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1 Introduction

We consider n independent p-dimensional observations Xi with means and covarian-
ce matrices

E(Xi) = ziB , D(Xi) = Σ (i = 1, . . . , n),(1.1)

where zi are the rows of a known n× k matrix Z of rank k. The k× p matrix B and
Σ are unknown parameters. The unknown distribution of Xi will be denoted by Pi.
The matrix with rows Xi will be denoted by X. Bayes estimates are wellknown under
normal distributions Pi and normal-Wishart prior distributions for the parameter

ξ = (B, Ω) , Ω = Σ−1(1.2)

(see De Groot (1970) or Zellner (1971)). Bayes estimates for B and Σ are not only
useful, when some prior informations is incorporated into the statistical analysis
in form of a prior distribution, but also as a basis for the construction of sensible
estimates by adapting the parameters of the prior, e.g. estimating them (see Lindley
(1972) and Efron and Morris (1973) or choosing their values by minimization of an
estimate of the risk of the Bayes estimate (see Bunke (1986)). Moreover they are
useful for producing by some limiting process the maximum likelihood estimates,
namely by noninformative limits of priors and corresponding posteriors (see Box
and Tiao (1973) and Hartigan (1983)). An alternative approach to the description
of a noninformative situation could be to take the posterior as a new prior and
calculate the corresponding posterior and repeate the procedure again and again
hopefully converging to a value, which we will call “selfinformative limit“ (see section
3.).In parametric problems under some regularity conditions the posterior means
calculated in this way converge to the maximum likelihood estimate (see Bunke,
Hennig and Schmidt (1976)).
The model (1.1) is semiparametric, when the distributions Pi are unknown even
under fixed parameters B, Σ. Our paper is concerned with the characterization of
posterior distributions and corresponding Bayes estimates of B, Σ and of Pi and
with the structure of their selfinformative limits in some special cases. This may give
some insight into the problem of maximum likelihood estimation in semiparametric
models, its treatment being still not complete (see Gill (1989)). The special case of
Bayes estimation in a univariate semiparametric location model has already been
treated under different priors by several authors (see Diaconis and Freedman (1986)
and its discussion).

2 Prior and Posterior Distributions

The Dirichlet distribution Dα of a random (probability) distribution G will be used
to define our priors. It is determined by a finite measure α on (Rp,Bp).The reali-
zations of G are distributions on (Rp,Bp). Dα is the distribution under which for
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each finite partition of Rp into disjoint Borel sets B1, . . . , Bm the random vector
q := (G(B1), . . . , G(Bm)) with values in Q = {q ∈ Rm | qj ≥ 0,

∑
j

qj = 1} follows a

Dirichlet distribution with density

f(q) ∝
∏

j

α(Bj)
qj−1.(2.1)

The mean of G under Dα is

∫
GDα(dG) = β = a−1α,(2.2)

where a = α(Rp). Under Dα almost all realizations G are distributions with means
mG and covariance matrices CG (see Hartigan (1983), Ferguson (1973) and Simar
(1984) for details).
We will introduce a prior for the unknown parameters and distributions which allows
a calculation of the posterior distribution and generalizes the prior used in Diaconis
and Freedman (1986) (first construction there). To define the prior we write

Xi = ziA + UiΛ
−1/2,(2.3)

and assume that
(i) the vector

�
= (1, . . . , 1)t is contained in the linear space R(Z) generated by the

columns of Z,
(ii) the p-dimensional random vectors U1, . . . , Un are i.i.d. with distribution G if
A, Λ, G are fixed and
(iii) under the prior the parameter ϑ = (A, Λ) and G are independent, G having a
Dirichlet distribution Dα with β = a−1α = N(0, I) and ϑ having a normal-Wishart
density with f = r + p − k + 1 degrees of freedom:

f(ϑ) ∝ |Λ|r/2e[Λ(S0 + (A − A0)
tΓ0(A − A0))],(2.4)

where r > k, e[M ] = exp[−trM/2], A0 is a k × p matrix and Γ0, S0 are positive
definite symmetric matrices.
The equation (2.3) generating the observations Xi determines the relationship bet-
ween (i) the actually interesting parameters B, Σ in (1.1) and distributions
Pi = Pi(A, Λ, G) of Xi and (ii) the parameters A, Λ and distribution G. It holds

