A Mixed User Interface for a Statistical System

Yoshikazu Yamamoto!, Junji Nakano?, Takeshi Fujiwara® and
Ikunori Kobayshi®

! Tokushima Bunri University, 1314-1 Shido, Kagawa 769-2193, JAPAN

2The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu,

Minato-ku, Tokyo 106-8569, JAPAN

3The Graduate University for Advanced Studies, 4-6-7 Minami-Azabu, Minato-
ku, Tokyo 106-8569, JAPAN

Summary

A user interface is one of the most important factors for deciding the use-
fulness of a statistical system. Nowadays, a graphical user interface (GUI)
is popular because it is easy and intuitive to use. A character user inter-
face (CUI) is, however, still important for using full abilities of the system
by writing statistical programs in order to perform complicated statistical
analyses which have not been realized in the system. We propose a “mixed
user interface” for utilizing a GUI and a CUI alternatively and seamlessly,
and consider its required characteristics.

We also explain an implementation of the mixed user interface of the statis-
tical system Jasp (Java based statistical processor), which is written in the
Java language and adopts many recently developed computer technologies.

Keywords: Character user interface, Graphical user interface, History of
a data analysis, Object-oriented approach



1 Introduction

The purpose of statistical system software is to support statistical analyses
for users. In spite of a lot of efforts of making statistical “expert systems”,
it is still impossible for any statistical system to analyze data automatically,
i.e., to judge values of results of an analysis and select statistical models as
human experts can do. What we can expect for a statistical system is to
perform heavy calculations for the data handling or the model fitting, and
to show various graphs for visualizing data or models. Therefore, smooth
collaboration between a user and a statistical system is important. A user
wants to convey his or her ideas about analyses simply and accurately to the
system, and to see results of data processing by the system in various ways
clearly and intuitively. All these problems are related to the user interface
of the system. It apparently decides the usefulness of the system heavily,
although the total value of a statistical system, of course, is affected by
many other factors such as supported statistical procedures, reliability and
preciseness of calculation, possibility of collaboration with other software, etc.
This paper focuses on the problem of a user interface of modern statistical
systems.

As statistical models have been described mainly by mathematical expres-
sions, it would be best for a statistical system to manipulate mathematical
expressions directly on a graphical user interface (GUI). They are, however,
still difficult to be handled by computers. Reading and writing mathematical
expressions are not easy tasks even for modern computers. We need some
training to write mathematical expressions in word processing at will. At
present in almost all systems, mathematical expressions need to be written
in statistical languages, which have been also used as communication means
on character user interfaces (CUIs), in which a user writes programs by a
editor, and executes them by using an interpreter or a compiler.

Recently developed statistical techniques, for example, non-parametric den-
sity estimation, bootstrap methods and neural networks, are expressed mainly
by complex algorithms, not by simple mathematical expressions. Although
mathematical considerations are given to them, they are less useful for inter-
preting real data analysis results, because of their tremendous complicated
structures. Statistical algorithms can also have been fully expressed by pro-
grams written in statistical languages. In these senses, statistical languages
and CUIs are still important.

A GUI is apparently easier to use than a CUI, as a GUI can offer the full
screen to show various information, and a user does not need to memorize all
the language grammar. Because a GUI can visualize ideas, it is easy to grasp
the whole image of an analysis intuitively. Programming by a GUI may be
intimate or friendly when we design icons and other GUI parts pleasantly.



A GUI, however, has some demerits. We often open too many windows on
the screen and lose our analysis way, partly because they are so easily created
by just one click of a mouse. To write programs and to show programming
logic by the GUI are still difficult. It is also not suitable to perform very
complicated analysis by the GUI.

As GUIs require much more computer resources both in hardware and soft-
ware than CUIs, they became widely available just recently. Many GUIs of
statistical systems have been designed by a “composite user interface” (Liu,
Chan, Montgomery & Muller 1995) approach, which adds a separate GUI
front-end program on the statistical system which had only a CUIL This ap-
proach was thought to be reasonable, because we had many established CUI
statistical systems, which were widely used and enough reliable. For exam-
ple, Nakano (1998) adopted this approach to add a GUT using Internet to the
traditional statistical system SHAZAM (White 1997). However, Yamamoto
and Nakano (2000) pointed out that this approach has the deficiency that the
design of a GUT is strongly restricted by the original CUIL They also designed
an experimental GUI for time series analysis, in which the history of the data
analysis is recorded as a tree of data objects and the system can be used by
simple mouse operations for them.

