
Selfinformative Limits of Bayes Estimates and

Generalized Maximum Likelihood

Olaf Bunke and Jan Johannes
Humboldt University, Berlin

Summary: A definition of selfinformative Bayes carriers or limits is given as a
description of an approach to noninformative Bayes estimation in non- and semi-
parametric models. It takes the posterior w.r.t. a prior as a new prior and repeats
this procedure again and again. A main objective of the paper is to clarify the re-
lation between selfinformative carriers or limits and maximum likelihood estimates
(MLE’s).
For a model with dominated probability distributions we state sufficient conditions
under which the set of MLE’s is a selfinformative carrier or in the case of a unique
MLE its selfinformative limit property. Mixture models are covered. The result on
carriers is extended to more general models without dominating measure.
Selfinformative limits in the case of estimation of hazard functions based in censored
observations and in the case of normal linear models with possibly nonidentifiable
parameters are shown to be identical to the generalized MLE’s in the sense of Gill
(1989) and Kiefer and Wolfowitz (1956). Selfinformative limits are given for semi-
parametric linear models. For a location model they are identical to generalized
MLE’s, while this is not true in general.
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1 Introduction

Bayes estimates are not only useful when some prior information is incorporated
into the statistical analysis, but also as a basis for the construction of sensible esti-
mates without prior information by a data dependent adaptation of parameters of
the prior (probability) distribution (see Lindley and Smith (1972), Efron and Morris
(1973)). Moreover there are attempts to choose a “noninformative” prior and (or)
corresponding posterior distribution in view of a situation without prior information
(see Hartigan (1983), Box and Tiao (1992)).
An alternative approach to the description of a noninformative situation was intro-
duced in Bunke (2002). The idea is to give in some sense an infinitely increasing
weight to the information contained in the observations in comparison to the prior
distribution. This is done by taking the posterior as a new prior and calculating
(for the same observations) the corresponding posterior and repeating the proce-
dure again and again. If the Bayes estimate calculated in this manner converges to
a limit, we will call it a selfinformative limit. Such a limit will be a sensible estimate
in a noninformative situation. Indeed, when the observations follow a model with
densities depending in finite dimensional parameters the selfinformative limit exists
and is the maximum likelihood estimate (MLE). This was shown in Bunke, Hennig,
and Schmidt (1976) under some regularity conditions ensuring the uniqueness of the
MLE.
Our paper is devoted to the characterization of selfinformative limits under more
general assumptions, e.g. when MLE are not unique or when they even don’t exist
as e.g. in semi- or nonparametric models.
In section 2 we will define selfinformative carriers and limits in a precise manner. We
treat in section 3 a model with densities, which includes the parametric case and a
semi- or nonparametric mixture case. The MLE and selfinformative limits appear to
be identical. The sections 4 and 5 are directed to further cases in which the selfinfor-
mative estimates and the generalized MLE are identical: a normal linear regression
model and the estimation of a hazard function. Section 6 is devoted to the deter-
mination of selfinformative limits in a general semiparametric multivariate linear
model with normal-gamma priors for the unknown parameters and Dirichlet distri-
bution for the unknown error distributions generalizing the results in Bunke (2002).
As seen in section 7 these selfinformative limits turn out to be in general different
from generalized MLE, which we calculate following the definitions of Kiefer and
Wolfowitz (1956). The structure of the selfinformative limits has a sound intuitive
background and their form is simple and resembles standard estimates in difference
to the somewhat degenerated form of the generalized MLE. Therefore these ”selfin-
formative” estimates deserve special attention and further investigations especially
also replacing Dirichlet distributions by other.
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2 Selfinformative limits

We consider a Bayes approach to the estimation of the parameter θ in a model for
the random variable X:

X ∼ Pθ , θ ∈ Θ.(2.1)

where Pθ is a probability distributions (p.d.) depending on an unknown parameter θ.

For this we assume (θ,X) to be a random variable with values in Θ × X and to
have a probability distribution P θ,X on a product σ-Algebra B×A. For simplicity
we assume Θ and X to be complete separable metric (polish) spaces and B,A to be
the corresponding σ-algebras of Borel sets.
The regular conditional distribution (c.p.d.) P X | θ=θ = Pθ of X under the condition
θ = θ will be the p.d. in the model (2.1). The marginal p.d. ξ = P θ of θ is called the
prior p.d., while the c.p.d. ξx = P θ |X=x is called the posterior p.d. . The posterior
ξx may be used in different ways for inferences on θ based on the observation x of
X (see Hartigan (1983) or Bernardo and Smith (1994)). If it possible to define a
”posterior mean”

θ̂(x) :=

∫

θ ξx(dθ) ,(2.2)

it may be used as a sensible estimate of the unknown θ.
Now we will give a precise description of the stepwise approach, which uses itera-
tively the posterior as a new prior in the same model and repeats this procedure
using always the given observation x:

1. step: Take random variables θ1,X1 with the marginal p.d. ξ of θ1 and the c.p.d
Pθ of X1 under θ1 = θ. Choose a determination of the c.p.d of θ1 under the
condition X1 and take the special value X1 = x:

ξ(1)
x = P θ1 |X1=x.(2.3)

2. step: Take random variables θ2,X2 with the marginal p.d. ξ
(1)
x of θ2 and the

c.p.d. Pθ of X2 under θ2 = θ. Choose a determination of the c.p.d. of θ2 under the
condition X2 and take

ξ(2)
x = P θ2 |X2=x.(2.4)

Repeating this we arrive after r-steps at our r-th iteratively determined posterior
ξ

(r)
x . The r-th posterior ξ

(r)
x will depend on the chosen determinations of the c.p.d.’s

3



P θj |Xj=x. Assume now random variables θ
(r),X(r) = (X

(r)
1 , . . . ,X(r)

r ), where the
marginal p.d. of θ

(r) is the prior ξ and conditionally on θ
(r) = θ the random

variables X
(r)
1 , . . . ,X(r)

r are i.i.d. with distribution Pθ. If we would implement the
above described steps with realizations xi of X i (in place of the observation x), we
would arrive at the r-th step at a c.p.d. P θr |Xr=xr . If it is Borel measurable as a
function of x(r) = (x1, . . . , xr) it would be a determination of the c.p.d P θ

(r) | X
(r)=x(r)

(see Lemma A.1 in the appendix). Therefore an alternative noniterative description
of our approach would be to take as the r-th posterior a determination of this c.p.d.
at the special value xr := (x, . . . , x), that is, setting the values x1, . . . , xr identical
to our observation x:

ξ(r)
x = P θ

(r) |X(r)=xr

.(2.5)

In the following we will choose this description of the r-th posterior, which again
will depend on the chosen determination of the c.p.d., moreover in view of the fact,
that with exception of some special cases, the set A(r) = {xr |x ∈ X} of all possible

values xr will have zero marginal probability P X
(r)

(A(r)) = 0.

