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Abstract

Let V� be a smooth and compact real variety given by a reduced
regular sequence of polynomials f�� � � � � fp � This paper is devoted
to the algorithmic problem of �nding e�ciently for each connected
component of V� a representative point� For this purpose we exhibit
explicit polynomial equations which describe for generic variables the
polar varieties of V� of all dimensions� This leads to a procedure
which solves our algorithmic problem in time that is polynomial in the
�extrinsic� description length of the input equations f�� � � � � fp and in a
suitably introduced geometric �extrinsic� parameter� called the degree

of the real interpretation of the given equation system f�� � � � � fp �
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� INTRODUCTION �

� Introduction

The core of this paper consists in the exhibition of a system of canonical
equations which describe for generic coordinates �locally� the polar vari�
eties of a given semialgebraic complete intersection manifold V� contained
in the real n�dimensional a�ne space IRn � This �purely mathematical�
description of the polar varieties allows the design of a new type of e�cient
algorithm �with intrinsic complexity bounds�� which computes� in case that
V� is smooth and compact� at least one representative point for each con�
nected component of V� �the algorithm returns each such point in a suitable
symbolic codi	cation�� This new algorithm �and� in particular� its complex�
ity� is the main practical outcome of the present paper� Let us now describe
brie
y our results�

Suppose that the semialgebraic variety V� is compact and given by polyno�
mial equations of the following form�

f��X�� � � � �Xn� � � � � � fp�X�� � � � �Xn� � 
�

where p� n � IN � p � n and f�� � � � � fp belong to the polynomial ring
Q �X�� � � � �Xn� in the indeterminates X�� � � � �Xn over the rational num�
bers Q � Let d be a given natural number and assume that for � � k � p

the total degree deg fk of the polynomial fk is bounded by d � More�
over� we suppose that the polynomials f�� � � � � fp form a regular sequence in
Q �X�� � � � �Xn� and that they are given by a division�free arithmetic circuit
of size L that evaluates them in any given point of the real �or complex�
n�dimensional a�ne space IRn �or C n �� Further� we assume that the Ja�
cobian J�f�� � � � � fp� of the equation system f� � � � � � fp � 
 has maximal
rank in any point of V� �thus� implicitly we assume that V� is smooth��
Let W� �� V �f�� � � � � fp� denote the �complex� algebraic variety de	ned by
the polynomials f�� � � � � fp in the a�ne space Cn � We denote the singular
locus of W� by SingW� �

Moreover� let us suppose that the variables X�� � � � � Xn are in generic po�
sition with respect to the equation system f�� � � � � fp � For � � i � n � p

let Wi be the i�th formal �complex� polar variety associated with W� �and
the variables Xp�i� � � � � Xn ��

Further� let us denote the real counterpart of Wi by Vi �� Wi � IRn � We
call Vi the i�th formal real polar variety associated with the real semialge�
braic variety V� �and the variables Xp�i� � � � � Xn � � It turns out that the
�locally� closed sets Wi n SingW� and Vi are either empty or complex or
real manifolds of dimension n� �p� i� � Moreover� for � � i � n� p � one
sees easily that fWi �� Wi n SingW�

is the i�th polar variety �in the usual sense� associated with W� and the
variables Xp�i� � � � �Xn �here� Wi n SingW� denotes the Q �Zariski closure
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in Cn of the algebraic set Wi n SingW� �� For a precise de	nition of the
notion of formal polar varieties and of polar varieties in the usual sense we
refer to Section ��

Suppose that the real variety V� is non�empty and satis	es our assumptions�
In Theorem �� of this paper we show that every real polar variety Vi �
Wi � IRn� � � i � n � p� is a non�empty� smooth manifold of dimension
n� p� i containing at least one point of each connected component of the
real variety V� � In particular� the real variety Vn�p is a 	nite set� containing
at least one representative point of each connected component of V� �

Under the same assumptions we show in Theorem �� that� for � � i � n�p �
the algebraic set Wi n SingW� can be described locally by complete in�
tersection ideals that satisfy the Jacobian criterion� More precisely� the
algebraic set Wi n SingW� is a smooth manifold of codimension p � i

that can be described locally by certain regular sequences consisting of
the polynomials f�� � � � � fp and i many well�determined p�minors of the
Jacobian J�f�� � � � � fp� of the f�� � � � � fp � In particular� the algebraic set

Wn�pnSingW� is zero�dimensional� whence fWn�p � Wn�pnSingW� � ThusfWn�p is a zero�dimensional complex variety that contains a representative
point of each connected component of the real variety V� �

The practical outcome of Theorem �� and Theorem �� consists in the
design of an e�cient algorithm �with intrinsic complexity bounds�� which
adapts the elimination procedure for complex algebraic varieties developed
in ��� and ��� to the real case� Under the additional assumption that� for
� � k � p � the intermediate ideal �f�� � � � � fk� generated by f�� � � � � fk
in Q �X�� � � � �Xn� is radical� we shall apply this procedure to the p

� n
p��

�
well�determined equation systems of Theorem ��� which describe locally
the zero�dimensional algebraic variety fWn�p � Wn�p nSingW� � In order to
	nd at least one representative point for every connected component of the
real variety V� � we have just to run the procedure of ��� and ��� on all these
equation systems� Counting arithmetic operations in Q at unit costs� this
can be done in sequential time�

n

p� �

�
L�nd��O����

where � is the following geometric �and therefore� intrinsic� invariant�

� �� maxfmaxfdeg V �f�� � � � � fk� n SingW�j� � k � pg�

maxfdeg fWij� � i � n� pgg

�here� deg V �f�� � � � � fk� nW� and deg fWi denote the geometric degree in
the sense of ��� of the corresponding algebraic varieties��
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This is the content of Theorem �� below� The quantity � bounds for any
� � k � p and any � � i � n � p the degree of the algebraic variety
V �f�� � � � � fk� n SingW� and of the i�th polar variety fWi � Wi n SingW� �

In ��� and ��� the quantity maxfdeg V �f�� � � � � fi�j� � i � pg is called the
geometric degree �of the complex interpretation� of the equation system
f�� � � � � fp � In analogy to this terminology� we shall call � the geometric

degree of the real interpretation of the equation system f�� � � � � fp � In view
of the complexity result above we shall understand the parameter � as an in�
trinsic measure for the size of the real interpretation of the given polynomial
equation system� In order to make our complexity result more transparent
we are going now to exhibit� in terms of extrinsic parameters� some estima�
tions for the intrinsic system degree � �

Let us write d� �� deg f�� � � � � dp �� deg fp and let us denote by D ��
d� � � � dp the classical B�ezout number of the polynomial system f�� � � � � fp �
Then we have the following degree estimations for the complex algebraic
variety W� � V �f�� � � � � fp�

deg V� � degW� � D � dp

�V� denotes again the Q �Zariski�closure in Cn of the real variety V� ��

On the other hand� we conclude from Theorem �� that� for every i� � � i �
n� p� the polar variety fWi is de	ned by the initial system f�� � � � � fp and
certain p�minors of the Jacobian J�f�� � � � � fp� � Let us denote by ci the
maximum degree of these p�minors� It turns out that for any � � i � n�p

the polar variety fWi is a codimension one subvariety of fWi�� � Now one
sees easily that the quantity Di �� D � c� � � � ci represents a reasonable
�B�ezout number� of the variety fWi and that this B�ezout number satis	es
the estimate deg fWi � Di � Putting all this together� we deduce the following
estimate for the intrinsic system degree � �

� � Dn�p � Dc� � � � cn�p�

Observing that for any i� � � i � n�p� the inequality ci � d�� � � ��dp�p

holds� we 	nd the estimations�

� � D�d� � � � �� dp � p�n�p � dp�pd� p�n�p � pn�pdp�d� ��n�p � pn�pdn�

In conclusion� our new real algorithm has a time complexity that is� in
worst case� polynomial in the �B�ezout number� Dc� � � � cn�p of the zero�

dimensional polar variety fWn�p �

Our complexity bound
� n
p��

�
L�nd��O��� depends in a polynomial manner on

the intrinsic �geometric� semantic� parameter � and on the extrinsic �alge�
braic� parameters d and n � and it depends only linearly on the syntactic
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parameter L � In this sense one may consider our complexity bound as in�
trinsic� Our real algorithm promises therefore to be practically applicable
to special equation systems with low value for the intrinsic parameter � �

On the other hand� also in worst case our algorithm improves upon the
known dO�n� �time procedures for the algorithmic problem under consid�
eration� even in their most e�cient versions ���� ��� �see also ���� ���� ����
���� ���� ���� ���� ���� ���� ����� However this distinction does not become
apparent when we measure complexities simply in terms of d and n �all
mentioned algorithms have worst�case complexities of type dO�n� �� but it
becomes clearly visible when we use the �B�ezout number� just introduced
as complexity parameter� Only our new algorithm is polynomial in this
quantity�

Our �algorithmic and mathematical� methods and results represent a non�
obvious generalization of the main outcome of ���� where an intrinsic type
algorithm was designed for the problem of 	nding at least one representative
point in each connected component of a real� compact hypersurface given by
an n�variate� smooth polynomial equation f of degree d � � with rational
coe�cients �such that f represents a regular equation of that hypersurface��
This is the particular case of codimension p � � of the present paper� and
our setting leads to the complexity bound L�nd��O��� proved in ����

� Polar Varieties

��� Notations� Notions and General Assumptions

Let X�� � � � �Xn be indeterminates �variables� over the rational numbers Q
and let be given polynomials f�� � � � � fp � Q �X�� � � � �Xn� with � � p � n �
Let Cn and IRn denote the n�dimensional a�ne space over the complex
and the real numbers� respectively� We think Cn to be equipped with the
Q �Zariski topology� whereas on IRn we consider the strong �euclidian�
topology� For any subset U � Cn we deote by U its Q �Zariski�closure�
By X �� �X�� � � � �Xn� we denote the vector of variables X�� � � � �Xn and
by x �� �x�� � � � � xn� any point of the a�ne space Cn or IRn � We sup�
pose that the polynomials f�� � � � � fp form a reduced regular sequence in
Q �X�� � � � �Xn� � The Jacobian of these polynomials is denoted by

J�f�� � � � � fp� ��

�
�fk

�Xj

�
��k�p
��j�n

�

For any point x � Cn we write

J�f�� � � � � fp��x� ��

�
�fk

�Xj
�x�

�
��k�p
��j�n
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for the Jacobian of the polynomials f�� � � � � fp at x �

The common complex zeroes of the polynomials f�� � � � � fp form an a�ne�
Q �de	nable subvariety of Cn which we denote by

W� �� V �f�� � � � � fp� �� fx � Cnjf��x� � � � � � fp�x� � 
g�

A point x �W� � V �f�� � � � � fp� is said to be smooth �in W� � if the rank of
the Jacobian of f�� � � � � fp in x satis	es the condition rk J�f�� � � � � fp��x� �
p � Otherwise x is called a singular point of W� � By SingW� we denote
the set of all singular points of W� �

Remark �

If x � W� is smooth� then the hypersurfaces de�ned by the polynomials
f�� � � � � fp intersect transversally at the pointx �

De�nition �

For every i� � � i � n � p� let �i denote the set of all common complex
zeros of all p �minors of the Jacobian J�f�� � � � � fp� corresponding to the
columns f�� � � � � p� i� �g � In other words� �i is the determinantal variety
de�ned by all p�minors of the submatrix J

p�i��
� �f�� � � � � fp� determined by

the columns f�� � � � � p� i� �g of the Jacobian J�f�� � � � � fp� �

We introduce the a�ne variety

Wi �� W� ��i

associated with the linear subspace of Cn � namely

Xp�i�� �� fx � CnjXp�i�x� � � � � � Xn�x� � 
g

and call Wi the i�th formal polar variety of W� �

By fWi �� Wi n SingW�

we denote the i�th polar variety �in the usual sense	 of the variety W� �see
e�g� 
��	�

Remark �

� The index i re�ects the expected codimension of the formal polar
variety Wi in W� � With respect to the ambient space Cn � one has
always codim Wi � p� i�

� According to our notation� the common zeros of all p�minors of the
Jacobian J�f�� � � � � fp� form the determinantal variety �n�p�� � Ob�
viously� we have Sing W� � W� ��n�p�� � Wn�p�� �

� The formal polar varieties Wi� � � i � n � p� form a decreasing
sequence� In particular� we have
W� �W� � � � � �Wi � � � � �Wn�p �Wn�p�� � Sing W� �
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��� Local Description of the Determinantal Varieties

In this subsection we develop a succinct local description of the determinan�
tal varieties �i� � � i � n � p � The following general Exchange Lemma
will be our main tool for this description �this lemma is used in a similar
form in ����� It describes an exchange relation between certain minors of a
given matrix �

Let A be a given �p 	 n� �matrix with entries aij from an arbitrary com�
mutative ring� Let l and k be any natural numbers with l � n and
k � minfp� lg � Furthermore� let Ik �� �i�� � � � � ik� be an ordered sequence of
k di�erent elements from the 	nite set of natural numbers f�� � � � � lg and let
MA �Ik� �� MA�i�� � � � � ik� denote the k �minor of the matrix A built up by
the 	rst k rows and the columns i�� � � � � ik � If it is clear by the context which
is the matrix A � we shall just write M�i�� � � � � ik� �� M �Ik� �� MA �Ik� �

Lemma � �Exchange Lemma�

Let be given as before a matrix A and natural numbers l and k � and let be
given two intersecting index sets Ik � �i�� � � � � ik� and Ik�� � �j�� � � � � jk��� �
Then� for suitable numbers �j � f����g with j � Ik n Ik�� we have the
following identity