Users who are satisfied with a GUI at first, often become to hope to perform
complicated data handling which are not included in the system when they
are accustomed to the system. Then programming works become required.
Therefore, we need both a CUI and a GUI for statistical systems, and they
should be used alternatively and seamlessly. We call the user interface which
has these characteristics as a “mixed user interface”, which will be considered
in the next section in detail. As the example realization of a “mixed user
interface”, we will explain the user interface of our statistical system Jasp
(Java based statistical processor) in section 3.

2 User interfaces for statistical systems

Statistical analysis generally consists from several steps. We need to acquire
data, show visual displays for summarizing their characteristics, calculate
basic statistics and transform them for better descriptions. After these pre-
liminary data handling, we fit models for approximating the data generation
process, diagnose them and seek better models. We repeat these processes
again and again until we have satisfactory models. At the last stage, we
use estimated statistical models to predict future values or simulate future
movements. In these exploratory works, it is important to record the history
what we have done before. When we succeed in our statistical analysis, we
sometimes notice that developed procedures are meaningful statistical tech-
niques also for other data. We definitely hope to store them for later use in



convenient ways. All these processes need to be supported by a user interface
of a statistical system.

Historically, a CUI has been used mainly as an environment to write and
execute programs. Programs are written in the statistical language, which
is designed for programming statistical works easily and flexibly, and for
systematically describing statistical knowledge in the system.

Programs at the first stage of a tentative analysis are generally short and
simple, but full of various techniques. For these purposes, interpreter lan-
guages are more suitable than compiler languages, because interpreters can
respond quickly. The function-based procedural language is thought to be a
good solution by its easiness of simple modular programming. The type-less
language is less restrictive than the typed language.

The grammar of a statistical language should be simple but enough powerful
for vast range of statistical uses, as users of statistical systems are not pro-
fessional programmers. Statistical languages should include frequently used
functions, such as matrix calculations, maximization of complicated func-
tions, and well known statistical procedures. For realizing these objects, sta-
tistical languages have been developed gradually from the simple subroutine
call of Fortran to powerful function-based languages such as S (Chambers &
Hastie 1992) and XploRe (Hérdle, Klinke & Miiller 1999) languages.

For arranging developed programs in the hierarchy of statistical techniques
for later use, object-oriented programming is desirable, because it has mecha-
nisms which are useful for a knowledge representation, such as an inheritance.

As we know these characteristics are hopeful for a statistical language, we
tried to implement them as the Jasp language (Nakano, Fujiwara, Yamamoto
& Kobayashi 2000). Details of the Jasp language are stated in the separate

paper.

Besides a language, the environment for using it is also important for a sta-
tistical system. Even if the language is simple, we still have to study hard to
master it and use it freely. As learning and using the language are not easy,
we need an environment to support these processes. We are first interested
in a CUI environment for them. An editor window for writing programs is
clearly indispensable. It is natural to execute a part or whole of them from
inside the editor. We also need an interactive command line window to exe-
cute one line or a few lines of commands given by the user directly. Results
of them should appear just after the command input in the same window.
Graphs, however, is not suitable for a character user interface, then they can
be shown in a GUI window.

Recently, interactive develop environments (IDEs) for general purpose lan-
guages become popular for developing programs. IDEs help users for writing
programs by using GUIs. Although a statistical system with a GUI looks as



same as the IDE, there may be differences: the IDE is a GUI environment for
writing and testing programs, and a statistical system is not only for writing
and testing statistical programs but also for supporting the whole statisti-
cal analysis processes. In other words, the IDE is a closed environment in
the world of programming, and a statistical system is an open environment,
to consider the domain knowledge from which data were generated and the
future usage of results in various ways. In data analysis processes, we some-
times do not know how to handle the data at all when we first face to them.
We have to gather knowledge about the data by iterating some data handling
processes and make clear what we can do about that data. This point is also
different from usual programming works, in which the object of programming
is clear from the beginning. It will never happen that a user who does not
know programming at all tries to use the IDE. Not a few people who use
statistical systems are naive for statistics. Statistical systems need to help
such users efficiently.