An appealing possibility to reach a uniqueness of the r-th posterior for all x ∈ X

appears, when the restriction to a continuous function of x(r) leads to a unique de-
termination of the c.p.d. P θ

(r) |X(r)=x(r)
. This determination would be especially

interesting and therefore also its uniquely defined value ξ
(r)
x at x(r) = xr.

Assuming X =
� n a sufficient condition leading to the uniqueness of a continuous

determination of the c.p.d. P θ
(r) |X(r)=x(r)

is the following (see Lemma A.2 in the
appendix):
The marginal p.d.

PX
(r)

=
∑

m∈M

πmQm (|M | < ∞)(2.6)

of X
(r) is a finite mixture of p.d.’s Qm, each having positive continuous density

w.r.t. the Lebesgue measure λm over some linear space Lm ⊂
� nr. Moreover the

p.d.’s Qm are concentrated on disjoint sets Xm ⊂ Lm : Qm(Xm) = 1.
An analogous remark applies, if there is interest in a conditional mean

E(θ(r) | X
(r) = xr) =: θ̂r(x)(2.7)

as Bayes estimate of θ w.r.t. the posterior ξ
(r)
x . Under (2.6) this estimate would be

uniquely defined for all x ∈
� n under the restriction, that a continuous determina-

tion of the conditional mean E(θ(r) | X
(r) = x(r)) is chosen.
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Now we may consider the behavior of estimates θ̂r(x) for the interesting limit r → ∞,
even in the case of nonconvergence or of fluctuating sequences θ̂r(x).

Definition 2.1

If a limit lim
r→∞

θ̂r(x) = θ(x) exists, then it is called a selfinformative (Bayes) limit. A

set Θ(x) ⊂ Θ is called a weak selfinformative posterior carrier, if for all neighbor-
hoods U of Θ(x) (that is open sets U containing Θ(x)), it holds

lim
r→∞

ξ(r)
x (U) = 1.(2.8)

Θ(x) is a q-th order selfinformative posterior carrier, if

lim
r→∞

∫

d[θ, Θ(x)]q ξ(r)
x (dθ) = 0(2.9)

using the metric d in Θ and

d[θ, T ] = inf
τ∈T

d(θ, τ).(2.10)

Θ(x) is a selfinformative (Bayes) limit set, if

lim
r→∞

d[θ̂r(x), Θ(x)] = 0.(2.11)

(If Θ(x) = {θ(x)} in (2.11), then θ(x) is a selfinformative limit.)

Assume the special case of model (2.1) with realizations in X = Rn, p.d.’s Pθ dom-
inated by a σ-finite measure and a finite dimensional parameter θ. The results in
Bunke, Hennig, and Schmidt (1976) show, that under some weak regularity con-
ditions ensuring the uniqueness of the MLE, the selfinformative limit exists and is
identical to the MLE. This underlines the intuitive justification of selfinformative
limits as convenient estimators in noninformative situations. It arises the interesting
question, if such an equivalence extends to more general cases in which the MLE is
not unique or when the MLE is not defined, as it may be the case in non- and semi-
parametric models. We will treat the dominated case with a possibly nonuniquely
determined MLE in the following section 3.
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3 Maximum likelihood and selfinformative limits

We assume a model (2.1) with p.d.’s Pθ having densities pθ w.r.t. the σ-finite
measure µ. As a determination of the r-th posterior w.r.t. the prior ξ we take the
p.d. ξ

(r)
x defined for B ∈ B by

ξ(r)
x (B) =

∫

B

[pθ(x)]rξ(dθ) ·
[

∫

Θ

[pτ (x)]rξ(dτ)
]−1

(r > r0)(3.1)

under

Assumption A: For all r ≥ r0 (r0 ≥ 0) the integrals in (3.1) are finite.

Let x ∈ X be a fixed observation for which a MLE exists. The set of all MLE is

Θ̂(x) = {θ ∈ Θ | pθ(x) = max
τ∈Θ

pτ (x)}.(3.2)

We will investigate, when a set Θ(x) is a selfinformative posterior carrier or even
a limit set in the sense of Definition 2.1. The following assumptions will be sufficient:

Assumption B: For each neighborhood U 6= Θ of the closed set Θ(x) there is an
neighborhood V of Θ(x) with V ⊂ U such that ξ(V ) > 0 and

sup
θ∈Uc

pθ(x) < inf
θ∈V

pθ(x) (U c := Θ\U).(3.3)

Remark 3.1

The assumption B is obviously fulfilled for the set Θ̂(x) of MLE’s, if ξ(V ) > 0 for
all nonempty open sets V , Θ is compact and pθ(x) is continuous on Θ for fixed x. It
is also fulfilled, if the assumption of compactness is replaced by local compactness
and the property

lim
θ→∞

pθ(x) = 0.(3.4)

Then we may extend pθ(x) to a continuous function on the compactified space Θ∞.
Replacing Θ by Θ∞ in (3.2) does not change the set Θ̂(x) of MLE’s, which all remain
in Θ, assuming w.l.o.g. that pθ(x) > 0 for some θ. The set Θ̂(x) will obviously be
compact.

Assumption C: Θ is a Banach space and
∫

‖θ‖qξ(dθ) < ∞ for a q ≥ 1.
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Theorem 3.1

(1) A set Θ(x) is under assumptions A, B a weak selfinformative posterior carrier.
(2) Under the assumptions A,B,C a bounded set Θ(x) is a q-th order selfinformative
posterior carrier. If Θ(x) = {θ(x)} is a singleton, then θ(x) is a selfinformative
limit.

(proofs of theorems are given in the appendix).

