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1. Introduction. The present paper is devoted to the study of asymptotic prop-
erties of solutions of differential-algebraic equations (DAE’s) on infinite intervals and
those of their numerical counterparts in integration methods. It is rather surprising
that, in spite of numerous papers on numerical integration, there are very few results
in this respect.

For index-1 DAE’s, asymptotic properties on infinite intervals have been investi-
gated by Griepentrog and Marz [4]. Among other things, the notion of contractivity
and that of B-stability were generalized to the case of DAE’s and criteria for total
stability were formulated. Algebraically stable IRK(DAE) were shown to be B-stable
for index-1 DAE’s, too, provided that the nullspace N of the leading Jacobian was
constant. If this nullspace rotates, stability properties may change.

In this paper, we study general linear index-2 DAE’s

(1.1) A2 (t) + B(t)z(t) = q(t), t € [to,00),

exclusively, where the nullspace N := ker A(t) is assumed to be independent of t. A(%)
and B(t) are assumed to be continuous in ¢. Equation (1.1) is not assumed to be in
Hessenberg form and the coefficients A(¢) and B(t) need not commute. Recall that
Hessenberg index-2 DAE’s have the special form

(1.2) 2y (t) + Bi1(t)x1(t) + Bia(t)za2(t) = ql(t;

le(t)l‘l(t) = QQ(t .

This corresponds to the special coefficient matrices in (1.1)

A(t) = [ é 8 ]  B(t) = [ gig Bl(z)(t)

Moreover, it corresponds to a trivially constant nullspace N, since A(t) itself does not
vary with ¢.
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Presenting statements on the linear case we hope, as in the case of regular ordinary
differential equations (ODE’s), that it will be possible to carry over some properties
to nonlinear DAE’s via linearization.

As far as we know, in case of index-2 DAE’s stability analyses of integration
methods on infinite intervals have only been presented for linear systems (see Mérz and
Tischendorf [13], Wensch, Weiner, and Strehmel [16]). The latter paper is restricted
to special Hessenberg form systems and relies on the so-called essentially underlying
ODE introduced in Ascher and Petzold [2] for these special systems. We consider this
case in Section 3 and describe the close relation between the inherent regular ODE
which we will take up from [8] in Section 2, and the essentially underlying ODE in
detail.

Although the above mentioned paper [2] is not concerned with asymptotic sta-
bility on infinite intervals, it contains an observation that is highly interesting for us:
Among other things, Ascher and Petzold point out that the backward Euler method
applied to (1.2) may yield rather an explicit Euler formula for the essentially underly-
ing ODE, and they discuss the influence of the blocks Bis, B2 on this phenomenon.
We will show that not the derivatives of Bis(t), B21(t), but the derivatives of the
projector matrix H(t) := Bya(t)(Ba21(t)Bi2(t)) ! Ba1(t) constitute the essential term,
i.e., the rotation velocity of the subspace described by H () is the decisive feature.

Our paper is aimed at explaining the importance of additional subspaces for
answering questions concerning the asymptotic behaviour of integration methods.
Hence, besides introducing the necessary fundamentals, Section 2 provides new results
on the asymptotic stability of DAE solutions in the sense of Lyapunov as well as on
contractive DAE’s.

In Section 4, BDF, IRK, and PIRK are investigated in detail. Asymptotic prop-
erties like A-stability and L-stability are shown to be preserved if a certain subspace
im PP (t) is constant, i.e., if it does not rotate. Moreover, we show that an alge-
braically stable IRK(DAE) is B-stable under these conditions.

Section b illustrates our results by means of examples.

For convenience of the reader, the short appendix provides the basic linear algebra
facts once more.

2. Linear continuous coefficient index-2 equations. Consider the linear
equation

(2.1) Az (1) + B)a(t) = q(t), 1€ J = [to, )

with continuous coefficients. Assume the nullspace of A(t) € L(R™) to be independent
of t and let

N :=ker A(t) CR™.
Furthermore, set
Sit):={z€eR™: B(t)z €eimA@t)} CR™.

Obviously, S(t) is a subspace of R™ which contains the solutions of the homogeneous
form of the DAE (2.1). Note that the condition

(2.2) St)ye N=R™ te.lJ
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characterizes the class of index-1 DAE’s (see Appendix for related facts from linear
algebra). Equation (2.2) implies that the matrix

(2.3) G1(t) == A(t) + B)Q

is nonsingular for all ¢ € J, where @ € L(R™) denotes any projector onto N. Let
P.=7-q@Q.

Higher index DAFE’s are characterized by nontrivial intersections S(t) N N or
equivalently by singular matrices G1(t).

DEFINITION. The DAE (2.1) is said to be indez-2 tractable if the following two
conditions

(2.4) dim(St)NN) = const >0,
Sl(t) D Nl(t) = Rm, teJ
hold, where
Ni(t) = kerGi(t),
Si(t) = {zeR™:B@l)Pze€imG1(t)}.

In the following, let (1(¢) denote the projector onto Ni(t) along Si(t), and
Pi(t) :=1—Q1(t). Due to the decomposition (2.5), Q1 () is uniquely defined.
REMARKS.
1. Tt holds that dim Ny (t) = dim(N N S(¢)).
2. Due to Lemma A.1, (2.4) and (2.5) imply that the matrix

(2.6) Go(t) == G1(t) + B(t)PQ1 (1)

is nonsingular. But G (¢) is singular, independently of how ) is chosen [8].
3. Applying Lemma A.1 once more we obtain the identities

(2.7) Q1= @Q1G;'BP, Q:Q=0.

