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Abstract

In this work we consider a sampled data control system, consisting
of a continuous time plant and a controller, which is designed as: A
uniform sampler plus a discrete time controller plus a zero order hold
synchronizer. So, after fixing a sampling period h > 0, and in order to
take into account the intersampling behaviour of the plant, we apply
the lifting technique developed in [1]. Next, we consider certain output
feedback conditions to construct a biparametric input output operator
for the lifted system. Finally, after considering a representation of the
family of non-linear and time-varying controllers, we come to our main
objective of approaching any infinite-dimensional stabilizing controller
by a discrete time but finite dimensional stabilizing one, all that by
exhibiting an algorithm based on the theory of Pade’s approximating
polynomials.
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1 Introduction

The sampled data control systems have experienced great attention from the
scientific community during the last few years. In fact, the main reason for
that consists in the increased use of digital computers as control elements in
industry. But, although it is true that digital controllers attain satisfactory
results, it is also true that they can not avoid the presence of hidden oscilla-
tions to satisfy a certain performance criterion, such as disturbance rejection,
at all. So we propose a way to design robust discrete controllers that do not
only have a knowledge considering the intersampling behavior of the plant,
but also achieve better results than the discrete controllers implemented in
industry.

In Section 2, we introduce the setup for sampled data systems to be con-
sidered, some preliminaries, basic definitions and notation. Moreover, after
fixing a sampling period & > 0, and in order to take into account the inter-
sampling behavior of the plant, we consider a discrete representation for the
continuous system by using the lifting technique [1], which sectionates every
continuous time response of the system and converts it into a sequence of
pieces of signals defined over every [kh, (k4 1)h) with k € Z, and hence, at
every stage k, the lifted signals lie in an infinite-dimensional vector space.
In Section 3, we consider certain output feedback conditions to construct
a biparametric input-output operator for the lifted system. In Section 4
we introduce a representation of the family of non-linear and time-varying
controllers, and next develop an algorithm to approximate sampled data
controllers by Pade’s polynomials. In Section 5, we deal with a numerical ex-
ample, by considering the model of a stable stirred tank and next introducing
some exogenous signals; So, applying the developed technology, we achieve
some satisfactory stability results. In Section 6, we present some conclusions
and remarks.

2 Basic Definitions and System Representa-
tion

Let us consider the sampled data system shown in Figure 1, where > rep-
resents a continuous linear time-invariant system, called the Plant; > rep-
resents a discrete linear constant system, called the Controller. The blocks
marked by S and H represent a uniform Sampler and a Zero Order Hold (zoh),
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Figure 1: Sampled Data System

respectively, both of them operate synchronously every 2 > 0 units of time.
Let us suppose that the plant >", is represented by a state space model with
dynamic equations:

%x(t) = Ax(t) +Byw(t) + Bzu(t)
z(t) = Cya(f) 4Dy w(t) D12 u(t) (1)
y(t) = Cya(t) +D2 w(t) 4D u(t) ,

where the signals w(t),z(f) € L£5[0,00) represent the exogenous input (or
generalized disturbance vector) and the controlled output, respectively. The
vector x(t) € R™ | at time ¢t > 0 , represents the state of the system, and
u(t) € ™, y(t) € R™v represent the input vector (or control law) and the
measured signal at time ¢t > 0, respectively. Here A, By, By, C1,Cq, Dy1, Dyo,
D21 and Dy, are constant real matrices of appropriate dimensions.

Next suppose that the controller > is given by:

{ §(k+1) = Ac&(k)+Ben(k) (2)
(k) = Coé(k)+Den(k) ,

where at time ¢ = kh, the vector (k) represents the state of 3 ¢; n(k), v (k)
represent the input and output signals of 3, respectively, and A¢, Be, Cc, D¢
are constant real matrices of appropriate dimensions.



One of the main problems in designing a discrete controller that not only
stabilizes the plant but also satisfies certain performance criteria, such as
disturbance rejection, is to avoid the presence of hidden oscillations. There-
fore, it is important to consider the intersampling behavior of the closed loop
system during the design of such a controller. So, one technique that allows
us to do that is the so-called Lifting (developed in [1]), which gives us a dis-
crete representation of the continuous plant.