Because of this theorem and remark 3.1. many usual models for discrete or abso-
lutely continuous variables X with a probability function or density being continuous
in a k-dimensional parameter fulfil the assumptions of the theorem. If the prior has
a finite first order moment, then the set of MLE’s is a first order selfinformative
carrier. If the MLE is unique, it is the selfinformative limit lim

r→∞
θ̂r(x) = θ̂(x), which

obviously is identical for all such priors.

Remark 3.2. A semiparametric mixture model

A further interesting case, in which the set Θ̂(x) of MLE’s is at least a selfinformative
posterior carrier, is a semiparametric mixture model (2.1). Here the density of Pθ

w.r.t. a measure µ is given by

pθ(x) =

∫

H

f(x | τ, η) G(dη) ,(3.5)

with the unknown parameter θ = (τ,G) ∈ Ξ × G.

The function f(· | τ, η) in (3.5) is assumed to be a density for fixed τ ∈ Ξ, η ∈ H. Ξ
and H are locally compact metric spaces, f(x | τ, η) is continuous on Ξ×H for fixed
x and fulfills

lim
τ→∞

f(x|τ , η) = lim
η→∞

f(x | τ, η) = 0 , (τ ∈ Ξ, η ∈ H).(3.6)

G is the set of all p.d.’s on the σ-Algebra of Borel sets of H.

It may be easily seen, that the density (3.5) fulfils the assumptions of remark 3.1,
because G may be interpreted as a compact subset of the Banach space L of linear
functionals L on the set C of bounded continuous functions on H:

Gc =

∫

c(η)G(dη) c ∈ C,G ∈ G(3.7)
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The norms in L and C are:

‖L‖ = sup
c∈C:‖c‖=1

Lc , ‖c‖ = sup
η∈H

| c(η) |.(3.8)

Now if Ξ is a Banach space with norm ‖·‖ we may see Θ as a locally compact subset
of the Banach space Ξ × L with norm ‖(τ, L)‖ = ‖τ‖ + ‖L‖. The assumption B is
fulfilled with q = 1 for all priors ξ with a finite marginal 1. order moment of τ :

∫

‖θ‖ξ(dθ) =

∫

‖τ‖ξ(dθ) + 1 < ∞(3.9)

Therefore the set Θ̂(x) of MLE’s will be a selfinformative limit set under the above
assumption.

The result in theorem 3.1 on a weak selfinformative carrier may be extended to more
general cases. We assume a model (2.1) and a determination ξx of the c.p.d. P θ |X=x

which is weakly continuous in x and means, that
∫

fdξx is a continuous function in
x for each bounded continuous function f .

Let x be an observation with P X(Sε
x) > 0 for all spheres Sε

x = {y ∈ X | d(x, y) < ε}
and ε > 0. We remark, that then for all r the rectangle Rε

xr := Sε
x × · · · × Sε

x ∈ Xr

has a positive X
(r)-marginal probability and at least P X-almost all x fulfil this

assumption. For each B ∈ B and ε > 0 we define a measure on Θ with

P r
xε(B) :=

P θ,X(r)
(B × Rε

xr)

PX
(r)

(Rε
xr)

.

Assumption D: For all r exists a determination of the c.p.d. P θ |X(r)=x(r)
which is

weakly continuous in x(r).

Under assumption D for ε ↓ 0 the sequence of probability measures P r
xε converge

weakly for all r to the uniquely defined value ξ
(r)
x at x(r) = xr of the continuous deter-

mination of the c.p.d. P θ |X(r)=x(r)
(see Lemma A.3 in the appendix). Furthermore

we will need for all x ∈ X following limit

pθ,θ̃(x) = lim sup
ε↓0

Pθ(S
ε
x)

Pθ̃(S
ε
x)

.(3.10)

If Pθ̃(S
ε
x) = 0 we set the ratio to = +∞, or = 0, if Pθ(S

ε
x) > 0, or = 0, respectively.

The limits pθ,θ̃ are defined and measurable (see Hahn and Rosenthal (1948)) and
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given by

pθ,θ̃(x) =
fθ,θ̃(x)

1 − fθ,θ̃(x)

with a determination fθ,θ̃(x) of the Radon Nikodym density of Pθ w.r.t. to Pθ + Pθ̃.

Assumption E: We assume Θ(x) 6= Θ. For each neighborhood U of Θ(x) and for
each neighborhood U 6= Θ of Θ(x) there is an neighborhood V of Θ(x) with V ⊂ U
and ξ(V ) > 0 such that

1. there is an ε0 > 0 such for all ε ∈ (0, ε0) and for all θ ∈ U c and θ̃ ∈ V holds

Pθ(S
ε
x) ≤ Pθ̃(S

ε
x),(3.11)

2. the functions pθ,θ̃ fulfil

sup
θ∈Uc

sup
θ̃∈V

pθ,θ̃(x) < 1.(3.12)

Theorem 3.2

Under assumption D and E a closed set Θ(x) is a weak selfinformative carrier.

4 Normal linear model with possibly unidentifi-

able parameters

Assume a normal linear model for the n dimensional observation y

(4.1) y ∼ Nn(Xβ, σ2Λ),

where X is a fixed n × k matrix of rank d (d ≤ k ≤ n) and β ∈ � k, σ > 0 are
unknown parameters. A version of the in general nonunique MLE of β and of σ2 is

β̂ = (X tΛ−1X)+X tΛ−1y(4.2)

σ̂2 = n−1(y − Xβ̂)tΛ−1(y − Xβ̂).(4.3)

In a Bayes approach the possible nonidentifiatibility of β plays no rule under a prior
ξ for (β, σ2). It is even possible to cover a further unknown parameter α ∈ � q from
which the p.d. of y does not depend. This could e.g. be interesting in regression
models with regression coefficients depending on time in a certain time interval and
with observations at some subset of this time interval. The parameter α would
contain the values of the regression coefficients for the times without observations.
We assume a normal-gamma prior p.d. ξ defined by the following assumptions:

1. The marginal p.d. of σ−2 is a Gamma p.d. Γ(w−k
2

, s−1
ξ ) with w > k + 2 and

sξ > 0.
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2. Under the condition of a fixed σ2 the c.p.d. of γ = (αt, βt)t is the normal p.d.
Nq+k(cξ, σ

2Γ−1
ξ ) with cξ = (at

ξ, b
t
ξ)

t ∈ � q+k and a positive definite Γξ.