B = A + Z+1ImGΛ−1/2 , Σ = Λ−1/2CGΛ−1/2(2.5)

where Z+ = (Z ′Z)−1Z ′.
It is important to know prior means of the parameters of interest to allow a sensible
choice of the constants in (2.4).
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Theorem 2.1 Under the prior introduced for ϑ,G and (1.1), (2.3) it holds, that
E(G) = N(0, I) and

E(B) = A0 , E(Σ) = a(r − k)−1(a + 1)−1S0.(2.6)

We now discuss the posterior distribution of ϑ,G, which determines the posterior
means of B, Σ by (2.5) and of the unknown distributions Pi by (2.3). Because under
the condition of fixed A, Λ, G the random vectors Yi = (Xi − ziA)Λ1/2 are i.i.d. with
distribution G, we obtain the conditional posterior of G under the condition of fixed
A, Λ as the Dirichlet DαY

corresponding to

αY = α +
∑

i

δYi
(2.7)

where δy (see Ferguson (1973)) denotes the Dirac measure degenerated at y. There-
fore (see (2.3)) the posterior mean of Pi = Pi(A, Λ, G) (the distribution of Xi) will
be (for P X− almost all X w.r.t. the marginal distribution P X of X )

P̃i = E(Pi|X) = κEXN(ziA, Λ−1) + κEXQỸ ,(2.8)

where

Ỹj = YjΛ
−1/2 + ziA = Xj + (zi − zj)A,(2.9)

κ = a/(a + n) , κ = 1 − κ(2.10)

and QỸ denotes the empirical distribution of Ỹ1, . . . , Ỹn, EX denoting the mean
w.r.t. the posterior distribution of ϑ.
The posterior distribution for ϑ is determined by the prior of ϑ and the marginal
distribution W of the matrix U with rows Ui (see (2.3)). Under W the conditional
distribution of Um under the condition of fixed U1, . . . , Um−1 is

(a + m − 1)−1
[
aN(0, I) +

m−1∑

i=1

δUi

]
(2.11)

(see Hartigan (1983)) and therefore the probability is positive, that some of the
rows Ui are identical. More specifically it holds (see Ghorai and Rubin (1982) and
Lo (1984))
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W =
∑

c∈C

W (Mc)Wc,(2.12)

where C is the set of all partitions

c : N = {1, . . . .n} =

|c|∑

t=1

Nct(2.13)

of the set N into disjoint subsets Nct, Lc is the linear subspace of all n× p matrices
U with identical rows Ui = Uj if i, j ∈ Nct,

Mc = {U ∈ Lc | Ui 6= Uj if i ∈ Nct, j ∈ Nch, t 6= h}(2.14)

and Wc is the conditional distribution of U under the condition U ∈ Mc. From (2.11)
it easely proven by induction, that

πc = W (Mc) = nca
|c|−1[(a + 1) · (a + n − 1)]−1,(2.15)

nc =

|c|∏

t=1

|Nct|! , (|Nct| : number of elements in Nct).(2.16)

W̃c is the distribution of a random matrix U with values in Lc, the different rows
being i.i.d. with distribution N(0, I), and Wc is the restriction of W̃c on Mc.
A consequence of the structure (2.12) is the mixture structure of the posterior dis-
tribution PX of ϑ

PX =
∑

c∈C

P (U ∈ Mc |X)Pc,X ,(2.17)

where Pc,X is the posterior of ϑ under a model (2.3) with a fixed distribution Wc of
U . Fortunately, some or even many of the terms in (2.17) may vanish together with
the posterior probabilities for U ∈ Mc, as shown in the next theorem 2.2. For this
we introduce some notation:
The image of the mapping (2.3) under the restriction U ∈ M will be

T (M) := {X = ZB + U |B ∈ Rk×p, U ∈ M}.(2.18)
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We introduce the following subsets of partitions:

D(c) = {c ∈ C |T (Lc) = T (Lc)}(2.19)

