) have the same image space P(t)Si(t), it holds that
PPIT =11, 1IPP, = PP;.

Additionally, we denote the orthoprojector onto im A;(t) by I — W (t).

As we will realize below, the projection W extricates exactly that derivative free
part of equations that has to be differentiated once when reducing the index.

The following example of a Hessenberg form DAE is to make the meaning of the
different projectors more transparent.

Example: Given a Hessenberg form DAFE of size 2 that contains ny equations with
deriwatives and ny derivative-free ones

ri+ Buri+Bpr: = ¢

Bs1 Bys nonsingular.
Boy 11 —— }7 21 D12 g
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Here we have a constant nullspace N, N = {z: zy = 0}, further

00 I B 00
(o) ws (o) w0 7)

S(t) = Si(t) ={z: Ba(t)z1 =0}, SE)NN =N,
Nl(t) = {Z 121+ Blz(t)ZQ = 0},
Nl(t) N Sl(t) == {Z 21 + Blg(t)ZQ == 0, Bgl(t)zl == 0} == {0}

due to the nonsingularity of BoyBis.
The projector PPy is given by

I-L 0
PP1:< 0 0),

where L = Bis(BoyB1o) ' Boy is also a projector (L(t) projects IR™ onto im By (t)
along ker Bay (t)). The orthoprojector along Sy (t) is now

Vi) = (le(t);le(t) 8)7

and 1I(t) = (I_B21(é)+321(t) 8)

imII(t) = P(t)Si(t) ={z: Ba1(t)zy =0, 2z, = 0}

= ker By (t) x {0}.

It is well-known that, in Hessenberg systems, all derivative-free equation should be
differentiated when deriving a solution via a reduction step.

Consequently, it seems to be more natural to assume By € C' (hence, V, 11 € C')
instead of L € C' (i. e., PP, € C").

|

Next, we collect some nice properties of our projectors and matrices to be used
below:

1) im A; = ker W, im A; = ker GoPQ1G5*", hence there are two projectors W
and GoPQ,G5" along im A;. Therefore

W - WGQPQ]_G;I, GzPQlGEI - GzPQlGEIW



2) From WB = WG2PQ.G5'B = WG,PQ G5 ' BPQ, = WBP(Q, and
PQ.G5'W B = PQ; it follows that

kerWB =ker PQ; =ker(; =5;, imWB= im W.
3) V=(WB)*WB, W = (I — AiAf) = (PQ:1G5") T PQ:1G3 ",
WB = (PQ1G2_1)+PQ1

4) V. =VPQ,, PQ,=PQ,\V, V=VP, V=VQ,
VGy' = (WB)*WBGy' = (WB)*WBPQ,G5*!
= (WB*WGLPQ,G5'BPQ,Gy = (WB)*WGLPQ,G5y' = (WB)*W.

The third property indicates that, for continuously differentiable PQ;G5" and PQ;,
we also have continuously differentiable W and V. However, as we could realize by
means of the special Hessenberg form DAE above, the opposite is not true. In this
sense, Theorem 2.2 below generalizes the related results of [8].

To get a better insight we reconsider the decoupled form (2.4), (2.5), (2.6) of the
DAE (2.1) and try to reformulate it in such a way that (2.4) returns into a regular
ODE for the solution component ITxz. Now, we do not assume PP, PQ); to be from
C' as we did in order to obtain (2.4’), (2.5"), but we allow only P,IT and V to be
continuously differentiable now.

Equation (2.6) yields immediately

Vz=(WB)"Wjq. (2.8)
To realize what equation (2.4) looks like in more detail we derive
PP,(Pz) = PP,(II+ PV)(Pz) =T(Pz) + PP,V(Px)
= (lz) —II'Px + PP, (Vz) — PPV'Px.
Consequently, (2.4) can be rewritten as

(Mz) — '(lz+ PVz) — PPV'(Ilx + PVx) + PP,(Vz)
+ PP,G,'BPP,(Ilz + PVx) = PPiG,'q. (2.9)

Analogously, with QQ(Pz) = Q@Q.V(Px) = QQ:(Vx) — QQ,V'(Ilx + PVx),
equation (2.5) can be reformulated:

—QQ1 (V) +QQ:,V'(Nz+PVx)+QP,G5 ' BPP,(Ilx+PVr)+Qr = QPG5 'q.(2.10)
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If x € C} solves the DAE (2.1), then (WB)*Wq = Vx = V Pz belongs to C* since
V and Px do so. We are allowed to replace Vz and (V) in (2.9) and (2.10) by
means of (2.8). This gives rise to consider the ODE
UI — H,U —PP]_VIU + PPngprplu
= I'P(WB)*Wq+ PP,V'P(WB)*Wq — PP,G;'BPP,(WB)*Wq
—PP((WB)"Wq) + PPG5'q, (2.11)

and to call it an inherent regular ODE. If we multiply equation (2.11) by (I — II),
we obtain

(I —M)u' — (I =1)IT'u =0,
hence

(I = M) +1'(I — T)u = 0.
It results that if u € C! solves (2.11), then the function w = (I — IT)u satisfies the
homogeneous regular ODE «'+1T'w = 0. If, additionally, w(t,) = (I —TI(t,))u(t.) =

0, then w(t) vanishes identically, i. e., u(t) = II(¢)u(t), t € J. This proves the
following assertion.

Lemma 2.1 The subspace im II(t) C IR™ represents an invariant subspace of the
regular inherent ODE (2.11).

As far as the homogeneous case ¢ = 0 is concerned, we know from (2.8) that each
solution of Az’ + Bx = 0 has a trivial component Vax = 0. Using (2.9), (2.10)
and taking into account the inherent regular ODE we may express each solution
as © = Iz + Qr = T4,u, where u solves (2.11) as well as the initial condition
u(t,) € im II(ty), and

Mean = KPPy, K = (I = QP.Gy'BPP, = QQ,V'PPy).