4. Each DAE (2.1) having global index 2 is index-2 tractable with a continuously
differentiable @, [8]. Hence, assuming @; to belong to the class C'! in the sequel is
not restrictive.

The conditions (2.4), (2.5) imply the decompositions

(2.8) R™ = N@PS\(t)® PNi(t) =N @im PPy(t) @ im PQ.(t),

which are relevant for the index-2 case. Taking this into account we decompose the
DAE solution z into

(2.9) r=Qx+ PPix+ PQix =:w+u+ Pv.

Multiplying (2.1) by PPle_l, QPlGZ_1 and Qle_l, respectively, and carrying out a
few technical computations, we decouple the index-2 DAE into the system

(2.10) u' — (PPy)'u+ PPiG5'Bu = PP,G5 q + (PPy)'v,

(2.11) —(Qu) +(QQ1) (v + Pv) + w4+ QPG Bu= QPG5 'q,

(2.12) v=0Q.G5'q.
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Equation (2.10) represents the inherent regular ODE of the DAE system.

On the other hand, if we consider (2.10) separately from its origin via the decom-
position (2.9), we know that im PPy (¢) is an invariant subspace of this explicit ODE
in u. To be more precise: If we have

(2.13) u(to) € im PP (to)

at some tg € J, then (2.10) implies u = PPyu. Furthermore, (2.12) and (2.11) lead
to v = Qv and w = Quw, respectively. Thus, solving (2.10) — (2.13) and setting
z:= u+ Pv+ w, we obtain the solutions of the DAE (2.1).

Inspired by the above decoupling procedure, we state initial conditions for (2.1)
as

(2.14) PP (to)(z(to) —2°) =0, z°€R™ given.
This yields
U(to) = PPl(to)l‘(to) = PPl(to)l‘O,

but we do not expect z(tg) = 2° to hold.
Next, we shortly turn to the case of a homogeneous equation (2.1): For ¢ = 0 the
system (2.10) — (2.12) yields v = 0 and

r=ut+w= (- (QQ1) — QPIG;'B)u= (I — (QQ1) — QPG;'B)PPiu.

The matrix TI(t) := (I — (QQ1)'(t) — (QP1G5 ' B)(t))PPy(t) is also a projector, and
ker TI(¢) = ker PPy(t). TI(?) is said to be the canonical projector for the index-2 case.
Now, the following assertion is easily proved by means of the decoupling explained
above.
THEOREM 2.1. Let (2.1) be index-2 tractable with continuously differentiable Q);.
Then it holds:
(1) The initial value problems (2.1), (2.14) are uniquely solvable in

CN(,R™) :={z € C(J,R™) : Px € C*(J,R™)},

provided that ¢ € C(J,R™), Q1G5 q € C*(J,R™).
(i1) If =(.) solves the homogeneous equation, then it holds that

z(t) e M(t) :=imII(t) C S(t), te.J

(iii) Through each x. € M(t.) there passes exactly one solution of the homoge-
neous equation at time t, € J. The solution space M (t) is a proper subspace of S(t)
and

dimM(t) = m —dim N —dim N N S(¢).

REMARKS.

1. The inherent regular ODE (2.10) is determined by the complete coefficient
matrix PPle_lB — (PPy)’, but not only by its first term PPle_lB. If PP(t) varies
rapidly with ¢, the second term (P P;)’ may be the dominant one. This should also be
taken into account when considering the asymptotic behaviour of solutions of (2.1).
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2. In general, the linear DAE (2.1) appears to be much simpler if the relevant
subspaces N, Ny, S; and the two projectors ), 1 are constant. In that case (2.10)
- (2.12) simplifies to

(2.15) u' + PPiGy'Bu= PPGy g,
(2.16) —(Qu) +w+ QPGy ' Bu = QPG5 g,
(2.17) v= Q1G5 q.

3. The value 2 € R™ involved in the initial condition (2.14) is not expected
to be a consistent initial value. What we have is PPy (tg)xz(to) = PPyi(to)z", but not
zg = z(ty) = 2% As shown above, a consistent initial value for the homogeneous
equation always belongs to M (tg), which is precisely the set of consistent initial values
then.

4. If the product P P; is time invariant, we have (QQ1)' PP, = (QQ1PFP) =0,

hence
= (I-QPG;'B)PP,.

Note that (QP;G5'B)(t) is also a projector onto ker A(t). It should be mentioned
that the solution space M (t) remains time-invariant provided that both projectors
PP; and QPle_lB are constant.

Now we turn to the asymptotic behaviour of the solutions of the homogeneous
equation. Considering the decoupled system (2.10) — (2.12) once more, we see that the
component u = PPz represents the dynamic one. Supposed the canonical projector
TI(t) remains bounded on the whole interval J = [tg, o), the asymptotic behaviour of
the solution