With Z = (0
...X) we have y ∼ Nn(Zγ, σ2Λ). The posterior p.d. is then known to be

again a normal-gamma p.d. and the posterior means are (see Humak (1977)):

(4.4) γ̃ = (Γξ + G)−1(Γξcξ + Gγ̂),

where G = ZtΛ−1Z,

(4.5) γ̂ = (Z tΛ−1Z)+ZtΛ−1y =

(

0

β̂

)

and

(4.6) σ̃2 = (w + n − k − q − 2)−1[sξ + nσ̂2 + ct
ξΓξcξ + γ̂tGγ̂ − γ̃t(Γξ + G)γ̃].

To calculate selfinformative limits we take r independent replications of observations
y(1), . . . , y(r) following the model (4.1), determine the corresponding posterior means
(4.4), (4.6) and take y(1) = · · · = y(r) = y. We obtain the posterior means

(4.7) γ̃r = (Γξ + rG)−1(Γξcξ + rGγ̂),

(4.8) σ̃2
r = (w + rn − k − q − 2)−1[sξ + rnσ̂2 + ct

ξΓξcξ + rγ̂tGγ̂ − γ̃t
r(Γξ + rG)γ̃r].

Taking the limit r → ∞ gives (see Lemma A.4 in the appendix):

(4.9) lim
r→∞

γ̃r = γ̂ + gξ, lim
r→∞

σ̃2
r = σ̂2,

where

(4.10) gξ = (I − G+G)cξ =

(

aξ

Qbξ

)

,

(4.11) Q = (I − (X tΛ−1X)+X tΛ−1X).

Together with σ̂2 the limit γ̂ +gξ is also a MLE (and LSE), because gξ is an element

of the null space of G. We see that the selfinformative limit β̂ + Qbξ for β will in
general depend on the prior, but it is independent of ξ in the full rank case d = k,
where Q = 0.

A further insight into the behaviour for r → ∞ is given by the posterior marginal
p.d. of γ. It is (see Humak (1977)) a generalized Student p.d. with w + rn degrees
of freedom, mean γ̂ + gξ and covariance matrix of the form

(4.12) Cr = D(γ|y) = σ̃2
r(Γξ + rG)−1.
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The reasoning in the proof of Lemma A.4 and (4.9) shows, that with H = Γ
− 1

2
ξ

(4.13) Cξ = lim
r→∞

Cr = σ̂2H[I − (HGH)+(HGH)]H = σ̂2(I −G+G)Γ−1
ξ (I −G+G).

Therefore the posterior marginal p.d. converges weakly to a normal p.d. with
mean γ̂ + gξ and covariance matrix Cξ. This matrix generates the linear space L
which is the null space of G. Obviously the set of all MLE’s of γ under the model
y ∼ Nn(Zγ, σ2Λ) is the affine space

(4.14) A = {γ̂ + l | l ∈ L} = {

(

α

β̂ + β

)

|α ∈ Rq , Xβ = 0}.

It is the carrier of the p.d. N(γ̂ + gξ, Cξ) and a weak selfinformative carrier because
of the mentioned weak convergence of the posterior p.d.’s.

5 Estimation of the hazard rate

1. Discrete time and right censoring

We assume i.i.d. random variables X1, . . . , Xn with values in X = {0, b, 2b, . . .}
(b > 0) and probabilities f(m) = P (Xi = mb). The hazard rate h is then defined
by

hf (m) = f(m) /

∞
∑

j=m

f(j).(5.1)

The censoring is determined by a sequence ci ∈ (0,∞) and leads to the observations

Ti = min{Xi, ci} , δi = I[0,ci](Xi),(5.2)

The vector Y of observations Yi = (Xi, δi) has a probability function Pf (y), which

depends on the probability function f . The MLE f̂ for f leads to

ĥ(m) = hf̂ (m) = ∆N(m) / R(m),(5.3)

with the “counting process”

N(m) =
n

∑

i=1

δi I[0,mb](Ti),(5.4)
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∆N(m) = N(m) − N(m − 1)(5.5)

and the “risk process”

R(m) =
n

∑

i=1

I[mb,∞)(Ti),(5.6)

see Hjort (1990). Hjort also presents there the posterior means

h̃(m) = E(h(m) |Y = y) =
∆(m) + c(m)h0(m)

R(m) + c(m)
(5.7)

in a Bayes approach as an alternative estimate. He assumes a prior, under which
the values h(m) (m = 1, 2, . . .) are i.i.d. with a Beta distribution

h(m) ∼ Beta
[

c(m)h0(m), c(m)(1 − h0(m))
]

.(5.8)

This prior determines a prior ξ over the class F of probability functions f .

To determine a selfinformative limit we consider Xi and constants ci (i = 1, . . . , rn)
leading to observations (5.2). The r-th iterated Bayes estimate ĥr will be given by

h̃r(m) =
∆Nr(m) + c(m)h0(m)

Rr(m) + c(m)
,(5.9)

where Nr and Rr are given by (5.4) and (5.6) resp. substituting n by rn.
Assuming now, that the values Xi, ci (i = 1, . . . , n) appear r-times we are lead to
the r-th iterated Bayes estimates

θ̂r(m) =
r∆Nr(m) + c(m)h0(m)

rRr + c(m)
.(5.10)

Their limit for r → ∞ is just the MLE (5.3).

2. Continuous time and right censoring

We again assume censored observations (5.2) i.i.d. random variables X1, . . . Xn

having values in X = [0,∞) and a p.d. P . The cumulative hazard function is
defined by
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H(t) =

t
∫

0

1

P ([s,∞))
P (d s).(5.11)

The GMLE in the sense of Gill (1989) is

Ĥ(t) =

t
∫

0

1

R(s)
N(d s),(5.12)

where

N(s) =
n

∑

i=1

δiI[0,s](Ti)(5.13)

R(s) =
n

∑

i=1

I[s,∞)(Ti)(5.14)

Hjort has derived posterior means H̃ under a Beta process with parameters c and
h0 (see Hjort (1990) for details) as a prior for H:

H̃(t) =

t
∫

0

c(s)

C(s) + R(s)
H0(d s) +

t
∫

0

1

C(s) + R(s)
N(d s).(5.15)

Again taking r replications of the model and assuming that the n same observations
Xi and censoring times ci occur r times leads to the r-th iterated Bayes estimate

H̃r(t) =

t
∫

0

c(s)

c(s) + rR(s)
H0(d s) +

t
∫

0

1

c(s) + rR(s)
rN(d s).(5.16)

The selfinformative limit r → ∞ of H̃r is again the GMLE (5.12).