The matrix function K is nonsingular, thus ker I1.,,(t) = ker P(¢)Pi(t), t € J. It is
easily checked that II.,, is also a projector. Il.,, is said to be the canonical projector
for the index-2 case. It projects onto the solution space of the homogeneous DAE
along N & Ny, as we will see below.

Theorem 2.2 Given an index-2 DAE (2.1) with continuously differentiable sub-
spaces N, Sy and im Ay. Additionally, let WB be C* and q € {p € C : Wp € C'}.

(i) Then, the IVP for (2.1) with the initial condition T1(ty)(z(ty) — x°) = 0,
% € R™, has exactly one C-solution.

(ii) Ezactly one solution of the homogeneous equation at ty passes through each
xo € im Tegn(to) -

11



Proof:

(i) Denote by u € C' the solution of the regular ODE (2.12) that satisfies the
initial condition u(ty) = I1(¢y)2z°. Then we compose the function r = u+v+w,
v:=(WB)*"Wqe C,

w = QPGy g+ QQ1v' — QQV'(u+ Pv) — QP.Gy ' BPP(u + Pv).

Due to this construction we have v = Vv, w = Qw, Px =u + Pv € O,

x € C, (ty)x(te) = u(ty) = I(tg)a".

Finally, straightforward checking shows that x satisfies the DAE (2.1), indeed.

(i) Solve the special IVP for ¢ = 0 and 2° := ¢y = L., (to)zo. Its solution is
x = Il,.,,u, and we have, in particular,

l’(to) — Hcan

O
Corollary: On each compact interval [ty, T], the perturbation index of an index-2
tractable DAFE is two.

Proof: For each T > t,, there is a constant K such that the estimation
lzllz < K {|[0(to)2°| + llallr + | (Va)'l|r} (2.12)

holds for all IVP solutions with 2° € IR™, q € C, Vq € C!, where

1yl := max{ly(t)] : £ € [to, TT}-
O

Example: For the Hessenberg form DAFE

ri+ Buri+Bpr: = ¢
Boxy = Q2

the conditions of Theorem(2.2) are satisfied if ¢ € C, q2 € C*, and By € Ct. The
initial condition reads in detail

0 = I(te) (5(ty) — 2°) = ( (I — B (t0)+8210(t0))(x1(t0) — 20 > |

2.3 Index reduction by differentiation

Considering the DAE (2.1) we observe immediately that each solution has always
to proceed in the set

M(t) = {z€ R™: B(t)z —q(t) € im A(t)}
{zeR™: (I -W(#)(B(t)z —qt)) € im A(t), W(t)(B(t)z — q(t)) = 0},
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which is called a constraint manifold. Under the conditions of Theorem 2.2, the part
of equations described by

WBx =Wgq
can be differentiated to obtain
WBz' + (WB)'x = (Wq)'.

Here, W Bz’ stands for W B{(Pz)" — P'z}. On the other hand, due to (2.1) we may
express Pz’ := (Px) — P'x = PA"(q — Bz). In consequence, the relation

WBA"(q — Bz) + W(WB)'z = W(Wq)'

has to be satisfied additionally, i. e., the solution has also to proceed in the so-called
hidden constraint manifold
H(t) = {z€ R™: (=W (t)B(t)A(t)"B(t) + W(WB)'(t)) z
=W Wq)'(t) - W(t)B(t)A(t)Tq(t)} -

As we will see below, the set
M (t) == M(t) NH(t)

is characteristic of the DAE (2.1). M, contains all solutions (for given ¢), but it is
filled by those solutions. One could call M;(t) the state manifold. For the case of a
homogeneous equation, S(t) = M(t) is trivially given. Moreover, there is a closed
relationship between our subspace Si(t) and the state manifold My (¢).

Lemma 2.3 For a homogeneous index-2 tractable DAFE (2.1) with continuously dif-
ferentiable N, Sy, im Ay, W B, it holds that

Mi(#)lg=0 = {z € S1(t) : Q(t)z = —((QP1G3' B+ QQ1G5 (W B))PPy)(t)z}
and
P(t) My (t)]g=0 = P(t)S1(t). (2.13)

Proof:

The second relation is a simple consequence of the representation of My(t), which
we want to realize now. We drop the argument ¢.

2z € My means by definition:

—WBATBz + W(WB)'z=0, Bz+ Aw = 0 for a certain w = Pw.

This is equivalent to

WBw+W(WB)z=0, w=—-PA"Bz, PQ;z=0,

Qz — QQrw + QP,Gy'BPP .z + QP,PP'Qz = 0,

and to
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PQ1z=0, w=—-PA"Bz, 0=WBw+ W ((WB)PP,z+W(WB)Qz =
W Bw + W (W B) PPz + W BP'Qz,
Qz — QQrw — QQ1P'Qz + QPG5 "BPP,z = 0.

Because of QQ1G5'WB = QQ1G5'B = QQ1, QQ1G5'W = QOG5 we find
z € My to be characterized by

PQyz=0, w=—PA" Bz,
QQl’U) + QlelQZ + QQle_l(WB)'Pplz =0
Qz = QQrw+QQ1P'Qz— QP,G;'BPP 2
= —QQ1P'Qz+QQ1P'Qz — QG5 (WB)' PP,z — QP,G; ' BPPy 2
O = —QQ\Gy'(WB) PPz — QP,G,"BPP,z

Note that the linear space M;(t)|,—o represents the tangent space for M,(t). Of
course, this is much more important for nonlinear problems. Lemma 2.3 shows
P(t)S1(t) to be a kind of practical substitute of the tangent space. It should be
stressed once more that we are looking for C'}; solutions and that there is no natural
need for Q-components of the elements of the tangent spaces.