Definition 1 Let h > 0 denote the intersampling size or sampling period.
Let us define the lifting operator W by:

W L3[0,00) = lron = o(t) = ou(0) = o(kh+0) (3)
where t=kh+6

The images of the operator W will be denoted by U

We note that, as a consequence of applying this technique, the discrete model
of the lifted plant Y5 (represented by the dynamic equations 1), becomes:

z((k+1)h) = eAh:L'(kh)—l— }eA(h_g)Blw(kh + 6)df 4+ ¢(h)Bau(kh)
z(kh+9) = Cle”x(kh)—l— fcleA(ﬁ_e)Blw(kh + 6)do
+ [C1 ¢(¥) By + Dig) u(kh)
; (4)

where ¢(0) := [e*¢ d( , 9 € [0, h]

o

Evidently, the above equations can be restated in the following concise way:

z((k+1)h) = Ax(kh)+ By * wrg+ ¢(h) By u(kh) 5
S(kh+9) = G a(kh)+ DBu +wet Dpulkh) , O

where wg (V) := w(kh + ) ; z,(V) := z(kh + V) with ¥ € [0, k] , and

: (C1 z)() := Cret (V)

k) = eMa(kh)
]
]: (Dig u)(¥) := [C1 &(¥) Bz + D12] u(kh)

4
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Figure 2: Sampled Data System after Lifting

but By,D;; are the convolution operators:

By xwi(h) : LL[0,h] — R*: By (w) = }Le“(h_ C)Blw(f)dC

Diy * wi(d) 2 LL[0,h] — LI[0,R] : (D1w)(YD) = fcle”ﬁ_ C)Blw(f)dC )

After applying the lifting technique, the new plant looks different as shown
in Figure 2. But, even though it resembles the standard discrete time state
variable model, there is a big difference: Now the lifted model is an infinite-
dimensional and time-varying one.

Note that for the lifted representation, the Hilbert spaces as well as £, [0, h]
and (5 for continuous and discrete signals, respectively, will be used. The
signals vy and vy in Figure 2 were introduced in order to make the stability
analysis and in order to take into account implementation errors.

Now, the resulting lifted model will be mathematically treated as a non-
linear and time-varying system.



3 Input-Output Representation of the Sys-
tem >5

In this section, we establish some general assumptions that will help us to
preserve certain important conditions of the original plant, and further we
give some basic definitions on stability of the system.

First, and in order to relax the notation, we will denote the input-output
operator of the discrete time system > by C (i.e., C(z) := Ty,(2) : (k) :=
Tyn(2)n(k)). So, it is said that the (discrete time) controller Y stabilizes the
system Y p hybridly if and only if the (continuous) controller HCS stabilizes
> p- Next, the sampling period h is said to be non-pathological with respect
to a square matrix A if and only if, for any integer £ and any eigenvalue p of
A p+ j% is not an eigenvalue of A; Moreover, the sampled data system is
said to be uniformly exponentially stable (UFES) if there exist non-negative
constants a and 3 such that ||z(#)]| < ae™ ! V¥t > #; (it can be shown that
in the case of non-pathological intersampling periods, hybrid stability and
uniform exponential stability are equivalent). The system 3, is said to be
stabilizable (or detectable) if there exists a matrix M (or N) of appropriate
dimensions such that A+ BM (or A+ NC) is stable (i.e.,, all its eigenvalues are
in the open left plane).

Theorem 2 [3] Considering a non-pathological intersampling size h > 0,
also the sampled data system described by the dynamic equations 1, and its
state vector x := (x,Hu,Hof)', where o is the forward-shift operator (i.e.,, y =
ou < y(k) :=u(k+1)). If the pairs (A,Bs) and (Cy, A) are stabilizable and
detectable, respectively, then the digital controller Y o stabilizes > p hybridly
iff its state T converges UES.

From now on, we will always assume that the continuous plant 3"; satisfies the
conditions of the above theorem; It is a well known fact that the lifted plant
>_5 (which is the discrete representation of ) will always be stabilizable
internally. Further, in order to make the equations appearing next tractable,
we can suppose without loss of generality that D;;=D23=0 (by using certain
standard loops transformations we can always return to the original model);
And so we can observe the systems @ — 7 and W — Z involved in Y5 in
detail. Now we put the emphasis on the input-output representation 15 for
the system w — Z and, in the next section, we will treat the measured system
u — 7 in detail. But before giving such a representation, it is convenient to
recall a result that relates discrete and continuous frequential parameters.