() = (t)u(l)

is completely determined by that of its component u(¢). Clearly, if u solves a constant
coefficient regular ODE, we may characterize asymptotics by means of the corre-
sponding eigenvalues. This is what we try to realize for the DAE in the following
theorem.
THEOREM 2.2. Let (2.1) be index-2 tractable, Q1 be of class C*, (PP) = 0. Let
PPle_lB be constant, r .= rank PPy.
(1) Then the pencil AA(t) + B(t) has the eigenvalues A1, ..., A., uniformly for
teJ.
(ii) Re Ay < 0, 4 = 1,...,r, implies each homogeneous equation solution to
tend to zero ast — oo, provided that the projector I1(t) remains uniformly bounded.
Proof. Due to our assumptions, the inherent regular ODE has the constant coef-
ficient PPle_lB. On the other hand, the nontrivial eigenvalues of —PPle_lB (that
is, eigenvalues that do not correspond to ker PP;) are exactly the pencil eigenvalues
of M + B (cf. [10]).
Let U(-) denote the fundamental solution matrix of «’ + PPle_lBu = 0 with
U(tg) = I. Taking the solution representation

z(t) = I()U (t) PPy (to)x°

into account, the assertion follows right away. d

Roughly speaking, the assumptions that P P; and PPle_lB have to be constant
mean that there is a constant coefficient inherent regular ODE and a possible time
dependence of the system may be caused by (time dependent) couplings only.
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Next, what about contractivity in case of index-2 DAE’s? In the regular ODE
theory, contractivity is well-known to permit very attractive asymptotic properties of
numerical integration methods. Corresponding results are obtained for index-1 DAE’s
in [4] by means of an appropriate contractivity notion. In particular, this notion says
that a linear index-1 DAE (2.1) is contractive if there are a constant ¢ > 0 and a
positive-definite matrix S such that the inequality

(2.18) (y, Px)s < —c|Px|s
holds true for all y, # € R™ with

A)y+ Bt)x =0, Qy=0.

Here, we have used the scalar product (z,v)g := (Sz,v) and the norm |z|g := (z, z>§/2.

Clearly, this reminds us of the one-sided Lipschitz condition used for contractivity
in the regular ODE case (i.e. A(t) = I, P =1 in (2.1)). In the latter case we have,
with y = —B(t)x,

(Bt)x,z)s < —clz]|s.

However, things are more difficult for index-2 DAFE’s. First, considering the decou-
pled system (2.10) — (2.12) again, we observe that each solution of the homogeneous
DAE (2.1) satisfies the identities

Q1(t)x(t) =0,

y(t) = (Pe)(t) = (PPre)'(t) + (PQuz)'(1) = (PPiz)' (1),

Qu(t) =0, Qi(t)y(t) = Qu(t)(PPra)'(t) = —Q (1) PPr(t)x(t).
Now, inspired by the notion of contractivity given for the index-1 case in [4], we state
the following definition.

DEFINITION. The index-2 tractable DAE (2.1) is called contractive if the following
holds: There is a constant ¢ > 0 and a symmetric positive-definite matrix S such that

(2.19) AQ)y+Bt)z =0, Qy=0, Q:i)y=-Q () PP()xr, =z,yeR™
imply
(2.20) (y, Px)s < —c|Pz|%.
As usually, with this notion of contractivity, too, we aim at an inequality
|Pa(t)]s < et Pa(to) s

for all solutions of the homogeneous DAE, that shows the component Pz = PPz to
decrease in that norm. The following theorem will show: If the canonical projector
TI(¢) is uniformly bounded, then the complete solution z(t) decreases.

THEOREM 2.3. Let (2.1) be index-2 tractable, Q1 belong to C', T1(t) be uni-
formly bounded on J and (2.1) be contractive. Then, it holds for each solution of the
homogeneous equation that

(2.21) |2(t)]s < ye~ Ut |Pa(to)]s, t > to,

where v is a bound of |TI()|s.
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Proof. We have Q1 (t)x(t) = 0, further x(¢) = TI(¢) PP (1) (t) = TI(t) Px(t). O

Not surprisingly, we obtain

COROLLARY 2.4. Let (2.1) be index-2 tractable with continuously differentiable
Q1 and uniformly bounded TI(t). If the condition

(2.22) (u, {(PPy)'(t) = (PPGL ' B) (1) }u)s < —cluls,

is satisfied for all w € im PPy(t), t € J, the estimate (2.21) is valid.

Proof. Tt may be checked immediately that (2.19) and (2.22) lead to (2.20), i.e.,
(2.22) implies contractivity. O

Note that there is no need for assuming (2.22) for all « € R™. For the assertion of
Corollary 2.4 to become true, it is sufficient that (2.22) holds for all « € im PPy(t),
only.

Inequality (2.22) looks like the usual contractivity condition for the regular ODE
(2.10), i.e., the inherent regular ODE of (2.1). The only difference is that the values
u are taken from the subspace im PPy (t) instead of all of R™. Roughly speaking, one
has: The DAE (2.1) is contractive if the inherent regular ODE (2.10) is contrctive on
the subspace im PPy (t).

As a direct consequence of other results on stability ([15], e.g.) one can deduce
counterparts for linear index-2 DAFE’s, e.g. the well-known Poincaré-Lyapunov The-
orem.

3. Specification of the projector framework for index-2 Hessenberg-
form DAE’s. Most authors restrict their interest to so-called Hessenberg-form equa-
tions, i.e., to systems

(3.1) ) + Biizy 4+ Biszs = q
' Bayxy = ¢’
where z = (2T, 21)T) z; € R™: 25 € R™2, m = my + ma. In our context this

corresponds to

710 [ Bu Bis oo [ B
St R R B BN R B

S(t) =5 (t) = {(Z?, Zg)T e R™: le(t)zl = 0}
Obviously, z € S1(t) N\ Ny (t) implies z = 0 if and only if B (¢)B12(t) is nonsingu-
lar, which is the well-known Hessenberg-form index-2 condition. Under this condition

the block
B2 (t)(Bay () Bia (1)) ™ Bau () =2 H (1)

is also a projector. It projects onto im By,(t) along ker Bay (¢).
Denote I .= 312(321312)_1 and I = (321312)_1321. It holds

H 0 I—H 0 H 0
(3.2) Ql:[—F 0], Pplz[ 0 0], PQl:[O 0]~

Furthermore, one has

PPG;'B = [ (I_H)Bél(I_H) 8 ] .
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The canonical projector II is

I1-H 0

D=1 _rpog-m+ra-m o

Recall that M (¢) = imTI(#) C R™ is precisely the solution space of the homogeneous
form of (3.1). Tt is time dependent if the projector H(¢) is. However, M () may also
rotate with ¢ even if H () is independent of time. Note that P P; is easier to compute
than II.

