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� Introduction

Usually
 lower	index di�erential	algebraic equations �DAEs�

f�x��t�� x�t�� t�  � �����

are integrated by numerical algorithms that have been developed originally for reg	
ular ordinary di�erential equations �ODEs�� There are numerous papers justifying
this by convergence proofs
 order results etc� �cf� ���
 ���
 ����� In particular
 the
backward di�erentiation formula �BDF�

f

���

h

kX
j��

�jxn�j� xn� tn

�A  �� �����

but also implicit Runge	Kutta methods �IRK�

xn  xn�� � h
sX

j��

�jX
�
nj� ���� a�

f

��X �
ni� xn�� � h

sX
j��

�ijX
�
nj� tn�� � cih

�A  �� i  �� � � � � s� ���� b�

are used in applications with really great success� Step by step each method provides
numerical approximations xn of the true solution values x�tn�� tn  tn�� � h�

The convergence results mentioned above concern the behaviour of the global error
on a compact interval
 say �t�� T �
 as the stepsize of the discretization t� � t� � � � � �
tn  T tends to zero�
However
 what do we know about the error x�tn�� xn if the stepsize h is constant
and n � �
 that is
 tn � �� When integrating regular ODEs numerically
 one
tries to carefully match the dynamics of the numerical algorithm with the dynamical
behaviour of the true solution� How could this be done in case of DAEs�

Classical linear stability theory is concerned with the analysis of approximating the
so	called scalar linear test equation

z��t�  �z�t�� Re� � �� �����

Basic notions like the region of absolute stability
 error growth function etc�
 rely on
����� and apply
 via similarity transforms
 to constant coe�cient regular ODEs

x��t��Wx�t�  �� �����

Considering DAEs
 the respective constant coe�cient system

Ax��t� �Bx�t�  � �����
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has a singular leading coe�cient matrix A
 but a regular matrix pencil fA�Bg
 i� e�

det��A�B� �� �� There are nonsingular matrices E� F that transform ����� into its
so	called Kronecker normal form�

I

J

�
�x��t� �

�
�W

I

�
�x�t�  �� �����

where EAF 

�
I

J

�
� EBF 

�
�W

I

�
� �x  F��x� and J is a nilpotent

block
 ind�J�  indfA�Bg�
Obviously
 the solution of the homogeneous equation ����� consists of its �dynamical
part� only
 i� e�


x�t�  F �x�t�  F

�
�u�t�
�

�
�

where �u�t� solves the regular ODE �u��t�  W �u�t��
On the other hand
 we may apply the same transformations E� F to decouple the
BDF applied to �����
 that is


A
�

h

kX
j��

�jxn�j �Bxn  �

to �
I

J

�
�

h

kX
j��

�j�xn�j �

�
�W

I

�
�xn  ��

Starting with consistent values x�� � � � � xk�� �such that F��xj 

�
�uj
�

�
�

j  �� � � � � k� we obtain

xn  F �xn  F

�
�un
�

�
�

where �un is given by the BDF applied to the regular ODE �u��t�  W �u�t�
 i� e�


�

h

kX
j��

�j�un�j  W �un�

In the same way we may proceed with Runge	Kutta methods� Obviously
 the rich
world of classical stability theory applies to constant coe�cient DAEs ����� via
transformation into Kronecker normal form plus similarity transform�
However
 unfortunately
 the homogeneous coe�cient DAE ����� does not play a
similar role in the DAE analysis as equation ����� does in the regular ODE	theory�
DAEs represent a much more complex class of problems� The constant coe�cient
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case ����� is only a very poor model
 which does not re�ect important geometric
features of DAEs at all�

Positive results concerning long term integrations of index	� DAEs are reported in
���� There
 the leading nullspace is supposed to remain invariant� Moreover
 in ���
it is stressed that varying subspaces may have its e�ect�
In ���
 the following small example was discussed to show the bad e�ect of a rotating
nullspace� The linear index	� DAE�

� � � �t

� �

�
x��t� � �

�
� � � �t

� � � �t� �

�
x�t�  � �����

with real parameters � � �� � � � has the solutions

x��t�  �� � ������� �t�x��t��
x��t�  exp��� � ��t�x�����

The nullspace of the leading coe�cient matrix is

N�t� �
n
z � IR� � �� � ��z� � �tz�  �

o
�

For � � �
 this nullspace varies with t� Applying the backward Euler method to
����� yields

xn��  �� � ������� �tn�xn���

xn��  ��h�
��h�

xn�����

Obviously
 it holds that xn � � �n � �� if and only if j� � h�j � j� � h�j� For
h�  �� the method is not feasible at all� Further
 there is a large region on
the �h�� h��	plane where the true solution x�tn� vanishes asymptotically
 but the
numerical approximation grows unboundedly�
Note that the spectrum of the pencil fA�t�� B�t�g is time	invariant
 namely

��A�t�� B�t�� � f� � IC � det��A�t� �B�t��  �g  f��g�

If we put �  �
 we obtain again a constant coe�cient DAE and everything is �ne
as expected before�

One could think that the strange asymptotic behaviour is due to the rotations of the
nullspace of the leading coe�cient A�t� or the leading partial Jacobian f �x��x�� x� t�
in ������ Since this matrix has a constant nullspace or is constant itself in most
applications
 we can perhaps consider equation ����� to be just an academic example�
However
 similar phenomena of a �wrong numerical dynamical behaviour� may arise
even in the case of a constant leading coe�cient matrix� Such phenomena are
discussed in ���
 where linear index	� DAEs are considered�
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Roughly speaking
 in ��� it is shown that the numerical approximations �t the dy	
namical behaviour of the true solution well
 supposed both the characteristic sub	
spaces N��t� and S��t� do not vary with t in fact�
The aim of the present paper is to show that the same invariance condition for S��t�
will do� This weaker su�cient condition ensures also an appropriate re�ection of
the exponential decay� Since e�g� in circuit simulation S��t� is often invariant but
N��t� is not
 our new approach is of particular interest for those applications�
This paper is organized as follows� In Section � the related analytical background
is given� Useful analytical decoupling and reduction techniques are discussed� As
a by product
 Theorem ��� provides new solvability results with respect to weaker
smoothness demands� Also contractivity is now discussed under those weaker smooth	
ness conditions�
In Section � the analytical decoupling and reduction techniques are applied to BDF
and IRK methods
 to prove that the time invariance of the subspace S��t� will do
in fact�
Finally we demonstrate by two characteristic examples that are even in Hessenberg
form
 how a rotating subspace S��t� e�ects the dynamic re�ection�

� Analysis of linear index�� DAE�s

��� Fundamentals

Consider the linear equation

A�t�x��t� �B�t�x�t�  q�t�� t � J � �t����� �����

where the coe�cients are continuous and the matrix A�t� � L�IRm� is singular for
all t � J 
 but has constant rank r� Introduce the basic subspaces

N�t� � kerA�t��

S�t� � fz � IRm � B�t�z � im A�t�g�

Obviously
 each solution of the homogeneous equation satis�es x�t� � S�t�� t � J�

In the following
 we assume N�t� to be spanned by m�r continuously di�erentiable
base functions� Then
 there is a C� matrix function Q � J � L�IRm� that projects
IRm pointwise onto N�t�� i� e�
 Q�t��  Q�t�� im Q�t�  N�t�� t � J �
In what follows
 Q denotes such a C� projector function onto N 
 and P � I �Q�
Recall �e�g� ���� the equation