Definition 3 Let g be a real function over [0, k], then its finite Laplace trans-
form Lyp(g), is defined by:

Lig)(s) = [ o). )

So, the 7 - transform can be related with the (standard unilateral) Laplace
transform as follows.

Lemma 1 [7] Let g be a given function that satisfies || g |[pn,psnyn< €F
for certain constants o, B > 0, with || . ||(xh,k41)0) a5 the Lo - norm at the
interval [kh, (k+1)h]. Then the Laplace transform of g exists for any complex
s such that Re(s) > [3, and

Lu(Z(9)(5))|zeen = Z(Ln(9)(5))]ozeon 1= " L(g)(s) -

Now as a consequence of the above concept, we can represent the system 3 5
as an input-output operator Tz, which becomes obvious in the followimg
result.

Theorem 4 Given a sampled data system represented by the equations 5
such that the pairs (A,Bz) and (Cy,A) are stabilizable and detectable, respec-
tively, then

Tom  legjon) — Leyon) 2 W — 2

can be represented by:

Te(s) := p(s)Cmt(e_Sh] — K)_IBBM + Det (7)
where
p(S) ::Al—: 7 Bewt 1= ?‘I' ﬁ(S);
Cext := C(8) ; Deyt ;=D + Cy 7(s) .

( ) denotes the composition of the operators LyoZ and n (.) is the convolution
kernel that appears at the integral equations (i.e.,, n(9,0) := *0=9B, ).

The proof is extended and explained in [6], where the signal 7 is assumed to
be available for output feedback (i.e.,, w := Ky ; K € R™*"s(s)), and the
stabilizability and detectability criteria are also assumed, in order to solve
the integral equations as Volterra ones.
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4 Discrete Time Control

In this section we consider a representation of the hybrid stabilizing con-
trollers for >~ and approximate them by using a technique based on Pade’s
Approximating Polynomials.

4.1 Representation of Controllers

Let G represent the class of (causal) distributions ¢ of the form:

g(t) = { goll) +,§19k5(t—tk) >0
0 1< 0

with gx(t) € £5°™ [0,h), k € {0,1,...} and
Do lgn(t) o< 00 0SSt <
k=1

It must be clear that G represents a class of non-linear, time-varying, causal
and infinite-dimensional systems that are bounded from £J*[0,00)— L5 [0, 00).

Definition 5 Let us denote by G the image under the composition of the
operators Ly and 7 (or generalized Z-transform) of all elements of G, i.e.,,

G- {a@,z) (=) Lh<gk<e>>z—k} )

Note that G can be immersed in a subspace of the Hardy space Hz(D), where
D is the unitary complex disc, and thus, as a consequence of the canonical
representation theorem for Hy-operators, it is not hard to see that, for every

g(s,z) € G, there exist inner functionals f7(s) and exterior functionals F},
over L3 [0,00) such that:

g(s,z):= if,jBk(z)Fk(s) 2 (10)

where By(z) is the Blaschke product,vk =0,1,2, ...



Proposition 1 Given a controller "o that stabilizes S p hybridly, let us con-
sider the operator HCS(.) :

HCS(t): L3¥]0,00) — L5[0,00) .
Then HCS € Q )

Proof: Recall that by definition

1
2

2T
|HCs|, = {%/‘H/C\S(e”)fde} :
0

therefore,

N | T | 2
|es], < {2_ I \Lh<Hcgk<ew>>Zk‘zd9} |

On the other hand, since >, stabilizes }_p hybridly, HCS is a bounded oper-
ator with respect to the Hy-norm. So, after choosing a non pathological sam-
pling period h > 0, the sampled data system is UFES, and by using Lemma
1, we have that the sum in the right-hand side of the above inequality is finite.

Next, by observing that HCS(t) := HCSk(t) := HCS(kh 4+ 9), where t :=

kh + ¢ with @ € [0,%), is a non-linear, time-varying operator that lies in

an infinite-dimensional space. Furthermore, we can always find a cannonical
My XMy

representation for every bounded linear operator HCS € H, (D), where
D is the unitary complex disc:

Li(HCS(e)) := fi(s)Bi(2) Fr(s) ,

where f2(s) is an inner functional, Fj(s) is an exterior functional and By(z)
is a Blaschke product. A



4.2 Finite Approximation of a Controller

Let us observe that, for every bounded linear operator HCS € Hy " (D),
where D is the unitary disc, there always exists a canonical representation,
and due to the fact that Hz(D) is a reflexive space, we can extend HCS to
an f° € L3 [0,00) in the way we show next:

Proposition 2 Given the bounded linear operator
HCS : L3 ]0,00) — L7 [0,00) : y(t) — u(t) .