Furthermore, the nontrivial part (i.e., dropping the zero rows) of the inherent
regular ODE (2.10) reads now as

(33) U/1—|—H/U1—|—(I—H)Bllul = (I—H)ql — (H/+(I—H)311)EQQ,

where wy := (I — H)x1. Let us emphasize once more that quickly varying subspaces
may cause the term H’ to dominate within this regular ODE. Clearly, H'u; corre-
sponds to the term (PP) win (2.10).

Theorems 2.1 and 2.2 apply immediately. In particular, we obtain: Suppose
H(t) and (I — H(t))B11(t)(I — H(t)) are time-invariant. Then the eigenvalues of
(I — H(t))B11(t)(I — H(t)) determine the asymptotic behaviour of the solution.

Now, let us turn to the discussion of aspects of contractivity. For index-2 Hes-
senberg-form DAE’s (3.1), relation (2.20) applies to the first components only, i.e.

<y1,l‘1>511 S —C|l‘1|?€11
should be satisfied if (cf. (2.19))

y1 + Bi1(t)x1 + Bia(t)ze =0,
le(t)l‘l =0,
yo =0, H(t)ys = —H'(0)(I = H(1))as.

Moreover, (2.22) simplifies to

(ur, {=H'(t) = (I = H(t))Bu(t)(I — H(t))}u1)s,, < —clualg,,,
for all wy €im(I — H(t)), teJ

Again we see that the constant-subspace case H'(t) = 0 becomes much easier.

It should be stressed that the above decoupling as well as the inherent ODE are
stated in the original coordinates. In particular, the subspace M (t) C R™ is precisely
the one that contains the solutions of the original DAE. No coordinate transformation
is applied and only a decomposition into characteristic components is employed.

Ascher and Petzold [2] use a different approach to decouple characteristic parts of
linear index-2 Hessenberg systems: They use a coordinate change z = Tz such that

1y = Sz + Ezs
#y = —(Ba1Bia) (= By + B21Bi1)Sz1 + (B2 Bia) " 2
and
21 = Rl‘l
79 = (=Biy + Ba1Bi1)SRz1 + Ba1Biaas

23 = DBz
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(cf. also [16]). In [2] the matrices R and S are constructed in the following way. Let
my > mg. First, a matrix R with m; — ms linearly independent rows is chosen so
that

RBlz = 0, 1e R = R(I — H)

1s satisfied. As a consequence, the m; x m; block

[ ]

is nonsingular. Choosing S in such a way that RS =1, SR=T—-H,S=(I - H)S
-1
. 21 R
=[S E|. The relation =

By ] [ ) [ 23 [ By
the main idea of that transformation. R(t) and S(t) are assumed to be smooth.
Carrying out a few straightforward computations one obtains a regular ODE for the
component z; = Ray, namely

hold true, we have [ ] xq exhibits

(34) Zi = (R/ — RBH)Szl + qu + (R/ — RBll)qu.

Equation (3.4) is said to be the essentially underlying ODE (EUODE) of the DAE
(3.1).

What does the EUODE have in common with the inherent regular ODE? What
is the difference?

Multiplying the EUODE (3.4) by S and taking into account that

SZl = SRl‘l = (I—H)l‘l = U1

is given, we obtain (3.3). On the other hand, scaling the inherent regular ODE (3.3)
by R leads back to the EUODE (3.4) because

Ruy, = R(I—H)xl = R([—H)Szl =z.

Thus, the EUODE turns out to be nothing else but a scaled version of the inherent
regular ODE and vice versa. Due to

R(I-H)S=RS=1

the (my — mg)-dimensional subspace im(I — H(t)) = ker Bs;(t) C R™! is uniformly
traced back to R™17™2_ Thus, the EUODE has the advantage to be written in the
minimal coordinate space R™1~™2_ Unfortunately, the matrices R and S are not
uniquely determined. Consequently, the EUODE is strongly affected by the choice of
R, S. Note that once an R is chosen, we may multiply by any regular K € L(R™1~™2)
to obtain another one by R:= KR.

From this point of view, the inherent regular ODE (3.3) seems to be more natural,
since all its terms are uniquely determined by the original data. w; = (I — H)xz;
is a direct component of the original variable z;, but the ODE (3.3) lives in the
higher-dimensional space R™! and im(] — H(t)) = ker B (¢) represents an invariant
subspace.