Next, rewrite the DAE (2.1) as
A+ (I —W)(Bx —q)+ W (Bz—q) =0
and replace the part W (Bxz — q) = 0 by its differentiated form
W{WBz'+ (WB)'z— (Wq)'} =0
to compose the new DAE
(A+WB)t' + (I -W)B+W(WB))x=(I-W)q+W(Wgq). (2.14)

Denote A := A+ WB,B := (I — W)B + W(WB)" and consider (2.14) in more
detail. Since (A(t) + W (t)B(t))z = 0 decomposes into Az = 0, WBz = 0, we have
ker A(t) = ker A(t) = N(t). In consequence, the solutions of (2.15) belong to the
same class O} as the solutions of (2.1). Further, we have

S(t) ={zeR™: B(t)z e im A(t)}

={ze€R": (I-W(t)B(t)z € im A(t),
W(t)(WB)'(t)z = W(t)B(t)A(t)" (I — W(t))B(t)z},
M) ={ze R™: (I -W({t)(B(t)z—q
W(t)(WB)'(t)z — W(t)(Wq)'(t) = W(t
M@E)n{ze R™: W(t)(B(t)z — q(t)) = 0} = M,(t).

t)) € im A(t),
B(6)A(#)™(I = W) (B(t)z — q(t)},
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Theorem 2.4 Given the conditions of Theorem 2.2.

(i) Then equation (2.14) is index-1 tractable.

(ii) Ezactly one solution at t, € J passes through each x, € /ﬁ(t*) )

(iii) My (t) and M(t) form invariant subsets for (2.14).

Proof:

(1)

(i)

(iii)

We check the nonsingularity of the matrix Gy(t) € L(IR™),Gy := A+ WB +
(I = W)B +W(WB)"Q. Again, we drop the t-argument. Gz = 0 yields
Az+(I-W)BQz=0, WBz=-W(WB)'Qz=—-WBP'Qz, hence PQ;z =
—PQ1P'Qz, (A+BQ)z=0.

Because of (A+ BQ)(I — PP'Q) = A;, A;(I+PP'Q) = A+ BQ, the element
(I + PP'Q)z = Z belongs to ker Ay = Ny , i. e., Z = (Q1Z. On the other hand,
PQiz + PQ1P'Qz = 0 implies PQ(I + PP'Q)z = 0, i. e., PQ:Z = 0 and
finally 2z =0, 2z =0.

Due to the index-1 property, this assertion is now given by the index-1 results,
e. g. in [2].

Let x denote a solution of the index-1 tractable DAE (2.14) and
z(ty) € M(t.). Then, (2.14) gives

A’ + (I —-W)Bx=(I1-W)q, WBz'+ WWB)z=W(Wgq)'
Consider the function o := W (Bx — ¢). Derive
o = (WB)z+WBzx' — (Wgq)

= (WB)zs —WWB)x+WWgq)'— (Wgq)

= ([ =W)WB)z—(I-W)Wq)

= —(I-W)(WBx—-Wgq)=W'ha.
Since z(t,) € M(t.) implies a(t.) = W(t.)(B(t.)x(t.) — q(t.)) = 0, the func-
tion « vanishes identically, hence Ax’ + Bx = ¢ is satisfied.
Therefore, z.(t) € M(t,) implies z(t) € M(t), but also z(t) € M;(t) for all

telJ.
O
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Corollary: The indez-2 tractable DAE has differentiation index two.

Example: For the Hessenberg system

¥y + Buri + Bpr, = (]1}
By = 2
we have now

M(t) = {z:Ba(t)z — ¢2(t) = 0}
H(t) = {z:—=DBai(t)B1(t)z1 — Ba1(t) Bia(t) 20+
+By(t)z1 = ¢a(t) — Bau(t)aa (1)}
Mi(t) = {z: Bau(t)zr = qa2(t), (Bau(t)Bia(t))z2 =
By ()21 — B () Bua (t)z1 — q5(t) + Bar ()qu () }
M(t) = {z: By (t)z — ¢5(t) = Bar(#)(Bu(t)z1 + Bra(t)z2 — aa(t))}

The indez-reduced equation (2.15) is, as expected,
vy + Bum + Bprn = q
Bgll'll + Bélﬂfl = q;
2.4 Contractivity

Now we turn to the asymptotic behaviour of the solutions of the homogeneous
equations

Az’ + Bx = 0. (2.15)
As we know, the solutions may be represented by
r = KPPu=1l.,u,
where u solves the inherent regular ODE
u' ='u+ PP,V'u — PP,G5'BPPu, (2.16)
u(ty) € im I(¢p).
Recall once more that im II(¢) is an invariant subspace of the ODE (2.16), i. e.,
w(t) =T(t)u(t), t € J.

16



Obviously, the stability behaviour of = is mainly governed by the dynamics of the
inherent regular ODE, that is, by u. Hence, it would be nice to formulate criteria
on how the flow of regular ODE behaves within an given invariant subspace.

The matrix coefficient of the inherent regular ODE (2.16) has to be expected to be-
come singular. In particular, for constant subspaces N and 57, it is simply the matrix
PPnglBPPl, which has at least the nullspace N & N; of dimension m —r +v > 2.
The standard approaches to estimate how the solutions grow usually relate to all
solutions of (2.16), included those solutions that do not start in im II(#;). No ex-
ponential decay can be realized in this way. The standard techniques are somewhat
coarse. Hence, we try to improve them by relating all things to the invariant sub-
spaces.

For a given subspace U C IR™ we introduce the matrix-semi-norm

||G||U::max{%:z#0,z€ U}
z

such that |Gz] < ||G||Y|z] holds for all z € U.

Then, we define the logarithmic matrix norm relative to the subspace U by
n (@)

This logarithmic norm relative to U is well-defined and has similar properties as the
standard version of Dahlquist for U = IR™ (cf.([9]).In fact this generalization is in
fact very natural and straightforward. On the other hand, it is worth mentioning
that uY(G) appears to be a special case of the logarithmic norm proposed in [10]
for matrix pencils.