6 Semiparametric multivariate linear models

In this section we present selfinformative limits in the case of the semiparametric
linear model investigated by Bunke (2002) for n independent p-dimensional obser-
vations Xi with means and covariance matrices
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E(Xi) = ziB D(Xi) = Σ (i = 1, . . . , n),(6.1)

where zi are the rows of a known n × k matrix Z of rank k. The k × p matrix
B and Σ are unknown parameters. The model (6.1) is semiparametric, when even
for known B, Σ the distributions Pi of Xi are unknown. To define the prior ξ for a
Bayes approach we write

Xi = ziA + UiΛ
−1/2(6.2)

and assume that

(i) the vector � = (1, . . . , 1)t is contained in the linear space R(Z) generated by
the columns of Z.

(ii) the p-dimensional row vectors U1, . . . , Un are i.i.d. with p.d. G, under the
condition of fixed θ = (A, Λ) and G.

(iii) under the prior ξ the parameter θ and G are random variables, which are
independent,

(iv) the random p.d. G has a Dirichlet p.d. Dα where α is a measure on L
p leading

to the standard normal p.d. as the mean p.d. E(G):

a = α( � p) , β = a−1α = N(0, 1) = E(G)(6.3)

(v) the random parameter θ has a Normal-Wishart p.d. with density

f(θ) ∝ |Λ|τ/2 e[Λ(S0 + (A − A0)
tΓ0(A − A0)],(6.4)

where τ > k, e[M ] = exp[−trM/2],
A0 is a k × p matrix and Γ0, S0 are positive definite symmetric matrices.

We remark, that the distributions Pi = Pi(A, Λ, G) of the observations given by
(6.2) depend on θ and G.

Theorem 2.4 in Bunke (2002) yields expressions for the posterior means under the
observation matrix X with rows Xi:

B̃ = E(B|X) , Σ̃ = E(Σ|X) , P̃i = E(Pi|X).(6.5)

14



These expressions are extremely complicated and therefore we will present here only
their general structure.
Let D be the set of all partitions v of the index set {1, . . . , n}. The posterior means
are mixtures

B̃ =
∑

v∈D

kvB̃v , Σ̃ =
∑

v∈D

kvΣ̃v , P̃i =
∑

v∈D

kvP̃iv(6.6)

with certain nonnegative weights kv and
∑

v∈D

kv = 1.

To obtain selfinformative limits we take the case of r independent replications of the
linear model (6.1), that is we have a rn × p observation matrix X(r) with

E(X(r)) = Z(r)B , D(X(r)) = D(vecX(r)) = Σ ⊗ Irn,(6.7)

where

X t
(r) = (X t

1,r

... . . .
...X t

r,r) , Z(r) = � r ⊗ Z(6.8)

and where vecA = (at
1, . . . , a

t
n)t denotes the vector of columns ai of the matrix A

and ⊗ is the Kronecker product. The detailed expressions for the conditional means
(6.5) obtained for the observation matrix X(r) show, that they are continuous in
X(r). In Bunke (2002) it is proved, that the marginal distribution p.d. P X in the
Bayes approach with observation matrix X and the prior ξ is a mixture

PX =
∑

v∈D

kvP
X
v .(6.9)

The p.d.’s P X
v be concentrated at sets Xv (PX

v (Xv) = 1), which are disjoint and
contained in linear spaces L(v) ⊂ � n×p. Each P X

v is absolutely continuous w.r.t.
the Lebesgue measure λv on L(v), so that the expressions (6.6) give in the case of
an observation matrix X(r) the uniquely determined conditional means which are
continuous in X(r) (see Lemma A.2).

Taking the original observation X obeying the model (6.1) for a special value
X(r) = � r ⊗ X in the model with r replicated observations leads to the r-th it-

erated Bayes estimates B̃(r), Σ̃(r), P̃i(r). The following theorem is proven in Johannes
(2002) and shows, that their limits for r → ∞ exist. These selfinformative limits in
the sense of Definition 2.1. have an appealing ”standard” form.
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Theorem 6.1

The selfinformative limits of the iterated Bayes estimates are

B = (ZtZ)−1ZtX(6.10)

Σ = n−1X t[In − Z(ZtZ)−1Zt]X(6.11)

P i : empirical p.d. of the pseudoobservations X(i, j) (j = 1, . . . , n),(6.12)

where

X(i, j) := Xj + (zi − zj)B.(6.13)

The estimates (6.10) and (6.11) are just the MLE under a parametric model (6.1)
with a normal p.d.

But a more interesting property would be to be a generalized MLE in our semipara-
metric model (6.1) (or equivalently (6.2)) with unknown p.d. G. As we will see in
the next section, this is true only in special cases.

7 Generalized maximum likelihood estimates

In the following we still assume the general model (2.1) and introduce the definition
of Kiefer and Wolfowitz (1956) for a generalized MLE. We use for all θ, θ̃ ∈ Θ a
determination fθ,θ̃ of the density of Pθ w.r.t. Pθ + Pθ̃.

Definition 5.1
For the observation x ∈ X the value θ̂ = θ̂(x) ∈ Θ is called a generalized maximum
likelihood estimate (GMLE) of θ, if

fθ̂,θ(x) ≥ fθ,θ̂(x) for all θ ∈ Θ.(7.1)

The GMLE depend on the chosen density determinations fθ,θ̃. The ordinary MLE
under a dominated class of p.d.’s Pθ is a special case. There are other alternative
approaches to the definition of a GMLE, e.g. see Gill (1989) or Grenander (1981).
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The definition of Kiefer and Wolfowitz is especially appealing because of its simplic-
ity and because appears to be the direct extension of the definition in the dominated
case. Here we will not go into details of a comparison between different approaches
to GMLE. We now take as a special case a semiparametric linear model

Xi = ziB + Ui (i = 1, . . . , n)(7.2)

for p-dimensional random variables Xi with p.d. Piθ, where zi are the rows of a
known n× k matrix Z of rank k < n,B is an unknown k × p matrix and U1, . . . , Un

are i.i.d. p-dimensional random variables with zero mean, finite second order mo-
ments and unknown p.d. G.

