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1 Introduction

Kadomtsev-Petviashvili equations, both original and generalized, appear in
the theory of weakly nonlinear dispersive waves [7]. They read

Ut + U&g + f(u)g + €Uy =0 (1)
1)5 = Uy
or, eliminating v,
(ws +ugee + f(u)e)e +euy, =0 . (2)

More precisely, these are KP-I equations if ¢ = —1, and KP-II equations if
e = +1. The original KP equations correspond to the case f(u) = %uz, form
a completely integrable Hamiltonian system, and were studied extensively by
means of algebro-geometrical methods (see, e.g., [8]). There is also a number
of papers dealing with more general equations (1) or (2), mainly in the case
of power nonlinearity: [1, 3, 4, 5, 6, 10, 17, 21, 24], to mention a few. In
particular, solitary traveling waves were studied [1, 4, 5, 6, 10, 17, 24|. Here
we consider mainly the case of KP-I equations. Remark that KP-II equations
do not posess solitary traveling waves at all ( see [5] for the case of power
nonlinearity and Section 4 below).

The present paper is a direct continuation of our previous work [17]. Tt
concerns the existence of ground traveling waves, both periodic and solitary,
and the limit behavior of periodic waves, as period goes to infinity. Corre-
sponding equations for traveling waves read

—CUy + Upyy + f(0)y +ev, =0 (3)
Uy = Uy
and
(_Cua: + Uppw + f(u)ar)m + EUyy = 0 ) (4)

respectively. Here z = & — c¢t, ¢ > 0 is the wave speed. In [17], among
other results we have proved that k-periodic in x ground waves converge to
a solitary ground wave in a very strong sense (Theorem 5 of that paper).
Unfortunately, that result does not cover the case of original KP equation,
while includes the case f(u) = u®. And the first aim of the present paper is to
extend the results of Theorems 4 and 5, [17], in order to include nonlinearities



like f(u) = |ulP™!, 2 < p < 6. This will be done in Section 2. Our second
goal is to discuss, in Section 3, some qualitative properties of KP traveling
waves. Here we follow very closely the paper [6] and point out only the main
differences. Finally, in the Section 4, we discuss nonexistence of traveling
waves, both solitary and periodic, for general nonlinearities.

All the assumptions we impose here are satisfied for the nonlinearities
flu) = clulr~t and f(u) = clu?2u+ 5, ¢;|ulPi2u, with ¢,¢; > 0,2 <p <
6, 2 < p; < p. Unfortunately, the Assumptions (N) and (N1) below are not

satisfied for a very interesting nonlinearity f(u) = u? — u3.

2 Ground Waves

Denote by F(u) = [J' f(t)dt the primitive function of f. We make the
following assumptions:

1° f e C(R), f(0) =0;
20 |f(w) < C(1+ Julp™), 2 <p <6, and f(u) =o(|u|) as u — 0;
30 there exists p € C3°(R?) such that

1
e . F(Ap,) — 400

as A — +00o;

40 there exists p > 2 such that pF(u) < uf(u) for all u € R.

Remark that if F'(u) > 0 for all u # 0, then 3° follows from 4°.
Let Qr = (—k/2,k/2) xR, 0 < k < co. We set

X
Do) = [ uls.uds. ke (0.00]. 5)
—k/2
We shall write simply D! in the case k = co. Define the Hilbert space X}, as
the completion of {¢, : ¢ € Ci°}, where Cf° is the space of smooth functions
on R? which are k-periodic in  and have finite support in y, with respect to

the norm [Ju||, = (U,U)ilq/zv

-1 -1
(u,v), = / Uy, + Dy - Doy, + cuv
Qk
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Similarly, X = X, is the completion of {p, : ¢ € C5°(R?)} with respect
to the norm |Jul| = ||ulleo = (u, u)/2 = (u,u)X?. The operator D7} is well-
defined on the space Xy, k € (0, oo]. 7

For k-periodic traveling waves, k € (0, 00), equation (4) may be written

in the form [17]
(— gy + D;iuyy +cu— f(u)),=0. (6)

Solitary waves are solutions of the same equation (6), with & = oco. The
action functional associated with (6) reads [17]

ot = gl | P )

Jy, is of the class C' on X;. We consider weak solutions of (6), i.e. critical
points of J in Xj.
Now let us consider the so-called Nehari functional

Ii(u) = (Ji(u), u) = [lully —/Q uf(u), (8)

and the Nehari manifold
Sy ={u € Xy, : I(u) =0,u # 0} .