1
OE(||[+hG||U—1). (2.17)

=i
h—

Lemma 2.5 Given a reqular linear ODE
u'(t) + M(t)u(t) =0, t € J = [to, ),
which has the invariant subspace U(t) C IR™, t € J. Let the function

1) = [ WO M(s))ds, te

be well-defined, i. e., the integrals do exist.
Then, for all ODE solutions starting with initial values u(ty) € U(ty), the inequality
[u()] < &V u(to)], t > to,

18 valid.
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Proof:

This proof follows the lines of the standard theory [9], too. Given a solution with
u(to) € U(ty) we have, wu(t) € U(t), for all t € [ty, 00).

Denote m(t) := |u(t)], t € [ty,0), and derive

m(t+h) = |u(t)+hu'(t) +o(h)| = |(I — hM(t))u(t) + o(h)|

< = hM@)[[7Ofu(t)] + o(h),

thus

Lm(t +h) = m(®) < (1~ hM@O" ~ Dm(e) - ofh?).

h
Letting h — 0, we obtain

S

Dym(t) < ,uU(t)(—M(t))m(t), t € [to, 00),

where D, m(t) denotes the respective Dini derivative. By Peano’s Lemma it follows
immediately that

m(t) < e?Dm(ty).

Theorem 2.6 Let (2.15) be indez-2 tractable with N, Sy and W B from C4.
Then, the estimation

[2(t)] < Tean (&) [l [T (ko) (t0)], t = to, (2.18)

¢
with y(t) = [p PO (=M (1))dr, t > to, holds true for each solution, provided
to
that y(t) is well-defined. Here,
M = —II'— PP,V' + PP,G;'BPP,

is the coefficient matriz of the inherent reqular ODE (2.16).

Proof:

Applying Lemma 2.5 to (2.16), which has the invariant subspace im II(t) =
P(t)S1(t), yields |u(t)| < e?®|u(ty)], t > to, provided that u(ty) € im TI(tp).

The DAE solutions have the representation z(t) = .., (t)u(t), and u(ty) = (ty)z(to).
O
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Corollary: If there is a 3 > 0 such that pFSV® (=M (t)) < —B,t > to, all DAE
solutions satisfy the inequality

(8] < 1 Tean (t) e~ [Tt ) (to], ¢ > to. (2.19)
Hence, if .., (t) grows "moderately” like polynomials or is bounded by

I Mean(t)|] < Ce™, t > to, with a < 3, then the solutions decrease exponentially.

To realize whether numerical approximations reflect the stability behaviour of the
true solution well, one often uses the notion of contractivity and so-called one-sided
Lipschitz conditions (cf. ([9]). This approach applies also to DAEs provided that
we relate the things again to our invariant subspaces.

Standard numerical integration methods applied to index-2 DAE are expected to
work well if the basic nullspace IV is constant. However, it is well-known that these
methods may fail in case this nullspace rotates with time. This is why we suppose
P' =0 now.

If the vector norm used to define the logarithmic norm is related to an inner product,
it holds that

(Gz,z) < uY(Q)|z)* forall z € U.

Definition: An index-2 tractable DAE with constant P is said to be contractive if
there are an inner product (,) and a constant 3 > 0 such that the inequality

(y, Pr) < —p|Pxf? (2.20)
is valid for all y,x € R™, t € [tg, 00), with
Alt)y+ Bt)x =0, Qy=0, V(t)y=V (It (2.21)

This definition is given in [6] for the case of a continuously differentiable @; and a
real scalar product. If Q; € C!, we may make use of

Qu(t)y = Qu(O)V(t)y = QO () = —Qy())I1(H)z = Q1 () PP(t)w

and arrive at the same expression as used in [6] instead of (2.21).
By decoupling A(t)y + B(t)z = 0, we find that (2.21) leads to

y+ M@)(t)r =0, V(t)r =0, Pz =II(t)x.
Therefore, (2.20) reads then
(=M ®)IL(t)z, T(t)z) < —B|H(t)z|,

which means a contractivity condition for the inherent regular ODE relative to the
invariant subspace im II(t) = PSy(t).
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3 Analyzing numerical integration methods for
linear index-2 DAEs

In this section we derive conditions for preserving stability properties of numerical
methods when solving index-2 linear DAEs. Let the conditions of Theorem 2.2 be
fulfilled in the following. As in [6] we assume N (¢) to be constant, otherwise it is
well known that those methods will fail. We shall consider the discrete version of
the decoupling of the last section for two of the most important families of methods.
An analogous analysis was made in [6] using the standard approach mentioned in
Section 2.1. In that paper they obtained as a sufficient condition for preserving the
stability properties that both subspaces N; and S; have to be time invariant. By
the discrete decoupling with the new approach described in Section 2.2, we shall get
a weaker condition as in [6]. Namely, the time invariance of S; will do.

3.1 BDF

Consider the homogeneous system
A(t)2'(t) + B(t)xz(t) =0, t € J:=lty,00). (3.1)

For homogeneous index-2 tractable DAEs (3.1), the solutions are given by the ex-
pression

r = ([ — QP]_GQIBPP]_ — QQ1V'PP1)PP1U = Hcanu, (32)
where u solves the regular ODE
u' —'u — PPV'u + PP,Gy"BPPyu = 0, (3.3)

with u(tg) € Imll(ty). Suppose P’ = 0.
If the projector V' is time invariant, or equivalently, IT = P(I—V') is so, this solution
representation simplifies to

x:([—QPlGQIBPPl)PPlu, .
W + PP,Gy'BPPyu = 0. (3.5)

Given the step size h > 0, t; = to +ih, i € IN. The BDF applied to (3.1) reads

k
AZ' Z Q;T;—j + hBZJJZ = 0, ? Z /{, (36)