A GUI may be desirable to display data and calculation results as icons which
are arranged as a tree for expressing the history of the data analysis. Such
records of the history are useful in a trial and error process to seek better
ideas for data or models. As icons of data and statistics should represent one
conceptual statistical object, we need to apply possible statistical procedures
for them easily, for example, each icon has a pop-up menu for listing available
procedures and they can be started by simple mouse operations such as click
or drag and drop. Functions in the system should be displayed also as a
tree which reflects the statistical theory systematically in order to find the
procedure we want to use without much efforts.

In a GUI, we need a window for showing graphs or tables as results of the
statistical analysis. As such displays easily become large amount, functions
to hide unnecessary objects tentatively are required.

It would be good if all functions of the system which are available from the
CUI can be used also in the GUI. It is, however, difficult because visual pro-
gramming is still on the research stage. What we can realize at most is that
almost all operations, except defining new functions and new statistical ob-
ject classes, can be performed through the GUI window by mouse operations
more easily than through the CUI window.

As was stated in the previous section, we often have to use a CUI and a
GUI alternatively and seamlessly, i.e., we want to switch from one to another
easily. We call such a user interface as a “mixed user interface”. A CUI and
a GUI in a mixed user interface have the same importance and there is no
one way dependence between them. We have to design a good GUI without
thinking about the language, and we have to design a good CUI or language
without thinking about the GUI, at the beginning. Then, the user who uses
a CUI only and the user who uses a GUI only will be both satisfied. In this



sense, a CUI and a GUI should be independent. However, a CUI window and
a GUI window of the mixed user interface are completely dependent when
they are used, because they communicate each other continuously, and almost
all operations done in one window are also recorded in the other window. In
realizing a mixed use interface, we have to implement a CUI or a language
and a GUI to satisfy the above stated design principle as much as possible
by adjusting them together at the same time. Object-oriented programming
is thought to be useful for realizing this kind of interface.

3 Jasp user interface

An example of the “mixed user interface” is implemented in the statistical
system Jasp. As Jasp is written in Java, it runs on many platforms supported
by Java virtual machines. Jasp system consists of server and client programs.
This structure is adopted for realizing distributed computing mechanism, and
is also useful for implementing the mixed user interface.

The Jasp language is based on Pnuts, a scripting language written in Java
(Tomatsu 2000). Jasp language is a function-based and a type-less interpreter
language with the object-oriented framework.

The Jasp user interface runs as the client program. It can be invoked both
as an application and as a Java applet from Web browsers. Jasp application
client can read and write local files, but Jasp applet can read data from files
specified by universal resource locators (URLs). The Jasp client program
opens both a CUI and a GUI window separately.

3.1 CUI window

The CUI window has the upper editor area and the lower input/output area
(Figure 1). In the upper area, we can read a program file written in the Jasp
language, edit it and evaluate a part or whole of it. These operations can be
performed by a key operation or a pull-down menu of the CUI window. We
can also save the content of the editor or the input/output areas into files.

We can feed our commands directly to the lower input/output area. They are
interpreted immediately, and calculation results are displayed successively in
the window. We can copy the typed command to the upper editor area by
the pull-down menu. This is useful for recording and modifying commands.



]

i ciwife hewindry ard plol Be =9

FIIpFCA = [veplba]

PIFCAT = phal_scabossiagram | WPOR ] 1], WA il J], “ped v o )
ERIFCAD = kTG alha i grasi | yPOA po[ 3, WO pLT] “ped vl poTT )
S ET TS 5 T el M TR T T T

slaPCAd = plal_scatimrdtagram [ yPTA conl 1) /WP CA oo 3L " correl mhiom ey
FpFCAadRlbFCAl)

BRI pPCA JEHa P CAT]

B pPCAaBE P CA T

AipFCAasElp A}

piapPTA

[ ] I

Fii

L

I Madl -N7REWM - -0SANIPT  OFIEOIT -0 IBRIDE -DOGIEAT -0 03F7N7 DA
G mad] -DIioE DERIR3 §OIEGERd  -DLISEMEE 00802 -DAZAERE