D = {c ∈ C |T (Lc) = Rn×p}(2.20)

and (denoting the dimension of T (Lc) by dc) the subsets of observations

Tc = {X ∈ T (Mc) |X /∈ T (Lc) ∀c : dc ≤ dc, T (Lc) 6= T (Lc)},(2.21)

T (c) =
⋃

c∈D(c)

Tc , T =
⋃

c∈D

Tc.(2.22)

The set C of partitions is obviously the union of equivalence classes D(c) (= D(c) for
c ∈ D(c)) of partitions leading to same images T (Lc). The set T (c) of observations
corresponds just to the class D(c), including only observations generated by “errors“
U from Mc (Rn×p has been already partitioned in the disjoint subsets Mc) and leaving
out the observations belonging to images T (Lc) of smaller dimension (or different
from T (Lc), if the dimension is the same). D and T correspond to the full dimension
dc = n. We denote by λL the Lebesgue measure on the σ-algebra of Borel sets of
the linear subspace L ⊂ Rn×p and by λL its extension to B

n×p. Then it is easy to
see, that T (Lc), T (Mc) and T (c) differ only by a nullset w.r.t. the Lebegue measure
λc := λT (Lc).
In the following we will use the positive semidefinite (possibly singular) matrix

Ωc = ZΓ−1
0 Zt + Kc,(2.23)

the elements kcij of Kc being equal to one, if i and j belong to the same subset Nct

and zero otherwise, and the constants

dc = rank Ωc = dim T (Lc), sc = r + dc + p + 1 − k.(2.24)

Finally we denote the determinant of a matrix G by |G|, the Moore-Penrose inverse
of G by G+ and we introduce the functions

w̃c(X) = |Ω+
c |

p/2 |S0 + (X − ZA0)
tΩ+

c (X − ZA0)|
−sc/2(2.25)

6



wc(X) = g−1
c w̃c(X).(2.26)

The constants

gc =

∫
w̃c(X)dλc(X) = g(sc)(2.27)

may be shown to depend on c through sc writing wc(X) as the density of a generalized
Student distribution (see De Groot (1979)) in the matrix variable Y = UcX defined
by the diagonalization or spectral decomposition Ωc = U t

cDiag[wc1, . . .]Uc.

Theorem 2.2 Under the above assumptions, for all c ∈ C and for P X almost all
X in T (c) it holds, that

P (U ∈ Mc |X) = πcwc(X)/
∑

c∈D(c)

πcwc(x),(2.28)

if c ∈ D(c) and

P (U ∈ Mc |X) = 0 if c ∈ C − D(c).(2.29)

Let νp the Lebesgue measure on the σ-algebra of Borel sets of the set of positive
definite p×p matrices. An explicit expression for the density of Pc,X w.r.t. a product
measure of the form µc = λRc

× νp can be derived for P X - almost all X in T (c).
The linear space Rc will be generated by the matrix ∆c defined in (2.34):

Rc = {∆cH | H ∈ Rk×p}.(2.30)

Theorem 2.3 Under the above assumptions and for P X-almost all X ∈ T (Lc) the
distributions Pc,X have the densities w.r.t. µc

pc(ϑ |X) ∝ |Λ|(r+dc)/2e[Λ{Sc + (A − Ãc)
t∆+

c (A − Ãc)}],(2.31)

where

Sc = So + (X − ZA0)
tΩ+

c (X − ZA0),(2.32)
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Ãc = A0 + Γ−1
0 ZtΩ+

c (X − ZA0),(2.33)

∆c = Γ−1
0 − Γ−1

0 ZtΩ+
c ZΓ−1

0 .(2.34)

The means of A and Λ−1 under the “generalized normal-Wishart“ density (2.31) are
Ãc and (see De Groot (1970))

Λ̃−1
c = (dc + r − k)−1Sc.(2.35)

These means yield together with (2.5), (2.17) and theorem 2.2 the posterior means
of B and Σ, which are Bayes estimates w.r.t. quadratic risks. For each observation
X ∈ Tc the terms appearing in the expressions correspond to partitiones c leading
to the same linear space T (Lc) = T (Lc):

Theorem 2.4 Under the above assumptions and for P X− almost all X ∈ T (Lc)
(c ∈ C) leading to densities (2.31) with some matrices Ãc, Sc for all c ∈ D(c) the
posterior means B̃ and Σ̃ of B and Σ are