J=0

where the starting values xy, ..., x;_1 are supposed to be known.
First, we multiply by ((WB)*W); and obtain
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which means that this component is correctly computed. Let us now consider
what happens with the other components. Assuming that, the previous values
Ti1,...,T;p as well as x;, also fulfil (3.7), we have z; = Il;z; + Qx;, Vi, and,
keeping in mind that P’ = 0, the equation (3.6) can be rewritten as

k
j=0
Multiplying by G5, ! we obtain
k
j=0
Denote briefly H := PPnglBPpl and u; = IL;z;.
Multiplying (3.8) by PP ; implies
k
PPLZ' Z ajui,j + h[{Z’LLZ = 0,
j=0
which is equivalent to

k k k
Y ajuij+hHjui + PPy ojui j— Y ajuij =0,
=0

J=0 J=0

k k k
Z ajui_j + hHZUZ + Z &j(Hi — Hi_j)ui_j + Z &j[PPl,i — Hi]ui_j = 0,
j=0 j=1 j=1

k k k
Z QU5 + hHZUZ + Z a/j(Hi — Hi,j)ui,j + PPl,i Z Oéj(‘/i — V;,]')UZ',J' =0 (39)

This is the discrete analogue of (3.3).
For the Q-component we multiply (3.8) by @, thus obtaining

k
thz — QQl,i Z ajui,j + h(QPnglBPPl)ZuZ = 0,

=0
1 k
Qri = QQuip > ajuij — (QPIGy ' BPP)u;. (3.10)
j=0

Now, regarding (3.9) and (3.10) we observe that, if the projection II is constant, then
the BDF discretization of (3.1) coincides with the corresponding method applied to
(3.5) and formula (3.4). Namely, we have x; = .o, (¢:)IL;2; = ean (t;)us;.
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Theorem 3.1 Let (3.1) be index-2 tractable with continuously differentiable W and
W B and P' = 0. Suppose the starting values to satisfy x; € M(t;),i =0,...,k—1.
Then the BDF (3.6) applied to (3.1) generates exactly the same BDF method applied
to the inherent ODE (3.3) iff the projection V' (the subspace Sy) is constant.

Remark:

1) The numerical approximation z; = Il..,(¢;)u; reflects the asymptotic be-
haviour of the true solution z(t;) = 1.4, (¢;)u(t;) nicely if the BDF works well
for the inherent regular ODE (3.3).

2) Let Si(t) be time-invariant. Then, applying the BDF to (3.1) and decoupling
this is exactly the same as decoupling (3.1) first and then applying the BDF
to the inherent regular ODE. In this sense, the BDF-discretization and the
decoupling commute.

3) In circuit simulation, the DAEs obtained by the classical modified nodal anal-
ysis fulfil the condition V' =0 (cf. [7]).

In the previous analysis we have checked whether the BDF scheme is transmitted
to the inherent regular ODE (3.3). Analogously, we could also check if the BDF
method is transmitted to the reduced index equation (2.14). This would be very
helpful, because in the constant null space case we know that the BDF preserves it
asymptotical stability properties (cf. [4]).

Looking at (3.6) we immediately see that x; € M(¢;). Splitting (3.6) with the
projections W; and I — W, yields, Vi > k,

k
j=0

(W Bz); = 0. (3.12)

However, we cannot hope for a reproduction of the hidden constraint, in fact, this
will be a key condition for the BDF methods to preserve their asymptotical stability
properties. To see this we rewrite (3.11) as

(A + WB)l Zk:ajl‘i_j + h([ - Wl)(Bl')l - (VVB)Z zk: Q55 = 0.

Here we see that, if we had the relation

k
th(WB);I'l = —(WB)l Z aTi—j,

Jj=0

22



then we would really obtain the BDF discretization of the index-1 problem (2.14).
The above condition can also be written as

Wi{ Zajx, _i+ (WB)x }: 0, (3.13)

which is nothing but the BDF discretization of the differentiated constraint. Fur-
thermore, (3.6) provides

1 k
ﬁz T = —P(A" Bx);,

0 (3.13) can also be written as
Wi {~(WB)i(A*Bx); + (WB)j;} =0, ie. x; € H(t).

Theorem 3.2 Let (3.1) be index-2 tractable with continuously differentiable W and
WB and P' = 0. Then a BDF method applied to (3.1) generates exactly the same
BDF method applied to the index-1 DAFE (2.14) if the condition (3.13) is fulfilled.

Remarks:

1) The projection (I — Q/L’IE)P plays the role of Il.,, for an index-1 tractable
DAE; the solution of (2.14) satisfies x = (I — QAT'B)Px.

2) Condition (3.13) means that the numerical approximation for £ must lie on
the hidden constraint manifold in every integration step. This is more difficult
to check than the condition V' = 0. The BDF solution of (3.1) at the point
t; is z; = (Ilz); + Qz;. Inserting this expression in the left part of (3.13) we
obtain

VVZ{ Xk: Iz + Qx)i—j + (WB)(H:E+Q1:)}

Then, assuming V' to be constant and taking into account that W BII =
WBQ =0, (WB)Il = (WBII) = 0, (WB)'Q = (WBQ)" = 0, one con-
cludes that (3.13) is fulfilled, indeed.
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3.2 Runge-Kutta methods

The implicit Runge-Kutta methods can be realized for (3.1) in the following way
[11]. Given an approximation x; ; of the solution at ¢, ;, a new approximation z;
at t; = ¢;_; + h is obtained from

Ty = Tj—1 + thlell, (314)

i=1
where X/, are defined by
AlzXlIZ+BlzXlz :0, 1= 1,...,8, (315)
tli = tl—l + Cih

and the internal stages are given by

Xlz:xl—1+hzal]XlI]’ Z:]_,,S (316)

j=1

The coefficients a;;, b;, ¢; determine the IRK method, and s is the number of
stages. We define the matrix A := (a;;)§;—, and the vectors b := (by,...,b,)",
¢ = (c1,...,¢5)". A condition for X7;,..., X/, to be uniquely defined by (3.15)-
(3.16) is the non-singularity of A, [12], which we shall assume in the following.
Denoting A := A1 = (@ij); j=1 and p:=1—= 33 375 bz, (3.14)-(3.16) is equiv-
alent to

Ty = Ppri— + Z Zbidinlja (317)
i=1j=1
Ay Zdij(XU - xl—l) +hB;X;=0,1=1,...,s. (318)
j=1

Looking at (3.18) we observe that the internal stages do not depend on Qz;_;.
Further, it holds that X;; € M(t;).
The special class of IRK methods (IRK(DAE) [4]) with coefficients

bi=ag, 1=1,...,8, ¢;=1, (3.19)

is shown to stand out from all IRK methods in view of its applicability to DAEs.
Since p = 0 in this case, the new value x; = X, always belongs to the constraint
manifold M(¢;).

