On integrals with respect to Lévy processes*

Uwe Küchler
Humboldt University Berlin, Germany
Institute of Mathematics

Abstract
Assume L is a non-deterministic real valued Lévy process and f is a smooth function on $[0,t]$. If for some Borel function H P-almost sure the equality

$$H\left(\int_{[0,t]} f(s) dL_s \right) = L_t$$

holds, then f is constant on $[0,t]$.

AMS-Classification: 60G51, 60E07, 60H20
Key words. Lévy process, compound Poisson process, integration with respect to Lévy process.

1 Introduction

In modeling term structures of interest rates driven by Lévy processes $L = (L_s, s \geq 0)$ arises the question, if for a fixed positive t and for a given deterministic continuously differentiable function f on $[0,t]$ there may exist a (deterministic) Borel function H with

$$H\left(\int_{[0,t]} f(s) dL_s \right) = L_t \quad P - a.s. \quad (1)$$

* The research on this paper was supported by the DFG-Sonderforschungsbereich 373 at Humboldt University Berlin and the EU research network Dynstoch, Project-Nr. HPRN-CT-2000-00100
Authors address: Humboldt- Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, Sitz: Adlershof, D-10099 Berlin, Germany; e-mail: kuechler@mathematik.hu-berlin.de
See Küchler, Naumann [3]. Obviously (1) holds with $H(x) = c^{-1}x$ if f equals a nonzero constant c. In this note we will show that for any non-deterministic Lévy process L the existence of a measurable function H with (1) implies f to be constant.

Note that under assumption (1) the support of the distribution of the random vector (I_t, L_t) with $I_t = \int f(s) dL_s$ is a zero set with respect to the (two-dimensional) Lebesgue measure λ_2. Therefore the assertion immediately follows if one can ensure that (I_t, L_t) has a common density with respect to λ_2. This is the case if L is a Wiener process with positive diffusion coefficient and arbitrary drift. Indeed, if f is not a constant then (F_t, L_t) is two-dimensional Gaussian distributed with a regular covariance matrix. For other Lévy processes L Eberlein and Raible [1] proved that the following condition on the characteristic function of L_t is sufficient for (I_t, L_t) to have a common density: There exist real constants $C, \gamma, \eta > 0$ such that

$$|E[\exp(iu L_t)]| \leq C \cdot \exp(-\gamma |u|^\eta) \quad \forall u \in \mathbb{R}$$

(2)

But not for every Lévy process L the vector (I_t, L_t) has a common density, consider for example Poisson processes. Analyzing the arguments above it turns out to be enough for our purpose to show that the common distribution of (I_t, L_t) has a nonzero absolutely continuous part with respect to λ_2 if f is not equal to a constant. The key point of the proof of the theorem below is to show that this property holds for every non-deterministic Lévy process L.

2 Lévy processes

Assume $L = (L_s, s \geq 0)$ to be a real valued Lévy process defined on some probability space $(\Omega, \mathfrak{F}, P)$. This means

(i) $P(L_0 = 0) = 1$.

(ii) L has independent and stationary increments.

(iii) All trajectories $(L_s(\omega), s \geq 0), \omega \in \Omega$, are cadlag, i.e. continuous from the right and having limits from the left.

Examples of Lévy process are

- the Wiener process W with drift μ and diffusion $\sigma^2 > 0$, in this case $W_t - W_s$ is $N(\mu(t - s), \sigma^2(t - s))$-distributed, and all trajectories are continuous,
- the Poisson process \(N \) with jump intensity \(\lambda > 0 \), in this case \(N_t - N_s \) is Poisson-distributed with parameter \(\lambda(t-s) \) and the trajectories are piecewise constant, non-decreasing, jumping at times \(\tau_k, k \geq 1 \), with jump size one where \((\tau_k - \tau_{k-1}), k \geq 1 \), with \(\tau_0 = 0 \) are mutual independent exponential distributed with parameter \(\lambda \) random variables.