There exists an operator f°(s) over the space L3 [0,00), and an exterior
functional F(s,z) € Hy* ™ (D) such thal a canonical representation for

HCS(s,z) is given by:
HCS(s,z):= F(s,z) f°(s) . (11)

Furthermore, HCS is extended to this fo(s) over L5?][0,00) as:

2T

ACS(y) = %/y(ew)F(s,z) To(e)do . (12)

Proof: As a consequence of the canonical representation theorem, for every
Ly(HCS)(s)) there exists an inner functional f7(s) over £5* [0, &), an exterior
functional Fi(s), and a Blaschke product Bg(z) such that:

Ly(HCS)(s)) := Fi(s)Br(2)fi(s) -
Therefore .
HCS(s,2) := kz_j Fr(8)Br(2) [0 (s)2" .

Next, find F(s, z), the Z-transform of Fj(s)Bg(z), and take f °(s) such that

the following diagram commutes:

Y(s) — Uls)
Ly T T Ly
y(kh+9) —  u(kh+9)
Ji(s)

Finally, the extension is obtained immediately by applying the Ries’z factor-
ization theorem. A
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Theorem 6 Let us consider a continuous controller HCS that stabilizes the
lifted system Y 5 hybridly. Then, there exists a sequence of rational functions,

e
but also stabilizes the lifted system 3 5 hybridly.

{pk( )} pr (2), % (2) polynomials in z, that does not only approvimate HCS

Proof: As a consequence of Beurling’s theorem, every controller HCS € G
can be represented by a sequence {f/},—, of inner and bounded operators:

HCSSZ: ka VFe(s, z) .

From the above relation, it follows that
HCS(s,2) € B2, fiHs .

Now, given f € £ [0,00), let us denote by P [f] the space generated by f
and z. So, remembering Beurling’s theorem, we have as a consequence that
P[f] := fHz. In this sense the approximation by polynomials comes just
right because of the fact that they are dense in Hs, and then we can use a
technique based on Pade’s approximating polynomials in order to construct
the required sequence.

Now, by taking a natural number m sufficiently large and considering the
m-th ratio of Pade’s approximating polynomials [5] at each k, we generate a
sequence of polynomial ratios with degree at most m that approximates the
controller HCS , e,

1

0 1

5 ~ P P

HCS(s,z) = —g(z) +> —g(z) : (13)
Po =1 Pk

Moreover, as this approximation is uniform and under the assumptions UES,
the approximating controller, which lies in a finite dimensional space, stabi-
lizes the system hibridly. A

11



4.3 Pade’s Approximating Polynomials

In this subsection we adapt Pade’s approximation algorithm [2] and apply it
to any stabilizing controller. So, let us observe the following algorithm:

PART I.

e Stepl: Given a stabilizing controller:

T 7 pk s %
HCSy(s,z) := —|— J
k( ) pko( » 2 ]Z;pk]( 72)

(14)

e Step2: Introduce the following reparametrization s = e™*" to obtain:

Z

+Zp’” ) (15)

Z 1pk]Z

H/C\Sk(z) =

e Step3: Expand around z =1 in Taylor’s series, to obtain:

HCS(z Z L (16)

e Step4: Fix an order r > 0 for the approximating controller.

PART II.

In order to build the controller of reduced order r, to approximate H/C\Sk(z),
let us consider the following two subroutines:

a) Reduction of the numerator N,(z).

o Stepl: Establish the initial moments Vi =1,...,r — 1 as:

Nk = qri + szqu‘ . (17)

i=1

e Step 2: Establish the numerator as:

r—1
z) = anZZZ ) (18)
=1

12



b) Reduction of the denominator D,(z).

5

Stepl: Take m; and my to be the integral parts of n/2 and (n —1)/2,
respectively.