With

G = {G | p.d. on L
p ,

∫

‖x‖2G(dx) < ∞},(7.3)

G0 = {G ∈ G |

∫

xG(dx) = 0}(7.4)

we have a semiparametric model (2.1) for the observation matrix X with unknown
parameter θ = (B,G) ∈ Θ = � k×p × G0.

The following theorem holds for a determination fθ,θ̃ of the density of Pθ w.r.t.

Pθ + Pθ̃ (θ 6= θ̃) obeying the natural equation

gθ,θ̃ =
n

∏

i=1

gi,θ,θ̃(Xi) = fθ,θ̃(X) hθ,θ̃(X),(7.5)

where gi,θ,θ̃ is a determination of the density of Piθ w.r.t. Piθ + Piθ̃ and hθ,θ̃ is a

determination of the density of Pθ +Pθ̃ w.r.t.
n

�@
i=1

(Piθ +Piθ̃). Obviously the equation

(7.5) holds for (Pθ + Pθ̃)-almost all X.

Theorem 7.1

A possibility nonunique GMLE θ̂(X) in the model (7.2) is given by an element B̂(X)
from

{B̂ ∈ Rk×p |X = ZB̂, g(B̂ |X) ≥ g(B |X) ∀ B ∈ Rk×p}(7.6)
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and by

(7.7) Ĝ(x) : empirical p.d. of the residuals Xi − ziB̂(X) (i = 1, . . . , n),

where

g(B |X) = n−n

n
∏

i=1

| {j |Xj − zjB = Xi − ziB} |,(7.8)

X = n−1

n
∑

i=1

Xi , Z = n−1

n
∑

i=1

zi(7.9)

Remark 5.1

The GMLE is unique for observations,

X ∈ R(Z) = {ZB |B ∈ � k×p}.(7.10)

because then B̂(X) = (ZtZ)−1ZtX is the unique solution B̂ of the equation X = ZB̂
with

g(B̂ |X) = max
B

g(B |X).(7.11)

In a special case of a location model

Xi = B + Ui Ui ∼ G, i.i.d.,(7.12)

that is, with k = 1 and Z = 	 n, we obtain from theorem 7.1:

Theorem 7.2

The GMLE in the semiparametric location model (7.12) is unique and given by the
sample mean

B̂ = X = n−1

n
∑

i=1

Xi,(7.13)

and by

Ĝ : empirical p.d. of the residuals Xi − X (i = 1, . . . , n).(7.14)

18



We see, that the GMLE and the noninformative limits (see theorem 6.1) are identical.
The following example shows, that this is not always the case in other linear models.

Example:
We consider a two-sample model with p = 1 and n = 4:

Z =

( 

2 0

0



2

)

, B =

(

b1

b2

)

.(7.15)

Take the observation x = (1,−1, 2, 2)t. Then the selfinformative limit (6.10) will be
B = (0, 2)t and leads to the set {1;−1, 0, 0} of residuals Xi − ziB. As it is easily
seen the maximum of g(B |X) is reached for B∗ = (−0.5, 2.5) with residual set
{1.5,−0.5,−0.5,−0.5} and also for B̃ = (0.5, 1.5) but not for B:

g(B |X) = 0.0156 < max
B

g(B |X) = g(B∗ |X) = 0, 1054.(7.16)

Similar situations may be found for other observations X /∈ R(Z).
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A Appendix

Lemma A.1

Let θ,θ1,θ2 and X1,X2,Y 1,Y 2 be random variables with values in Θ and X resp.
We assume :

1. θ ∼ ξ, θ1 ∼ ξ

2. the c.p.d.’s

(A.1) P Y 1 | θ1=θ = Pθ, PX1,X2 |θ=θ = Pθ × Pθ

3. determinations of the c.p.d.’s

(A.2) ξx = P θ1 |Y 1=x, ξ(x1, x2) = P θ |X1=x1,X2=x2

4. the c.p.d. Qx = P θ2,Y 2 |θ1=θ,Y 1=x is given for B ∈ B, A ∈ A by

(A.3) Qx(B × A) =

∫

B

Pθ(A)ξx(dθ)

5. ν(y1, y2) is a determination of the c.p.d ξ(x1, x2) = P θ2 |θ1=θ,Y 1=y1,Y 2=y2

Then it holds, that the marginal p.d.’s of (X1,X2) and (Y 1,Y 2) are identical and

(A.4) P (ξ(X1,X2)(B) = ν(X1,X2)(B)) = 1 (B ∈ B).

Proof

Let f : (X × X,A × A) → ( � 1,L1) be a bounded measurable function. Then the
properties of c.p.d.’s give the mean

E f(Y 1,Y 2) =

∫ ∫

[

∫

fPθ2(dy2)
]

ξy1(dθ2)P
Y 1(dy1)

=

∫ ∫

[

∫

fPθ2(dy2)
]

Pθ2(dy1)ξ(dθ2) = E f(X1,X2)

(A.5)

This proves, that the marginal p.d.’s of (X1,X2) and (Y 1,Y 2) are identical. Using
indicator functions I for sets A1, A2 ∈ A, B ∈ B we obtain for the c.p.d. ν(x1, x2)(·)

21



from assumption 5. :
∫ ∫

IA1×A2(x1, x2)ν(x1, x2)(B)P X1,X2(d(x1, x2)) =(A.6)

=

∫

[

∫

IA1×A2(y1, y2)ν(y1, y2)(B)P Y 2 |Y 1=y1(dy2)
]

PY 1(dy1) =

=

∫

[

∫ ∫

IA1×A2×B(y1, y2, θ2)Pθ2(dy2)ξy1(dθ2)
]

PY 1(dy1) =

=

∫ ∫

IA1×B(y1, θ)Pθ(A2)ξy1(dθ)
]

PY 1(dy1) =

=

∫ ∫

IA1×B(y1, θ)Pθ(A2)Pθ(dy1)ξ(dθ) =

= P θ,X1,X2(B × A1 × A2).