A�t�f�Px���t�� P ��t�x�t�g �B�t�x�t�  q�t�� t � J� �����

�



to be the precise formulation of ������ We are looking for continuous functions
x��� � J � IRm that have continuously di�erentiable parts �Px����
 and that satisfy
����� pointwisely� Denote this function space by

C�
N �

n
y � C�J� IRm� � Py � C��J� IRm�

o
�

Next
 we introduce further subspaces which are relevant for index	� DAEs ���

namely

N��t� � kerA��t��

S��t� � fz � IRm � B�t�P �t�z � im A��t�g �

A��t� � A�t� � �B�t�� A�t�P ��t��Q�t�� t � J�

De�nition	 The DAE ����� is said to be index�� tractable if
dim�N�t� � S�t��  	 
 �� N��t� � S��t�  f�g� t � J�

Recall that index	� tractability generalizes the case of Kronecker index �� Let Q��t�
denote the projector onto N��t� along S��t�� t � J �

Due to ���
 Lemma A���
 the matrix

G��t� � A��t� �B�t�P �t�Q��t�

remains nonsingular now and it holds that Q��t�  Q��t�G��t�
��B�t�P �t� on J �

Since we may represent

kerA��t�  �I � P �t�A�t���B�t�� A�t�P ��t��Q�t�� �N�t� � S�t���

we know N��t� to have the same constant dimension 	 as N�t� � S�t��

In the following
 we drop the argument t if possible�
By straightforward calculations we prove the relations

G��
� A  P�P� G��

� B  G��
� BPP� �Q� �Q � P�PP

�Q�

Hence
 scaling equation ����� by G��
� leads to

P�P ��Px�� � P �x� �G��
� BPP�x �Q�x �Qx � P�PP

�Qx  G��
� q� �����

Multiplying ����� by PP�� QP� and Q�
 respectively
 and carrying out simple com	
putations we obtain the decoupled system

PP��Px�
� � PP�G

��
� BPP�x  PP�G

��
� q� �����

�QQ��Px�
� �QP�G

��
� BPP�x�Qx  QP�G

��
� q� �����

Q�x  Q�G
��
� q� �����

�



The System �����
 �����
 ����� provides the basic idea of what the solutions of the
DAE ����� look like in case of PP�� PQ� and PQ�G

��
� q being C�� Then �����
 �����

may be rewritten as

�PP�x�
� � �PP��

�PP�x � PP�G
��
� BPP�x  PP�G

��
� q � �PP��

�PQ�G
��
� q ������

Qx  ��QP�G
��
� B �QQ��PQ��

��PP�x � QQ��PQ�G
��
� q�� �QP�G

��
� q

� QQ��PQ��
�PQ�G

��
� q ������

and the solution is composed by x  PP�x � PQ�x � Qx� where the component
PP�x solves the inherent regular ODE ������
 Qx and PQ�x are given by ������ and
�����
 respectively� �cf� �����

In the next section
 we will generalize the solvability results given in ��� in the sense
that we will do with lower smoothness� The new inherent regular ODE
 which
uses a di�erent projector instead of PP�
 permits to obtain new insights into the
asymptotic stability behaviour of numerical approximations �Section ���
Note that
 by construction
 P �t�P��t� projects onto P �t�S��t� along N�t� � N��t�

i� e�
 it is related to the decomposition

IRm  P �t�S��t��N�t��N��t�� �����

��� Solvability and decoupling

Now we also use the orthoprojector V �t�
 which projects along S��t�� Then
 I�V �t�
is the orthoprojector onto S��t�� Because ofN�t� 	 S��t�
 it holds that V �t�Q�t�  �

and

��t� � P �t��I � V �t��

is a projector
 too� Obviously
 we have im ��t�  P �t�S��t�� Since the two pro	
jectors ��t� and P �t�P��t� have the same image space P �t�S��t�
 it holds that
PP��  ���PP�  PP��
Additionally
 we denote the orthoprojector onto im A��t� by I �W �t��
As we will realize below
 the projection W extricates exactly that derivative free
part of equations that has to be di�erentiated once when reducing the index�

The following example of a Hessenberg form DAE is to make the meaning of the
di�erent projectors more transparent�

Example	 Given a Hessenberg form DAE of size � that contains n� equations with
derivatives and n� derivative�free ones

x��� B��x� �B��x�  q�
B��x�  q�

�
� B��B�� nonsingular�

�



Here we have a constant nullspace N� N  fz � z�  �g� further

Q 

�
� �
� I

�
� A� 

�
I B��

� �

�
� W 

�
� �
� I

�

S�t�  S��t�  fz � B���t�z�  �g � S�t� �N  N�

N��t�  fz � z� �B���t�z�  �g �

N��t� � S��t�  fz � z� �B���t�z�  �� B���t�z�  �g  f�g

due to the nonsingularity of B��B���
The projector PP� is given by

PP� 

�
I � L �
� �

�
�

where L  B���B��B���
��B�� is also a projector �L�t� projects IRn� onto im B���t�

along kerB���t��� The orthoprojector along S��t� is now

V �t� 

�
B���t�

�B���t� �
� �

�
�

and ��t� 

�
I �B���t�

�B���t� �
� �

�
�

im ��t�  P �t�S��t�  fz � B���t�z�  �� z�  �g

 kerB���t�
 f�g�

It is well�known that� in Hessenberg systems� all derivative�free equation should be
di�erentiated when deriving a solution via a reduction step�
Consequently� it seems to be more natural to assume B�� � C� �hence� V� � � C��
instead of L � C� �i� e�� PP� � C���
�

Next
 we collect some nice properties of our projectors and matrices to be used
below�

�� im A�  kerW� im A�  kerG�PQ�G
��
� 
 hence there are two projectors W

and G�PQ�G
��
� along im A�� Therefore

W  WG�PQ�G
��
� � G�PQ�G

��
�  G�PQ�G

��
� W�

�



�� From WB  WG�PQ�G
��
� B  WG�PQ�G

��
� BPQ�  WBPQ� and

PQ�G
��
� WB  PQ� it follows that

kerWB  kerPQ�  kerQ�  S�� im WB  im W�

�� V  �WB��WB� W  �I � A�A
�
� �  �PQ�G

��
� ��PQ�G

��
� �

WB  �PQ�G
��
� ��PQ��

�� V  V PQ�� PQ�  PQ�V� V  V P� V  V Q��

V G��
�  �WB��WBG��

�  �WB��WBPQ�G
��
�

 �WB�WG�PQ�G
��
� BPQ�G

��
�  �WB��WG�PQ�G

��
�  �WB��W �

The third property indicates that
 for continuously di�erentiable PQ�G
��
� and PQ�


we also have continuously di�erentiable W and V � However
 as we could realize by
means of the special Hessenberg form DAE above
 the opposite is not true� In this
sense
 Theorem ��� below generalizes the related results of ����

To get a better insight we reconsider the decoupled form �����
 �����
 ����� of the
DAE ����� and try to reformulate it in such a way that ����� returns into a regular
ODE for the solution component �x� Now
 we do not assume PP�� PQ� to be from
C� as we did in order to obtain ������
 ������
 but we allow only P�� and V to be
continuously di�erentiable now�
Equation ����� yields immediately

