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Abstract Space adaptive techniques for dynamic Signorinforces. A detailed study of this engineering problem is fibun
problems are discussed. For discretisation, the Newmark in[1]. For the reliable simulation of such a process, a [g&ci
method in time and low order finite elements in space ar@rediction is required for the contact forces, the contantez
used. For the global discretisation error in space, an a posnd their effects onto the whole body. Furthermore, the con-
teriori error estimate is derived on the basis of the semitact zone and the contact forces are strongly depending on
discrete problem in mixed form. This approach relies ortime. Hence, the precise consideration of these depenslence
an auxiliary problem, which takes the form of a variationalis essential in the numerical simulation.

equation. An adaptive method based on the estimate is ap-

plied to improve the finite element approximation. Numeri-

cal results illustrate the performance of the presentetioget An adequate technique, which gives rise to a flexible and

efficient finite element discretisation, is based on a poster
ori error control and resulting adaptive mesh refinement. In
general, a posteriori error estimates for second orderrhype
bolic problems are possible for two different discretisati
approaches. One of them uses space time Galerkin meth-
ods for discretisation and applies similar techniquesifiare
Dynamic Signorini problems arise in many engineering progontrol as in the static case ([2-5]). The other one is based o
cesses, e.g., in milling and grinding processes, vehicle dgiyjte differences in time and finite elements in space. Here,
sign, and ballistics. In these processes, the main effeets rgenarate error estimators are used for the space and time di-
sult from the contact at the surface of the bodies under congction ([6-8]) or error estimates for the whole problem ([9
sideration. Typical examples for engineering processberav 10]) are derived.

contact problems play a dominant role, are grinding proyy thjs article, finite differences in time and finite elerreint
cesses. The workpiece interacts with the grinding whegl onlg 406 are used to discretise the dynamic Signorini problems
in a small contact zone. However, the behaviour of the grindggcause only the data of the current time step comes into
ing machine is strongly affected by the resulting contach|ay, the error estimator can be evaluated efficiently. How-
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ever, the separation of the space and time direction compli-
cates the consideration of space time effects. The aim®f thi
article is to derive an error estimator for the finite element
discretisation in space direction. Therefore, an errotrobn
technique for static contact problems is applied to the semi
discrete spatial problem. This technique goes back to Braes
[11] and Schrdder [12]. Other approaches to a posteriori er-
ror control for static contact problems are discussed ir-[13
20]. In particular, an adaptive scheme for two-body contact
is contained in [21]. Convergence results for adaptive-algo
rithms in the context of obstacle problems are provenin.[22]



Adaptivity in time direction is not taken into account in and the initial velocityvg is in L? (Q). Here,y denotes the
this article for notational simplicity, although it is easyin-  trace operator of functions id* (Q, ) onto the boundary
corporate. One can do this on the basis of error estimatorg Q. See, e.g., [39] for more details. The gradient of the dis-
which are known from the literature of second order hyperplacement in space direction is denoted byu andAu is
bolic problems [6]. the usual Laplace operator applieduoThe first and sec-
The temporal discretisation of dynamic contact problems i®nd time derivatives are denoted byand u; respectively.

a difficult task. Several approaches based on different-prohin the following, all relations have to be understood almost
lem formulations have been presented in literature. In [23¢verywhere.

the penalty-method is used to solve the discrete problems.
Special contact elements in combination with Lagrange mul-
tipliers are presented in [24]. Other techniques for smooth, . _\y2. (I;LZ(Q)) AL® (I : Hl(Q,,-D))

ing and stabilizing the computation with special finite el-

ements, e.g., Mortar finite elements, are presented in [25fer notational convenience, although the existence of a so-
27]. In [28], the Newmark scheme is used with an additionalution in V can not be proven, even in the contact free case
L2-projection for stabilization. Algorithms for dynamic con [39]. The set of admissible displacements is

tact/impact problems based on the energy- and momentum

conservation are derived in [29,30]. An additive splitingK := {¢ €V |y (#) >gonlcx1}.

of the acceleration into two parts, representing the ioteri 5 ) )

forces and the contact forces, is the basis of the methodrshe L —Zscalar product IS qeflned bu,v) = Jq ”Vde‘?f
introduced in [31,32]. In [33—35] algorithms based on varia u',v E_L_ (Q). The density is set equal tg 1 for notguon_al
tional inequalities and optimisation algorithms are pnese. glmpI|C|ty. Evel?tually, .the weak formulation of the simpli
Detailed surveys of this topic can be found in the mono-fled dynamic Signorini problem, see, e.9., [40], reads
graphs [36, 37].