- the compound Poisson process \(Y_t = \sum_{k=1}^{N_t} Z_k \), where \(N = (N_s, s \geq 0) \) is a Poisson process with jump intensity \(\lambda > 0 \) and the \((Z_k, k \geq 1) \) are independent identically distributed random variables the distribution function \(F \) of which satisfies \(F(0+) = F(0-) \). Moreover, the \((Z_k, k \geq 1) \) and \(N \) are independent. The \(Z_k \) form the jump sizes of \((Y_t, t \geq 0) \).

We summarize some well known facts on Lévy processes that will be used below. For proofs and further details see for example Sato [4]. In general, to every Lévy process \(L \) is assigned a uniquely determined characteristic triple \(\mathcal{L} := (\mu, \sigma^2, \nu) \) where \(\mu \in \mathbb{R}, \sigma^2 \geq 0 \) and \(\nu \) is a measure on the real axis \(\mathbb{R} \) satisfying

\[
\nu(\{0\}) = 0, \quad \int_{-\infty}^{\infty} \frac{x^2}{1 + x^2} \nu(dx) < \infty \quad (3)
\]

such that it holds

\[
E \exp(iyL_t) = \exp[t \cdot \psi(y)], \quad t \geq 0, y \in \mathbb{R}
\]

with

\[
\psi(y) = i\mu y - \frac{\sigma^2}{2} y^2 + \int_{-\infty}^{\infty} (e^{iyx} - 1 - \frac{iyx}{1 + x^2}) \nu(dx), y \in \mathbb{R}.
\]

Conversely, to any triple \(\mathcal{L} = (\mu, \sigma^2, \nu) \) with (3) there is a uniquely in law determined Lévy process \(L \) having \(\mathcal{L} \) as its characteristic triple. If \(\sigma^2 + \nu(R) = 0 \) it holds \(L_s = \mu s, s \geq 0 \). We call this case the deterministic one. If \(\nu \equiv 0 \) then we obtain a Wiener process with \(\mu \) as drift and with \(\sigma^2 \) as diffusion coefficient.

Let \(L \) be a Lévy process. For any \(\varepsilon > 0 \) one can decompose \(L \) into two mutual independent Lévy processes \(L^{<\varepsilon} \) and \(L^{>\varepsilon} \) defined by

\[
L^{>\varepsilon}_s := \sum_{u \leq s} \mathbb{I}_{\{|\Delta L_u| > \varepsilon\}} \Delta L_u, s \geq 0, \text{ where}
\]

\[
\Delta L_u := L_u - L_{u-0},
\]

and

\[
L^{\leq\varepsilon}_s := L_s - L^{>\varepsilon}_s, \quad s \geq 0.
\]
The process \(L^> \) is a compound Poisson process with jump intensity \(\lambda_e := \nu(R\backslash (-\varepsilon, \varepsilon]) \) and jump size distribution \(F_\varepsilon(dz) := \lambda_e^{-1} \nu(dz) \cdot \mathbb{1}_{R\backslash (-\varepsilon, \varepsilon]}(z) \).
If \(f \) is a continuously differentiable function on \([0, t]\) we define the integral
\[
\int_{[0, t]} f(s) dL_s \text{ by}
\]
\[
\int_{[0, t]} f(s) dL_s := f(t) L_t - \int_{[0, t]} L_s \frac{d}{ds} f(s) ds
\]
and denote it shortly by \(I_f \).
Note that \(L \) is a (possibly degenerated to the deterministic case if \(\sigma^2 = 0 \)) Wiener process if and only if \(L^> \equiv 0 \) for all \(\varepsilon > 0 \).

3 Results

The result of this note is the following theorem,

Theorem 3.1. Fix a positive number \(t \), let \(f \) be a real valued continuously differentiable function on \([0, t]\) and assume \(L = (L_s, s \geq 0) \) to be a non-deterministic Lévy process. If for some Borel function \(H \) it holds

\[
H\left(\int_{[0, t]} f(s) dL_s \right) = L_t \quad P - a.s.
\]

then \(f \) is necessarily a constant.