This shows, that ν is a determination of the c.p.d. P θ |X1=x1,X2=x2 2

The next Lemma states sufficient conditions for the uniqueness of a continuous c.p.d.
or conditional expectation.

Lemma A.2

Let θ,X be random variables with values in Θ and X = � n. We assume, that the
marginal p.d. of X is a mixture

(A.7) Q =
∑

m∈M

πmQm (πm > 0, m ∈ M)

of a finite number of p.d.’s Qm concentrated at disjoint sets Xm ∈ A:

(A.8) Qm(Xm) = 1, X =
∑

m∈M

Xm, Xm ∩ Xm′ = ∅ (m 6= m′).

The sets Xm are contained in linear spaces Lm ⊂ � n and moreover each p.d. Qm

has a positive continuous density qm w.r.t. the Lebesgue measure λm on Lm.
Let f : Θ → � 1 be a measurable function with E |f(θ)| < ∞. If there is a continuous
determination of the conditional mean g(x) = E(f(θ)|X = x), then it is unique.

Proof

Let g, h be continuous determinations of E(f(θ)|X = x). Because of the definition
of conditional means the measures µ and ν on A = L

n given by

(A.9) µ(A) =

∫

A

g(x)Q(dx), ν(A) =

∫

A

h(x)Q(dx),

are identical. If x ∈ Xm is fixed, their values are identical for the spheres

(A.10) Sε
m = {y ∈ Lm | ||y − x|| < ε}.
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Taking lεm := [λm(Sε
m)]−1 it follows, that

lim
ε↓0

lεmµ(Sε
m) = πm lim

ε↓0
lεm

∫

Sε
m

g(x)qm(x)λm(dx) = πmg(x)qm(x)

= lim
ε↓0

lεmν(Sε
m) = πmh(x)qm(x)

(A.11)

and therefore g(x) = h(x). 2

Proof of theorem 3.1.

In the case Θ(x) = Θ the set Θ(x) is obviously a weak and a q-th order selfinforma-
tive carrier. Assume now Θ(x) 6= Θ.
(1)
Let U, V be neighborhoods of Θ(x) with V ⊂ U , U 6= Θ, ξ(V ) > 0 and 3.3. Then
we have for r → ∞:

(A.12) ξ(r)
x (U c) ≤

∫

Uc

[

∫

V

(pτ (x)

pθ(x)

)r

ξ(dτ)
]−1

ξ(dθ) ≤
[

inf
τ∈V

pτ (x)

sup
θ∈Uc

pθ(x)

]−r ξ(U c)

ξ(V )
→ 0.

(2)
Let θ0 be a fixed element of Θ(x). Then there is a positive C < ∞ such that

(A.13) d[θ, Θ(x)]q ≤
(

||θ|| + ||θ0|| + sup
τ∈Θ(x)

||τ − θ0||
)q

≤ C(||θ||q + 1).

For a fixed ε > 0 there is a neighborhood U of Θ(x) with

(A.14) sup
θ∈U

d[θ, Θ(x)]q ≤
ε

3
.

Let V be a neighborhood of Θ(x) with V ⊂ U , ξ(V ) > 0 and (3.3). Then with
assumption C it follows for r → ∞

(A.15)

∫

Uc

||θ||qξ(r)
x (dθ) ≤

[
inf
τ∈V

pτ (x)

sup
θ∈Uc

pθ(x)

]−r 1

ξ(V )

∫

Uc

||θ||qξ(dθ) → 0.

Therefore because of (A.12)-(A.15) there is a rε > 0 such that for r > rε

(A.16)

∫

Θ

d[θ, Θ(x)]qξ(r)
x (dθ) ≤

ε

3
+ C

∫

Uc

||θ||qξ(r)
x (dθ) + Cξ(r)

x (U c) < ε.

This proves that Θ(x) is a q-th order selfinformative carrier.
Assume now Θ(x) = {θ(x)}. The preceding proof gives

(A.17) lim
r→∞

∫

||θ(x) − θ||ξ(r)
x (dθ) = 0
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and therefore
∫

||θ||ξ
(r)
x (dθ) < ∞ for sufficiently large r, so that then the mean θ̂r(x)

is defined. Because of

(A.18) ||θ̂r(x) − θ(x)|| = ||

∫

[θ − θ(x)]ξ(r)
x (dθ)|| ≤

∫

||θ − θ(x)||ξ(r)
x (dθ)

and (A.17) we obtain lim
r→∞

θ̂r(x) = θ(x). 2

Lemma A.3

Let θ,X be random variables with values in Θ and X. We assume, that a determi-
nation ξ

(r)
y of the c.p.d. P θ |X(r)=y exist, which is weakly continuous in y.

Then for all x with P X(Sε
x) > 0 (ε > 0) and all r ≥ 1 follows the weak convergence

P r
xε

W
−→ ξ

(r)
xr , for ε ↓ 0.

Proof

Let f : Θ →  1 be a bounded continuous function. Because of the definition of the
conditional mean gr

f (y) =
∫

fdξ
(r)
y it holds

(A.19)

∫

Θ

f(θ)P r
xε(dθ) =

1

PX
(r)

(Rε
xr)

∫

Rε
xr

gr
f (y)P X

(r)

(dy)

and obviously

(A.20) inf
y∈Rε

xr

gr
f (y) ≤

∫

fdP r
xε ≤ sup

y∈Rε
xr

gr
f (y).

Taking the limit ε ↓ in (A.20) proves the Lemma:

(A.21) lim
ε↓0

∫

fdP r
xε = gr

f (x
r).

2

Proof of theorem 3.2.

Let H be a neighborhood of Θ(x). Then there are disjoint neighborhoods Z of H c

and U of Θ(x). Let V be the neighborhood stated in assumption E. It follows for
all r

(A.22) ξr
xr(Hc) ≤ ξr

xr(Z) ≤ lim inf
ε↓0

P r
xε(Z) ≤ lim sup

ε↓0

∫

Z

[Pθ(S
ε
x)]

r

∫

V

[Pθ(Sε
x)]

rξ(dθ)
ξ(dθ),
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where the second inequality holds because of the weak convergence stated in Lemma A.3
(see Billingsley (1968)). Two applications of the inequality of Jensen yield

(A.23) ξr
x(H

c) ≤
1

ξ(V )
lim sup

ε↓0

∫

Z

[ 1

ξ(V )

∫

V

Pθ(S
ε
x)

Pθ(Sε
x)

ξ(dθ)
]r

ξ(dθ).