We choose the unconstrained trial space

o ) Problem 2.1 Find a functioru € K with u(t = 0) = up and
The article is organised as follows: In the next two secy;, (t = 0) = v for which

tions, the strong and weak formulations of the dynamic sim-

plified Signorini problem are introduced and the discretisa  (U(t), ¢ (t) —u(t)) + (Ou(t),0(¢ (t) —u(t)))
tion of the problem is discussed. In Section 4, the spatiaj> (f(t),¢(t)—u(t))

error estimator is derived serving as the basis of an adap-

tive algorithmwhich is explained in Section.3n Section Nolds forall c K and allt € 1.

6, two examples illustrate the application of the presente

H H o (1.12
techniques. The article concludes with a discussion of thq'hroughouttms article, we assurfes L (l ;L (Q))'

ﬁ the solution is sufficiently smooth, we obtain the equiva-

results. lent strong formulation (see [40])
Ui—Au=1f inQxl
2 Continuous Formulation u=0 onlpxl
U _ 0 onfyxl
In this section, the strong and the weak formulation of the vy onfin x
dynamic simplified Signorini problem are presented.Qet u—g>0 onlcxl
R? be the basic domain arld= [0, T] C R a time interval. au
The boundary Q of Q is divided into three mutually dis- e <0 onfcxl

joint parts/ip, Ic and 'y with positive measure. Homoge-

neous Dirichlet and Neumann boundary conditions are pres— (U—g) =0 onl¢ x|,

scribed on the closed sk and only, respectively. Contact

may take place on the sufficiently smooth Eetlc  Cp. wherevy is the outward normal direction on the boundary.
See, e.g., [38], Section 5.3 for more details. The time de-

pendent rigid foundation is parameterised by a sufficiently o

smooth functiory : I'c x | — RU{—o}. Here, the restric- 3 Discretisation

tion u> g onl¢ is consideredy < g can be treated analo-

gously. We use Rothe’s method to discretise the dynamic simpli-

fied Signorini problem. First, the problem is discretised in
The initial displacementiy is in temporal direction by the Newmark method (see [41]). The
resulting spatial problems are approximately solved by low

HY(Q,p) := {ve HY(Q)|yir, (v) = 0} order finite elements.



3.1 Temporal Discretisation The bilinear formc is uniformly elliptic, continuous, and
symmetric. Thus, an elliptic variational inequality hadt®
The time intervall is split into N equidistant subintervals solved in each time step. An efficient way for solving varia-
In = (tn-1,tn] Of lengthk =t, —tn_3 with 0 =:to <ty < tional inequalities is given by their mixed formulation.&h
.. <ty-1 <ty :=T. The value of a functionv at a time  Lagrange parameters may be interpreted as contact forces.
instance, is approximated by'. We use the notation=u  The variational inequality (3.4) is equivalent to the felto
anda = U for the velocity and the acceleration, respectively.ing mixed problem:

In the Newmark method; anda are approximated by Algorithm 3.2 Find (u,A) with W° = ug, \° = vp, and & =

. N (i_ ) "1 (g ap, such thatu",A") € Vi x A is the solution of the system
A= G W) g (G ) A D g e 6 e (35)
V=V lpk[(1-a)a™ t+ad"]. 32  (u—A"yu"—-g") <0, (3.6)

Here,a andp are free parameters in the intery@2]. For ~ forall ¢ € Vi, all p € Acand all ne {1,2,...,N}. Based
second order convergenee = 3 is required. Furthermore, on the equations (3.1) and (3.2), the functiohswmd &' are
the inequality B > a > 3 has to be valid for unconditional calculated in a postprocessing step.

stability (see [42]). Fordynamlc contact problems, theicho

a=0= % is recommended to guarantee conservation ofo e Ay is the dual cone of the set

energy and momentum (see [24,35]). For starting the New-

mark method the initial accelerati@g is needed. It can be G:= {u e HY/? (I'c)’ U< 0}.

calculated on the basis of the initial displacemmnsolving

the equation The dual pairing is expressed by-). The seW :=H(Q, )
0 0 is the unconstrained trial space discretised in tifie2 equiv-
(a°¢)+ (0u,0¢) = (f(0),9). alence of the two formulations is a well-known conclusion