Ascher and Petzold [2] observed that the Euler backward method applied to the
DAE (3.1) may behave like an explicit Euler method. Choose ¢ =0, By; = 0in (3.1),
which simplifies the EUODE to

(3.5) 2 = R'Sz.
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Via the transform & = Tz, the Euler backward formula applied to this special DAE
(3.1) yields

(3.6)

o> =

1
(21,041 — 21,0) = /R/(tn + sh)ds(S(tn)z1.n — E(tn)23n).
0

If additionally Bja2(t) and R/(¢) do not vary with ¢, (3.6) simplifies to

1
_(Zl,n+1 - Zl,n) = R/(tn)S(tn)Zlyn

h
This is the explicit Euler formula for (3.5). Clearly this phenomenon is closely related
to time-varying blocks R(¢) and S(¢) of the coordinate transformation. Let us mention
again that this behaviour depends on the choice of R and S.
In the following section we show that the behaviour of the characteristic subspace
im (I — H(¢)) resp. im PPi(t) in the general case is decisive for understanding what
really happens.

4. Asymptotic stability of integration methods. A number of widely used
notions for the characterization of asymptotic properties of integration methods for
explicit ODE’s relies on the complex scalar test equation

(4.1) 2=z

The asymptotic behaviour of a numerical method applied to (4.1) characterizes the
asymptotics in the case of linear constant coefficient systems

(4.2) z' = —Bz.

Here, the role of A is replaced by the eigenvalues of —B. The justification for restrict-
ing the consideration to (4.2) is given by Lyapunov’s theory: The linearization of a
nonlinear autonomous explicit system at a stationary point provides criteria for the
asymptotic behaviour of solutions. In essence, the same is true for index-1 and -2
DAE’s [12]. Therefore, we are led to the constant coefficient DAE

(4.3) Ax'(t) + Bx(t) =0

with regular matrix pencil AA + B. This equation can be transformed into the Kro-
necker canonical form

N I GECRIaE

Jo is a nilpotent matrix (J§ = 0 for some integer k). Since discretization and trans-
formation to (4.4) commute for many methods, the numerical solution for z vanishes
identically, whereas y is discretized like an explicit system. Hence, numerical methods
applied to constant coefficient linear DAE’s trivially preserve their asymptotic stabil-
ity properties that are based on the test equation (4.1) (e.g. A-, A(«)-, L-stability).
Thus, at first glance, one could expect the well-known concepts of asymptotics in
the numerical integration of explicit ODE’s to be sufficient for DAFE’s, too. How-
ever, as described in Sections 2 and 3, DAFE’s have a more difficult structure than
explicit ODE’s, even in view of numerical integration. Roughly speaking, we should
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not expect the numerical methods to match the subspace structure exactly if those
subspaces rotate. The scalar test equation (4.1) turns out to be an inappropriate
model in case of DAFE’s.

Similar results about B-stability are more difficult to obtain. It is well-known
that so-called algebraically stable Runge-Kutta methods are B-stable [6, p. 193] for
explicit systems. In [4, p.129] a similar result is shown to be true for index-1 DAE’s
provided that (i) the nullspace N(A(#)) of A(t) does not depend on ¢, and (ii) the
Runge-Kutta method is a so-called IRK(DAE) (a stiffly accurate method [6, p. 45]).
There are simple linear examples showing that the backward Euler method loses its
B-stability if (i) is not valid.

We recall the notion of B-stability for DAE’s having a constant leading nullspace:

DEeFINITION [4]. The one-step method ;11 = ¢(x;,%;, h;) is called B-stable if
for each contractive DAE the inequalities

1 2 1 2
|Px‘§»+)1 - PJ:;_I_)1|5 < |Px§ ) PJ:§» )|5,
and

Q) — Qe 15 < KP2, — P2 s, >0,

(1) (2

are satisfied. Here, K > 0 is a constant and z; ’, & are arbitrary consistent initial
values.

4.1. BDF applied to linear index-2 DAE’s. The k-step BDF applied to
(2.1) reads as

(4.5) A(tz)% > e+ Blto)we = q(te), £> k.

7=0

At each step, equation (4.5) provides an approximation #, of the exact solution value
z(te), te :=to + Lh. Recall that the nullspace of A(¢) is assumed to be constant.

Supposed (2.1) is index-2 tractable, we may decouple (4.5) and (2.1) simultane-
ously (cf. (2.10) — (2.12)), which yields

k k
1 1 _
E Z oUg—j + E Z Ozj(PPLZ — PPl,Z—j)UZ—j + PPlyszéBzuz
Jj=0 Jj=1
1 k
(46) :PPlysz_éqZ— EZO[]'(PPLZ_PPLZ_]')UZ_]',
Jj=1

o> =

ks ks
1 _
—% Z%sz—j - Z @ (QQ1e — QQue—j)(we—j + Pve_j) 4+ wie + QP oGy Beug
7=0 j=1

(4.7) = QP G5,

(4.8) ve = Q1G5 q,
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where we have used the above decomposition again, i.e.,
(4.9) g = PP xe+ PQuexr + Que = ur + Pve + wy.

In particular, if the inhomogeneity ¢ vanishes identically, then the (;-components
v(t¢) and v, are both zero, and one has

k k
1 1 -
(410) E ZO[jUz_j + E Z Osz(Plyz — Plyz_j)uZ_j + PPlyszéBzuz =0
7=0 j=1
for approximation of
(4.11) u' — PP{u+ PPiG5'Bu=0

and

k
_ 1
wy = —Qpl,szész + 7 Z%’Q(Ql,z —Q1,0—j)ue—j

j=1
for approximation of
w = —QPle_lBu + QQu.

The following proposition is an immediate consequence.

PROPOSITION 4.1. Let (2.1) be index-2 tractable with continuously differentiable
Q1. Then the BDF method applied to (2.1) generates exactly the same BDF method
applied to the inherent regular ODE (4.11) if and only if the projector PPy (t) does not
vary with t. For a constant projector PPy, the BDF methods retain their asymptotic
stability properties for index-2 DAE’s provided the canonical projector TI(t) remains
untformly bounded.