B̃ =
∑

c∈D(c̃)

rcB̃c , Σ̃ =
∑

c∈D(c)

rcΣ̃c.(2.36)

where rc = P{U ∈ Mc |X) and

B̃c = Ãc + κZ+ � (x − zÃc),(2.37)

x = n−1
∑

i

Xi , z = n−1
∑

i

zi ,(2.38)

Σ̃c = ω[κΛ̃−1
c + κ(qcΛ̃−1

c + Rc − κ rt
crc)],(2.39)

where

ω = (a + n)/(a + n + 1),(2.40)
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qc = tr[∆c(n
−1ZtZ − κ zt z)],(2.41)

rci = Xi − ziÃc , rc = n−1
∑

i

rci,(2.42)

Rc = n−1
∑

i

rt
circi.(2.43)

Moreover the posterior mean of Pi is a mixture

P̃i =
∑

c∈D(c)

rc[κFi,c + κ(νicPic + νicF̂ic)](2.44)

of distributions, where Fi,c has the density

fi,c(y) = f(y | sc + 1, hic + 1, Sc, ziÃc),(2.45)

hic = zi∆cz
t
i ,(2.46)

f(y | a, b, S, d) ∝ |S + b−1(y − d)t (y − d) |−a/2(2.47)

being the density of a generalized Student distribution, Pic has the density

pic(y) =
∑

j∈Jic

m−1
ic h−p

ijc qic ([y − Xi(j, c)]/hijc)(2.48)

being a “kernel desity estimate“ depending on “pseudoobservations“

Xi(j, c) = ziÃc + (Xj − zjÃc),(2.49)

and F̂ic is the empirical distribution of the pseudo observations Xi(j, c), j ∈ Vic,
using the notation
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h2
ijc = (zi − zj)∆c(zi − zj)

t,(2.50)

Jic = {j ∈ N |hijc > 0} , Vic = N − Jic,(2.51)

qic(y) = f(y | sc, 1, Sc, 0),(2.52)

νic = mic/n , νic = 1 − νic , mic = | Jic |.(2.53)

3 The Location-Scale Model

The location scale model is the special case k = 1, Z = � of (1.1), where we write
γ = Γ0. Here we have T (Mc) = Mc , these sets being different for different c.
Therefore D(c) = {c} for all c and

P (U ∈ Mc, |X) = δc c(3.1)

for P X-almost all X ∈ Mc, so that for these X the Bayes estimates of B and Σ are of
the form (2.37) and (2.39), provided that the distribution Pc,X has a density of the
form (2.31), see theorem 2.4. This is the case, because following from the definition
of Wc the distribution Pc,X is the posterior under the parametric model (2.3), where
i = i1. . . . , i|c| and where it is a fixed index from Nct for each t, the random vectors
Ui1 , . . . , Uic being i.i.d. with distribution N(0, I). In this normal location-scale model
the posterior density is wellknown (see Zellner (1971)) and of the form (2.31) with

Sc = S0 + |c|Hc + |c|λc(xc − Ãc),(3.2)

xc =
∑

t

Xit / |c| ,(3.3)

Hc =
∑

t

(Xit − xc)
t(Xit − xc)/ |c| ,(3.4)
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λc = γ(γ + |c| )−1 ,(3.5)

Ãc = λcA0 + (1 − λc)xc.(3.6)

For PX-almost all X ∈ Mc we obtain the Bayes estimates

B̃c = κ[λcA0 + (1 − λc)xc] + κx,(3.7)

Σ̃c = ω
[
κ(1 + κ[γ + |c|]−1)Λ̃−1

c + κHc + κκ(x − Ãc)
t(x − Ãc)

]
(3.8)

where

x = n−1

n∑

i=1

xi , Λ̃−1
c = (|c| + r − 1)−1Sc.(3.9)

We remark, that xc and Hc are the sample mean and covariance matrix of the
subsample consisting of the different observations Xi.
The Bayes estimate P̃i of Pi will be (see (2.44))

P̃c = κFc + κF̂ ,(3.10)

where Fc has the density f(y | sc + 1, (γ + |c|)−1 + 1, Sc, Bc) and F̂ is the empirical
distribution of the observations x1, . . . , xn, all constants (2.46) vanishing.