[om the general theory of minimisation problems in Hilbert

Here, we assume that no contact takes place in the initia
P spaces presented, e.g., in [44,45].

configuration (see [42] for more detail§)he semi-discrete
problem then reads as follows:
3.2 Spatial Discretisation
Algorithm 3.1 Find u with = up, W’ = v and & = ay,
such that in every time stepen{1,2,...,N}, the function A finite element approach is applied to discretise the Algo-
u" € K" is the solution of the variational inequality rithm 3.2 based on the mixed formulation. We use adaptive
algorithms with dynamic meshes. Therefore, the trial space
@, ¢ —u")+ (0w, 0 (g —u") = (f(tn) ¢ —u"),  (33) W' and A} may vary from time step to time step. Bilinear
for all ¢ € K. The quantities § V", and & are coupled by ~basis functions on the mesH' are used for the finite ele-
the equations (3.1) and (3.2). ment spac¥,]'. The discrete Lagrange multipliers are piece-
wise constant and are contained in the At The index
H indicates that coarser meshes may be chosen for the La-
The se":= {¢ € H'(Q, M) |y ($) > g"onQ } is the grange multipliers. In our calculations, we ude= 2h for
time discretized set of the adm|SS|bIe dlsplacements tBUsttabnrcy reasonsn Figure 3.1, the results for the Lagrange
tuting the equation (3.1) witlr = 8 = 3 in the inequality multlpller with differentH are compared. The solution for

(3.3) leads to = his obviously not stable, whereas stability is observed
(U, ¢ —u") + 3K (O, (¢ —u") forH =2h.
> (K f (tn) + U kv g — 7). Because of the varying meshes, FE-functions have to be

transfered to the mesh of the current time step. This process
is denoted byl and is realized by ah?-projection. One
cu,¢—u") > (F" ¢ —u"), (3.4) might also consider standard interpolation as a transfer op
erator, which needs less effort, but can lead to instadsliti
The discrete problem in space and time is

This can be written as

wherec is defined by

1
c(w,9) = (w, )+ Ekz (Dw,00¢) Algorithm 3.3 Find (ul,Al]) € V! x A with W = Inuo,
V0 = Ivp and & = Iag, such that the system
andF" as h ) n*o § heo ) 4
C(uhv¢h)+<)\Hawrc (¢h)> = (H1a¢h) (37)

1 - _
FM:= Ekz f (tn)+un l+ kV! l- <uH _/\nay‘l—c (UR) _gn> <0 (38)
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Fig. 3.1 Results for the Lagrange multiplier with differeiit

is valid for all ¢p € V' anduy € A}, ne {1,2,...,N}. Ad-
ditionally, the equations (3.1) and (3.2) determiflewnd g).

Here,F! is given by

1
SUBSS Ek2 f (tn) + 1hupt + K™

The system (3.7-3.8) leads to the following saddle point
problem inR™, wherem depends on the time levei

- A"+ BN = 1
(-2 (B) @ -g) <o,

which must hold for aljz € RT,. Here, A" := M" + Jk?K"
is the generalised stiffness matrM" € R™™M is the mass
matrix andK" € R™M is the stiffness matrix. The matrix

B" € R™M represents the dual pairing in (3.8). Notice, that
all matrices may change from time step to time step.
Using the Schur complemeut = (A") ' (F" — B"A"), the
saddle point problem is rewritten as the quadratic program
min 4(A")TQUA"— (A")" (B8 (A TF -]
ANeRM

s. t. AN <O0.

The matrixQ" := (B") " (A") "1 B"is symmetric and positive
semidefinite. Thus, a standard quadratic program with sim-
ple sign constraints has to be solved in each time step. For
the numerical solution of this quadratic program (QP) any
QP-solver can be used, which only requires a user-defined
routine for the calculation ad®"A".