Proof. Let us firstly consider the case that \(L \) is a Wiener process with parameters \(\mu \in R \) and \(\sigma^2 > 0 \). Then \((I_t, L_t) = (\int_0^t f(s) dL_s, L_t) \) is a Gaussian vector.
Its distribution is degenerated by assumption (4). Thus its covariance matrix is singular, because of \(\sigma^2 > 0 \) this implies \(\left(\int_{[0, t]} f(s) ds \right)^2 = t \cdot \int_{[0, t]} f^2(s) ds \). By the Cauchy-Schwarz inequality this is only possible if \(f \) is a constant.

As a second step we assume that \(L \) is a compound Poisson process with jump times \(\tau_1, \tau_2, \cdots \) and jumps sizes \(Z_k \) at time \(\tau_k, k \geq 1 \). Denote the distribution function of \(Z_k \) by \(F \). Let \(z \) be a point of increase of \(F \). This means \(P(z- \varepsilon < Z_1 < z+ \varepsilon) > 0 \) for all \(\varepsilon > 0 \).

We may suppose \(z > 0 \), otherwise consider \(-L \) instead of \(L \). If \(f \) is not a constant function, based on the assumptions on \(f \) we find a subinterval \(U := (u_0, u_1) \) of \((0, t)\) with \(u_0 < u_1 \) and \(f'(x) \neq 0 \) at all points \(x \) from \(U \). In particular \(f' \) is either strictly positive or strictly negative on \(U \). Thus \(f \) is strictly monotone on \(U \) and consequently maps \(U \) one-to-one on an interval \(V = (v_0, v_1) \) with \(v_0 < v_1 \).
Without restriction we can assume \(v_0 > 0 \), otherwise restrict \(U \) to a smaller open non-void interval and/or consider, if it is needed, \(-f\) instead of \(f\).

We continue the proof by choosing a positive \(\varepsilon \) such that

\[
\varepsilon < z \cdot \frac{c-1}{c+1}
\]

with \(c := (v_1/v_0)^{1/2} \). For every \(n \geq 1 \) put

\[
C_{\varepsilon,n} := \{ \omega \in \Omega \mid Z_k(\omega) \in (z-\varepsilon, z+\varepsilon), k = 1, \ldots, n \}
\]

and

\[
D_n := \{ \omega \in \Omega : u_0 < \tau_1(\omega) < \ldots < \tau_n(\omega) < u_1, \tau_{n+1}(\omega) < t \}.
\]

Because of the special choice of the point \(z \) and the independence of the \(Z_k, k \geq 1 \) we have \(P(C_{\varepsilon,n}) > 0 \). The jump times \(\tau_n, n \geq 1 \) have the property that the differences \(\tau_{k+1} - \tau_k, k \geq 1 \), are independent and exponentially distributed. This implies in particular \(P(D_n) > 0 \). Now using the independence of the \((Z_k, k \geq 1) \) from the \((\tau_k, k \geq 1) \) we conclude that

\[
P(D_n \cap C_{\varepsilon,n}) = P(D_n)P(C_{\varepsilon,n}) > 0.
\]

We have \(P \)-almost surely for all \(\omega \in D_n \cap C_{\varepsilon,n} \)

\[
I_t = \int_{[0,t]} f(s) dL_s = \sum_{k=1}^{n} Z_k f(\tau_k) \in (n(z-\varepsilon)v_0, n(z+\varepsilon)v_1)
\]

Consequently, the distribution of \(I_t \) given \(D_n \cap C_{\varepsilon,n} \) can be expressed as

\[
P(I_t \in B \mid D_n \cap C_{\varepsilon,n}) = \frac{1}{P(C_{\varepsilon,n})} \int_{(z-\varepsilon,z+\varepsilon)^n} P \left(\sum_{k=1}^{n} z_k f(\tau_k) \in B \mid D_n \right) F(dz_1) \cdots F(dz_n)
\]

where \(B \) is any Borel set. Here we have used once again the independence of the \((Z_k, k \geq 1) \) from the \((\tau_k, k \geq 1) \).

At this point we formulate and prove an auxiliary result on the distribution of \(\sum_{k=1}^{n} z_k f(\tau_k) \) as a lemma.