On the other hand, varying subspaces may cause the term PP] to dominate the
inherent regular ODE itself. For instance, the backward Euler method provides then

1 1 _

E(W — 1) — EP(PM — Pry—1)ue—1 + PP Gy Beug =0,
which shows that u(t;)—u, — 0 (£ = o0) may or may not happen. As it was mentioned
in Section 3, Ascher and Petzold [2] have observed this phenomenon in case of linear
index-2 Hessenberg systems (3.1) (cf. also Section 3). However, this is not surprising
since we cannot expect any discretization method to follow the subspaces precisely
without profound information on the inner structure of the DAE.

Naturally, similar arguments apply to Runge-Kutta methods, too.

4.2. Implicit Runge-Kutta methods and their projected counterparts
applied to linear index-2 DAE’s. According to the originally conceived method
for the numerical solution of ordinary differential equations, an implicit Runge-Kutta
(TRK) method can be realized for the DAE (2.1) in the following way [14]: Given
an approximation #,_1 of the solution of (2.1) at #,_1, a new approximation z, at
ty = ty_1 + h 1s obtalned via

(4.12) Tp=Tp-1+ hzbiXéi,

i=1
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where X, is defined by
(413) A(th)XéZ + B(th)XM = q(th), 1=1,...,s,
toi =ti—1 +ch
and the internal stages are given by
(4.14) X =w+hY a;Xf, i=1..s.
j=1

The coefficients a;;, b;, ¢; determine the IRK method, and s represents the number
of stages. Assume the matrix A := (a;;)] ;=; to be nonsingular and denote its inverse

by (dij);jzl. Let o:=1— 5 3" bay;.
i=1j=1
Equations (4.12) — (4.14) are equivalent to

(4.15) Ty = oo+ 21 Zl biai; Xej,
1= ]:
(416) A(th) Z Elij(ij — l‘z_l) —|— hB(tM)XM = hq(th), i = 1, ey S
j=1

Looking at (4.16) we observe that the internal stages do not depend on Qzy_;.
The special class of IRK methods (IRK(DAE)) with coefficients

(4.17) bi=as;, i=1,...,8, ¢5=1

is shown to stand out from all IRK methods in view of their applicability to DAE’s
[4]. Since ¢ = 0 in that case, the new value ; = X, always belongs to the obvious
constraint manifold

N(ty) :=={z e R™: B(ts)z — q(t;) € im A(t,)}.
Therefore we have
(4.18) B(ts)we — q(te) € im A(ty).
For Hessenberg equations (3.1), relation (4.18) simplifies to

(4.19) Boi(te)zre = qa(te).

In general, if (4.17) is not fulfilled, then we have ¢ # 0, and (4.18) resp. (4.19) are
no longer true. Since this behaviour is a source of instability (for A — 0), Ascher and
Petzold [1] propose another version for the application of TRK methods to index-2
Hessenberg DAFE’s (2.18), the so-called Projected IRK (PIRK). Actually, after real-
izing the standard internal stage computation, the recursion (4.15) is now replaced

by

(4.20) Tre=o0T1e—1+ Z Z biai; X1.0; + Bia(te) e
i=1j=1

and Ag is determined by

(4.21) Boi(te)z1,e = qa(te).



14 M. HANKE AND E. IZQUIERDO MACANA AND R. MARZ

If we multiply (4.20) by I — H(t¢), As can be eliminated:

(4.22) (I — H(t))&re = oI — H(te))1 -1 + ZZ bidij (I — H(te)) X1 0.

i=1j=1
On the other hand, (4.21) is equivalent to

(4.23) H(te)#1,0 = Bua(te) (Bai(te) Bia(te)) ™" qa(te).

It should be mentioned that for IRK(DAE) the projected version is exactly the same
as the original one, since (4.17) implies A; = 0 in (4.20), (4.21).

Considering (4.22) — (4.23) in association with the projector formulae (3.2), an
immediate generalization of PIRK methods to fully implicit linear index-2 systems
(2.1) is suggested by

(4.24) PPty = oPPi(t)de—s+ Y Y bia PPi(te)Xe;,
i=1j=1
(4.25) Qi(t)ie = Qulte)Gy ' (te)g(te).

Since the internal stages ng do not depend on Qz,_1, there 1s no need to compute
@z, at this stage.

Now return to the standard IRK (4.15) — (4.16) and decouple (4.16) in the same
way as (2.10) — (2.12). For that, we decompose

X = PPi(te)Xeu+ PQi(te)Xi + QXei =: Ui + PV + Wy,
re = PPi(t))xe+ PQi(te)xs + Quy =: ug + Pup + wy.

A straightforward computation yields

h Zam UZ] Uy — 1 +P{ Zam Pl tﬁz) Pl(tﬁj))UZ]}
j=1
_P{E Z ai;(Pr(te) — P1(tz—1))l‘z—1} + PP G5 B(ty) Uy

(4.26) = PPGy q(tn) — P{ Zpl i) = Pultes))Vis |

%Za @V~ Qu-n) ~ Q{7 ZQ1 tis) = Qu(teg ) (Usy + PViy) |

{%Z (Q1(te) — Qu(te—1))(ue—1 + Pog_y) }-I—sz + QPG5 ' B(t)Usi
(427) :QP1 2 q(th),
(4.28) Vi = Q1G5 q(te).