Remark 1: Because of the law of large numbers, for a fixed distribution G and fixed
parameters B and Σ, the mean xc and Hc will be consistent estimates of B and Σ
resp. and the empirical distribution F̂ will be consistent for the distribution P of
Xi. Therefore all our Bayes estimates B̃, Σ̃, P̃ will be consistent in the frequentist
sense.

Remark 2: We will investigate “selfinformative“ limits of Bayes estimates, which are
obtained by taking the posterior P ϑ

X in place of the original prior for ϑ in a parametric
problem, calculating the corresponding posterior and repeating this procedure again
and again. . We will define a selfinformative limit in a precise manner, which is
equivalent to the above mentioned iterative procedure if the determination of the
conditional expectation given by (2.36), (2.39), (2.44) is used.
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We consider m replications of the model (1.1), that is precisely, we take ñ = mn
in place of n, Z̃ = � m ⊗ Z in place of Z and take independent observations X̃i(i =
1, . . . , ñ) in place of Xi, ⊗ denoting the Kronecker product. Now we have the model

EX̃ = Z̃B , DX̃ = Σ ⊗ Iñ(3.11)

replacing (1.1).

Definition 3.1 We assume mX = � m ⊗ X and denote by B̃, Σ̃, P̃i the Bayes esti-
mates corresponding to observations X̃ ∈ Rñ×p defined by (2.36), (2.37), (2.39) and
(2.44). The limit of B̃, Σ̃ or of P̃i calculated for X̃ = mX and for m → ∞, if it
exists, is called a selfinformative limit.

We calculate now selfinformative limits in the location-scale model and assume, that
all observations Xi are distinct. Then the Bayes estimates are (3.7), (3.8) and (3.10),
where xc and Hc are the mean x and the covariance matrix

S = n−1

n∑

i=1

(Xi − x)t(Xi − x)(3.12)

of the whole sample X1, . . . , Xn resp. The “sample“ mX of size ñ has the same
mean and covariance matrix and also the same empirical distribution (each value Xi

appears m times and its probability under the empirical distribution is m/ñ = 1/n).
The matrices Ãc and Sc for this sample have the limits (using |c| ñ)

lim
m→∞

ãc = x , lim
m→∞

m−1Sc = nS ,(3.13)

so that

Λ̃−1
c = (r + ñ − k)−1Sc → S .(3.14)

We obtain the selfinformative limits

B̃ → x , Σ̃ → S , P̃ → F̂(3.15)

because of (3.7), (3.8).(3.10) and

λc = γ(γ + mn)−1 → 0 , κ = a(a + mn)−1 → 0.(3.16)
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4 The Two-Sample Model

The two-sample model is the special case k = 2,

Z =

( �
n1

0
0

�
n2

)
, B =

(
bt
1

bt
2

)
(4.1)

of (1.1), the size of the i-th sample being ni. We will restrict our attention to the
estimation of the means b1 and b2 of both samples and assume

Γ0 =

(
w1 0
0 w2

)
, A0 =

(
at

01

at
02

)
.(4.2)

It is easy to see, that T (Lc) = Rn×p for the partitions

c∗ : N =
n∑

i=1

{i}(4.3)

and, (for all i, j with 1 ≤ i ≤ n1 < j ≤ n = n1 + n2)

c(i, j) : N =
∑

m6=i,j

{m} + {i, j} ,(4.4)

while T (Lc) is a subspace and Lebesgue null set of Rn×p for all other partitions.
Therefore we have

D = {c∗} + V , V = {c(i, j) | i ≤ n1 < j ≤ n}(4.5)

(see (2.19). Then the set T (see (2.22) is the complement of the Lebesgue null set

T =
⋃

1≤i<k≤n1

Lik ∪
⋃

n1<j<m≤n

Ljm ∪
⋃

1≤i6<k≤N1:i6=k

n1<j 6<m≤n:j 6=m

Likjm,(4.6)

being the union of linear subspaces

Lik = {X ∈ Rn×p |Xi = Xk} ,(4.7)