6 Had] OSTEI  SDABASE] O RSEATED D ISEME  DERM4SE 0 D4SETR

1 Mart) 3 el 3 Maid) 4 Need] § Maid) B el

i al]  03NEE0 -DImNE -0IRIIFD Q9DIm -OuSadid BIEFII
7 Wall ODNIER  D1NEER NDDAESFR -IRERNIA 053G -0 InIIE
3 eI 133373 DAIEEE D4I0EME DZIEDEE DADI1AT  DITSEEE
& rad]  0BTIAE 0304955 0iatees  GQ05EaF -DDEtDTY  -003ETHS
§ paf] LEXIDE BAITITE  RAMSIE 00540 -0G3T04E 000 B
B Maf]  OTATAES  -DE44%]  37704F4 -0 DOESOE -0 OJED0  -BAOT4TD

- t
o | ——] (¥

Figure 1: Jasp CUI window

3.2 GUI window

The GUI window consists of three areas (Figure 2). The upper left area
shows the analysis history as a tree form, whose leaves are icons of objects
or variables. The lower left area shows available functions and constructors
of statistical objects also as the tree form.

In the upper left area, data, statistics and graphs are displayed as icons with
the name of variables to which they are assigned. Temporary variables, whose
name begins by underscore ( - ), are not displayed. We can show all variables
including temporary variables by a menu operation. Icon trees can be folded
by clicking + and changing it into —, and can be unfolded by the reverse
operation.

These icons are manipulated directly by the mouse. When we select an icon
by the mouse, a pop-up menu appears. This menu is a list of available
methods for the object. For example, when we specify basic variables, we



HHGT TR -
U
L] (B |—
et (L
Wk [ Lo bkl
L T I

(8] by o' il Wl vl
maT e AR ITN R

1
Wl BOAUMEH . EIRIEIT O AR T -
¥} | DT ONRNEEEE D EEE a0 B
L] BATMWEINS DIRIBAY  BEITAINY SQDSRETE R
Aol “1 R Rarifnm oimine  -aosidme ae
e BiabdER Sl Ridake b ITERMER b Ot 0
T L aal |
i
o
-
-
. L S
Ll
= na 1
= i
¥ E Ts iz 4
+* L1 o =
1l 2 G 1
LT 1
| PP T 4
(]
L] 1
1 | -~
g 5 =

Figure 2: Jasp GUI Window

have a menu whose items are Show value for displaying its value in the
right output window, Delete for deleting it. Icons which represent instances
defined by Jasp class definitions will show the menu whose items are list of
available methods when they are specified. In case arguments are required
for executing functions and constructors, new input window will open, and
we have to specify them by the drag and drop operation or typing variable
names. All operations given in the GUI window are recorded as program
executions in the CUI window.

The history of the data analysis is shown as an icon tree in the upper left
area. New data or statistics object created by an operation is expressed as
an icon of the sub tree under the original object.

In the lower left area, function and constructor names are shown as a statis-
tical method menu in the tree form. When we click them, a selected function
or constructor is invoked. A group of functions are stored in the ”library”
file. The name of library is displayed as the top level leaf of the tree, and
their functions are shown as its sub tree. Constructors are arranged by the
class definitions, i.e., an inheritance hierarchy of classes is displayed as the
tree form. A class which does not have specified super class is a top level leaf



of the tree. This mechanism is useful for the menu display which reflects the
structure of programs or the underlying statistical theory.

As we want to keep the simplicity of the Jasp language, it does not have any
syntax for supporting a GUL Users can write Jasp programs without thinking
about the GUI. However, if we hope to use the program also on the GUI, we
need additional information for the GUI. For example, there are functions
and constructors which are not for the public use but for the internal use.
They should not appear on the menu for public usage. We want to distinguish
such functions from more important functions. Another example is the type
declaration of arguments of functions. Although the Jasp language has no
type declaration, it would be useful to check the appropriateness of the input
variable at the GUI operation. Such checks are easily available if types of
input arguments are specified in some ways.

For these purposes, we decide to include additional information as comments
of programs in special formats. At present, we can write types and default
values of input arguments, and explanations of functions and constructors.
Functions and constructors without these comments are not shown as menu
items in the lower left area. When a function or a constructor is specified,
additional information in comments are shown in the input window to help
users.