The recursion (4.15) can be decomposed simply by multiplying by the projections:

ur = pus—1 + 0P (Pi(te) — Pi(te—1))(we—1 + Pve—q) + ZzbidijUZj

i=1j=1
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(4.29) +P Zs: Zs: bi;;(Pr(te) — Pr(te;)(Uej + PVey)

i=1j=1

Pyy = pPvo_1 + oP(Q1(te) — Q1(te=1))(we—1 + Pve—1) + Zzbidijpvz]’

i=1j=1

(4.30) +P Z Z bid;;(Q1(te) — Q1(te;)(Ues + PVey)

i=1j=1
(431) Wy = pWe—1 + ZZ bidiszj
i=1j=1

Now, consider the homogeneous case, that is we set ¢ = 0. If the inhomogeneity ¢
vanish identically, then v does so, too. Moreover, all values Vj; are equal to zero.
However, if ¢ # 0, this is no longer true for 1 Pv, = ve. This means that, in general,
the resulting z, has a nontrivial component Q;(t;)x, in contrast to the exact solution
that fulfills @1 (¢¢)z(te) = 0.

In more detail, (4.26) reduces to

hzam UZ] Up— 1 +P{ Zam Pl tﬁz) Pl(tﬁj))UZ]}
j=1

(4.32) —P{ Z (Pi(tss) = Pi(ter))ae—s § + PPIGE B(tss) Ui = 0,

which supposedly approximates
(4.33) u' — PP{u+ PP Gy ' Bu=0.
Moreover, (4.27) yields

Wi = —-QPiIGy'B(tu)Us + Q{% Zs:(Ql(tm’) - Ql(th))UZj}
(4.34) —Q{ Z Q1(te) — Q1 (te- 1))Uz—1}

for approximating
w=—QP,G;'Bu+ QQ\u.

In the consequence, the following result holds true for IRK methods analogously to
Proposition 4.1 for the case of BDF methods:

PROPOSITION 4.2. Let (2.1) be index-2 tractable with continuously differentiable
Q1. Then the IRK method applied to (2.1) generates exactly the same IRK method
applied to the inherent regular ODE (4.30) if and only if PPy(t) does not vary with
t.

For constant P P;, the solution

(4.35) z(t) = W(t)u(t) = (I — (QP1G3 ' B)(1)u(t),
(4.36) u' + PP,Gy ' Bu=0,
(4.37) u(to) € im PPy,
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of the homogeneous equation is approximated at ¢, by

(4.38) re = ue+ Pu+we,
(439) Uy = QUp—1 + ZZbidijUﬁj’
i=1j=1
1, _ ,
(4.40) - > i (U —uweet) + (PPIGY ' B)(tei)Up =0, i = 1,5,
j=1
(4.41) Pve = gPuq,
(442) Wy = oWy — Z Z bzd” (QPle_lB)(tzj)Uzj.

i=1j=1

Starting with a consistent initial value zy (with vy = 0), the components v, vanish
step by step, too.
For IRK(DAE), (4.42) provides

we = —(QPiGy'B)(te)Uss, ue = U,
re = (I-(QPIGy" B)(te))ue,

that is, in the case of constant PP;, the approximation z, belongs to the solution
manifold M (¢,) given in Theorem 2.1.

Let us briefly turn to PIRK methods (4.24), (4.25). For homogeneous equations,
(4.25) yields 9, = Q1(t7)#, = 0. The decoupled system parts (4.32), (4.34) remain
valid also for the 7”7 values.

PROPOSITION 4.3. Proposition 4.2 is true for PIRK methods, too.

It should be mentioned that, for constant P P;, in PIRK methods we have simply

(4.43) B =0.

instead of (4.41). Ascher and Petzold [1] have not considered a recursion for the
component @&, for Hessenberg systems (2.19). Nevertheless, if one is interested in
approximations QZ,, a recursion like (4.42) will come up again. In that case, the only
difference between PIRK and IRK methods is the determination of the }1-components
((4.43) versus (4.41)). Note again that PIRK and IRK are identical for IRK(DAE).

Next, concerning B-stability, the following assertion shows the notion of contrac-
tivity given in Section 2 to be useful.

THEOREM 4.4. Let (2.1) be index-2 tractable with continuously differentiable Q1
(PP =0, and ||TI(1)|| < K, t € [to,00). Then, each algebraically stable IRK(DAFE)
applied to (2.1) is B-stable.

Proof. Denote m;; = b;a;; + b;a;; — b;6;. Due to the algebraical stability, m =
(mi;)i; is a positively semi-definite matrix.

Since we deal with linear DAE’s only, it remains to show the inequalities |Pay|s <
|Pxo_1lg, |Qui|ls < K|Pxyg| for the case of the homogeneous equation (2.1).

With ¢ = 0, (4.13) yields

Q1(tei) X =0, i=1,...,s,
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therefore PXy = PPi(t)Xe. Additionally, with an TRK (DAE) we also have
Q1(ti—1)xe—1 = 0. Then, (4.14) implies

5

1
Qu(te) Xy = Ql(tZi)EZdij(XZj —z(-1)
j=1
e
= Ql(th)ﬁ Zaij(Ppl(th)XZj = PPi(te—1)ae-1) = 0,
j=1

since Q1(ty;)PPi(f) = 0 holds true for all {. Hence, using the contractivity (cf.
Section 2) we obtain the inequalities

(PX};, PXy)s < —c|PXyl%, i=1,...,s.
Now, following the standard lines, we compute

|Paol%

= |Peia+hd biPX[%

i=1

= |Preal§ +2h Y bi(Paoioy, PXp)s + b > ai(PX[;, PX[j)s
i=1 i,7=1
= |Prali+2h Y bi(PXu—h>_aiPX[;, PXi)s+h* > aij{(PX};, PX[;)s
i=1 j=1 i,7=1
= |Peeoald +2h ) bi(PXy, PXps — h* > mi(PX(;, PX}j)s
i=1 i,7=1
S |Pl‘z_1|?9 —QhCZbZ’|PXM|2
i=1
< [Paeald

Finally, 2, = TI(¢;) Pz, implies
|Ql‘z|5 S[(|Pl‘z|5. a

It should be noted that Theorem 4.4 does not apply to PIRK. While the first
part, i.e., |Pzgls < |Pag—1|, holds true analogously, the necessary relation for the
nullspace component is not given at all for ¢ # 0.