V x  �WB��Wq� �����

To realize what equation ����� looks like in more detail we derive

PP��Px�
�  PP��� � PV ��Px��  ��Px�� � PP�V �Px��

 ��x�� � ��Px� PP��V x�
� � PP�V

�Px�

Consequently
 ����� can be rewritten as

��x�� � ����x� PV x�� PP�V
���x� PV x� � PP��V x�

�

� PP�G
��
� BPP���x� PV x�  PP�G

��
� q� �����

Analogously
 with QQ��Px�
�  QQ�V �Px��  QQ��V x�

� � QQ�V
���x � PV x�


equation ����� can be reformulated�

�QQ��V x�
��QQ�V

���x�PV x��QP�G
��
� BPP���x�PV x��Qx  QP�G

��
� q�������

��



If x � C�
N solves the DAE �����
 then �WB��Wq  V x  V Px belongs to C� since

V and Px do so� We are allowed to replace V x and �V x�� in ����� and ������ by
means of ������ This gives rise to consider the ODE

u� � ��u �PP�V
�u� PP�G

��
� BPP�u

 ��P �WB��Wq � PP�V
�P �WB��Wq � PP�G

��
� BPP��WB��Wq

�PP���WB��Wq�� � PP�G
��
� q� ������

and to call it an inherent regular ODE� If we multiply equation ������ by �I � ��

we obtain

�I � ��u� � �I � ����u  ��

hence

��I � ��u�� ����I � ��u  ��

It results that if u � C� solves ������
 then the function �  �I � ��u satis�es the
homogeneous regular ODE ������  �� If
 additionally
 ��t��  �I���t���u�t�� 
�
 then ��t� vanishes identically
 i� e�
 u�t�  ��t�u�t�� t � J � This proves the
following assertion�

Lemma �
� The subspace im ��t� 	 IRm represents an invariant subspace of the
regular inherent ODE �������

As far as the homogeneous case q  � is concerned
 we know from ����� that each
solution of Ax� � Bx  � has a trivial component V x  �� Using �����
 ������
and taking into account the inherent regular ODE we may express each solution
as x  �x � Qx  �canu
 where u solves ������ as well as the initial condition
u�to� � im ��t��
 and

�can � KPP�� K � �I �QP�G
��
� BPP� �QQ�V

�PP���

The matrix function K is nonsingular
 thus ker �can�t�  kerP �t�P��t�� t � J � It is
easily checked that �can is also a projector� �can is said to be the canonical projector
for the index	� case� It projects onto the solution space of the homogeneous DAE
along N �N�
 as we will see below�

Theorem �
� Given an index�� DAE ����� with continuously di�erentiable sub�
spaces N� S� and im A�� Additionally� let WB be C� and q � fp � C � Wp � C�g�

�i� Then� the IVP for ����� with the initial condition ��t���x�t��� x��  ��
x� � IRm� has exactly one C�

N �solution�

�ii� Exactly one solution of the homogeneous equation at t� passes through each
x� � im �can�t�� �

��



Proof	

�i� Denote by u � C� the solution of the regular ODE ������ that satis�es the
initial condition u�t��  ��t��x

�� Then we compose the function x  u�v�w�
v � �WB��Wq � C��

w � QP�G
��
� q �QQ�v

� �QQ�V
��u� Pv��QP�G

��
� BPP��u� Pv��

Due to this construction we have v  V v� w  Qw� Px  u� Pv � C��

x � C� ��t��x�t��  u�t��  ��t��x
��

Finally
 straightforward checking shows that x satis�es the DAE �����
 indeed�

�ii� Solve the special IVP for q  � and x� � x�  �can�t��x�� Its solution is
x  �canu
 and we have
 in particular


x�t��  �can�t��u�t��  �can�t����t��x�

 �can�t����t���can�t��x�  �can�t����t���PP���t��x�

 �can�t���PP���t��x�

 �can�t��x�  x��
�

Corollary	 On each compact interval �t�� T �� the perturbation index of an index��
tractable DAE is two�

Proof	 For each T 
 t�
 there is a constant KT such that the estimation

kxkT � KT

n
j��t��x

�j� kqkT � k�V q��kT
o

������

holds for all IVP solutions with x� � IRm� q � C� V q � C�
 where
kykT � maxfjy�t�j � t � �t�� T �g�
�

Example� For the Hessenberg form DAE

x��� B��x� �B��x�  q�
B��x�  q�

�

the conditions of Theorem����� are satis�ed if q� � C� q� � C�� and B�� � C�� The
initial condition reads in detail

�  ��t���x�t��� x�� 

�
�I � B���t��

�B���t����x��t��� x���
�

�
�

��� Index reduction by di�erentiation

Considering the DAE ����� we observe immediately that each solution has always
to proceed in the set

M�t� � fz � IRm � B�t�z � q�t� � im A�t�g 

fz � IRm � �I �W �t���B�t�z � q�t�� � im A�t��W �t��B�t�z � q�t��  �g �

��



which is called a constraint manifold� Under the conditions of Theorem ���
 the part
of equations described by

WBx  Wq

can be di�erentiated to obtain

WBx� � �WB��x  �Wq���

Here
 WBx� stands for WBf�Px��� P �xg� On the other hand
 due to ����� we may
express Px� � �Px�� � P �x  PA��q � Bx�� In consequence
 the relation

WBA��q �Bx� �W �WB��x  W �Wq��

has to be satis�ed additionally
 i� e�
 the solution has also to proceed in the so	called
hidden constraint manifold

H�t� � fz � IRm � ��W �t�B�t�A�t��B�t� �W �WB���t�� z
 W �Wq���t��W �t�B�t�A�t��q�t�g �

As we will see below
 the set

M��t� �M�t� � H�t�

is characteristic of the DAE ������ M� contains all solutions �for given q�
 but it is
�lled by those solutions� One could callM��t� the state manifold� For the case of a
homogeneous equation
 S�t�  M�t� is trivially given� Moreover
 there is a closed
relationship between our subspace S��t� and the state manifold M��t��

Lemma �
� For a homogeneous index�� tractable DAE ����� with continuously dif�
ferentiable N� S�� im A�� WB� it holds that

M��t�jq�� 
n
z � S��t� � Q�t�z  ���QP�G

��
� B �QQ�G

��
� �WB���PP���t�z

o
�

and

P �t�M��t�jq��  P �t�S��t�� ������

Proof	

The second relation is a simple consequence of the representation of M��t�
 which
we want to realize now� We drop the argument t�
z � M� means by de�nition�
�WBA�Bz �W �WB��z  �� Bz � Aw  � for a certain w  Pw�
This is equivalent to
WBw �W �WB��z  �� w  �PA�Bz� PQ�z  ��

Qz �QQ�w �QP�G
��
� BPP�z �QP�PP

�Qz  �

and to

��



PQ�z  �� w  �PA�Bz� �  WBw �W �WB��PP�z �W �WB��Qz 

WBw �W �WB��PP�z �WBP �Qz�

Qz �QQ�w �QQ�P
�Qz �QP�G

��
� BPP�z  ��

Because of QQ�G
��
� WB  QQ�G

��
� B  QQ�� QQ�G

��
� W  QQ�G

��
� 
 we �nd

z � M� to be characterized by

PQ�z  �� w  �PA�Bz�

QQ�w �QQ�P
�Qz �QQ�G

��
� �WB��PP�z  �

Qz  QQ�w �QQ�P
�Qz �QP�G

��
� BPP�z

 �QQ�P
�Qz �QQ�P

�Qz �QQ�G
��
� �WB��PP�z �QP�G

��
� BPP�z

 �QQ�G
��
� �WB��PP�z �QP�G

��
� BPP�z�

Note that the linear space M��t�jq�� represents the tangent space for M��t�� Of
course
 this is much more important for nonlinear problems� Lemma ��� shows
P �t�S��t� to be a kind of practical substitute of the tangent space� It should be
stressed once more that we are looking for C�

N solutions and that there is no natural
need for Q	components of the elements of the tangent spaces�

Next
 rewrite the DAE ����� as

Ax� � �I �W ��Bx� q� �W �Bx� q�  �

and replace the part W �Bx� q�  � by its di�erentiated form

W fWBx� � �WB��x� �Wq��g  �

to compose the new DAE

�A �WB�x� � ��I �W �B �W �WB���x  �I �W �q �W �Wq��� ������

Denote �A � A � WB� �B � �I � W �B � W �WB�� and consider ������ in more
detail� Since �A�t� �W �t�B�t��z  � decomposes into Az  �� WBz  �
 we have
ker �A�t� � kerA�t�  N�t�� In consequence
 the solutions of ������ belong to the
same class C�

N as the solutions of ������ Further
 we have

�S�t�  fz � IRm � �B�t�z � im �A�t�g

 fz � IRm � �I �W �t��B�t�z � im A�t��

W �t��WB���t�z  W �t�B�t�A�t���I �W �t��B�t�zg�

fM�t�  fz � IRm � �I �W �t��B�t�z � q�t�� � im A�t��

W �t��WB���t�z �W �t��Wq���t�  W �t�B�t�A�t���I �W �t���B�t�z � q�t��g �

fM�t� � fz � IRm � W �t��B�t�z � q�t��  �g M��t��

��



Theorem �
� Given the conditions of Theorem ����

�i� Then equation ����	� is index�� tractable�

�ii� Exactly one solution at t� � J passes through each x� � fM�t�� �

�iii� M��t� and M�t� form invariant subsets for ����	��

Proof	

�i� We check the nonsingularity of the matrix �G��t� � L�IRm�� �G� � A �WB �
��I �W �B �W �WB���Q� Again
 we drop the t	argument� �G�z  � yields
Az��I�W �BQz  �� WBz  �W �WB��Qz  �WBP �Qz
 hence PQ�z 
�PQ�P

�Qz� �A �BQ�z  ��
Because of �A�BQ��I�PP �Q�  A�� A��I�PP �Q�  A�BQ
 the element
�I � PP �Q�z  �z belongs to kerA�  N� 
 i� e�
 �z  Q��z� On the other hand

PQ�z � PQ�P

�Qz  � implies PQ��I � PP �Q�z  �
 i� e�
 PQ��z  � and
�nally �z  �� z  ��

�ii� Due to the index	� property
 this assertion is now given by the index	� results

e� g� in ����

�iii� Let x denote a solution of the index	� tractable DAE ������ and
x�t�� � M�t��� Then
 ������ gives

Ax� � �I �W �Bx  �I �W �q� WBx� �W �WB��x  W �Wq���

Consider the function � � W �Bx� q�� Derive

��  �WB��x�WBx� � �Wq��

 �WB��x�W �WB��x �W �Wq�� � �Wq��

 �I �W ��WB��x� �I �W ��Wq��

 ��I �W ���WBx�Wq�  W ���

Since x�t�� � M�t�� implies ��t��  W �t���B�t��x�t�� � q�t���  �
 the func	
tion � vanishes identically
 hence Ax� �Bx  q is satis�ed�
Therefore
 x��t� � M�t�� implies x�t� � M�t�� but also x�t� � M��t� for all
t � J �
�

��



Corollary	 The index�� tractable DAE has di�erentiation index two�

Example	 For the Hessenberg system

x�� � B��x� � B��x�  q�

B��x�  q�

�

we have now

M�t�  fz � B���t�z� � q��t�  �g

H�t�  fz � �B���t�B���t�z� � B���t�B���t�z��

�B�
���t�z�  q���t��B���t�q��t�g �

M��t�  fz � B���t�z�  q��t�� �B���t�B���t��z� 

B�
���t�z� �B���t�B���t�z� � q���t� �B���t�q��t�g

�M�t�  fz � B�
���t�z� � q���t�  B���t��B���t�z� �B���t�z� � q��t��g �

�M�t� � fz � B���t�z�  q��t�g M��t��

The index�reduced equation ����
� is� as expected�

x�� � B��x� � B��x�  q�

B��x
�
� � B�

��x�  q��

�

��� Contractivity

Now we turn to the asymptotic behaviour of the solutions of the homogeneous
equations

Ax� �Bx  �� ������

As we know
 the solutions may be represented by

x  KPP�u  �canu�

where u solves the inherent regular ODE

u�  ��u� PP�V
�u� PP�G

��
� BPP�u� ������

u�t�� � im ��t���

Recall once more that im ��t� is an invariant subspace of the ODE ������
 i� e�


u�t�  ��t�u�t�� t � J�

��



Obviously
 the stability behaviour of x is mainly governed by the dynamics of the
inherent regular ODE
 that is
 by u� Hence
 it would be nice to formulate criteria
on how the �ow of regular ODE behaves within an given invariant subspace�

The matrix coe�cient of the inherent regular ODE ������ has to be expected to be	
come singular� In particular
 for constant subspaces N and S�
 it is simply the matrix
PP�G

��
� BPP�
 which has at least the nullspace N �N� of dimension m� r�	 � ��

The standard approaches to estimate how the solutions grow usually relate to all
solutions of ������
 included those solutions that do not start in im ��t��� No ex	
ponential decay can be realized in this way� The standard techniques are somewhat
coarse� Hence
 we try to improve them by relating all things to the invariant sub	
spaces�

For a given subspace U 	 IRm we introduce the matrix	semi	norm

kGkU � max

�
jGzj

jzj
� z � �� z � U

�

such that jGzj � kGkU jzj holds for all z � U �

Then
 we de�ne the logarithmic matrix norm relative to the subspace U by

�U�G� � lim
h��

�

h
�kI � hGkU � ��� ������

This logarithmic norm relative to U is well	de�ned and has similar properties as the
standard version of Dahlquist for U  IRm �cf�������In fact this generalization is in
fact very natural and straightforward� On the other hand
 it is worth mentioning
that �U�G� appears to be a special case of the logarithmic norm proposed in ����
for matrix pencils�

Lemma �
� Given a regular linear ODE

u��t� �M�t�u�t�  �� t � J  �t�����

which has the invariant subspace U�t� 	 IRm� t � J� Let the function

��t� �

tZ
t�

�U�s���M�s��ds� t � J�

be well�de�ned� i� e�� the integrals do exist�
Then� for all ODE solutions starting with initial values u�t�� � U�t��� the inequality

ju�t�j � e��t�ju�t��j� t � t��

is valid�

��



Proof	

This proof follows the lines of the standard theory ���
 too� Given a solution with
u�t�� � U�t�� we have
 u�t� � U�t�� for all t � �t�����
Denote m�t� � ju�t�j� t � �t����
 and derive

m�t � h�  ju�t� � hu��t� � o�h�j  j�I � hM�t��u�t� � o�h�j

� k�I � hM�t�kU�t�ju�t�j� o�h��

thus

�

h
�m�t� h��m�t�� �

�

h
�kI � hM�t�kU�t� � ��m�t�� o�h���

Letting h� �
 we obtain

D�m�t� � �U�t���M�t��m�t�� t � �t�����

where D�m�t� denotes the respective Dini derivative� By Peano�s Lemma it follows
immediately that

m�t� � e��t�m�t���

�

Theorem �
� Let ����
� be index�� tractable with N� S� and WB from C��
Then� the estimation

jx�t�j � k�can�t�ke
��t�j��t��x�t��j� t � t�� ������

with ��t� �
tR
t�

��PS�������M���d� t � t�� holds true for each solution� provided

that ��t� is well�de�ned� Here�

M � ��� � PP�V
� � PP�G

��
� BPP�

is the coe�cient matrix of the inherent regular ODE �������

Proof	

Applying Lemma ��� to ������
 which has the invariant subspace im ��t� 
P �t�S��t�
 yields ju�t�j � e��t�ju�t��j� t � t�
 provided that u�t�� � im ��t���
The DAE solutions have the representation x�t�  �can�t�u�t�
 and u�t��  ��t��x�t���
�

��



Corollary	 If there is a � 
 � such that ��PS���t���M�t�� � ��� t � t�� all DAE
solutions satisfy the inequality

jx�t�j � k�can�t�ke
���t�t��j��t��x�t�j� t � t�� ������

Hence� if �can�t� grows moderately like polynomials or is bounded by
k�can�t�k � Ce�t� t � t�� with � � �� then the solutions decrease exponentially�

To realize whether numerical approximations re�ect the stability behaviour of the
true solution well
 one often uses the notion of contractivity and so	called one	sided
Lipschitz conditions �cf� ������ This approach applies also to DAEs provided that
we relate the things again to our invariant subspaces�
Standard numerical integration methods applied to index	� DAE are expected to
work well if the basic nullspace N is constant� However
 it is well	known that these
methods may fail in case this nullspace rotates with time� This is why we suppose
P �  � now�
If the vector norm used to de�ne the logarithmic norm is related to an inner product

it holds that

hGz� zi � �U�G�jzj� for all z � U�

De�nition	 An index�� tractable DAE with constant P is said to be contractive if
there are an inner product h� i and a constant � 
 � such that the inequality

hy� Pxi � ��jPxj� ������

is valid for all y� x � IRm� t � �t����� with

A�t�y �B�t�x  �� Qy  �� V �t�y  V �t����t�x� ������

This de�nition is given in ��� for the case of a continuously di�erentiable Q� and a
real scalar product� If Q� � C�
 we may make use of

Q��t�y  Q��t�V �t�y  Q��t��
��t�x  �Q�

��t���t�x  �Q�
��t�PP��t�x

and arrive at the same expression as used in ��� instead of �������
By decoupling A�t�y �B�t�x  �
 we �nd that ������ leads to

y �M�t���t�x  �� V �t�x  �� Px  ��t�x�

Therefore
 ������ reads then

h�M�t���t�x� ��t�xi � ��j��t�xj��

which means a contractivity condition for the inherent regular ODE relative to the
invariant subspace im ��t�  PS��t��

��



� Analyzing numerical integration methods for

linear index�� DAEs

In this section we derive conditions for preserving stability properties of numerical
methods when solving index	� linear DAEs� Let the conditions of Theorem ��� be
ful�lled in the following� As in ��� we assume N�t� to be constant
 otherwise it is
well known that those methods will fail� We shall consider the discrete version of
the decoupling of the last section for two of the most important families of methods�
An analogous analysis was made in ��� using the standard approach mentioned in
Section ���� In that paper they obtained as a su�cient condition for preserving the
stability properties that both subspaces N� and S� have to be time invariant� By
the discrete decoupling with the new approach described in Section ���
 we shall get
a weaker condition as in ���� Namely
 the time invariance of S� will do�

��� BDF

Consider the homogeneous system

A�t�x��t� �B�t�x�t�  � � t � J � �t����� �����

For homogeneous index	� tractable DAEs �����
 the solutions are given by the ex	
pression

x  �I �QP�G
��
� BPP� �QQ�V

�PP��PP�u  �canu� �����

where u solves the regular ODE

u� � ��u� PP�V
�u� PP�G

��
� BPP�u  �� �����

with u�t�� � Im��t��� Suppose P
�  ��

If the projector V is time invariant
 or equivalently
 �  P �I�V � is so
 this solution
representation simpli�es to

x  �I �QP�G
��
� BPP��PP�u� �����

u� � PP�G
��
� BPP�u  �� �����

Given the step size h 
 �
 ti  t� � ih
 i � IN � The BDF applied to ����� reads

Ai

kX
j��

�jxi�j � hBixi  �� i � k� �����

where the starting values x�� ���� xk�� are supposed to be known�
First
 we multiply by ��WB��W �i and obtain

Vixi  �� i � k� �����

��



which means that this component is correctly computed� Let us now consider
what happens with the other components� Assuming that
 the previous values
xi��� � � � � xi�k as well as xi
 also ful�l �����
 we have xi  �ixi � Qxi
 i
 and

keeping in mind that P �  �
 the equation ����� can be rewritten as

Ai

kX
j��

�j��x�i�j � hBi��x�i � hBi�Qx�i  �� i � k�

Multiplying by G��
��i we obtain

P��iP
kX

j��

�j��x�i�j � h�G��
� BPP��i��x�i � hQxi  �� �����

Denote brie�y H � PP�G
��
� BPP� and uj  �jxj�

Multiplying ����� by PP��i implies

PP��i

kX
j��

�jui�j � hHiui  ��

which is equivalent to

kX
j��

�jui�j � hHiui � PP��i

kX
j��

�jui�j �
kX

j��

�jui�j  ��

kX
j��

�jui�j � hHiui �
kX

j��

�j��i � �i�j�ui�j �
kX

j��

�j�PP��i � �i�ui�j  ��

kX
j��

�jui�j � hHiui �
kX

j��

�j��i � �i�j�ui�j � PP��i

kX
j��

�j�Vi � Vi�j�ui�j  � �����

This is the discrete analogue of ������
For the Q	component we multiply ����� by Q
 thus obtaining

hQxi �QQ��i

kX
j��

�jui�j � h�QP�G
��
� BPP��iui  ��

Qxi  QQ��i
�

h

kX
j��

�jui�j � �QP�G
��
� BPP��iui� ������

Now
 regarding ����� and ������ we observe that
 if the projection � is constant
 then
the BDF discretization of ����� coincides with the corresponding method applied to
����� and formula ������ Namely
 we have xi  �can�ti��ixi  �can�ti�ui�

��



Theorem �
� Let ����� be index�� tractable with continuously di�erentiable W and
WB and P �  �� Suppose the starting values to satisfy xi � M�ti�� i  �� � � � � k� ��
Then the BDF ����� applied to ����� generates exactly the same BDF method applied
to the inherent ODE ����� i� the projection V �the subspace S�� is constant�

Remark	

�� The numerical approximation xi  �can�ti�ui re�ects the asymptotic be	
haviour of the true solution x�ti�  �can�ti�u�ti� nicely if the BDF works well
for the inherent regular ODE ������

�� Let S��t� be time	invariant� Then
 applying the BDF to ����� and decoupling
this is exactly the same as decoupling ����� �rst and then applying the BDF
to the inherent regular ODE� In this sense
 the BDF	discretization and the
decoupling commute�

�� In circuit simulation
 the DAEs obtained by the classical modi�ed nodal anal	
ysis ful�l the condition V �  � �cf� �����

In the previous analysis we have checked whether the BDF scheme is transmitted
to the inherent regular ODE ������ Analogously
 we could also check if the BDF
method is transmitted to the reduced index equation ������� This would be very
helpful
 because in the constant null space case we know that the BDF preserves it
asymptotical stability properties �cf� �����
Looking at ����� we immediately see that xi � M�ti�� Splitting ����� with the
projections Wi and I �Wi yields
 i � k


Ai

kX
j��

�jxi�j � h�I �Wi��Bx�i  �� ������

�WBx�i  �� ������

However
 we cannot hope for a reproduction of the hidden constraint
 in fact
 this
will be a key condition for the BDF methods to preserve their asymptotical stability
properties� To see this we rewrite ������ as

�A�WB�i
kX

j��

�jxi�j � h�I �Wi��Bx�i � �WB�i
kX

j��

�jxi�j  ��

Here we see that
 if we had the relation

hWi�WB��ixi  ��WB�i
kX

j��

�jxi�j�

��



then we would really obtain the BDF discretization of the index	� problem �������
The above condition can also be written as

Wi

��	�WB�i
�

h

kX
j��

�jxi�j � �WB��ixi


��  �� ������

which is nothing but the BDF discretization of the di�erentiated constraint� Fur	
thermore
 ����� provides

P
�

h

kX
j��

�jxi�j  �P �A�Bx�i�

so ������ can also be written as

Wi

n
��WB�i�A

�Bx�i � �WB��ixi
o
 �� i�e�
 xi � H�ti��

Theorem �
� Let ����� be index�� tractable with continuously di�erentiable W and
WB and P �  �� Then a BDF method applied to ����� generates exactly the same
BDF method applied to the index�� DAE ����	� if the condition ������ is ful�lled�

Remarks	

�� The projection �I �Q eA��
�
eB�P plays the role of �can for an index	� tractable

DAE� the solution of ������ satis�es x  �I �Q eA��
�
eB�Px�

�� Condition ������ means that the numerical approximation for x must lie on
the hidden constraint manifold in every integration step� This is more di�cult
to check than the condition V �  �� The BDF solution of ����� at the point
ti is xi  ��x�i � Qxi� Inserting this expression in the left part of ������ we
obtain

Wi

��	�WB�i
�

h

kX
j��

�j��x �Qx�i�j � �WB��i��x �Qx�i


�� �

Then
 assuming V to be constant and taking into account that WB� 
WBQ  �
 �WB���  �WB���  �
 �WB��Q  �WBQ��  �
 one con	
cludes that ������ is ful�lled
 indeed�

��



��� Runge�Kutta methods

The implicit Runge	Kutta methods can be realized for ����� in the following way
����� Given an approximation xl�� of the solution at tl��
 a new approximation xl
at tl  tl�� � h is obtained from

xl  xl�� � h
sX

i��

biX
�
li� ������

where X �
li are de�ned by

AliX
�
li �BliXli  �� i  �� � � � � s� ������

tli  tl�� � cih

and the internal stages are given by

Xli  xl�� � h
sX

j��

aijX
�
lj� i  �� � � � � s� ������

The coe�cients aij
 bi
 ci determine the IRK method
 and s is the number of
stages� We de�ne the matrix A � �aij�

s
i�j�� and the vectors b � �b�� � � � � bs�

T 

c � �c�� � � � � cs�

T � A condition for X �
l�� � � � � X

�
ls to be uniquely de�ned by ������	

������ is the non	singularity of A
 ����
 which we shall assume in the following�
Denoting bA � A��  ��aij�

s
i�j�� and � � ��

Ps
i��

Ps
j�� bi�aij
 ������	������ is equiv	

alent to

xl  �xl�� �
sX

i��

sX
j��

bi�aijXlj� ������

Ali

sX
j��

�aij�Xlj � xl��� � hBliXli  �� i  �� � � � � s� ������

Looking at ������ we observe that the internal stages do not depend on Qxl���
Further
 it holds that Xlj � M�tlj��
The special class of IRK methods �IRK�DAE� ���� with coe�cients

bi  asi� i  �� � � � � s� cs  �� ������

is shown to stand out from all IRK methods in view of its applicability to DAEs�
Since �  � in this case
 the new value xl  Xls always belongs to the constraint
manifold M�tl��
For index	� Hessenberg equations
 the fact that xl � M�tl� simpli�es to

B��x��l  q��l�

��



In general
 if ������ is not ful�lled
 then we have � � �
 and xl does not belong to
M�tl� any more� Since this behaviour is a source of instability �for h� ��
 Ascher
and Petzold ���� propose another version for the application of IRK methods to
index	� Hessenberg systems �cf� the discussion of Hessenberg systems in x ����

the so	called Projected IRK methods �PIRK�� Actually
 after realizing the standard
internal stage computation
 the recursion ������ for the Hessenberg system is now
replaced by

�x��l  ��x��l�� �
sX

i��

sX
j��

bi�aijcX��lj �B���tl��l ������

and �l is determined by

B���tl��x��l  q��l� ������

If we multiply ������ by I � Ll �L is de�ned in x ����
 �l can be eliminated�

�I � Ll��x��l  ��I � Ll��x��l�� �
sX

i��

sX
j��

bi�aij�I � Ll�cX��lj� ������

On the other hand
 ������ is equivalent to

Ll�x��l  B���tl��B���tl�B���tl��
��q��l� ������

It should be mentioned that
 for IRK�DAE�
 the projected version is exactly the
same as the original one
 since ������ implies �l  � in ������
 ������� An immediate
generalization of PIRK methods to fully implicit linear index	� systems is suggested
in ����

PP��l�xl  �PP��l�xl�� �
sX

i��

sX
j��

bi�aijPP��lcXlj� ������

Q��l�xl  Q��lA
��
��l ql� ������

Since the internal stages do not depend on Q�xl��
 there is no need to compute Q�xl
in this place�
Now return to the standard IRK methods ������	������ for a homogeneous equation�
First
 we multiply ������ by ��WB��W �li
 and obtain for all internal stages

�V X�li  �� i  �� � � � � s� ������

which means that the V	component is correctly computed for all internal stages�
This is a consequence of the fact that Xli � M�tli�� Next
 multiplying ������ by Vl
results in

�V x�l  �Vlxl�� �
sX

i��

sX
j��

bi�aijVlXlj�

��



�V x�l  ��V x�l�� � ��Vl � Vl���xl�� �
sX

i��

sX
j��

bi�aij�Vl � Vlj�Xlj� ������

which shows that an IRK scheme does not generate an approximation xl in M�tl�
in general� Let us see what happens with the �	component� Multiplying ������ by
�l we obtain