Lijkm = {X = ZA + U |A ∈ R2×p, U ∈ Rn×p : Ui = Uj, Uk = Um}.(4.8)

Theorem 2.4 gives after a cumbersome algebraic calculation (see appendix):
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Theorem 4.1 The posterior means of b1, b2 in the semiparametric two-sample mo-
del (1.1), (4.1) under the above assumptions on the prior and (4.2) are given for
PX-almost all X ∈ T by

B̃ = rc∗B̃c∗ +
∑

1≤i≤n1<j≤n

rc(i,j)B̃c(i,j),(4.9)

B̃c = Ãc + κ � (x −
n1

n
ãt

c1 −
n2

n
ãt

c2) ,(4.10)

ãt
c∗m = (nm + wm)−1(nmx̃m + wmat

0m), (m = 1, 2),(4.11)

ãt
c(i,j)1 = d[ � ′X + λ2(Xi − Xj) + Xi + (1 − n1 − λ2)a

t
01 + (λ2 − n2)a

t
02],(4.12)

ãt
c(i,j)2 = d[ � ′X + λ1(Xj − Xi) + Xj + (λ1 − n1)a

t
01 + (1 − n2 − λ1)a

t
02],(4.13)

where

x1 = n−1
1

n1∑

n=1

Xi , x2 = n−1
2

n∑

i=n1+1

Xi ,(4.14)

λm = nm − 1 + wm (m = 1, 2) ,(4.15)

d = (n − 1 + w1 + w2)
−1.(4.16)

The weights rc in (4.9) are determined by:

rc = sc/(sc∗ +
∑

1≤i≤n1<j≤n

sc(i,j)),(4.17)

where
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sc∗ = [(n1w
−1
1 + 1)(n2w

−1
2 + 1)]−p/2 |S0 + Q∗|

−(g+n)/2,(4.18)

Q∗ = X̃ tX̃ −

2∑

m=1

(nm + wm)−1n2
mx̃

t

mx̃m,(4.19)

where

X̃ = X − ZA0,(4.20)

x̃1 = n−1
1

n1∑

i=1

X̃i , x̃2 = n−1
2

n2∑

i=n1+1

X̃i,(4.21)

g = r + p + 1 − k,(4.22)

and

sc(i,j) = (d−1w1w2)
p/2 |S0 + Qi,j |

−(g+n)/2,(4.23)

where

Qi,j = X̃ tX̃ − d−1[T t
ijTij + Wij − Hij] ,(4.24)

Tij =
n∑

m=1

X̃m − X̃i − X̃j ,(4.25)

Wij = X̃ t
iTi + T t

i X̃i + X̃ t
jTj + TjX̃j + (d − λ1)X̃

t
i X̃i + (d − λ2)X̃

t
jXj(4.26)

Hij = λ1λ2X̃
t
i,jX̃i,j + X̃ t

i,j(λ1Tj − λ2Ti) + (λ1Tj − λ2Ti)
tX̃i,j ,(4.27)

Ti =

n1∑

m=1

X̃m − X̃i , Tj =
n∑

m=n1+1

X̃m − X̃j , Xi,j = X̃i − X̃j.(4.28)

The Bayes estimates Σ̃ and P̃i may be calculated in an analogous manner but yield
even more complicated expressions and therefore are omitted here.
The calculation of the selfinformative limit of the Bayes estimate (4.9) of B yields
the maximum likelihood estimate under normal distribution G = N(0, 1):

15



Theorem 4.2 Under the assumptions of theorem 4.1 and for P X-almost all X ∈ T
the selfinformative limits of the Bayes estimates of the means b1, b2 are

b̃t
m → xm.(4.29)
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5 Appendix

1. Proof of theorem 2.1:

(2.6) follows from (2.5), the prior independence of ϑ and G, the means

E mG = mβ = 0 , E CG = a(a + 1)−1Cβ = a(a + 1)I(A.1)

under a Dirichlet Dα (see Ferguson (1973)) and the means

EA = A0 , EΛ−1 = (r − k)−1S(A.2)

under (2.4) (see De Groot (1970)).