�
� M �Ik���M �Ik� �
X

j�IknIk��

�j M �Ik n fjg�M �Ik�� � fjg� �

Proof

Consider the following ���k���	 ��k���� �matrix L with entries from the
given matrix A �

L ��

����������������

L��Ik�

O
���

Lk���Ik�

L��Ik��� L��Ik�
���

���

Lk�Ik��� Lk�Ik�

	













�
�

Here� for any � � j � k� Lj �Ik� denotes the row vector of length k that
we obtain selecting from the j �th row of the matrix A the k elements
placed in the columns Ik � �i�� � � � � ik� � Similarly� Lj �Ik��� is obtained
from the j �th row of A selecting the k� � elements placed in the columns
Ik�� � �j�� � � � � jk��� �
It is now not di�cult to verify the identity �
� by calculating the determi�
nant detL of the quadratic matrix L via Laplace expansion in two di�erent
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ways� First� by expansion of detL according to the 	rst k � � columns of
L � we obtain the left�hand side of �
� disregarding the sign� Expansion of
detL according to the 	rst k� � rows of L leads to the right�hand side of
�
� � This implies the identity �
� for an appropriate choice of the signs �j �
with j � Ik n Ik�� � �

Let m � Q�X�� � � � �Xn� denote the �p��� �minor of the Jacobian J�f�� � � � � fp�
given by the 	rst �p� �� rows and columns� i�e�� let

m �� det

�
�fk

�Xj

�
��k�p��
��j�p��

�

We consider the determinantal variety �i outside of the hypersurface

V �m� �� fx � Cn j m�x� � 
g

and denote this localization by ��i�m � i�e�� we set

��i�m �� �i n V �m��

From now on � for � � i� � � � � � ip � n � let us denote by

M�i�� � � � � ip�

the polynomial in Q �X�� � � � �Xn� de	ned as the p�minor of the Jacobian
J�f�� � � � � fp� built up by its p rows and the columns i�� � � � � ip � As before�
we denote by

M�i�� � � � � ip��x�

the specialization of M�i�� � � � � ip� in a given point x � Cn �

Proposition �

Let � � i � n � p be arbitrarily �xed� and let m be the �p � ��� minor
de�ned above� Then the determinantal variety �i is locally �i�e�� outside of
the hypersurface V �m� 	 described by the i polynomials

M��� � � � � p� �� p�� M��� � � � � p� �� p� ��� � � � �M��� � � � � p� �� p� i� ���

In other words� we have

��i�m �� fx � Cnj m�x� �� 
�M��� � � � � p��� s��x� � 
� s � fp� � � � � p�i��gg�

where M��� � � � � p � �� s� denotes� as above� the p�minor of the Jacobian
J�f�� � � � � fp� built up by the �rst p� � columns and the s�th column�
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Proof
It su�ces to show that

��i�m � fx � Cnj m�x� �� 
�M��� � � � � p� �� s� � 
� s � fp� � � � � p� i� �gg

holds�
Let x� � Cn be any point satisfying the conditions m�x�� �� 
 and M��� � � � � p�
�� s��x�� � 
 for every s � fp� � � � � p� i� �g � We have to verify that

M�i�� � � � � ip��x
�� � 


holds for all ordered p�tuples �i�� � � � � ip� of elements of f�� � � � � p� i� �g �
Applying the Exchange Lemma to m � M��� � � � � p� �� and M�i�� � � � � ip� �
we deduce the identity

m�x��M�i�� � � � � ip��x
�� �

�
X

j�fi������ipgnf������p��g

�j M �fi�� � � � � ipg n fjg� �x
��M��� � � � � p� �� j��x��

for suitable numbers �j � f����g with j � fi�� � � � � ipg n f�� � � � � p� �g � By
assumption we have m�x�� �� 
 and M��� � � � � p � �� j��x�� � 
 for all j �
fp� � � � � p� i� �g � This implies that x� belongs to the set ��i�m �

�

Notation 	

In the sequel we shall just write Mj for the p� minor M��� � � � � p��� j� given
by the �rst p� � columns of J�f�� � � � � fp� and the column j � fp� � � � � ng �

Remark 


� Proposition �� implies that the codimension of �i outside of the hy�
persurface V �m� is at most i �

� Proposition �� holds also for the determinantal variety �n�p�� that
de�nes the singular locus Sing W� � Wn�p�� of the variety W� �
Hence� for any point x� � Cn satisfying the condition m�x�� �� 
 and
the n� p� � equations

Mj�x
�� � 
� j � fp� � � � � ng�

the Jacobian J�f�� � � � � fp��x
�� becomes singular�

� Replacing the previously chosen �p��� �minor m by any other �p��� �
minor of the Jacobian J�f�� � � � � fp� � the statement of Proposition ��

remains true mutatis mutandis�
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��� Local Description of the Formal Polar Varieties

The aim of this subsection is to show the following fact�

Let the variables X�� � � � �Xn be in generic position with respect to the
polynomials f�� � � � � fp � and let �m be any �p � �� �minor of the Jacobian
J�f�� � � � � fp� � In this subsection we are going to show that any formal polar
variety Wi� � � i � n�p� is a smooth complete intersection variety outside
of the closed set SingW� � V � �m� � Moreover� we shall exhibit a reduced
regular sequence describing this variety outside of SingW� � V � �m� �

As in the previous subsection� let m � Q �X�� � � � �Xn� denote the �p� �� �
minor of the Jacobian J�f�� � � � � fp� built up by the 	rst �p � �� rows and
columns�

Let Y�� � � � � Yn be new variables and let Y �� �Y�� � � � � Yn� � For any linear
coordinate transformation X � AY � with A being a regular �n	 n� �
matrix� we de	ne the polynomials

G��Y � �� f��AY �� � � � � Gp�Y � �� fp�AY ��

The Jacobian of G�� � � � � Gp has the form

J�G�� � � � � Gp� ��

�
�Gk

�Yj

�
��k�p
��j�n

� J�f�� � � � � fp�A�

Using a similar notation as before� we denote by

fM�i�� � � � � ip�

the p�minor of the new Jacobian J�G�� � � � � Gp� that corresponds to the
columns � � i� � � � � � ip � n �

Moreover� we denote by fMj the p� minor fM��� � � � � p � �� j� determined
by the 	xed 	rst p � � columns of J�G�� � � � � Gp� and the column j �
fp� � � � � ng �

For p � r� t � n let Zr�t be a new indeterminate� Using the following
regular �n� p� ��	 �n� p� ���parameter matrix

Z ��

��������������������

� 
 
 � � � 


Zp���p �

���
���

� � � O ���

Zp�i���p Zp�i���p�� � � � �

Zp�i�p Zp�i�p�� � � � Zp�i�p�i�� �
���

���
���

���
� � � 


Zn�p Zn�p�� � � � Zn�p�i�� Zn�p�i Zn�p�i�� � � � �

	

















�

�
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we construct an �n	n� �coordinate transformation matrix A �� A�Z� that
will enable us to prove the statement at the beginning of this subsection�

For the moment� let us 	x an index � � i � n� p � We consider the formal
polar variety Wi outside of the hypersurface V �m� � Corresponding to our
choice of i � the matrix Z may be subdivided into submatrices as follows�

Z �

��� Z
�i�
� Oi�n�p�i��

Z�i� Z
�i�
�

	
� �
Here the matrix Z�i� is de	ned as

Z�i� ��

�������
Zp�i�p � � � Zp�i�p�i��

� � � � � � � � �

Znp � � � Zn�p�i��

	




� �

and Z
�i�
� and Z

�i�
� denote the quadratic lower triangular matrices bordering

Z�i� in Z � and Oi�n�p�i�� is the i	 �n� p� i� �� zero matrix� Let

A �� A�Z� ��

�������
Ip�� Op���i Op���n�p�i��

Oi�p�� Z
�i�
� Oi�n�p�i��

On�p�i���p�� Z�i� Z
�i�
�

	




� �

Here the submatrices Ir and Or�s are unit or zero matrices� respectively�

of corresponding size� and Z�i�� Z
�i�
� � and Z

�i�
� are the submatrices of the

parameter matrix Z introduced before� Thus� A is a regular� parameter
dependent �n	 n� �coordinate transformation matrix�

Like the matrix Z � the matrix A contains

s ��
�n� p��n� p� ��

�

parameters Zr�t which we may specialize into any point z of the a�ne space

Cs � For such a point z � Cs we denote by A�z� � Z
�i�
� �z�� Z

�i�
� �z� and Z�i��z�

for the corresponding specialized matrices�

We consider now the coordinate transformation given by X � AY with
A � A�Z� and calculate the Jacobian J�G�� � � � � Gp� with respect to the
new polynomials G�� � � � � Gp � Recall that the coordinate transformation
matrix A depends on our previous choice of the index � � i � n� p �

According to the structure of the coordinate transformation matrix A �
A�Z� we subdivide the Jacobian J�f�� � � � � fp� into three submatrices
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J�f�� � � � � fp� �

�
U V W



�

with

U ��

�
�fk

�Xj

�
��k�p

��j�p��

� V ��

�
�fk

�Xj

�
��k�p

p�j�p�i��

� W ��

�
�fk

�Xj

�
��k�p

p�i�j�n

�

From the identity J�G�� � � � � Gp� � J�f�� � � � � fp� A we deduce that our new
Jacobian is of the form�

J�G�� � � � � Gp� �

�
�Gk

�Yj

�
��k�p
��j�n

�

�
U V Z

�i�
� �WZ�i� WZ

�i�
�



�

We are interested in a local description of the i�th formal polar variety
Wi � W� � �i outside of the hypersurface V �m� � where m is the 	xed
upper left �p � �� � minor of the Jacobian J�f�� � � � � fp� �and also of its
submatrix U �� Since the coordinate transformation X � AY leaves the
submatrix U unchanged� the p���minor m remains 	xed under this trans�
formation� From Proposition ��� we know that the localized determinantal
variety ��i�m is described by the i equations

Mp � 
� � � � �Mp�i�� � 
�

and by the condition m �� 
 � The p� minors Mp� � � � �Mp�i�� de	n�
ing these equations are built up by the submatrix � U V � of the Jaco�
bian J�f�� � � � � fp� � Under the coordinate transformation A�Z� the matrix
� U V � is changed into the submatrixh

U V Z
�i�
� �WZ�i�

i
of the Jacobian J�G�� � � � � Gp� and the p�minors Mp� � � � �Mp�i�� are changed
into the p� minors fMp� � � � � fMp�i��

of the matrix
h
U V Z

�i�
� �WZ�i�

i
� This implies the matrix identity

�

�
hfMp� � � � � fMp�i��

i
� �Mp� � � � �Mp�i��� Z

�i�
� � �Mp�i� � � � �Mn� Z

�i��

For the previously chosen index � � i � n�p � the coordinate transformation
X � A�Z�Y induces the following morphism of a�ne spaces�

�i � Cn 	 Cs 
 Cp 	 Ci�
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de	ned by

�x� z� ��
 �i�x� z� ��
�
f��x�� � � � � fp�x�� fMp�x� z�� � � � � fMp�i���x� z�

�
�

Consider an arbitrary point z � Cs � We denote by �z
i the determinantal

subvariety of Cn de	ned by all p�minors of the matrix
h
U V Z

�i�
� �z� �WZ�i��z�

i
�which is a submatrix of the new Jacobian obtained by specializing the co�
e�cients of the polynomials G�� � � � � Gp into the point z � Cs �� Writing
W z

i �� W� � �z
i � one sees immediately that the zero 	ber ���

i �
� of the
morphism �i contains the set

�W z
i �m �� W� � ��z

i �m�

In other words� for any arbitrarily chosen point z � Cs � the zero 	ber ���
i �
�

of the morphism �i contains the transformed formal polar variety W z
i �

localized in the hypersurface V �m� and expressed in the old coordinates�

We are going now to analyze the rank of the Jacobian of the morphism �i in
an arbitrary point �x� z� � Cn	Cs with x � �W z

i �m � Using the subdivision

of the parameter matrix Z into the parts Z�i�� Z
�i�
� and Z

�i�
� � the Jacobian

J��i� of the morphism �i can be written symbolically as

J��i� �

�
��i

�X

��i

�Z�i�

��i

�Z
�i�
�

��i

�Z
�i�
�

�
�

We have �
��i

�X

��i

�Z�i�



�

�

�����������

J�f�� � � � � fp� Op�n�p�i�� � � � Op�n�p�i��




�
� eMp

�Zp�i�p
� � � � �

� eMp

�Znp



� � � O��n�p�i��

���
���

� � �
���


 O��n�p�i�� � � �

�
� eMp�i��

�Zp�i�p�i��
� � � � �

� eMp�i��

�Zn�p�i��




	








�
�

where the columns correspond to the partial derivatives of �i with respect
to the variables

X�� � � � � Xn� Zp�i�p� � � � � Zn�p� � � � � Zp�i�p�i��� � � � � Zn�p�i��

�in this order�� The entries Or�t denote here zero matrices of corresponding
size and the row matrices labeled by �
� represent the partial derivatives
with respect to the variables X�� � � � �Xn of the minors fMp� � � � � fMp�i�� �
This row matrices will be irrelevant for our considerations�
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Furthermore� the third submatrix

�
��i

�Z
�i�
�

�
of J��i� can be written as

�������������������

Op�i�� Op�i�� � � � 
�
� eMp

�Zp���p
� � � � �

� eMp

�Zp�i���p



O��i�� � � � 


O��i��

�
� eMp��

�Zp���p��
� � � � �

� eMp

�Zp�i���p��



� � � 


���
���

� � �
���

O��i�� O��i�� � � �

�
� eMp�i��

�Zp�i���p�i��



O��i�� O��i�� � � � 


	
