��x�l  ��lxl�� �
sX

i��

sX
j��

bi�aij�lXlj�

��x�l  ���x�l�� �
sX

i��

sX
j��

bi�aij��X�lj � ���l � �l���xl��

�
sX

i��

sX
j��

bi�aij��l � �lj�Xlj� ������

and for ������
 assuming that xl�� � M�tl���
 we can write

Ali

sX
j��

�aij���X�lj � ��x�l��� � h�BX�li  ��

Multiplying by G��
��li and using the shorter denotations uj � �jxj Ulj � �ljXlj we

obtain

P��liP
sX

j��

�aij�Ulj � ul��� � h�G��
� BU�li � hQXli  �� ������

Then
 multiplying by PP��li leads to

PP��li
Ps

j�� �aij�Ulj � ul��� � hHliUli  ��

Ps
j�� �aij�Ulj � ul��� � hHliUli �

Ps
j�� �aij�Ulj � ul���

�PP��li
Ps

j�� �aij�Ulj � ul���  ��

Ps
j�� �aij�Ulj � ul����

Ps
j�� �aij��lj � �li�Ulj �

Ps
j�� �aij�PP��li � �li�Ulj

�hHliUli �
Ps

j�� �aijPQ��liul��  ��

Ps
j�� �aij�Ulj � ul��� � hHliUli �

Ps
j�� �aij��lj � �li�Ulj �

Ps
j�� �aijPP��liVliUlj

�
Ps

j�� �aijPQ��liul��  ��

��



sX
j��

�aij�Ulj � ul��� � hHliUli �
sX

j��

�aij��lj � �li�Ulj � PP��li

sX
j��

�aij�Vlj � Vli�Ulj

�
sX

j��

�aijPQ��li��l�� � �li�ul��  �� ������

Finally
 for the Q	component we multiply ������ by Q and obtain

Qxl  �Qxl�� �
sX

i��

sX
j��

bi�aijQXlj� ������

and ������ multiplied by Q gives

�QQ��li

sX
j��

�aij�Ulj � ul��� � h�QP�G
��
� BU�li � hQXli  ��

QXli  QQ��li
�

h

sX
j��

�aij�Ulj � ul���� �QP�G
��
� BU�li� ������

After these algebraic manipulations we can extract the desired conclusions� If S��t�
is time	invariant �V �  ��
 then ������
 ������
 ������
 ������
 ������ and ������ can
be reduced to

�V x�l  ��V x�l��� ������

��x�l  ���x�l�� �
sX

i��

sX
j��

bi�aij��X�lj� ������

�Qx�l  ��Qx�l�� �
sX

i��

sX
j��

bi�aij�QX�lj� ������

�V X�li  �� i  �� � � � � s ������

sX
j��

�aij���X�lj � ��x�l��� � hHli��X�li  �� i  �� � � � � s ������

and

�QX�li  ��QP�G
��
� B�X�li� i  �� � � � � s ������

In ������ we have left the term ��PV x�l�� to emphasize that an �undesirable� re	
cursion occurs in the PV 	component� An even worse situation occurs in the Q	
component
 here the expression ������ does not correspond to ����� any more
 which
may cause instabilities in the computation� What really is true is the following�

��



Theorem �
� Suppose ����� to be index�� tractable with continuous di�erentiable
W � WB and P �  �� Then� an IRK method applied to ����� generates exactly
the same IRK method applied to the inherent ODE ����� i� the projection V �the
subspace S�� is constant and the initial value x� belongs to M�t���

Here
 the IRK�DAE� methods show their good properties
 �  � in this case
 and

�V x�l  �V X�ls  �� �Qx�l  �QX�ls  ��QP�G
��
� B�X�ls�

thus
 there occurs no recursion
 neither in the PV 	component nor in theQ	component

and these components are computed correctly� Hence
 for this type of methods we
can state�

Theorem �
� For a constant projection V � an IRK�DAE� method applied to the
index�� tractable DAE ����� yields xl  �can�tl�ul� xl � M��tl��

Next
 let us brie�y come back to the PIRK methods ������
 ������� Our decoupling
for the internal stages Xli holds true also in this case for the cXli values� For a
homogeneous systems under the assumptions of Theorem ��� we obtain

PP��l�xl  �PP��l�xl�� �
sX

i��

sX
j��

bi�aijPP��lcXlj�

Q��l�xl  ��

The second equation is equivalent to

V �xl  �� ������

inserting �xl  ��xl � Q�xl
 �xl��  ��xl�� � Q�xl�� and cXlj  �cXl�j � QcXl�j in the
equation for the PP�	component and taking into account that � and Q are constant
provides

���x�l  ����x�l�� �
sX

i��

sX
j��

bi�aij�� �X�lj� ������

which is identical with ������� Hence
 the application of a PIRK scheme solves the
problem with the �undesirable� iteration in the V �Q��	component
 but
 as the Q	
component is the same as in a �standard� IRK method
 we still have the recursion
������ for this component� Consequently
 a result like Theorem ��� is not possible

but the analogue of Theorem ��� remains true for PIRK methods�
In the same way as it was done for BDF methods
 we shall analyze IRK methods
by means of the index reduction technique�
Considering again the IRK scheme ������
 ������� we split ������ with the projections
I �Wli and Wli and obtain

Ali

sX
j��

�aij�Xlj � xl��� � h�I �Wli�BliXli  �� i  �� � � � � s ������

�WBX�li  �� i  �� � � � � s� ������

��



However
 the hidden restriction need not be ful�lled in general
 neither for the stages
Xli nor for xl�
Transforming ������ appropriately we obtain

�A� �WB��li
Ps

j�� �aij�Xlj � xl��� �h�I �Wli��BX�li
��WB�li

Ps
j�� �aij�Xlj � xl���  ��

If we had the relation

h�W �WB��X�li  ��WB�li
sX

j��

�aij�Xlj � xl���� i  �� � � � � s�

then we would arrive at the same method applied to the index	� problem ������ with
constant null	space N � In other words
 similar to the BDF	methods
 we obtain

Wli

��	�WB�li
�

h

sX
j��

�aij�Xlj � xl��� � �WB��liXli


��  �� ������

as condition that all stages must ful�l the discretization of the di�erentiated con	
straint�

In ��� it is shown that an IRK �DAE� applied to an index	� DAE with constant
leading nullspace generates the same values as the application of the same IRK to
the inherent regular ODE
 and xl � fM�tl��

Theorem �
� Let ����� be index�� tractable with continuously di�erentiable W �
WB and P �  �� Then� an IRK�DAE� method applied to ����� generates exactly
the same IRK for the index�� DAE ����	� if condition ���	�� is ful�lled�

In the same way as we did for the BDF methods
 we can show that ������ is ful�lled
if V �  � and xl�� � M�tl����

In Section ��� we have extended the notion of contractivity to linear index	� tractable
DAEs� The reason of this concept in regular ODE theory is to generalize the A	
stability notion related to the test equation

x�  �x�

by that of B	stability for a contractive equation �cf� ����� An assertion of the type�
�algebraically stable Runge	Kutta methods are B	stable�
 was shown to be true in
��� for index	� tractable DAEs provided that �i� the null space N�t� is time	invariant

and �ii� the Runge	Kutta method is an IRK�DAE�� In ��� such a kind of assertion
was proved for linear index	� tractable DAEs under the additional conditions that
Q� be di�erentiable
 PP �

�  � and k�can�t�k � K
 on �t�����

��



De�nition	 The one�step method xj��  ��xj� tj� hj� is called B�stable if� for each
contractive DAE� the inequalities

jPx
���
j�� � Px

���
j��js � jPx

���
j � Px

���
j js�

and

jQx
���
j�� �Qx

���
j��js � KjPx

���
j�� � Px

���
j��js� j � ��

are satis�ed� Here� K 
 � is a constant� x
���
� � x

���
� are arbitrary consistent initial

values and j � js denotes a suitable norm� Following the same technique as in ��� we
can improve the result of that work by using the projectors W and V instead of
Q�G