With (3.11), we apply the theorem of dominated convergence together with (3.10)
and with assumption (3.12) it follows

(A.24) lim
r→∞

ξr
x(H

c) ≤ lim
r→∞

ξ(Z)

ξ(V )

[

sup
θ∈Z

sup
θ∈V

pθ,θ(x)
]r

= 0.

2

Lemma A.4

Let Γξ be a n × n positive definite matrix and G be a n × n positive semidefinite
matrix with rank q ≤ n, then it holds for every a, c ∈ � n, that

lim
r→∞

(r−1Γξ + G)−1(r−1Γξa + Gc) = (In − G+G)a + G+Gc(A.25)

lim
r→∞

(r−1Γξa + Gc)t(r−1Γξ + G)−1(r−1Γξa + Gc) = ctGc(A.26)

Proof

We assume, that λ1, . . . , λq are the positive eigenvalues of the positive semidefinite

matrix Γ
− 1

2
ξ GΓ

− 1
2

ξ , the orthonormal vectors u1, . . . , uq are the eigenvectors and form
together with the vectors uq+1, . . . , un an orthonormal basis. Then it holds

(A.27) (r−1Γξ + G)−1 = Γ
− 1

2
ξ (

n
∑

i=q+1

ruiu
t
i +

q
∑

i=1

(r−1 + λi)
−1uiu

t
i)Γ

− 1
2

ξ .

Therefore it follows

(r−1Γξ + G)−1(r−1Γξa + Gc) = Γ
− 1

2
ξ (

n
∑

i=q+1

uiu
t
i +

q
∑

i=1

(r−1 + λi)
−1r−1uiu

t
i)Γ

− 1
2

ξ Γξa+

+ Γ
− 1

2
ξ (

q
∑

i=1

(r−1 + λi)
−1uiu

t
i)Γ

− 1
2

ξ Gc(A.28)

and furthermore

lim
r→∞

(r−1Γξ + G)−1(r−1Γξa + Gc) = Γ
− 1

2
ξ (

n
∑

i=q+1

uiu
t
i)Γ

− 1
2

ξ Γξa + Γ
− 1

2
ξ (

q
∑

i=1

λ−1
i uiu

t
i)Γ

− 1
2

ξ Gc

= (In − G+G)a + G+Gc.(A.29)

(A.26) is proved in an analogous manner. 2
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Proof of theorem 7.1.

Let X be a fixed observation. Because of (7.5) θ̂ = θ̂(X) is a GMLE if

(A.30) gθ̂,θ(X) ≥ gθ,θ̂(X) for all θ ∈ Θ.

We remark, that we may extend the model (7.2) to p.d.’s G with possibly nonzero
mean, replacing Θ by Θ̃ = Rn×p × G (see (7.3)). We extend also the density deter-
minations g, f, h to determinations obeying (7.5) for θ, θ̃ ∈ Θ̃.

We now show, that for all θ = (A,G) ∈ Θ there is a θA = (A,FA) ∈ Θ̃ with

(A.31) FA = n−1

n
∑

i=1

δXi−ziA

and

(A.32) gθA,θ(X) ≥ gθ,θA
(X).

The density gi,θA,θ(Y ) is obviously positive and uniquely determined for Y = Xi and
θ ∈ Θ̃ by

(A.33) gi,θA,θ(Xi) =
PiθA

({Xi})

PiθA
({Xi}) + Piθ({Xi})

.

and therefore also

(A.34) gi,θ,θA
(Xi) =

Piθ({Xi})

PiθA
({Xi}) + Piθ({Xi})

.

It is known, that the empirical p.d. F of observations Yi (i = 1, . . . , n) is a non-
parametric GMLE in the sense

(A.35)
n

∏

i=1

F ({Yi}) ≥
n

∏

i=1

G({Yi}) for all G ∈ G,

(see Kiefer and Wolfowitz (1956)).
Because of (7.8), (A.33) and (A.34) and

(A.36) PiθA
({Xi}) = FA({Xi − ziA})

(A.37) Piθ({Xi}) = G({Xi − ziA}) (θ = (A,G))
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(A.38) g(B |X) =
n

∏

i=1

FB({Xi − ziB}) (B ∈ Rk×p)

we have

(A.39) q(θB, θ) = gθB ,θ(X)
[

gθ,θB
(X)

]−1

= g(B |X)
[

n
∏

i=1

G({Xi − ziA})
]−1

.

Now (A.39) and the inequality (A.35) have the consequence q(θA, θ) ≥ 1 and as
g(A |X) remains unchanged replacing A by

(A.40) Ã = A + (ZtZ)+Zt �
n(X − ZA),

it follows that g(Ã |X) = g(A |X) and

(A.41) q(θÃ, θ) ≥ 1 for all θ = (A,G) ∈ Θ.

As X = ZÃ holds, we have g(B̂ |X) ≥ g(Ã |X) for θ̂ = θ̂B̂ = (B̂, Ĝ) satisfying the
conditions (e.g. (7.6)) of theorem 7.1. Therefore we have

(A.42) q(θ̂, θ) ≥ q(θÃ, θ) ≥ 1 for all θ = (A,G) ∈ Θ,

that is the inequality (A.30) is valid and θ̂ is a GMLE. 2

Proof of theorem 7.2.

If we assume, that Z = �
n, then it follows with theorem 7.1 and z = 1, that

(A.43) B̂ = X, Ĝ =
1

n

n
∑

i=1

δXi−X .

Therefore the GMLE for the p.d. P of an observation Xi is the empirical p.d. P̂
of the observations. Alternatively, if we have a nonparametric model, that means
the observations X1, . . . , Xn are independent and identically distributed and the
unknown p.d. P is a member of the set P of all distributions, then the GMLE is
the empirical p.d. P̂ of the observations (see Kiefer and Wolfowitz (1956) and Gill
(1989)). The semiparametric location model is the special case, where the p.d. P
is a member of the set P+ of all distributions with finite first and second moment.
The empirical p.d. is contained in the set P+ and therefore also the GMLE in the
semiparameteric location model . 2
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