4 Spatial Error Estimation

In this section, an error estimation is derived for the spati
error in every time step. The estimation is easy to implement
and can be evaluated fast. The temporal error is not consid-
ered. The idea of the error estimation goes back to Braess
[11], who presented it for static obstacle problems. Thesid
was extended by Schroder [12] to static Signorini problems
even with friction by introducing a general framework for er
ror control of variational inequalities in Hilbert spacklere,

we extend this approach to time-dependent Signorini prob-
lems by applying the general framework to the semi-discrete
Algorithm 3.1. Since the functioR" is unknown in practice,

we have to substitute" by F!" in Algorithm 3.1 to obtain

an error estimator, which can be evaluated. This leads to the
following saddle point problem:

Auxiliary problem 4.1 Find (G“,Z”) € Vi x /g, such that
c(@,9)+ A"y (4)) = (RY.9) (4.1)
(H=A"yr (@) —g") <0 4.2)
forall ¢ € Vxand all u € Ay.
The consequences of this substitution are discussed in

Remark 4.3. The basic idea for deriving the error estimation
consists in the formulation of the auxiliary problem:

Auxiliary problem 4.2 Find U} € V, such that the varia-
tional equation

C(u27¢):(FP?7¢)_<A|[|17W_(;(¢)> (43)
holds for all¢ € V.

Auxiliary problem 4.2 corresponds to the first line of
Aucxiliary problem 4.1, but with the discrete Lagrange mul-
tiplier A} instead ofA".



We observe that} is also a discrete solution of Auxil- Therefore, it holds

iary problem 4.2. Therefore, the terjfn — ul|| can be esti- 5
Vo

mated by any error estimatg{ > 0 known for variational " — URHZ < f[ul — URH%
equations, i.e., ~ 4g(v1—¢)
1 n n n
Jul — uP[[? < C(nM?. e A M (Uh) — ) (4.4)

with a constan€, > 0 independent of," andA}}. with 0 < & <vy. In [43], itis proven that

The derivation of the error estimator for the spatial error o ”/"\ "AD|2 < Ella — u)?
the time-dependent Signorini problem can be sketched as Hi = . *
follows: We show (see Prop. 4.1) that with a constan€C > 0. This and inequality (4.4) yield

2 . 18" — U2+ A" = AR 12
<C(|lul - U+ +<0)

A" AR ) -~
" < o~ up* + Clja" — ) ?
with a constan€ > 0 independent dfiandH. Here,|| - || de-

o~ w2+

< [[a" — up)| 2+ C(]|a" — upl|® + [|ul — uRlI?)
notes the norm correponding to the related function spacess C'[|u? — ul||2+C"(A — MG Ve (up) — g™
1 - . - ~ ~ ~
We use théd*(Q)-norm forVy and the|| - || _1 /2 .-norm for with C' = (1+6)/(4e(vi —&)) +C andC” := (14-6) /(v1 —

functions inH~2(Ic). The additional termsy ands; are . 0O
defined in Remark 4.1 below. Then, an error estimation is
obtained by As mentioned above, we are able to get rid of the term

lu? —up|| by using an error estimatay,' for the auxiliary

~ 2
Anoanl < C(r]”)2 problem. Lemma 4.1 leads to

- o2+ |
with C > 0 and an error estimatey” defined as

n":=nl+s+s.

Lemma 4.1 There are constants'@C"” € R, such that

2

o= up)i®+ A"

< C|ul — WP +C A" = AR, yire (U) — o).

Proof. Let vo > 0 be the constant of continuity afand let

~n ni2 In n 2
o= e+ A - Ag
< C'C.(N1)?+C"(A" = Al vir (uf) — g").

The remaining terngA " — A1, Vire (Uf) —g") is estimated by

Lemma 4.2 Let vo > 0 be the constant of continuity of c.

Furthermore, let
d e KM= {veWilg"— yr. (U}) — Vi (V) <0}
ande > 0. Then, there holds

(A" = Ay (uh) — o)

(4.5)

v1 be its constant of ellipticity. Then, we obtain by the ellip- < ¢ Hgn _ UEHZ + A+e)vg ||d||2

ticity of ¢
va|& - uf|1?
< c(0"—up,d"—up)
= c(d"—ul,d" — up) +c(ul —up,d" —up)
Equation (4.1) and the continuity oflead to
c(@" —ul,d" — up) +c(ul —up, d" —up)
< (A0 = A" Y (A" = uR)) + vol[u? — ug || &7 — ug]
Using (4.3) and Young's inequality, we get
(A = A" Yire (0" = ug)) + vol[u? — ug[[[]&" — ug]|

= (M= A"y (0 = g + (A" = AT Vi (Uf) — o)
+vollul — up[|f1d” — v
< (A" = A% Vire (up) — @) + vol|u — up[]1a" — up|

2
~ . V
< A" = A Ve (Uh) — o) + g 0" — U1 + 26— upl12.