�

�

and the last submatrix

�
��i

�Z
�i�
�

�
of J��i� is a zero matrix since the p�

minors fMp� � � � � fMp�i�� are indepedent of the parameters Zr�t occuring in

the submatrix Z
�i�
� of the coordinate transformation matrix A�Z� �

Therefore� the Jacobian J��i� is of full rank p� i wherever the submatrix

eJ��i� ��

�
��i

�X

��i

�Z�i�



is of full rank p� i � On the other hand� considering for p � j � p� i � �
the in eJ��i� contained i row matrices�

�fMj

�Zp�i�j
� � � � �

�fMj

�Zn�j

�
�

we see that the representation �

� of the transformed p�minors fMj implies
the identity �

�fMj

�Zp�i�j
� � � � �

�fMj

�Zn�j

�
� � Mp�i� � � � �Mn� �

Thus� we obtain the representation

eJ��i� �

����������

J�f�� � � � � fp� Op�n�p�i�� � � � Op�n�p�i��


 �Mp�i� � � � �Mn� � � � O��n�p�i��

���
���

� � �
���


 O��n�p�i�� � � � �Mp�i� � � � �Mn�

	







�
�

Since all entries of the submatrix eJ��i� of the Jacobian J��i� belong to
the polynomial ring Q �X�� � � � �Xn� � we see that the rank of the matrix
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J��i� in a given point �x� z� � Cn 	 Cs with x � �W z
i �m depends only on

the choice of x � According to our localization outside of the hypersurface
V �m� � let us consider an arbitrary smooth point �x of W� � V �f�� � � � � fp�
satisfying the condition m��x� �� 
 � Suppose that the submatrix eJ��i���x�
is not of full rank� i�e�� that

rk eJ��i���x� � p� i

holds� This latter inequality is valid if and only if all p �minors Mp�i� � � � �Mn

of the Jacobian J�f�� � � � � fp� vanish at �x � Let �z � Cs be any parameter
point such that the pair ��x� �z� belongs to the 	ber ���

i �
� of the mor�
phism �i � Since the p �minors �Mp� � � � � �Mp�i�� of the transformed Jacobian
J�G�� � � � � Gp� must vanish at ��x� �z�� we deduce from �

� that

�
� � � � � 
� � �Mp��x�� � � � �Mp�i����x�� Z
�i�
� ��z�

holds �here Z
�i�
� ��z� denotes again the matrix obtained by specializying the

entries of Z
�i�
� into the corresponding coordinates of the point �z � Cs ��

Because of the lower triangular form of the regular matrix Z
�i�
� � the latter

matrix equation holds if and only if the conditions

Mp�i����x� � � � � � Mp��x� � 
�

are satisfyied� Therefore� our assumptions on �x and �z imply m��x� �� 

and Mp��x� � � � � � Mn��x� � 
� However� by Remark �� this means that
the Jacobian J�f�� � � � � fp���x� is singular� Hence� �x is not a smooth point
of W� � i�e�� �x � Sing W� � which contradicts our assumption on �x �

Now� suppose that we are given a point ��x� z� � Cn 	 Cs that belongs to
the 	ber ���

i �
� � Then �x belongs to W� � Further� suppose that �x is a
smooth point of W� outside of the hypersurface V �m� � Let us consider the
Zariski�open neighbourhood �U of �x consisting of all points x � Cn with
m�x� �� 
 and rk J�f�� � � � � fp� � p � i�e�� we consider

eU �� Cn n �Sing W� � V �m�� �

We are going to show that the restricted morphism

�i � �U 	 Cs 
 Cp 	 Ci

is transversal to the origin 
 � Cp 	 Ci �

In order to see this� consider an arbitrary point �x� z� of �U	Cs that satis	es
the equation �i�x� z� � 
 � Thus� x belongs to �U �W� and is� therefore�
a smooth point of W� � which is outside of the hypersurface V �m� � By the
preceding considerations on the rank of the Jacobian J��i� it is clear that
J��i� has the maximal rank p � i at �x� z� � This means that �x� z� is a
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regular point of �i � Since �x� z� was an arbitrary point of ���
i �
�� � �U	Cs� �

the claimed transversality has been shown�

Now� applying the Weak�Transversality�Theorem of Thom�Sard �see e�g�
���� to the diagram

���
i �
� � � �U 	 Cs� �
 Cn 	 Cs

� �

Cs

one concludes that there is a residual dense set �i of parameters z � Cs for
which transversality holds� This implies that� for every 	xed z � �i � the
transformed and localized formal polar variety

W z
i n �Sing W� � V �m��

is either empty or a smooth variety of codimension p� i � This variety can
be described locally by the polynomials

�
 
 
� f��X�� � � � � fp�X�� fMp�X� z�� � � � � fMp�i���X� z�

that form outside of SingW� � V �m� a regular sequence� Up to now� our
considerations concerned only to the change of coordinates for an arbitrarily
�xed � � i � n� p � However� � ��

Tn�p
i�� �i is a dense residual parameter

set in Cs from which we can choose a simultaneous change of coordinates
for all � � i � n � p � For every choice z � � and � � i � n � p the
transformed formal polar variety W z

i is outside of the closed set SingW� �
V �m� a smooth complete intersection variety described by the �local� regular
sequence �
 
 
� � One sees now easily that the a�ne space IRs contains a
non�empty residual dense set of parameters z such that the conclusion
above apply to the coordinate transformation X � A�z�Y � Moreover z

can chosen from Q s �

Taking into account Proposition �� and Remark ��� we deduce from our
argumentation the following result�

Theorem �

Let W� � V �f�� � � � � fp� be a reduced complete intersection variety given
by polynomials f�� � � � � fp in Q�X�� � � � � Xn� and suppose that the variables
X�� � � � �Xn are in generic position with respect to f�� � � � � fp � Further� let m
be the upper left �p� ���minor of the Jacobian J�f�� � � � � fp� � Then� every
formal polar variety Wi� � � i � n� p� localized with respect to the closed
set SingW� � V �m� � is either empty or a smooth variety of codimension
p� i that can be decribed by the equations

f�� � � � � fp�Mp� � � � �Mp�i���
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where Mj � p � j � p� i� �� is the p� minor of the Jacobian J�f�� � � � � fp�
given by the columns �� � � � � p��� j � The polynomials f�� � � � � fp�Mp� � � � �Mp�i��

form then outside of SingW� � V �m� a regular sequence�

Remark �

Taking into account that the argumentation on the localization with respect
to the �xed �p� �� �minor m remains valid mutatis mutandis for any other
�p��� �minor �m of the Jacobian J�f�� � � � � fp� � Theorem �� can be restated
for any �xed �p � ���minor just by reordering of columns and rows of the
Jacobian J�f�� � � � � fp� �

��� Existence of Real Points in the Polar Varieties

Let f�� � � � � fp � Q�X�� � � � �Xn� be a reduced regular sequence and let again
W� �� V �f�� � � � � fp� be the a�ne variety de	ned by f�� � � � � fp � Consider
the real variety V� �� W� � IRn and suppose that