Lemma 3.1. Assume \(n \geq 1 \), as well as \(z_k > 0, k = 1, \ldots, n \), to be fixed. Then the distribution of \(S_n := \sum_{k=1}^{n} z_k f(\tau_k) \) given \(D_n \) has a density being strictly positive on

\[
\mathcal{J} := \left(v_0 \sum_{k=1}^{n} z_k, v_1 \sum_{k=1}^{n} z_k \right).
\]
Proof. Given \(D_n \) := \(\{ \tau_n \leq t < \tau_{n+1} \} \) the random vector \((\tau_1, \tau_2, \ldots, \tau_n)\) has a strictly positive density on \(\Delta_n := \{ (s_1, \ldots, s_n) : 0 \leq s_1 \leq s_2 \leq \ldots \leq s_n \leq t \} \), indeed it is uniformly distributed thereon (see for example Sato [4], Chapter 1.3). This implies immediately that given \(D_n \) the vector \((\tau_1, \ldots, \tau_n)\) is uniformly distributed on \(\Delta_n \cap (u_0, u_1)^n \).

Put \(S_n(s_1, \ldots, s_n) := \sum_{k=1}^n z_k f(s_k) \). The function \(G \) defined by \(G(s_1, \ldots, s_n) = (s_1, s_2, \ldots, s_n, S_n(s_1, \ldots, s_n)) \) maps \(\Delta_n \cap (u_0, u_1)^n \) continuously differentiable one-to-one on \((\Delta_{n-1} \cap (u_0, u_1)^{n-1}) \times J \). This is a consequence of the supposed smoothness and the strict monotonicity of the mapping \(f \) from \((u_0, u_1)\) onto \((v_0, v_1)\). Thus, given \(D_n \) the vector \(G(\tau_1, \ldots, \tau_n) = (\tau_1, \ldots, \tau_{n-1}, \sum_{k=1}^n z_k f(\tau_k)) \) has a density being strictly positive on \((\Delta_{n-1} \cap (u_0, u_1)^{n-1}) \times J \) which can be expressed as

\[
\gamma \cdot \Pi_{\Delta_n \cap (u_0, u_1)^n} (G^{-1}(v_1, v_2, \ldots, v_n))(z_n | f'(v_n))^{-1}
\]

where \(\gamma \) is the normalizing constant. Consequently given \(D_n \) the random variable \(S_n = S_n(\tau_1, \ldots, \tau_n) \) has a density \(\psi_{S_n}(v) \) equal to

\[
\gamma z_n^{-1} \cdot \int_{\Delta_{n-1} \cap (u_0, u_1)^{n-1}} \Pi_{\Delta_{n-1} \cap (u_0, u_1)^{n-1}} (G^{-1}(v_1, \ldots, v_{n-1}, v)) \, dv_1, \ldots, dv_{n-1} \cdot |f'(v)|^{-1} \cdot \Pi_J(v), \quad v \in R,
\]

which is strictly positive on \(J \). Thus the lemma is proved.

Corollary 3.1: Given \(D_n \cap C_{\varepsilon,n} \) the integral \(I_t \) has a density being strictly positive at least on the non-void interval \((nv_0(z + \varepsilon), nv_1(z - \varepsilon))\).

Proof. We use the Lemma 3.1 to express the integrand in formula (8)

\[
P\left(\sum_{k=1}^n z_k f(\tau_k) \in B \mid D_n \right) = \int_B \psi_{S_n}(v; z_1, \ldots, z_n) \, dv
\]

(9)

Inserting (9) into (8) and changing the order of integration we get

\[
P(I_t \in B \mid D_n \cap C_{\varepsilon,n}) \cdot P(C_{\varepsilon,n}) = \int_B \left(\int_{(z - \varepsilon, z + \varepsilon)^n} \psi_{S_n}(v; z_1, \ldots, z_n) F(dz_1) \ldots F(dz_n) \right) \, dv
\]

Thus given \(D_n \cap C_{\varepsilon,n} \) the integral \(I_t \) has a density which is strictly positive on \((nv_0(z + \varepsilon), nv_1(z - \varepsilon))\).
That this interval is non void follows from assumption (5). Indeed, (5) implies $z + \varepsilon < c(z - \varepsilon)$ as well as $z > \varepsilon$ and thus we have

$$\frac{v_1(z - \varepsilon)}{v_0(z + \varepsilon)} = c^2 (\frac{z - \varepsilon}{z + \varepsilon})^2 \cdot \frac{z + \varepsilon}{z - \varepsilon} > 1.$$