2¢

+3 {102 — )+ A vre (@)1
Proof. Inserting 0 and 2] in (3.8) yields
(A Wre (Up) — g% = 0.
Furthermore, we get

(A" Vire (Uf) — ")
= —(A"8"~ Vire (Uh) — Vire () — (A", Y ()
< c(0",d) — (R, d),

where the defintion df" (4.5) and equation (4.1) have been

used. The continuity of and Young'’s inequality lead to
c(a",d) - (Fy.d)

= c(d"—u),d) +c(up,d) — (R, d)

Vo | — ugl || + c(uf, d) — (Fy',d)

IN

IN

2
E . V,
11— U2+ 22 2+ (U ) — (..



The termc(u],d) — (F\',d) is estimatedising equation (4.3), 10 ‘
the continuity ofc, and Young’s inequalit@s follows: est. error
C(Uﬂ,d) - (Ff?vd) 1t ]
= C(UE - u27d) - ()\ﬂ7 MI—C (d))
< vo [[u? — ugll [|d]| — (A, Yre (d)) 01 f ]
—
1 2 V2 2 v
< 5l = il 4 = [1d )+ (AR Vire () 2 R
2 2 0.01 | ]
Eventually, we obtain an a posteriori error estimate by 0001 | e * ]
the following proposition:
» . ) 0.0001 : ‘ :
Proposition 4.1 There exists a constant€ 0 independent 10 100 1000 10000 100000
of ' andA[j, such that dof
||l]n - UHHZ + ’ /"\n - )\ﬂ 2 Fig. 4.1 Comparison of the values of the contributions to the preskent
error estimator.
2
<C<(nf)2+H(g“—wrc W), ) . . .
For more details and alternatives in the choiced sée [12].
ic ‘ ()\ﬂ, T (uﬂ))+) ‘ Since there holds

n n jn
holds. Here, f (x) := max{ f (x),0} denotes the positive part I ~ Ve (U) —¥r (") <O,

of a function f. d" is an element oK". From the definition of the norm

Proof. Combining Lemma 4.1 and Lemma 4.2 yields Fla/2 . it follows

~ 2 mn| n n
0"~ o2+ A" Ag 16" = (@~ v ()., -
< CCND?+C A" = A, Vire (uh) — ") x
1 £ .
< <C’+ ECH> C*(nf)2+C"§ " —uf|f? Remark 4.1All terms in the error estimate of Proposition
1 5 4.1 can be interpreted as typical sources of errors in con-
! (ﬂ d12+ (A, W’c(dm) . tact problems. The tersy := || (g" - yir (uﬂ)_).+|| measures
2¢ the error of the geometrical contact condition and the term
Choosing 0< € < 2/C", we get s0:= (A}, (8" — Vi (UR))+)| measures the violation of the
o ) complementarity condition.
g ~
(1- 55 ) 10—+ i 23
~ Remark 4.2In our numerical tests, the tersnalways turned
2 2 n ’
= C((n*) "+ |()‘H’y"—c(d))|) out to be smaller than the terrsgandn", see Figure 4.1.
with Since itis difficult to split this term into its elementwiserc

tributions, it is neglected for the mesh refinement strategy

/! /! 2
¢ := max C’+C— c*,m,c” .
2 2¢

In order to apply the error estimation of Proposition 4.1,

The functiond in Lemma 4.2 can be chosen as the harmoni(\:Ne have to specify an appropriate error estimagrfor

continuationd” of (g“ v (Uﬂ)) _which is characterised Auxmgry problem 42 !n pr|nC|pIe,. each error gstlmatudwn
S c + from literature of variational equations is possible to bedl
by the minimisation problem

See [46] or [47] for an overview. For the sake of complete-
ness, a residual based error estimator for Auxiliary pnoble

m2 2
1d"[l; inf_ [IVllz 4.2 is specified:

_V
with (nH?:= 5 nk
KeTn

wWhi= {VE V™ i (V) = (0" = Yire (UR)) } n& = Mg Ir[E20c) + P IR 2k




with are not appropriate. An alternative is given by algorithms
En 1k2 Al based on the ideas in [51,52]. The adaptive solution algo-

Fi=ht 2 Un = tn rithm is presented in Algorithm 5.1. It is split into several

L2 (g oup onao cycles. The whole time interval is passed in every cycle.