�i� V� is nonempty and bounded �and hence compact��

�ii� the Jacobian J�f�� � � � � fp��x� is of maximal rank in all points x of V�
�i�e�� V� is a smooth subvariety of IRn given by the reduced regular
sequence f�� � � � � fp ��

�iii� the variables X�� � � � �Xn are in generic position with respect to f�� � � � � fp �

Further� let C be any connected component of the compact set V� � and let
b �� �a�� � � � � ap��� ap� � � � � an��� an� � C be a locally maximal point of the
last coordinate Xn in the non�empty compact set C � V� � Without loss of
generality we may assume that the upper left �p��� �minor m of the Jaco�
bian J�f�� � � � � fp� does not vanish in b �by our assumptions there must be a
�p��� �minor of J�f�� � � � � fp� not vanishing at b �� In any local parametriza�
tion of V� at b the variable Xn cannot be an independent variable� since
Xn attains a local maximum in b �an is this local maximum�� Hence� with�
out loss of generality we may assume that the local parametrization of V�
in b has the following form� there exists an open set U � IRn�p containing
the point a �� �ap� � � � � an��� � and a continuously di�erentiable function

� � U 
 IRp � � �� ���� � � � � �p��� �n�

such that

x� � ���xp� � � � � xn���� � � � � xp�� � �p���xp� � � � � xn����

xn � �n�xp� � � � � xn���

holds for any x � �xp� � � � � xn��� � U � With respect to this local parametriza�
tion� the polynomials fk� � � k � p induce real valued functions of the
form�

�fk�Xp� � � � � Xn��� ��



� POLAR VARIETIES ��

fk����Xp� � � � �Xn���� � � � � �p���Xp� � � � �Xn���� Xp� � � � �Xn��� �n�Xp� � � � �Xn�����

For every � � k � p� and every p � j � n� �� one has the identity

� �fk
�Xj

�
�fk

�Xj

�
�fk

�X�

���

�Xj

� � � � �
�fk

�Xp��

��p��

�Xj

�
�fk

�Xn

��n

�Xj

� 
 ���

in the open set U �
Considering the �p	 p� �matrix

B ��

�������������

�f�

�X�
� � �

�f�

�Xp��

�f�

�Xn

� � � � � � � � � � � � � � � � � � � � � � � �

�fp

�X�
� � �

�fp

�Xp��

�fp

�Xn

	










�
�

and observing that B is regular in U � we obtain from ��� that

�detB�x�

�������������������

���

�Xj

���

��p��

�Xj

��n

�Xj

	
















�

� �Adj B��x�

�������������������

�f�

�Xj
�x�

���

�fp��

�Xj
�x�

�fp

�Xj
�x�

	
















�

���

holds for any x � U �here Adj B denotes the adjoint matrix of the matrix
B �� As b is a locally maximal point of Xn � we have that

��n

�Xj

�a� � 
�

holds for every p � j � n� � � Thus� equation ��� implies

B�n� �� �b�
�f�

�Xj
�b� � � � ��B�n� p� �b�

�fp

�Xj
�b� � 
 ���

for every p � j � n � � �here we denote for � � k � p by B�n� k� the
entry of the adjoint matrix Adj B at the cross point of the k �th column
and the last row�� Taking into account the particular form of the matrix B �
the equation system ��� means that
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det

�������������

�f�

�X�
�b� � � �

�f�

�Xp��
�b�

�f�

�Xj

�b�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�fp

�X�
�b� � � �

�fp

�Xp��
�b�

�fp

�Xj

�b�

	










�
� 
 ���

holds for every p � j � n� � � Using our notations for the p�minors of the
Jacobian J�f�� � � � � fp� � we reinterprete now the equations ��� as

Mp �b� � � � � � Mn�� �b� � 
�

Since by assumption m�b� �� 
 holds� Proposition �� implies that b belongs
to the localized determinantal variety ��n�p�m � Therefore� we have b �
W� � ��n�p�m � i�e�� the last formal polar variety Wn�p contains the point
b � On the other hand b is nonsingular point of W� and belongs therefore tofWn�p � Wn�p n SingW� � Thus fWn�p is a non�empty set of dimension zero
that contains the real point b of the arbitrarily chosen connected component
C of the real variety V� � In particular� we have for any � � i � n� p that
b � fWn�p � IRn �Wi � IRn � Vi holds�

These considerations imply the following result�

Theorem �


Let W� �� V �f�� � � � � fp� be as in Theorem ��� If the real variety V� ��
W��IR

n is non�empty� bounded and smooth� and if the variables X�� � � � �Xn

are in generic position with respect to f�� � � � � fp � then every real formal
polar variety Vi � Wi � IRn� � � i � n � p� is a non�empty� smooth
manifold of dimension n� �p� i� and contains at least one representative
point of each connected component of the real variety V� �

� Real Equation Solving

The geometric results of Section � allow us to design a new e�cient procedure
that 	nds at least one representative point in each connected component of
a given smooth� compact� real complete intersection variety�
This procedure will be formulated in the algorithmic �complexity� model of
�division�free� arithmetic circuits and networks �arithmetic�boolean circuits�
over the rational numbers Q �
Roughly speaking� a division�free arithmetic circuit � over Q is an algo�
rithmic device that supports a step by step evaluation of certain �output�
polynomials belonging to Q �X�� � � � �Xn� � say f�� � � � � fp � Each step of �
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corresponds either to an input from X�� � � � � Xn � to a constant �circuit pa�
rameter� from Q or to an arithmetic operation �addition subtraction or
multiplication�� We represent the circuit � by a labelled directed acyclic

graph �dag�� The size of this dag measures the sequential time requirements
of the evaluation of the output polynomials f�� � � � � fp performed by the
circuit � �
A �division�free� arithmetic network over Q is nothing but an arithmetic
circuit that additionally contains decision gates comparing rational values
or checking their equality� and selector gates depending on these decision
gates�
Arithmetic circuits and networks represent non�uniform algorithms� and the
complexity of executing a single arithmetic operation is always counted at
unit cost� Nevertheless� by means of well known standard procedures our
algorithms will always be transposable to the uniform random bit model and
they will be practically implementable as well� All this can be done in the
spirit of the general asymptotic complexity bounds stated in Theorem ��

below�
Let us also remark that the depth of an arithmetic circuit �or network� mea�
sures the parallel time of its evaluation� whereas its size allows an alternative
interpretation as �number of processors�� In this context we would like to
emphasize the particular importance of counting only nonscalar arithmetic
operations �i�e��only essential multiplications�� taking Q � linear operations
�in particular� additions subtractions� for cost�free� This leads to the no�
tion of nonscalar size and depth of a given arithmetic circuit or network � �
It can be easily seen that the nonscalar size determines essentially the total
size of � �which takes into account all operations� and that the nonscalar
depth dominates the degree and height of the intermediate results of � �
An arithmetic circuit �or network� becomes a sequential algorithm when
we play on it a so�called pebble game� By means of pebble games we are
able to introduce a natural space measure in our algorithmic model and
along with this� a new� more subtle sequential time measure� If we play a
pebble game on a given arithmetic circuit� we obtain a so�called straight line

program �slp�� In the same way we obtain from a given arithmetic network
a computation tree� For more details on our complexity model we refer to
���� ���� ���� ���� ���� ��� and especially to ��� �where also the implementation
aspect is treated��

In the next Theorem �� we are going to consider families of polynomials
f�� � � � � fp belonging to Q �X�� � � � �Xn� � for which we arrange the following
assumptions and notations�

�i� f�� � � � � fp form a regular sequence in Q �X�� � � � � Xn� �

�ii� for every � � k � p the ideal �f�� � � � � fk� generated by f�� � � � � fk in
Q �X�� � � � �Xn� is radical�
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�iii� the variables X�� � � � �Xn are in generic position with respect to the
polynomials f�� � � � � fp �

Let W� �� fx � Cnjf��x� � � � � � fp�x� � 
g and denote by SingW� the
singular locus of W� � For � � i � n� p let Wi be the i�th formal formal
polar variety associated with W� and the variables Xp�i� � � � � Xn � and letfWi �� Wi n SingW� be the i�th polar variety of W� in the usual sense �see
Section � for precise de	nitions�� We call

� �� maxfmaxfdeg V �f�� � � � � fk� n SingW�j� � k � pg�

maxfdeg fWij� � i � n� pgg�

the degree �of the real interpretation� of the polynomial equation system

f�� � � � � fp � Finally� let us make the following assumption�

�iv� the specialized Jacobian J�f�� � � � � fp��x� has maximal rank in any
point x of V� �� W� � IRn � fx � IRnjf��x� � � � � � fp�x� � 
g and
V� is a bounded semialgebraic set �hence� V� is empty or a smooth�
compact real manifold of dimension n� p ! see Section � for details��

Theorem ��

Let n� p� d� �� L and 	 be natural numbers with d � � and p � n � There ex�

ists an arithmetic network N over Q of size
� n
p��

�
L�nd��O��� and nonscalar

depth O�n�log nd � 	� log �� with the following property
 let f�� � � � � fp be
a family of n�variate polynomials of a degree at most d and assume that
f�� � � � � fp are given by a division�free arithmetic circuit � in Q�X�� � � � �Xn�
of size L and nonscalar depth 	 � Suppose that the polynomials f�� � � � � fp
satisfy the conditions �i	� �ii	� �iii	 and �iv	 above� Further� suppose that
the degree of the real interpretation of the polynomial system f�� � � � � fp is
bounded by � �let us now freely use the notations just before introduced	�

The algorithm represented by the arithmetic network N starts from the
circuit � as input and decides �rst whether the complex variety fWn�p is

empty� If this is not the case� then fWn�p is a zero�dimensional complex
variety and the network N produces an arithmetic circuit in Q of asymp�
totically the same size and nonscalar depth as N � which represents the
coe�cients of n�� univariate polynomials q� p�� � � � � pn � Q�Xn� satisfying
the following conditions


deg q � " fWn�p�

maxfdeg pkj� � k � ng � deg q�fWn�p � f�p��u�� � � � � pn�u��ju � C� q�u� � 
g�

Moreover� the algorithm represented by the arithmetic network N decides
whether the set fWn�p�IR

n is empty� If this is not the case� then N produces

at most " fWn�p � � sign sequences belonging to the set f��� 
� �g such
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that these sign sequences encode the real zeroes of the polynomial q ��a la
Thom� �
��	� In this way N describes the �nite� non�empty set fWn�p �
IRn which contains at least one representative point for each connected
component of the real variety V� � fx � IRnjf��x� � � � � � fp�x� � 
g �

Proof

We shall freely use the notations of Section �� Any selection of indices
� � i� � � � � � ip � n and � � j� k � p determines a p� minor M�i�� � � � � ip�
and a �p��� � minor m�i�� � � � � ip! j� k� of the Jacobian J�f�� � � � � fp� in the
following way� M�i�� � � � � ip� is the determinant of the �p	 p� � submatrix
of J�f�� � � � � fp� with columns i�� � � � � ip � and m�i�� � � � � ip! j� k� is the deter�
minant of the matrix obtained from the former one deleting the row number
j and the column number ik � There are p�

�n
p

�
such possible selections� Let

us 	x one of them� say i� �� �� � � � � ip �� p! j �� p� k �� p � Then� using the
notations of Section �� we have m�i�� � � � � ip! j� k� � m� M�i�� � � � � ip� � Mp �
Let us abbreviate g �� mMp � From our assumptions on f�� � � � � fp and
Theorem �� and Theorem �� of Section � we deduce the following facts� for
any � � i � n� p the polynomials f�� � � � � fp�Mp� � � � �Mp�i�� have degree
at most pd � They generate the trivial ideal or form a regular sequence in
the localized Q �algebra Q�X�� � � � �Xn�g � In either case the ideal generated
by f�� � � � � fp�Mp� � � � �Mp�i�� in Q �X�� � � � �Xn�g is radical and de	nes a
complex variety that is empty or of degree

deg�Wi n V �g�� � deg�Wi n SingW�� � deg fWi � ��

Moreover� by assumption� the polynomials f�� � � � � fp form a regular se�
quence in Q �X�� � � � �Xn�g and for each � � k � p the ideal generated by
f�� � � � � fk in Q �X�� � � � �Xn�g is radical and de	nes a complex variety of
degree

deg�V �f�� � � � � fk� n V �g�� � deg�V �f�� � � � � fk� n SingW�� � ��

One sees easily that the polynomials f�� � � � � fp�Mp� � � � �Mn�� and g can
be evaluated by a division�free arithmetic circuit of size O�L � n	� and
nonscalar depth O�log n � 	� � Applying now for each � � i � n � p the
algorithm underlying ���� Proposition �� in its rational version ���� Theorem
�� to the system

f� � 
� � � � � fp � 
� Mp � 
� � � � �Mp�i�� � 
� g �� 


we are able to check whether the particular system

f� � 
� � � � � fp � 
� Mp � 
� � � � �Mn�� � 
� g �� 


has a solution in Cn � If this is the case� then this system de	nes a zero�
dimensional algebraic set� namely Wn�pnV �g� � and the algorithm produces
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an arithmetic circuit 
� in Q which represents the coe�cients of n �
� univariate polynomials q�� p��� � � � � p

�
n � Q �Xn� satisfying the following

conditions�
deg q� � " �Wn�p n V �g���

maxfdeg p�kj� � k � ng � deg q��

Wn�p n V �g� � f�p���u�� � � � � p
�
n�u��ju � C� q��u� � 
g�

The algorithm is represented by an arithmetic network of size L�nd��O���

and nonscalar depth O�n�log nd�	� log �� and the circuit 
� has asymptot�
ically the same size and nonscalar depth� Running this procedure for each
selection � � i� � � � � � ip � n and � � j� k � p we obtain an arithmetic
network N� of size p�

�n
p

�
L�nd��O��� �

� n
p��

�
L�nd��O��� and nonscalar depth

O�n�log nd � 	� log �� which decides whether fWn�p � Wn�p n SingW� is
empty� Suppose that this is not the case� Then N� describes locally the va�
riety fWn�p which is now zero�dimensional� Each local description of fWn�p

contains an arithmetic circuit representation of the coe�cients of the mini�
mal polynomial of the variable Xn with respect to the corresponding local
piece of fWn�p � Moreover� one easily obtains the same type of information
for any linear form Xi � Xn and any variable Xi with � � i � n � One
multiplies now all minimal polynomials of the variable Xn obtained in this
way� Making this product squarefree �see e�g ���� Lemma ��� one obtains
the polynomial q of the statement of Theorem ��� Doing the same thing
for the minimal polynomials of each linear form Xi �Xn and each variable
Xi with � � i � n � yields by means of ���� Lemma �� the polynomials
p�� � � � � pn of the statement of Theorem ��� All this can be done by means
of an arithmetic network N� � which extends N� and has asympotically the
same size and nonscalar depth� The 	nal arithmetic network N is now
obtained from N� in the same way as in the proof ���� Theorem �� �

Remark ��

�i	 Using the re�ned algorithmic techniques of 
�� or 
�� it is not too dif�
�cult to see that for inputs f�� � � � � fp represented by straight�line
programs of length T and space S the arithmetic network N can be
converted into an algebraic computation tree which solves the algorith�
mic problem of Theorem �� in time O��Tdn� � n	��� log� � log� log ��
and space O�Sdn��� �

�ii	 The smooth� compact hypersuface case �with p �� � 	 of Theorem ��

corresponds exactly to 
��� Theorem ��

�iii	 Let J�f�� � � � � fp�
T denote the transposed matrix of the Jacobian

J�f�� � � � � fp� of the polynomials f�� � � � � fp in the statement of Theo�
rem �� and let

D �� detJ�f�� � � � � fp�J�f�� � � � � fp�
T �
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From the well�known Cauchy�Binet formula one deduces easily that
with the notations of Section � the identity

D �
X

��i������ip�n

det� M�i�� � � � � ip�

holds� Replacing now in the statement and the proof of Theorem ��

for � � i � n� p the polar variety fWi by cWi �� Wi n V �D� and the
parameter � by

b� �� maxfmaxfdeg V �f�� � � � � fk� n SingW�j� � k � pg�

maxfdeg cWij� � i � n� pgg

one obtains a somewhat improved complexity result� since b� � � holds�

Let us now suppose that the polynomials f�� � � � � fp � Q�X�� � � � �Xn� satisfy
the conditions �i�� �ii�� �iii�� �iv� above� Unfortunately the complexity pa�
rameter � of Theorem �� is strongly related to the complex degrees of the
polar varieties fW�� � � � �fWn�p of W� � fx � Cnjf��x� � � � � � fp�x� � 
g
and not to their real degrees� Under some additional algorithmic assump�
tions� which we are going to explain below� we may replace the complexity
parameter � by a smaller one that measures only the real degrees of the
polar varieties fW�� � � � �fWn�p � We shall call this new complexity parameter
the real degree of the equation system f�� � � � � fp and denote it by �� �

Let � � i � n� p and let us consider the decomposition of the polar varityfWi in irreducible components with respect to the Q�Zariski topology of Cn �
say fWi � C� � � � � � Cs � We call an irreducible component Ck� � � k � s �
real if Ck � IRn contains a smooth point of Ck � The union of all real
irreducible components of fWi is called the real part of fWi and denoted by
W �

i � We call degW �
i the real degree of the polar variety fWi � Finally� we

de	ne the real degree of the equation system f�� � � � � fp as

�� �� maxfmaxfdeg V �f�� � � � � fk� n SingW�j� � k � pg�

maxfdegW �
i j� � i � n� pgg�

We are going to restate the main outcome of Theorem �� in terms of the
new complexity parameter �� � For this purpose we have to include in our
algorithmic model the following two subroutines�

� the 	rst subroutine we need is a factorization algorithm for univari�
ate polynomials over Q � In the bit complexity model the problem
of factorizing univariate polynomials over Q is known to be of poly�
nomial time complexity ���� whereas in the arithmetic model we are
considering here this question is more intricate ���� In the extended
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complexity model we are going to consider here� the cost of factorizing
a univariate polynomial of degree D over Q �given by its coe�cients��
is accounted as DO��� �

� the second subroutine allows us to discard non�real irreducible com�
ponents of the occuring complex polar varieties� This second sub�
routine starts from a straight�line program for a single polynomial in
Q�X�� � � � �Xn� as input and decides whether this polynomial has a real
zero �however without actually exhibiting it if there is one�� Again this
subroutine is taken into account at polynomial cost�

We call an arithmetic network over Q extended if it contains extra nodes
corresponding to the 	rst and second subroutine�

Modifying our algorithmic model in this way� we are able to formulate the
following complexity result which generalizes ���� Theorem �� and improves
the complexity outcome of our previous Theorem ���

Remark ��

Let n� p� d� ��� L and 	 be natural numbers with d � � and p � n � There

exists an extended arithmetic network N � over Q of size
� n
p��

�
L�nd���O���

with the following property
 let f�� � � � � fp be a family of n�variate poly�
nomials of a degree at most d and assume that f�� � � � � fp are given by a
division�free arithmetic circuit � in Q �X�� � � � �Xn� of size L � Suppose
that the polynomials f�� � � � � fp satisfy the conditions �i	� �ii	� �iii	 and �iv	
contained in the formulation of Theorem ��� Let us now freely use the
notations introduced in the present section� Assume that the real variety
V� � fx � IRnjf��x� � � � � � fp�x� � 
g is not empty and that the real
degree of the polynomial system f�� � � � � fp is bounded by �� � The algo�
rithm represented by the arithmetic network N � starts from the circuit �

as input and decides �rst whether the complex variety W �
n�p is empty� If

this is not the case� then W �
n�p is a zero�dimensional complex variety and

the network N � produces an arithmetic circuit in Q of asymptotically
the same size as N � �which represents the coe�cients of n � � univariate
polynomials q�� p��� � � � � p

�
n � Q �Xn� satisfying the conditions

deg q� � " W �
n�p�

maxfdeg p�kj� � k � ng � deg q��

W �
n�p � f�p���u�� � � � � p

�
n�u��ju � C� q��u� � 
g�

Each over Q irreducible component of the complex variety W �
n�p contains at

least one real point characterized by an irreducible factor of the polynomial
q� � The algorithm represented by the network N � returns all these points
in a codi�cation ��a la Thom�� Moreover� the non�empty set W �

n�p � IRn

contains at least one representative point for each connected component of
the real variety V� �
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The proof of this remark is a straight�forward adaptation of the arguments
of the proof of ���� Theorem �� �which treats only the hypersurface case
with p �� � � to the arguments of Theorem �� above� Therefore� we omit
this proof�
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