3.3 Mixed user interface

New users of Jasp probably start from the GUI operation. When they are
familiar with the grammar of the Jasp language and the structure of Jasp
functions and constructors, they move to the CUL In our mixed user interface,
however, we can always use the CUI and the GUI windows alternatively and
seamlessly.

All operations using the mouse in the GUI window are also displayed in the
input/output area in the CUI window. We can see the record of GUI oper-
ations, and learn commands, functions and constructors of Jasp in the CUI
window. It is possible to write a program by combining recorded operations
in the upper editor area of the CUI window.

When we execute commands by typing in the input/output area or evaluating
a Jasp program in the editor area, results are shown in the input/output area,
and at the same time, in the GUI window as icons which represent tables and
graphs of data or statistics. Thus, the history of the data analysis is shown
as the tree form. We note that it is difficult to show the relation of variables
and loaded data, and the analysis process in the CUI window only.



10

|

Figure 3: An example of Jasp applet

3.4 An example of the Jasp user interface

Figure 3 is an example of the whole Jasp user interface, working as an applet
of Netscape 6 on the Microsoft Windows 98. We select Open URL button
and read an example program included in the Jasp distribution file. The
program is shown in the upper area of the CUI window. We select this entire
program by pushing Select All button or by mouse dragging. When we
push Evaluate button, the selected program is executed. Results are shown
in the lower area of the CUI window by characters and in the GUI window
by icons, graphs and tables.

When we use the GUI , we usually start from File menu of the GUI window,
then select Load URL data and read data from the URL. The data can be
shown as an icon in the upper left area of the GUI window. For example,
if we want to calculate the autocorrelation function of the time series data,
we select Timsac in the lower left area and select Autocorrelation/1 menu
item. This constructor needs the name of variable to which calculated results
are assigned. It should be specified in the pop-up input window. Arguments



11

of constructors or functions can be given by drag and drop operations. All
these operations are recorded in the CUI window.

4 Conclusion

As a statistical system is often used by users who are not expert statisticians
or professional programmers, a friendly user interface is one of the most
important factors of it. For these users, an easy and simple GUI is preferred
when they start their statistical works. Even such users will hope to perform
complicated statistical methods for their data by using a CUI when they
proceed their works earnestly.

Therefore, we propose a “mixed user interface” in which users can use a GUI
and a CUI alternatively and seamlessly. We insist that a GUI and a CUI
need to be independently designed at the beginning, and operations on one
interface should also be reflected on the other. We consider the importance
of the recording the analysis history on the GUI in an exploratory statistical
analysis.

As a realization of the “mixed user interface”, we explain the user interface of
our statistical system Jasp (Java based statistical processor). Jasp is available
freely from our Web site (http://jasp.ism.ac.jp/).

References

Chambers, J.M. & Hastie, T.J. (ed.) (1992), Statistical Models in S., Pacific
Grove: Wadsworth.

Hardle, W., Klinke, S. & Miiller, M. (1999), XploRe — Learning Guide, Berlin:
Springer. (http://www.xplore-stat.de/)

Liu, L.-M., Chan, K.-K., Montgomery, A. L. & Muller, M. E. (1995),
A system-independent graphical user interface for statistical software,
Computational Statistics €& Data Analysis, 19(1), 23-44.

Nakano, J. (1998), Graphical User Interface for Statistical Software Using
Internet, in COMPSTAT 1998 Proceedings in Computational Statistics
(ed. Payne, R. & Green, P.), 407-412. Heidelberg: Physica-Verlag.

Nakano, J., Fujiwara, T., Yamamoto, Y. & Kobayashi, I. (2000), In: COMP-
STAT2000 Proceedings in Computational Statistics, 361-366. Heidel-
berg: Physica-Verlag.

White K.J. (1997), SHAZAM — User’s Reference Manual Version 8.0, New
York: McGraw-Hill. (http://shazam.econ.ubc.ca/)



12

Tomatsu, T. (2000), Pnuts, (http://javacenter.sun.co.jp/pnuts/)

Yamamoto, Y. & Nakano, J. (2000), A time series analysis system using
visual operations, SFB 373 Discussion Paper No. 32, 2000.
(http://sfb.wiwi.hu-berlin.de/)