2. Proof of theorem 2.2:

Because of the definition of Wc and Ωc the conditional distribution of X under the
conditions U ∈ Mc and of a fixed Λ is the normal N(ZA0, Λ

−1 ⊗ Ωc). It has the
density

f(X | c, Λ) ∝ |Λ|dc/2 e[Λ(X − ZA0)
t Ω+

c (X − ZA0)](A.3)

w.r.t. λc, as stated in the following lemma, which may easely be proven using prin-
cipal components of X and of its subvector X2 and the known densities of normal
distributions with nonsingular covariance matrices.

Lemma 1: Assume

X ∼ Nn(0, Σ) , X =

(
X1

X2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where X2 ∈ Rk with k < n and Σ22 ∈ Rk×k. We use the notation

L1 = {Σ11b | b ∈ Rn−k}, L2 = {Σ22b | b ∈ Rk}(A.4)
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The distribution of X has w.r.t. λL1×L2
the density p(x) ∝ e[xtΣ+x]. For almost all

X2 ∈ L2 the conditional distribution of X1 under the condition X2 has w.r.t. λL1
the

density

p(X1|X2) ∝ e[(X1+Σ12Σ
+
22X2)

t(Σ11 − Σ12Σ
+
22Σ21)

+(X1 + Σ12Σ
+
22X2)].(A.5)

Using the integral

∫
|Λ|be[ΛS]dΛ = kb |S|

−(b+p+1)/2(A.6)

(see Zellner (1971)) we may integrate (A.3) w.r.t. the prior distribution of Λ (see(2.4))
and see, that the conditional distribution Pc of X under the condition U ∈ Mc has
a density w.r.t. λT (Lc) =: λc, which is given by wc(X) (see (2.26)).
Now it easy to see, that (see (2.21)

T (Lc) = Tc ∪ T̃c with some set T̃c obeying λc(T̃c) = 0,(A.7)

λc(Tc) ≤ λc(T (Lc)) = 0 if dc > dc(A.8)

Tc ∩ T (Lc) = o/ if dc ≤ dc, T (Lc) 6= T (Lc).(A.9)

Therefore for all c ∈ C the distribution Pc has a density w.r.t.

λ =
∑

c∈C

λc :(A.10)

dPc

dλ
= |D(c)|−1IT (c)(X)wc(X).(A.11)

This follows from λc = λc (c ∈ D(c)), (A.7), (A.8), (A.9) leading to

∫

H

IT (c)(X)wc(X)dλ(X) =(A.12)

∑

c∈D(c)

∫
IH∩T (c)(X)wc(X)dλc(X) = |D(c)|

∫

H

wc(X)dλc(X).
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Bayes formula together with (2.15) and (A.11) proves the theorem.

3. Proof of theorem 2.3:

The prior (2.4) and (A.3) give for P X-almost all X ∈ T (c) the marginal density

p(Λ|c,X) ∝ |Λ|(dc+r−k)/2e[ΛSc](A.13)

under Pc,X . The conditional distribution of
(

A
X

)
under the conditions U ∈ Mc and Λ

is the normal N(G0, Λ
−1 ⊗ Ψc), where

G0 =

(
A0

ZA0

)
, Ψc =

(
Γ−1

0 Γ−1
0 Zt

ZΓ−1
0 Ωc

)
.(A.14)

The conditional density of A under the condition of a fixed X is known from Lemma
1 and yields together with (A.13) the density (2.31).

4. Proof of theorem 2.4:

The posterior mean (2.44) follows from (2.8) together with (2.17) and (2.31) because
of

Ec,X

(
N(ziA, Λ−1) |Λ

)
= N(ziÃc , (hic + 1)Λ−1)(A.15)

leading with (A.6) to the density (2.45) of Ec,XN(ziA, Λ−1); and

Ec,XδỸj
= Ec,X N(Xi(j, c), h2

ijcΛ
−1) , j ∈ Jic(A.16)

leading to the density (2.48) of the distribution Pic. The posterior means (2.38)
follow from (2.5) together with (2.31), (A.1) and (A.2) and

Σ̃c = ωEc,X Λ−1/2 Ca−1αY
Λ−1/2 =(A.17)