(10)

This completes the proof of the corollary. \qed

We continue the proof of the theorem. By assumption we have

$$H(I_l) = L_\ell \quad P - a.s.$$

For any $n \geq 1$ this implies

$$H(I_l) = \sum_{k=1}^{n} Z_k \in (n(z - \varepsilon), n(z + \varepsilon)) \quad P(\cdot|D_n \cap C_{\varepsilon,n}) - a.s.$$

(11)

Now choose two positive integers l and m with

$$\frac{z + \varepsilon}{z - \varepsilon} < \frac{l}{m} < c^2 \frac{z - \varepsilon}{z + \varepsilon}$$

(12)

which is possible because of (10).

Introduce for any $n \geq 1$ the two intervals

$$V_n := (n(z - \varepsilon), n(z + \varepsilon)) \quad \text{and} \quad W_n := (mw_0(z + \varepsilon), mw_1(z - \varepsilon)).$$

By construction of l and m we get from (12) $l > m$ and

$$\underline{w} := lw_0(z + \varepsilon) < mw_1(z - \varepsilon) := \overline{w}.$$

(13)

Thus it holds

$$W_l \cap W_m = (\underline{w}, \overline{w}) \neq \emptyset.$$

(14)

From Corollary 3.1. and (11) it follows for $n = l$

$$H(v) \in V_l \quad \text{Lebesgue - a.e. on } W_l$$

and for $n = m$

$$H(v) \in V_m \quad \text{Lebesgue - a.e. on } W_m.$$
Thus (14) implies

$$H(v) \in V_l \cap V_m \quad \text{for all } v \text{ from } (\underline{w}, \bar{w}).$$ \hfill (15)

But from the first inequality of (12) we have \(l > m\) and \(l(z_0 + \varepsilon) > m(z + \varepsilon)\), this means \(V_l \cap V_m = \emptyset\). This is a contradiction to (15). Consequently, the assumption, that \(f\) is not constant cannot be valid.

The proof of the theorem is finished for \(L\) being a compound Poisson process or a Wiener process, both non degenerated.

In the third part of the proof we assume that \(L\) is a general non-deterministic Lévy process. We choose an \(\varepsilon > 0\) such that \(L_{t}^{> \varepsilon}\) is non-trivial. (If no such \(\varepsilon\) exists then \(L\) necessarily is a Wiener process, and for this case the proof was given at the beginning.)

By assumption we have

$$H(I_t^{> \varepsilon} + I_t^{\leq \varepsilon}) = L_t^{> \varepsilon} + L_t^{\leq \varepsilon} \quad \text{P-a.s.}$$ \hfill (16)

with

$$I_t^{> \varepsilon} := \int_{[0,t]} f(s)dL_s^{> \varepsilon}, \quad I_t^{\leq \varepsilon} := \int_{[0,t]} f(s)dL_s^{\leq \varepsilon}.$$

We know that \((I_t^{> \varepsilon}, L_t^{> \varepsilon})\) is independent of \((I_t^{\leq \varepsilon}, L_t^{\leq \varepsilon})\).

Therefore from (16) we get

$$H(I_t^{> \varepsilon} + y) = L_t^{> \varepsilon} + z \quad \text{P-a.s.}$$ \hfill (17)

for \(P(I_t^{> \varepsilon}, I_t^{\leq \varepsilon})\) - almost all \((y, z)\). Thus there exists at least one pair \((y, z)\) such that (17) holds. As a consequence from the second part of the proof we obtain

$$\tilde{H}(I_t^{> \varepsilon}) = L_t^{> \varepsilon} \quad \text{P-a.s.}$$ \hfill (18)

for the Borel function \(\tilde{H}(x) := H(x+y) - z\). Because \(L_t^{> \varepsilon}\) is a nontrivial compound Poisson process, the function \(f\) has to be constant. Now the proof of the theorem is complete. \(\square\)
References