5. A numerical counterexample. In the previous sections we have seen that
BDF and Runge-Kutta methods preserve their stability behaviour if PP is constant.
The following example shows that these properties get lost if PP varies with time.
Consider the DAE

(5.1) A2’ (t) + B(t)z(t) =0, t>0,
with
1 00 A -5 -1
Ay=10 1 0|, B@lt)=| Bpt(l=nt)—m X —nqt |,
0 00 11—t 1 0
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where 3, A, 7 € R are constant. Note that (5.1) is an index-2 Hessenberg system. One
easily computes (using A(t) = P)

1 0 -1
0 0 0

such that
Nit)={r €R®: 2y —23=0, x9g — ntez =0}.

Compute the projections

nt -1 0 nt -1 0
P)y=| ntimt-1) 1—-nt 0|, PP{)=| ntmt—-1) 1—nt 0
nt—1 -1 1 0 0 0
Taking into account that ¢ = 0 in (5.1), the inherent regular ODE (2.10) reads
(5.2) u' + M(t)u =0,
where u(t) = PPya(t) and
M(t) = PPG;'B— (PP
Ant —n 4+ n’t A= 0
= | O+mntipt =1 +n(1 =2nt) A+n)(A—-nt)+n 0
0 0 0

The solution subspace M (t) (cf. Theorem 2.2) is given by
M) =imTI(t) = {z €R®: (gt — 1)xy — 29 =0, By + x3 =0}

Since dimim(PPy(t)) = 1,
reduced to the scalar ODE,

(5.3) uy + Aug = 0,

(5.2) subject to consistent initial values (2.13) may be

together with
(5.4) ua(t) = (gt — Dug(t), wus(t) =0.
Consequently, the asymptotic stability of (5.2) is governed by the sign of A (indepen-
dently of n € R). The parameter 1 measures the change of Ny(¢). § serves only for
mixing the P component with the nullspace component. Now the complete solution
of (5.1) can be easily computed using (2.10) — (2.12). If 2° € R3 is a consistent initial
value at t = 0 (i.e., 29 + 23 = 0, 23 + B2 = 0), the solution of (5.1) is
x?e‘”
2ty = | oSt —1)e
298(1 — nt)e=

(5.1) was solved using the 5-step BDF (Fig. 5.1) and an algebraically stable 2-stage
Runge-Kutta method introduced by Crouzeix (cf. [5, p. 207]) with p ~ —0.73
(Fig 5.2). The figures show the norm of the numerical solution at the end of the
interval [0, T] for different values of # and A. Note that, for n = 0, (5.1) represents
a constant coefficient system. The results indicate that the asymptotic behaviour of
the numerical solution depends not only on the asymptotic stability of the differential
equation (5.3) (controlled by A), but also on the geometry of the problem (controlled

by 7).
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Appendix: Basic linear algebra lemma. A basic connection between the
spaces appearing in the tractability index and the choice of the corresponding pro-
Jjectors is given by the following lemma, which may be directly obtained from Theo-
rem A.13. and Lemma A.14. in [4].

LEmMma A.1. Let A, B Q € L(R™) be given, Q? = Q, im(Q) = ker(A), i.e., let Q
be a projector onto ker(A). Denote S := {z € R™: Bz € im(A)}. hen the followmg
conditions are equivalent:

(i) The matriz G := A+ BQ is nonsingular.
(ii) R™ = S @ ker(A).
(iii) S Nker(A) = {0}.

If G is nonsingular, then the relation
Q:=QG™'B
holds for the canonical projector Qs (canonical means: Qs projects R™ onto ker(A)
along S). B B
Proof. (i) — (ii) The space R™ can be described as S + ker(A), because
=(I-QG™'B) 2+ QG ' 'Bzr =z, + (%)

holds for any »z € R™. 23 obviously lies in ker(fl), because @) is a projector onto
ker(A). For z; we obtain
By = (I — BQG-1)B: = AG-"B= € im(A),

le., z1 € S.
It remains to show that S Mker(A) = {0}. To this end, let z € S N ker(A).
Then =z = Qx holds and there exists a z € R™ such that Az = Bz = BQz and

G~'Az = G~'BQx. Consequently, (I — Q)2 = Qx, s0 0 = Qz = .
(ii) — (iii) This holds trivially by definition. o B
(111) (i) Let « € R™ be chosen such that Gz = 0, i.e., BQz = —Az and so

Qr € S. On the other hand, Qz lies in ker(A). Thus, z € ker(Q) holds due to the
assumptlon That means, Al‘ =0, hence = € im(Q). Then z = 0 has to be true, and
G is nonsingular.

Because of the uniqueness of the decomposition (*), the latter assertion follows
immediately. d
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