All traveling wave solutions lie in the corresponding Nehari manifold and
we will find ground waves, i.e. solutions with minimal action among all
nontrivial solutions, solving the following minimization problem

my, = inf{Jy(u) : u € Sk} . (9)

Remark that )
Jk(u):/ iuf(u)—F(u), u € S . (10)
Qk

In what follows we will omit the subscript k if & = oo and write simply
JI,...

Throughout this section, in addition to Assumptions 1°-4° we impose
the following one



(N) For any u € L*(R?) such that

/R2uf(U)>0,

t /w wf (tu)

is strictly increasing on (0, +00).

the function of t

In the proof of Theorem 1, [17], we have introduced the Mountain Pass
Values ¢;, for J;, and proved that they are uniformly bounded from below and
above by positive constants. More precisely,

— inf Je(v(EN))
¢ = inf max k(v(2))}

where

T, ={v € C([0,1], X&) : 7(0) = 0, Jp(y(1)) < 0.

Here we have defined T’y in a slightly different way than in [17], but it does
not effect on the value of ¢;,. Consider also another minimax value

! .
¢, = inf sup Ji(tv) ,
vEX;T >0

where
X,j:{veXk:/ F(v) > 0} .
Qk
Due to Assumption 4°, X, # 0.

Lemma 1 For every v € X, there exists a unique ty, = tr(v) such that
tyv € Sy,
t = t
Jy(trv) max Ji(tv) ,

and t(v) depends continuously on v € X;.

Proof. Assumption 4° implies that

/kaf(v)>0
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for any v € X,". Therefore, due to Assumption (N), the function

i) = Tu(to) = (ol = [ o)

Qk

vanishes at only one point ¢; = t;(v) > 0. Equation (10) and Assumption 4°
imply that J, is positive on Si. Since Ji(0) = 0, we see that ¢ is a point of
maximum for Jy(tv). Continuity of t;(v) is easy to verify. O

Lemma 2 ¢; = ¢}, = my.

Proof. Since uf(u) is subquadratic at 0 and the quadratic part of J, is
positive defined, we see that I;(v) > 0 in a neighborhood of the origin, exept
of 0. Hence, I3(y(t)) > 0, v € I'y, for small £ > 0. Due to Assumption 4°,
for v € X,/ we have

274(0) = [[o]}2 — 2 /

Qk

P>l —n [ F)>

Qk

> ol — 2 /Q 0f(v) = Ii(v) |

Hence, Ij,(y(1)) < 0. Therefore, y(t) crosses Sy and this implies that ¢, > my.
By Assumption 4°, for any v € X, we have F(tv) > at*, a > 0, ift > 0 is
large enough. This implies that Ji(tv) < 0 for every v € X, and sufficiently
large t > 0. Hence, the half-axis {tv : t > 0} generates in a natural way an
element of I'y. This implies the inequality ¢} < ¢j.
Now let v € Si. By the definition of I,

a:/kaf(v)>0,

and (N) implies that

g P =1 [ ope)>

Zt_l/ vf(tv) >0 >0
Qk



provided ¢t > 1. Hence, for ¢ > 0 large enough

/Q F(tv) > 0.

By definitions of ¢}, and my, we see that ¢}, = my. O

Theorem 1 Assume 1°-4° and (N) to be fulfiled. Then, for any k € (0, 00),
there exists a minimizer uj, € Sy of (9) which is a critical point of J,. More-
over, Ji(ur) = my is bounded from above and below by positive constants
independent on k.

Proof. In the proof of Theorem 1, [17], it is shown that there exists a
Palais-Smale sequence uy, , € X at the level ¢, i.e.

J,Ic(ukm) — 0 R Jk(u,m) — Ck

as n — oo. Moreover, uy, — uj weakly in X and strongly in LI (R?),
where u;, € Xj is a nontrivial solution of (6). Therefore,

[k(uk,n) = <Jl,c(uk,n)auk,n> —0

and . )
Tewna) = 5Tu) = [ (Gt () = Flu,) =

2 0, 2

Due to 4°, the integrand here is nonnegative and, since uy,,, — uy in L2, .(R?),
we have

1
/Qk(§ukf(uk) — Flug) < cp .

However, wu; is a nontrivial solution, hence, u; € Si. Therefore, we deduce
from (10) that

Telug) = /Q (e (ue) — Fla)) = m

Now Lemma 2 implies that J(ug) = my, and wuy is a ground wave solution.
The last statement of the theorem follows immediately from Lemma 2
and uniform estimates for ¢;. O



Remark 1 The Nehari variational principle suggested in [13] was used suc-
cessfully in many papers (see, e.g., [2, 9, 14, 15, 16, 17, 23]). In all these
papers, exept of [16], the geometry of Nehari manifold is simple enough: it is
a bounded surface without boundary around the origin, like sphere. In the
case we consider here the picture is different: S, may looke like sphere if, e.g.,
f(u) = |ulP~2u, and may be unbounded if, e.g., f(u) = |u|P~1. Nevertheless,
in any case Sy separates the origin and the domain of negative values of Ji,
which is sufficient for our purpose. In [16] such a manifold is also unbounded
in general, but there we have used different arguments.