= ωEc,X

[
κΛ−1/2IΛ−1/2 + κn−1

∑

i

(Xi − ziA)t(Xi − ziA) −

−κ2(x − zA)t(x − zA)

]
=

= ω

[
κΛ̃−1

c + κEc,X

{
Rc + n−1

∑

i

(zi∆cz
t
i)Λ

−1 −

−κ
[
(x − zÃc)

t(x − zÃc) + (z ∆c zt)Λ−1
]}]

= (2.39).
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5. Proof of theorem 4.1:

The proposition (4.9) follows from (2.31) and (2.36) by a cumbersome algebraic
calculation using vi = w−1

i and the matrices

Ωc∗ = Diag[v1 Jn1
, v2 Jn2

] + I , Jm = � m � m
t,(A.18)

Ωc(n1,n2) =




Im1
+ v1Jm1

v1 � 0 0

v1 � t 1 + v1 0 1

0 0 Im2
+ v2Jm2

v2 �

0 1 v2 � t 1 + v2




.(A.19)

Their inverses are

Ω−1
c∗ = Diag[In1

− (n1 + w1)
−1Jn1

, In2
− (n2 + w2)

−1Jn2
](A.20)

and

Ω−1
c(n1,n2) = d




d−1Im1
− Jm1

−µ2 � −J λ2 �

−µ2 � µ2λ1 λ1 � t −λ1λ2

−J λ1 � d−1Im2
− J −µ1 �

λ2 � t −λ1λ2 −µ1 � t µ1λ2




,(A.21)

where

µi := λi + 1 = ni + wi (i = 1, 2).(A.22)

Their determinants are

|Ωc∗ | = (v1n1 + 1)(v2n2 + 1) , |Ωc(i,j) | = (w1w2d)−1.(A.23)

We remark, that the matrices Ωc(i,j) are obtained from Ωc(n1,n2) by row and column
permutations.
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6. Proof of theorem 4.2:

Following the definition of selfinformative limits given in section 3 we take r repli-
cations of the two-sample model, that is, we replace in (1.1), (4.1) nj by rnj, Z by�

r ⊗ Z, use the observation matrix
�

r ⊗ X and take the limit of the corresponding
Bayes estimates (4.9) for r → ∞, assuming X ∈ T .
For r → ∞ we obtain

b̃t
c∗m → xj (m = 1, 2)(A.24)

and for (i, j) ∈ V

b̃t
c(i,j)1 → hij1 = x + n−1

2 n(Xi − Xj)(A.25)

b̃t
c(i,j)2 → hij2 = x + n−1

1 n(Xj − Xi)(A.26)

Moreover we have:

r−1Q∗ → Q =
∑

i

X t
iXi − n1x

t
1x1 − n2x

t
2x2 ,(A.27)

r−1Qi,j → Qij = Q+n1(x1−hij1)
t(x1−hij1)+n2(x2−hij2)

t(x2−hij2).(A.28)

We see for (i, j) ∈ V , that Qij − Q is positive semidefinite and that

Qij = Q if and only if hijm = xm (m = 1, 2).(A.29)

With

(i, l) ∈ V1 = {(i, l) ∈ V |hilm = xm (m = 1, 2)}(A.30)

we obtain for r → ∞ the limit

s−1
c∗ sc(i,j) = qij(r)

p/2 −→ q = (n−1 n1 n2)
p/2 ,(A.31)

where
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qij(r) =
2∏

m=1

(nmw−1
m + r−1)wm(n + r−1[w1 + w2 − 1])−1.(A.32)

With (i, j) ∈ V2 = V − V1 it holds that |Q| < |Qi,j| and therefore that

s−1
c∗ sc(i,j) = qij(r)

[
|r−1S0 + r−1Q∗| |r

−1S0 + r−1Qi,j|
−1

](g+rn)/2

→ 0.(A.33)

From (A.31) and (A.33) follows that

rc(i,j) → 0 [(i, j) ∈ V2](A.34)

rc∗ → % = (1 + |V1|q)
−1 , rc(i,j) → % q [(i, j) ∈ V1](A.35)

Finally (A.28), (A.34), (A.35) yield

b̃t
m =

∑

c∈{c∗}∪V1∪V2

rcb̃
t
cm → xm.(A.36)
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