For index-2 Hessenberg equations, the fact that z; € M(¢;) simplifies to

321371,1 = q2;.
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In general, if (3.19) is not fulfilled, then we have p # 0, and x; does not belong to
M(t;) any more. Since this behaviour is a source of instability (for & — 0), Ascher
and Petzold [13] propose another version for the application of IRK methods to
index-2 Hessenberg systems (cf. the discussion of Hessenberg systems in § 2.2),
the so-called Projected IRK methods (PIRK). Actually, after realizing the standard
internal stage computation, the recursion (3.17) for the Hessenberg system is now
replaced by

T1g=pliga+ Y., bi&ijj(\l,lj + Bia(t) A (3.20)
i=1j=1

and A; is determined by

Boy(t1) 1 = qoy- (3.21)
If we multiply (3.20) by I — L; (L is defined in § 2.2), A; can be eliminated:

(I —L)irg = p(I — L)irgq + 3.3 beag (I — L) X1 (3.22)

i=1j=1

On the other hand, (3.21) is equivalent to

Li#1; = Bia(t))(Bai(t) Bia(t)) 'qou- (3.23)

It should be mentioned that, for IRK(DAE), the projected version is exactly the
same as the original one, since (3.19) implies A\; = 0 in (3.20), (3.21). An immediate
generalization of PIRK methods to fully implicit linear index-2 systems is suggested
in [6]:

PPyji; = pPPyi 1 + .S by PP X, (3.24)
i=1j=1
Qi = QuiA7 ¢ (3.25)

Since the internal stages do not depend on (QZ; 1, there is no need to compute Qz;
in this place.

Now return to the standard IRK methods (3.17)-(3.18) for a homogeneous equation.
First, we multiply (3.18) by ((WB)*W)y, and obtain for all internal stages

(VX); =0, i=1,...,s (3.26)

which means that the V-component is correctly computed for all internal stages.
This is a consequence of the fact that X;; € M(t;;). Next, multiplying (3.17) by V;
results in

(Vo) = pVizi + )Y biag ViXyy,

i=1j=1
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(V) =p(Va)i1+ p(Vi — Vil + Y. > biag (Vi — Vi) Xuj, (3.27)

i=1 j=1

which shows that an IRK scheme does not generate an approximation z; in M(t;)
in general. Let us see what happens with the TI-component. Multiplying (3.17) by
II; we obtain

(Iz); = plLzy—g + > > biag L X5,

i=1 j=1

(Tz); = p(Hx)i1 + D> Y biag (TIX); + p(II — TI_1) 21

i=1 j=1

+ 303 by (T — 1) Xy, (3.28)

i=1j=1

and for (3.18), assuming that x;_y € M(t;_1), we can write

Ali zs:dij[(HX)lj — (Hl’)l_l] + }Z(B)(V)lZ = 0.

J=1

Multiplying by G;lll and using the shorter denotations u; := Il;x; Uj; := II;; X;; we
obtain

PP aiU;; — wei] + h(G3'BU); + hQXy; = 0. (3.29)

j=1
Then, multiplying by PP, ;; leads to

PPy 325 aij Uy — w1 + hHUy = 0,
2521 Qi [Uiy — wia] + hHpUy — 325 ag[Uny — wg ]
+P Py 3750 iUy — wia] = 0,
> QiU — wia] — 352y @i (T — M) Uiy + 32524 @i [P Py — 11Uy
+hH Ui + 32521 4ij PQr w1 = 0,
S5 i [Ury — wiea] + hHyUy — 325 a5 (T — Thg) Uy + 32524 Gi PPy ViU

+ 35 4y PQuu—1 = 0,
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Z ai;[Uj — wq] + hH,Uy; — Z aij(Iy; — 1)Uy — PPy Z&ij(vz]' — Vi)Uy;
j=1

J=1 J=1

+ Y A PQuu[Th1 — MyJu—q = 0. (3.30)

j=1

Finally, for the -component we multiply (3.17) by @ and obtain

Quy = pQui_1 + > > bia;QXy, (3.31)

i=1j=1

and (3.29) multiplied by @ gives

—QQ1i Zdij[Ulj —w1] + QPG 'BU); + hQXy; = 0,
j=1

1. _
QX = QQl,li% Zaij[Ulj - Uzq] - (QPIGQ lBU)li- (3-32)
j=1

After these algebraic manipulations we can extract the desired conclusions. If S;(¢)
is time-invariant (V' = 0), then (3.27), (3.26), (3.28), (3.30), (3.31) and (3.32) can
be reduced to

(V) = p(Va) 1, (3.33)

(T2, = p(IT)s + ;;biaij(n){),j, (3.34)

Q)i = p(Qu)is + g;biaij@xm (3.35)

VX)u=0, i=1,...,s (3.36)

jilaij[mxm (M) 4 (X =0, = 1.5 (537
and

(QX)i = —(QP.Gy*BIIX )y, i=1,....s (3.38)

In (3.33) we have left the term p(PVx);_1 to emphasize that an “undesirable” re-
cursion occurs in the PV-component. An even worse situation occurs in the Q-
component, here the expression (3.35) does not correspond to (3.4) any more, which
may cause instabilities in the computation. What really is true is the following:
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Theorem 3.3 Suppose (3.1) to be index-2 tractable with continuous differentiable
W, WB and P' = 0. Then, an IRK method applied to (3.1) generates exactly
the same IRK method applied to the inherent ODE (3.3) iff the projection V (the
subspace S1) is constant and the initial value xy belongs to M(ty).