Now we are going to study the behavior of ug, as k& — oo. Recall the
definition of cut-off operators Py : X, — X, [17]. Let xx € C{°(R) be a
nonnegative function such that xx(xz) =1 for z € [—k/2,k/2], xx(z) = 0 for
|z| > (k+1)/2, and |x%|, |x%] < Cy , with some constant Cy > 0. We set

Pru(z,y) = [xi(z) D} pu(z,y)], -

Theorem 2 Assume that 1°-4° and (N) are satisfied. Let u, € X be a
sequence of ground wave solutions. Then there exist a nontrivial ground wave
u € X and a sequence of vectors ¢, € R?® such that, along a subsequence,
Prug (- + () — w weakly in X. If in addition

|f(u+v)— flu)] <CA+|uff2+ P |, veR, (11)
then, along the same subsequence,
lim ||uk( + Ck) - UHk =0.
k—00

Proof. By Theorem 2, [17], there is a nontrivial solution u € X such that
Prug(- + ¢) — u weakly in X for some ¢, € R? (alonge a subsequence). Let
us prove that u is a ground wave, i.e.

J(u)=inf{J(v):v € S} =m.

First of all, for any v € S and any ¢ > 0, there exist k. and v, € S; such
that
Jk(Uk)SJ(U)—Fé‘, /{Zkg



Indeed, since J and I are continuous, we can find ¢ € C§°(Qy) such that
ny = Dy — v in X and, hence,

J(m) = J(v),  I(qe) — I(v) = o.
Since I(v) = 0 and v # 0, we have

[ vsw =l >
Qk

Hence,

/ e f (M) > 0
Qk

for k large enough. Due to (N), there exists 7 > 0 such that I(7m) = 0 and
T — 1. Let v, be a unique k-periodic function which coincides with 757 on
Qr. Then

Jk(Uk) = J(Tknk) S J(U) +e
provided £ is large enough.

In particular, we have

lim sup my < m.
k—o00

Now, exactly as in the proof of Theorem 5, [17], we see that

lim inf my > J(u) > m.
k—00
Hence, m = J(u) and w is a ground wave solution.
The second part of the theorem follows from Theorem 3, [17], exactly as
at the end of proof of Theorem 5, [17]. O

3 Qualitative Properties of Traveling Waves

Now we are going to study such properties of KP traveling waves as symme-
try, regularity and decay. We start with the following

Lemma 3 Under Assumptions 1° and 2° any traveling wave is continuous.
Moreover, solitary (resp. periodic) wave tends to zero as (x,y) — oo (resp.
Yy — 00).



Proof. For such a wave u € X, we have

—CUgz — Uyy + Vegar = f(u)a:ar = G2, (12)
Let
k/2
(Feal ) = [ o) exp(~ica)da
—k/2
be the Fourier transform if & = oo (then we write simply F,), and the

sequence of Fourier coefficients if & < co. In the last case £ € (27/k)Z. Now
we get from (12)
fk,xfyu = p(§17§2)(fk,a:fyg)7 (13)
where
&

o€ + & + &5
&1 and & are dual variables to x and y, respectively. If & = oo, there is
nothing to do. The proof of Theorem 1.1, [6], does not use any particular
property of power nonlinearity, exept of its growth rate.

Now we explain how to cover the case of periodic waves. Recall the
following Lizorkin theorem, [11]. Let p(§), & € R™, be of the class C" for
1§51 > 0,5 =1,...,n. Assume that

p(&) = p(&1, &2) =

oFp

k1 e N
|§1 é-n ag{cl . agsn

| <M,
with k; = 0or 1, k = ky +---k, = 0,1,...,n. Then p(§) is a Fourier
multiplier on L"(R"), 1 <1 < oo.