��
� � Q��

Theorem �
� Let ����� be index�� tractable with continuously di�erentiable W �
WB� P �  �� V �  � and k�can�t�k bounded on �t����� Then� each algebraically
stable IRK�DAE� applied to ����� is B�stable�

� Two illustrating examples

In this paper we do not present any �real life� problem as an application
 but we
know that the condition V �  �
 which played an important role in our results
 is
often ful�lled in linear circuit simulation ���� However
 we would like to illustrate
our theory by simpler academic examples�

Example �
� The �rst example is well known �����B�x
�
�

x��
�

�CA�

�B� � �� ��
�t��� �t�� � � ��t

�� �t � �

�CA
�B�x�x�
x�

�CA  �� t � ��

It is a Hessenberg system with B��B��  � and� thus� index�� tractable for all t� The
general exact solution is given by

x��t�  x����e
��t�

x��t�  ��t� ��x��t��

x��t�  ���t� ��x��t��

which� evidently� is exponentially asymptotically stable for � 
 ��
If we take

P 

�B� � � �
� � �
� � �

�CA �

��



then it results that

A��t� 

�B� � � ��
� � ��t
� � �

�CA �
and

S��t�  fz � IR� � ��� �t�z� � z�  �g�

After computing the canonical projection Q�� the projection onto Ker�A�� along S��
we have

P��t� 

�B� �t �� �
�t��t� �� �� �t �
�t� � �� �

�CA � PP��t� 

�B� �t �� �
�t��t� �� �� �t �

� � �

�CA �

In ���� as already mentioned� the authors showed their stability results under the
condition PP �

�  �� and by means of this example they illustrated that� if this con�
dition fails� even when using methods with good stability properties� the numerical
discretizations may show an asymptotical behaviour that is di�erent from that of the
exact solution� Note that in this example we have PP �

�  � for �  � only� One in�
tegration step with the implicit Euler method consists in solving the following linear
system�B� � � h� �h �h

h��ti����� �ti���� �� � � h� �h�ti��
�� �ti�� � �

�CA
�B�x��i��x��i��
x��i��

�CA 

�B�x��ix��i
�

�CA �
which is invertible for � � h��� �� � �� The third equation yields

x��i��  ��ti�� � �� x��i���

and then� solving the linear system� we obtain the expression

x��i�� 
� � h�

� � h��� ��
x��i

for x��i�� �
In order to have a decaying sequence for x�� the following condition is needed � � h�

� � h��� ��

 � ��

This can be violated for � � �� while the exact solution decays for all � 
 �� We
have computed the numerical solution with this method and stepsize h  ��� on
��� ���� The following �gure shows� in a logarithmic scale� the absolute value of the
�rst component at t  �� for di�erent values of � and ��

��
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As predicted by the above analysis� we see that for negative values of �� if � is not
big enough� the numerical approximation �explodes� The gap about �  ��� is due
to the fact that we have for this value of � and h  ���� that x��i��  � for all i�
Now let us have a look at the projection V � According to the expression for P� we
deduce that S��t� is generated by the last two columns of this projector matrix� thus
S��t� is independent of t and� consequently� also V �t� in case of �  � only� Note
that for this example

W 

�B� � � �
� � �
� � �

�CA � �WB��t� 

�B� � � �
� � �

�� �t � �

�CA �

hence� for V we obtain the expression

V �t� 
�

� � ��� �t��

�B� ��� �t�� �� �t �
�� �t � �

� � �

�CA �
We compute the matrix M � PP�G

��
� B � �� � PP�V

� of the inherent ODE ������
thus obtaining

M�t� 

�BBBBBB�
��� � ��t� �

�t��t�����
��� � �� � �����t�

�t��t�����
�

�t���������������t����t��t������
�t��t�����

�� ���� ��t� �����t�
�t��t�����

�

� � �

�CCCCCCA �

��



Moreover� it holds that

Im���  spanfUg� U �

�B� �
�t� �

�

�CA �
In Section ��	� motivated by the notion of the logarithmic norm of a matrix corre�
sponding to a matrix�semi�norm� we have introduced a contractivity notion for linear
index�� tractable DAEs� We can compute the Euclidean logarithmic norm for this
problem in the following way�

�
Im�	�
� ��M �  sup

x � �
x � Im���

hx��Mxi

hx� xi
 sup

u� ���

hUu���MUu�i

hUu��Uu�i
�

which simpli�es to

sup
u� ���

��� � ��� ���t� ��t��t� ���u��
�� � ��t� ����u��

 �� �
���t� ��

� � ��t� ���

and this expression is bounded by �� � j�j
�
� So we have contractivity at least for

j�j
�
� � in the Euclidean norm� Moreover we can observe that

lim
t��

�
Im�	�
� ��M ��t�  ���

Example �
� An opposite example is the following�B� x��
x��
�

�CA�

�B� � ��t� ��� ���t� ��
�t��t� �� � ��t

� �� �

�CA
�B�x�x�
x�

�CA  �� t � ��

whose exact solution for x����  � is

x��t�  e��t�

x��t�  x��t��

x��t�  ��t� ��x��t��

with exponential asymptotical stability for � 
 ��
Let us compute the relevant matrices and subspaces� Taking� also in this case� P as
in the �rst example� we obtain for A� and the canonical projector P� that

A��t� 

�B� � � �� �t

� � ��t
� � �

�CA � P��t� 

�B� �t �� �t �
�t �� �t �
� �� �

�CA �

��



Thus� PP� is not constant again� but if we look at S� we see that

S� 
n
z � IR� � z�  z�

o
 span

����	
�B� �
�
�

�CA �
�B� �
�
�

�CA

���� �

which is time�independent and so is V � too� As in example 	�� the projector W is
given by

W 

�B� � � �
� � �
� � �

�CA
and

WB 

�B� � � �
� � �
� �� �

�CA �
The computation of V gives

V 
�

�

�B� � �� �
�� � �
� � �

�CA �

Hence� the assumptions of Theorem ��	 are ful�lled for the implicit Euler method�
An integration step of this method�B� � � h� h��ti � ��� �h��ti � ��

h�ti��ti � �� � � h� �h�ti
� �� �

�CA
�B�x��ix��i
x��i

�CA 

�B�x��i��x��i��
�

�CA �
provides

x��i 
�

� � h�
x��i���

For � 
 � this ful�ls the dissipative condition �

� � h�

 � ��

So� in this case the numerical method re�ects the asymptotical behaviour of the exact
solution� As in the �rst example the following �gure shows the absolute value of x�
at t  ��� for di�erent values of � and � in a logarithmic scale using the implicit
Euler scheme� Again� we have chosen h  ����
The coe�cient matrix of the inherent ODE ����� now reads

M�t�  �PP�G
��
� B��t� 

�B� ��t ���� �t� �
��t ���� �t� �
� � �

�CA �
��
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Then� taking into account that

� 
�

�

�B� � � �
� � �
� � �

�CA � �x � u 

�B�u�u�
�

�CA �
equation ����� simpli�es in essence to

u�� � �u�  �� ������

On the other hand� if we compute the Euclidean logarithmic norm of �M we obtain

�
Im�	�
� ��M �  sup

x � �
x � Im���

hx��Mxi

hx� xi
 sup

u� ���

hUu���MUu�i

hUu��Uu�i
 ���

in this example�

��
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