Step2: Express the system pi; as D(z) := Dc(2) + D,(), where

D() = T+ &)

mo ) (19)
Do(2) :=phaz [I(1+ &) -
J=1 J
Step3: Sort CJQ and 5]2 such that:
0<G << =<
Step4: Take my, and my, as the integral parts of £ and Tgl, respec-
tively.
Step5: Discard the factors greater than (* and 5]2, let:
D,(z) := D¢ (2) + Der(2) (20)

where
miyr

D.,(z):= ]1:11(1 + <—>

maorT
Dor(2) i=pz 11 (1 + &)
]:

Numerical Example

Let us consider a stirred tank (presented in [4]) with two incoming liquid
flows Fi(t) and Fy(1), with material concentration ¢; and ¢, respectively. Let
us denote by F'(t) and ¢(¢) the flow and the concentration of liquid coming
out of the tank. Let us consider:

K e vy | v o e | i
yi(t) ] (001 0] a(t)
o = [0 ][50

(21)

13



as nominal values of system’s parameters. Let us take, moreover, into account
thatthe concentrations ¢; and ¢, are perturbed by two exogenous signals w(t)
and wy (1), like fluctuation in the volume of the tank of 20 percent of the initial
volume V; and a white noise with intensity 1, respectively. And considering
further that these two signals incide on the process through the matrix:

0 0
( 0.015 0.005 ) (22)

By using a non-pathological intersampling size h = 0.1, and considering the
following constant state feedback matrix of gains:

(23)

0.8049 0.5634
0.5806 0.7927

we obtain that T, ., (s, z) and T, ,, (s, z) can be approximated [6] by another
operators, which lies in a finite dimensional space:

z —\ -1 )
Towi(2) = 1Cf (ZI—A) Bf+Dy,:=0,1 (24)
Z —_
where
—1
0.01 325 2—0.99 -1 28.3 —67.2 1105 2525
Togwo (2):=335 +
1 2.2x10% -1 2-0.99 —47 —42.2 7.6x10* 1.7x10°
and

—1
. (2)m 2 0.01 325 2—0.99 -1 25.5 —73.9 N 173 353
zwy (2)i =22
ot 1 2.2x10% -1 2-0.99 —49 —48.9 1.1x10* 2.4x10%

But, since the plant is stabilizable and detectable, we can build a dynamic
controller (linear state feedback + state observer) to replace the poles suit-
ably and also reject a given perturbation signal. The general expression for
this controller reads:

HCS := K'(sI — Ay — B, K’ — LCy) 7L . (25)

14
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Figure 3: Natural Responses of the Plant

Hence, let us consider (in this case) the following continuous time controller:

0.3333540.6333 0.2405540.3405
L 5243.1352542.3755  5243.1352542.3755
HCS(s) := (26)
—0.55225—0.9539 0.777540.957
5243.1352542.3755 5243.1352542.3755

This controller has an unknown discrete representation, HCS (s, z), which lies
in an infinite-dimensional space but it can be approximated by a sequence of
discrete controllers which lie in a finite dimensional space. So, by using the
procedure depicted above, and if we consider the full order model (r = 2),
and the 2-nd Pade’s approximating polynomial for the sampled data unknown
controller, then we obtain:

0.633322—1.2666240.6333  0.340522—0.6812+0.3405
5.510722—4.7512—0.7597  5.510722—4.7512—0.7597
C.172(Z) = . (27)
—0.95392241.90782—0.9539  0.95722—-1.914240.957
5.510722—4.7512—0.7597  5.510722—4.7512—0.7597

Next, in order to make some comparisons between this and previous methods,
let us observe the natural responses of the plant (shown in Figure 3) if: a)
the continuous controller (see eq. 26) is applied; b) this proposed controller
(see eq. 27) is applied; and c) the continuous controller after discretizing it
(by Tustin transformation) is applied.

15



6 Conclusions

In this work, we have shown that, given a suitable discrete representation for
a continuous time system ) p, the family of all sampled data stabilizing con-

trollers is contained in the vector space: G = {g(s,z) = ioj Lh(gk(e))z_k},
k=0

where L) denotes the finite Laplace transform, and s,z are the continuous
and discrete frequential parameters, respectively; These two parameters al-
lowed us to model the closed loop system in the intersampling period. More-
over, since the stabilizing controllers lie in an infinite-dimensional space, we
have shown a procedure (based on the theory of Pade’s approximation) to
build discrete and finite-dimensional controllers that approximate them to a
given degree of accuracy, but which also stabilize the continuous time plant

>_p hybridly.
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