We rewrite now (13) as follows

Frptt = fgjl[p(flvfz)fyfk,xg] = P(&)g,

where P(&;) is the operator F,'p(&,-)F, for any fixed &. Tt is easy to
verify that P(&;) € L(L"(R,)), the space of bounded linear operators in
L"(R,). Moreover, due to the Lizorkin theorem, p(§) is a multiplier in
L"(R?). Hence, so is for P(&) in the space L"(R,,L"(R,)) = L"(R?). It
is not difficult to verify that P(&;) depends continuously on & with re-
spect to the norm in L(L"(R,)) at any point { # 0. Therefore, by The-
orem 3.8 of Ch. 7, [22], we see that P(&;) is also a multiplier in the space
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L"((=k/2,k/2),L"(R,))o = L"(Qk)o considered as the space of k-periodic in
x functions. The subscript 0 means that for functions from this space Fj, ,u
vanishes at & = 0. Since p(0, &) = 0, the corresponding multiplier vanishes
on {u € L"(Qr) : Frou =0 if & # 0} and, hence, is a bounded opera-
tor on the entier space L"(Qy). In fact, we need here an extension of that
theorem for operator valued maltipliers which may be discontinuous at the
point 0. However, in this case the proof presented in [22] works without any
change.

Now to conclude we can use the same reiteration argument, as in [6]. O

Remark 2 If f is of the class C*°, then u € H*®(Qy) = NH*(Qy).

We need also the following additional assumption:

(N1) f e CYR) and, for any v € L*(R?) such that [, f(v)v >0, we have

fw< [ f(v)v*
RQ RQ

and [g f(tv)o >0 Vit > 0.

Calculating the derivative of ¢! [, f(tv)v, we see that (N1) implies (N).
Let us introduce the functional

Li(v) :/Q [%f(v)v _F()], ve X

As we have seen, L = J on Sy and Li(v) > 0, Vo € Xj.

Lemma 4 Under Assumption (N1), Ly (tv) is a strictly increasing function
of t > 0, provided ka f(v)v > 0.

Proof. 1t follows immediately from the following elementary identity

%Lk(tv) = %[ o f(tv)t*o — o f(tv)tv]. 0

We need also the following dual characterization of ground traveling waves

Lemma 5 Suppose Assumptions 1°-4° and (N1) to be satisfied. For nonzero
u € Xy, k € (0,00], the following statements are equivalent:

10



(1) u is a ground wave,
(17) Ir(u) =0 and Li(u) = my = inf{L(v) : v € Sy},
(1ii) Ir(u) =0 =sup{lp(v) : v € Xy, Ly(v) = my}.

Proof . Implication (i) = (i) is proved in Section 2.
To prove (ii) = (i) assume that u € X}, satisfies (i7). Since J, = Lj on
Sk, there exists a Lagrange multiplier A such that

A (u) = Jp,(u).

Then
NI (w), ) = (Jj(u), ) = Li(u) = 0.

On the other hand

(L(w),u)y =2|ully — [ fwu® = [ flu)u=
Qk Qk
—on )+ [ fu— [’ =
Qk Qk
= [ flwu— [ f(u)u
Qk Qk

However, ka‘f(v)v > 0 on S, and, due to (N1), (I} (u),u) < 0. Therefore,
A =0 and u is a ground wave.

Now let us prove (ii) = (iii). For uw as in (i7), I(u) = 0. Assume that
there is v € X}, such that Ly(v) = my, and I;(v) < 0. Then [ Qyf(v)v >0
and there exists ¢ty € (0,1) such that Ij(tov) = 0. By Lemma 4, Ly (tyv) <
Ly (v) = my, which is impossible.

Finally, we prove (iii) = (it). Let u € X}, satisfies (i74). Then, Ly(u) >
my.. Assume that Lj(u) > mg. Again we have ka f(u)u > 0. By Lemma 4,
there exists ¢t € (0,1) such that Ly(tou) = my. However, Ij(tou) > 0 and
this contradicts (4i7). O.

Now we are ready to prove the symetry property for all kinds of ground
waves we consider. As in [6], we use the approach suggested in [12] (see also

[23]).
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Theorem 3 In addition to Assumptions 1°-4° and (N1), suppose that f €
C*(R). Than any ground wave u € Xy, k € (0, 00], is symmetric with respect
to some line A = {(x,y) € R* : y = b}.

Proof. Choose b in such a way that
/A+ka[%f(v)v — F(v)] = /A—an[if(v)v — F(v)] = —,

where At and A~ are corresponding upper and lower half-planes. Let u®* be
a symmetric (with respect to A) function such that u* = u on A*. Then
ut € X}, and

By Lemma 5, I;,(u*) < 0. On the other hand,

Using Lemma, 5, we conclude that u™ is a ground wave.

To conclude that u* = u and, hence, complete the proof it is sufficient to
use the same unique continuation result, as in [6], and just here we need the
assumption f € C*(R) and Lemma 3. Remark that a periodic version (with
II = A*) of unique continuation Theorem A.1, [6], can be proved exactly as
that theorem itself. O

In addition, we formulate the following direct generalization of results of
[6] for decay of solitary waves.