R:= i , T Ivg First, the approximative solution of the whole problem is
—zkK [a—vﬂ else. determined and the error is estimated. Then, the mesh is re-

fined via an appropriate spatial refinement strategy, which
can be chosen by the user, e.g., a fixed fraction strategy, see
[46,49]. Multiple hanging nodes in space and time may be
generated by this refinement process. This may cause severe
problems w.r.t. energy conservation. Therefore, the iplelti

. . hanging nodes in space are immediately removed by a spa-
Rnemark 4_._3We have used th_e discrete v_a_lﬁé instead Of tial regularisation algorithm. After finishing the wholeni
F" in Auxiliary problem 4.1, i.e., Proposition 4.1 specifies .

. L interval the multiple hanging nodes in time are removed,

a temporal local error estimator for the spatial discrétisa . . .

. ) : ) o hich closely connects the meshes of different time steps.
error. This technique is commonly used in the derivation o . o . .

) . ! ) hen, the stopping criterion is checked. Possible stopping
error estimators for numerical methods for ordinary differ . . i .

. . ~ criterions are: The number of degrees of freedom is greater

ential equations, see, e.g., [48]. The presented erranasti

) L . than a specified number, the number of cycles is greater than
tor expresses the spatial error distribution in the sinighe t P y 9

X Butit onlv provides information about the alobaberr a given number or the estimated error is smaller than a spec-
Steps. Sut it only pro nes no aton abouthe giobaberr g tolerance. A more detailed presentation of this adapti
under the assumptidg ~ F", which should hold for small

o . . algorithm, its extensions and the mathematical analysis wi
kandh. An a priori error analysis of the Newmark method in g y

. . be given in a separate article.
the context of dynamic contact problems is needed to make g P

a precise statement. To the best of the authors’ knowledge,
such an analysis does not exist and cannot be derived Hylgorithm 5.1 Adaptive solving algorithm
standard techniques due to the low regularity of the contin-;  ggt|— 1.

uous solution. 2. Setn=1and determine inital valuespu vj, , U, € V-
3. Determineﬁl,v”hl, uﬂl, fj basedon (3.1,3.2,3.7, 3.8).
1 n
Remark 4.4The presented error estimate is not restricted to4' Evaluate the error estimatayj’.

n — Th 1 n i
the Newmark method. It can easily be used for other similar5' Se.ﬂT'H = T} and refinefy, , according to the chosen
refinement strategy based gfi.

time stepping schemes. It was tested by the authors for th ; . . .

. L . . 6. Remove all multiple hanging nodes in space with Algo-
Generalizeda method, the application of which to dynamic rithm 5.2
contact problems is presented in [34, 35]. 7. lfn<N setn—n+1and go to 3

8. Remove all double hanging nodes in time with Algorithm

5 Adaptive Algorithm 5.3.

9. If the stopping criterion is fulfilled, then stop, else set
In general, adaptive algorithms for dynamic problems are |+« I+1andgoto 2.
based on refinement strategies, which are known from static
problems, see, e.g., [46,49] for a survey of adaptive algo-
rithms for static problems. Commonly used adaptive algo£lgorithm 5.2 Spatial regularisation algorithm
rithms for time dependent problems, see, e.g., [3,50], per4. Mark all cells with multiple hanging nodes.
form an adaptive refinement process using a prescribed tob |f no cells are marked, then stop.
erance in every time step. This refinement process is inde3. Refine all marked cells.
pendent of previous and subsequent time steps. The crucidl, Goto 1
point is that the time interval is passed only once. The toler
ance limit cannot be reached, if the solution in the previous
time step has not been calculated exactly enough. Moreoveklgorithm 5.3 Temporal regularisation algorithm
the difference of the meshes of two succsessive time stepf Setne 2.

may significantly increase the error. Usually, rapld chmge 2. Mark all cells with multiple backward hanging nodes in
of the problem parameters are the reason for this behaviour. time inT"

In dynamic Signorini problems, the problem parameters3. Refine all marked cells ffi".
change rapidly and, thus, the above mentioned algorithmd. If n< N, setn— n+21andgoto 2.

The quantityR represents the jump discontinuity in the ap-
proximation to the normal flux on the interface. We et 0
only andg= —A[ on/c. See [47], Section.2, for more
details.