Here, the IRK(DAE) methods show their good properties, p = 0 in this case, and
(Vo) = (VX), =0, (Qu)=(QX);; =—(QPGy"'BIIX),;

thus, there occurs no recursion, neither in the PV -component nor in the (Q-component,
and these components are computed correctly. Hence, for this type of methods we
can state:

Theorem 3.4 For a constant projection V, an IRK(DAE) method applied to the
index-2 tractable DAFE (3.1) yields x; = ooy (8w, x € My(t;).

Next, let us briefly come back to the PIRK methods (3.24), (3.25). Our decoupling

for the internal stages Xj; holds true also in this case for the Xj values. For a
homogeneous systems under the assumptions of Theorem 3.3 we obtain

PP, iy = pPPryi;y + Y. S bia; PP Xy,

i=1 =1
Q1,24 =0.

The second equation is equivalent to
Vi =0, (3.39)

inserting &; = TI#; 4+ Qdy, &1 = i1 + Qi1 and X;; = 11X; + QX in the
equation for the P Pj-component and taking into account that IT and () are constant
provides

(Hi‘)l = p(Hli‘)l_l + Z Z bidij(HX)lja (340)
i=1j=1

which is identical with (3.34). Hence, the application of a PIRK scheme solves the
problem with the “undesirable” iteration in the V(Q;)-component, but, as the Q-
component is the same as in a “standard” IRK method, we still have the recursion
(3.35) for this component. Consequently, a result like Theorem 3.4 is not possible,
but the analogue of Theorem 3.3 remains true for PIRK methods.
In the same way as it was done for BDF methods, we shall analyze IRK methods
by means of the index reduction technique.
Considering again the IRK scheme (3.17), (3.18); we split (3.18) with the projections
I — W;; and W; and obtain

Alz’ Z dzy(Xl] — ‘7,'171) + h([ — I/Vlz)BlzXlz = 0, Z = 1, e, S (341)
j=1
(WBX); =0, i=1,...,s. (3.42)
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However, the hidden restriction need not be fulfilled in general, neither for the stages
Xj; nor for ;.
Transforming (3.41) appropriately we obtain

(A+ (WB))u iy aij(Xiy — x-1)  +h(I — W) (BX)y
—(WB)i 35—y i (X5 —211) = 0.

If we had the relation

h(VV(VVB)I)()lZ = —(VVB)ZZ Z (Alij(le - .T,‘l,l), 1= 1, ey S,

=1

then we would arrive at the same method applied to the index-1 problem (2.14) with
constant null-space N. In other words, similar to the BDF-methods, we obtain

1SN
VV[Z' {(WB)ZZE Zaij(le - lefl) + (WB)EZXZZ} = 0, (343)
j=1

as condition that all stages must fulfil the discretization of the differentiated con-
straint.

In [4] it is shown that an IRK (DAE) applied to an index-1 DAE with constant
leading nullspace generates the same values as the application of the same IRK to
the inherent regular ODE, and z; € M(t).

Theorem 3.5 Let (3.1) be index-2 tractable with continuously differentiable W,
WB and P' = 0. Then, an IRK(DAE) method applied to (3.1) generates exactly
the same IRK for the index-1 DAE (2.14) if condition (3.43) is fulfilled.

In the same way as we did for the BDF methods, we can show that (3.43) is fulfilled
if V' =0and z;_, € M(tl_l).

In Section 2.4 we have extended the notion of contractivity to linear index-2 tractable
DAEs. The reason of this concept in regular ODE theory is to generalize the A-
stability notion related to the test equation

¥ = \z,

by that of B-stability for a contractive equation (cf. [9]). An assertion of the type:
"algebraically stable Runge-Kutta methods are B-stable”, was shown to be true in
[4] for index-1 tractable DAEs provided that (i) the null space N (t) is time-invariant,
and (ii) the Runge-Kutta method is an IRK(DAE). In [6] such a kind of assertion
was proved for linear index-2 tractable DAEs under the additional conditions that
()1 be differentiable, PP} = 0 and ||II.,,(¢)|| < K, on [ty, 00).
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Definition: The one-step method x;.1 = ¢(xj,t;, h;) is called B-stable if, for each
contractive DAE, the inequalities

1 2 1 2
|P:1:§-+)1 — Pm§-£1|s < |P:1:§ ) _ P:E; )|s,
and
1 2 1 2 :
Qs — Q2. < K|Pxf)y — Pafll,, G >0,
are satisfied. Here, K > 0 is a constant, :(:(()1), :(:(()2) are arbitrary consistent initial

values and | - |5 denotes a suitable norm. Following the same technique as in [6] we
can improve the result of that work by using the projectors W and V instead of

Qnglv Ql-

Theorem 3.6 Let (3.1) be index-2 tractable with continuously differentiable W,
WB; PP=0, V' =0 and ||1.(t)|| bounded on [ty,o0). Then, each algebraically
stable IRK(DAEFE) applied to (3.1) is B-stable.

4 Two illustrating examples

In this paper we do not present any “real life” problem as an application, but we
know that the condition V' = 0, which played an important role in our results, is
often fulfilled in linear circuit simulation [7]. However, we would like to illustrate
our theory by simpler academic examples.