Theorem 4 Suppose Assumptions 1° and 2° to be satisfied. Let u € X,
k € (0,infty], be a traveling wave. If k = oo, then

r*u € L (R?), r? = 2% + 42

If 0 < k < oo, then
y*u € L™(Qy).

The proof is essentially the same as in [6]. In the case k < co one needs
only to use the partially periodic Fourier transform, as in Lemma3.
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4 On Nonexistence of Traveling Waves

In this section we turn to general KP equations (3), with ¢ = +1, and discuss
the nonexistence problem. We use the same approach as in [5].However, the
case of periodic waves is more involved (see the proof of Lemma 6). Here we
consider traveling waves belonging to the space

Vi ={u€ Xy :u € H(Qr), o, D juuyy € L*(Q1), f(u)u € L'(Qr)}
if £ < oo, and
Y =Y ={uveX:ueH (R, tp, D uy, € Lj, (R?), f(u)u € L'(R*)}.

First, we collect some useful identities.

Lemma 6 Suppose that f satisfies Assumptions 1° and 2°. Let u € Y,
k € (0,00], be a solution of equations (3). Then

/Q 0 22 e~ uf(u) + Fw)] =0 (14)
/Q S 4 bt el 4 Fw) =0, (15)
/Q leu? + 02 — ev® — f(u)u] = 0. (16)

Proof . First, we remark that, for any &, (16) is an extention to the case
e = %1 of I},(u) = 0 stated in Section 2. Therefore, we concentrate at (14)
and (15) only.

In the case of solitary waves (kK = o0o) the calculations carried out in
the proof of Theorem 1.1, [5], work equally well for general nonlinearities.
Therefore, we look at periodic waves (k < 00).

Fixed x € (0,1), let or € C{°(R) be a nonnegative function such that
or =1on [-T/2,T/2], pr(z) = 0if |z| > (T+T*)/2, and pU)(z) < C;/|z},
jg=1,2,..,if T/2 < |z| < (T + T%)/2 (the construction of such a function
will be given later on).

13



Multiplying the first equation (3) by zpru and integrating over R?, we
get, after a number of integrations by parts,

5 [erit= [erut+ [ orP)+ [oris

1 1
veg [er+ 3 e = [aprut+ [aorpe+

3 1
2/¢'Tuux+/xap’7'ﬂuux+ i/xgo'Tui—l—si/xtp’Tvz = 0.

Dividing the last identity by 7', we are going to pass to the limit as T — oo.
First, we point out that here the integrals containing o are taken over

QrUQruUQr = QrU{(T/2,(T+T")/2) xR}y U{(—(T +T")/2,-T/2) x R},

while that ones containing /. and ¢/ are over ()}, U Q7. Moreover, o7 = 1

on QT-
Now let g € L},.(R?) be a function which is k-periodic in z. Then, it is

easy to verify that
1
lim — / g= / qg.
T—oo T Qr Qk

Next, due to the properties of o7, all the integrals over (. can be esti-
mated from above by fQ, g, with a nonnegative k-periodic in x function
T

g€ Ll (R?). Now
1 T+ 1
T =7 9
Q Q

loc
!
T

This justifies the passage to the limit and gives rise to (14).

Identity (15) can be proved exactly as (2.8), [5], with the only change:
take there cut-off functions x; depending on y only.

Now we construct the function ¢r. Fix ¢ > 0 and let

1 it ©<T/2
g(x) =< 1—log(z/T) if T/2<ax<(T+T")/2+4¢ .
0 if >(T+T%)/2+¢

We choose a nonnegative function h € C§°(R) such that supp h C (0,¢) and
[h =1, and set

Br(z) = / W — g, er(x) = pr(ja]).

14



For this function it is easy to verify all the properties we need. O

Theorem 5 Suppose that f € C(R) satisfies Assumption 4°. Then there is
no nontrivial traveling wave u € Yy, k € (0, 00|, provided ¢ = +1, ore = —1
and i > 6.

Proof. Adding (14), (15) and subtracting (16), we get

/ u? = —28/ V2.
Qk Qk

This rules out the case e = +1. In the case ¢ = —1 (KP-I equations) the last
identity together with (14) and (16), respectively, implies

/Q [§u2 + gvz — flu)u+ F(u)]=0

and

/ [cu® + 3v* — f(u)u] = 0.
Qk

Eliminating v, we get

QC/Qk Wt = /Qk[GF(u) ~ f(u)ul.

If 4 > 6, we have

20/% W < /Qk[uF(u) ~ F(w)u] < 0.

Hence, © = 0 and we conclude. O
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