(a) Mesh an=20 (b) Mesh ain=50

Fig. 6.1 Geometry of the simplified Signorini example

(c) Mesh ain= 100 (d) Mesh ain =150

(621

. Setnr=N-1.

. Mark all cells with multiple forward hanging nodes in
time inT".

. Refine all marked cells ifi".

. Ifn>1,setn—n—21andgoto6.

. Stop.
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6 Numerical Results (e) Mesh an = 200 (f) Mesh atn =250

The error estimator and the adaptive algorithm are tested fc
two examples. The first one is a simplified Signorini prob-
lem and the second one is a full 2D Signorini problem.

EEasMMscasscss MmN
2

6.1 A simplified Signorini example

We setQ :=[0,1]? and | := [0,1]. The initial values are
Uo (X1, X2) := 0 andvo (X1, Xp) := — sin (3 70x ) . Furthermore,
we setlp :={xe Q|xy =0}, I[c .= {xe Q[xy =1} and
I'n:=0Q\(lcNlp). The rigid foundation is

(g) Mesh ain =300

g:=sin(mx2) — 1.05.

The length of the time stepsis chosen as.0025. The ini-

tial mesh sizehg is 0.0625. Five refinement cycles are per-
formed, whereas a fixed fraction strategy with constant re
finement fraction of 50% and no coarsening is used. (i) Mesh atn = 400

_ The geometry of the presente_d problem is illustrated Mtig. 6.2 Meshes for different time steps of the simplified Signorini
Figure 6.1. Meshes for different time steps are presented igkample

Figure 6.2, the corresponding movie is shown in Animation
1. The mesh in Figure 6.2 (a) corresponds to the time step,
immediately before the first contact between the membrane
and the rigid foundation takgdace In Figure 6.2 (b)-(i), the
membrane gets into contact with the obstacle and the con-
tact zone is adaptively refined. We observe a moving front,



0.001
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uniform ——x-——

le-04

estimated error

1e-05 | (@) Mesh an=20 (b) Mesh atn =25

le-06 - -
100000 le+06 le+07 le+08

number of degrees of freedom

Fig. 6.3 Estimated error for adaptive and uniform refinement in the
simplified Signorini example

L . ) (c) Mesh atn =50 (d) Mesh atn =80
which is resolved by the adaptive meshes. In Figure 6.3 the

estimated convergence for adaptive and uniform refinemel
is compared. The estimated error is measured by

= max n"
n 1Sn§Nfl,

wheren" is given in Proposition 4.1. The number of degrees
of freedom is the sum of the number of degrees of freedor
of all single time steps. It is obvious, that the adaptive re- (e) Mesh an =90 (f) Mesh atn = 100
finement is more efficient than the uniform refinement. One

achieves the same accuracy with nearly a factor of 10 les
unknowns.

6.2 A Signorini example

Here, a bar of length.@m and height ®5m is considered.
The domain isQ := [0,0.2] x [0,0.05] and the time inter- (9) Mesh an =211 (h) Mesh an =215
val is | := [0,2.5-103]. The bar is modelled using a lin-
ear elastic material law in a plain strain situation with=
73-10°MPa andv := 0.33. The density i := 2770kg/m?.
The bar is fixed at the left boundaf = {x € Q |x; =0}.
The possible contact surface is given by the set

I_C:{XG.Q|X120.15/\X2=O}.

There are nonhomogeneous Neumann boundary conditions (i) Mesh atn= 217

OnI—N:{XEQ|X1201/\X2:005}W|th . . . . .
Fig. 6.4 Meshes for different time steps of the 2D Signorini example

q:=3.75-10'N/m?.
The rigid foundation is given by the set In Figure 6.4 meshes for different time steps are pre-
{x cR2 0< x1 <0.2A% < _0.005}. sented the corresponding movie is contained in Animation
2. The displacement is scaled by a factor of 5. During the
The length of the time steps is 1®and the initial mesh calculation, contact between the bar and the rigid founda-
sizehg is 6.25-10~3. Again, five refinement cycles are per- tion occurs several times. In the Figures 6.4 (a)-(c) and (d)
formed, whereas a fixed fraction strategy with constant reff) a sequence is depicted, which starts before contacstake
finement fraction of 50% without coarsening is used. places and ends after contact. The influence of contact to the
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