Example 4.1 The first example is well known [6],

zh |+ nt(l—nt)—m X —nt x9 | =0, t >0.
0 1—nt 1 0 T3

It is a Hessenberg system with BsyBio = 1 and, thus, indez-2 tractable for allt. The
general exact solution is given by

1 (t) = xl(())e’”,
Ta(t) = (nt — 1)z (1),
r3(t) = —(nt — D)xi(2),

which, evidently, is exponentially asymptotically stable for X > 0.
If we take

s

I
oo
o~ o
o oo
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then it results that

and
Sl(t) = {Z € R3 : (1 — ’I]t)Zl + 2o = 0}

After computing the canonical projection QQq, the projection onto Ker(Ay) along S,
we have

nt -1 0 nt -1 0
P(t)y=1|ntnt—-1) 1—nt 0], PPi(ty=|nt(nt —1) 1—nt 0
gt—1 -1 1 0 0 0

In [6], as already mentioned, the authors showed their stability results under the
condition PP] = 0, and by means of this example they illustrated that, if this con-
dition fails, even when using methods with good stability properties, the numerical
discretizations may show an asymptotical behaviour that is different from that of the
exact solution. Note that in this ezample we have PP{ =0 for n =0 only. One in-
tegration step with the implicit Euler method consists in solving the following linear
system

1+ hA —h —h T1,i41 T,
h(ntia(L—ntir) —n) L+hXN —hntig | | 22500 | = | 224 |,
1 —ntipa 1 0 T3i+1 0

which is invertible for 1 4+ h(A +n) # 0. The third equation yields

Toiv1 = (Mtix1 — 1) T1i41,
and then, solving the linear system, we obtain the expression

1+ hn

L1,

f07" xl,i-l-l .
In order to have a decaying sequence for x1, the following condition is needed

1+ hn
1+ h(XA+mn)
This can be violated for n < 0, while the exact solution decays for all A > 0. We
have computed the numerical solution with this method and stepsize h = 0.1 on

[0,10]. The following figure shows, in a logarithmic scale, the absolute value of the
first component at t = 10 for different values of A and 7.
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As predicted by the above analysis, we see that for negative values of n, if A is not
big enough, the numerical approxrimation “explodes”. The gap about n = —10 is due
to the fact that we have for this value of n and h = 107" that x1 ;41 = 0 for all i.
Now let us have a look at the projection V. According to the expression for Py we
deduce that Si(t) is generated by the last two columns of this projector matriz, thus
S1(t) is independent of t and, consequently, also V (t) in case of n = 0 only. Note
that for this example

0 0 O 0 0 0
W=10 0 0], (WB)(t) = 0 0 0],
0 0 1 1—nt 1 0
hence, for V we obtain the expression
1 (1—=nt)> 1—nt 0O
V(t) = 5 1—nt 1 0
14+ (1—nt) 0 0 0

We compute the matriv M := PP,Gy'B —TI' — PP,V' of the inherent ODE (3.3),
thus obtaining

(1—nt)
n(n+ At — nt(nt22)+2 —(A+n)+ n;(]nt—g)m 0

_ t(—2241(=3+(An)t(44+nt(nt—3)))) (2—nt)
M(t) = | P A=A+ mt+ i 0

0 0 0
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Moreover, it holds that

1
Im(IT) = span{U}, U:=|nt—-1
0

In Section 2.4, motivated by the notion of the logarithmic norm of a matrixz corre-
sponding to a matriz-semi-norm, we have introduced a contractivity notion for linear
index-2 tractable DAFEs. We can compute the Euclidean logarithmic norm for this
problem in the following way:

uém(n)[—M] _ sup (, x) — sup (Uuy, Z/{ul>7
x#0 (z, ) w0 (Uuy, Uuy)
z € Im(II)

which simplifies to

— 2N — 22t + n?t(At — 1))u? t—1
sup —1+ nt+n (2 Dui _ _y, _nt=1)
w1 £0 (1+ (nt —1)?)uf L+ (nt — 1)

and this expression is bounded by —\ + “27—‘ So we have contractivity at least for

|g—‘ < X in the Buclidean norm. Moreover we can observe that

lim ™™= M) = =

t—00

Example 4.2 An opposite example is the following

T A (mt—17 —(mt—1)\ (2
xzh | + | nt(nt — 1) A —nt zo | =0,1>0,
0 1 -1 0 T3

whose exact solution for x1(0) =1 is

ri(t) = e,
i) (t) = I (t),
z3(t) = (nt — 1)z (t),
with exponential asymptotical stability for A > 0.

Let us compute the relevant matrices and subspaces. Taking, also in this case, P as
in the first ezample, we obtain for Ay and the canonical projector Py that

1 0 1—-nt nt 1—nt 0
At)=10 1 —nt |, Pt)y=|n 1—nt 0
0 0 0 1 -1 1

33



Thus, PPy is not constant again, but if we look at S; we see that

Sl{zEZR?’:zlzz}Span{(z),(g)},

which is time-independent and so is V, too. As in example /.1 the projector W is

given by

0 0
WB=1]10 0
1 -1

o O O

0
0
0

_ o O

and

o O O

The computation of V' gives

1 -1 0
0 0 O

Hence, the assumptions of Theorem 3.4 are fulfilled for the implicit Euler method.
An integration step of this method

1+ hA h(nt; — 1) —h(nt; — 1) T T1i-1
hnt;(nt; — 1) 1+hA —hnt; Toi | = | T2i-1 |
1 —1 0 1‘371' 0

provides

T, = ﬁ T1i—-1-
For A > 0 this fulfils the dissipative condition
1
T
So, in this case the numerical method reflects the asymptotical behaviour of the exact
solution. As in the first example the following figure shows the absolute value of xy

at t = 10, for different values of A and n in a logarithmic scale using the implicit

FEuler scheme. Again, we have chosen h = 0.1.
The coefficient matriz of the inherent ODE (2.9) now reads

nAt A1-—mnt) 0
M(t) = (PPG5'B)(t) = (n/\t A1 —nt) 0)
0 0 0

o
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0
-52
-104
0
A
50
100 0
-50
n
Then, taking into account that
1 1 1 0 U1
Hzi 1 1 0], [l =u=1|wu |,
0 0 0 0
equation (2.9) simplifies in essence to
wh 4 Auy = 0. (3.44)

On the other hand, if we compute the Euclidean logarithmic norm of —M we obtain

,uém(m[—M] _ sup (x, x) _ (Uuy, Uuy) _
x#0 (z, ) w0 (Uuy, Uuy)
z € Im(II)

in this example.
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