Non-Uniformity of Job-Matching in a Transition Economy – A Nonparametric Analysis for the Czech Republic

Stefan Profit and Stefan Sperlich
Sonderforschungsbereich 373
Humboldt-Universität zu Berlin
Spandauer Str. 1, D-10178 Berlin, Germany

August 21, 1998

Abstract
We consider problems in modelling job-matching in the Czech Republic during the transition to a market economy. Special interest is devoted to functional form considerations and the analysis of returns to scale of the matching function. This explorative study aims to shed some light into the black-box of the matching technology by applying nonparametric estimation techniques which relax distributional assumptions. Nonparametric additive modelling enables us to evaluate the matching process locally for each combination of the underlying matching factors, rather than being restricted to global parameters. We apply these techniques to a rich panel of monthly observations of unemployment vacancies and unemployment-to-job exits in all 76 labor market districts in the Czech Republic between January 1992 and September 1996, and find non-linearities in the partial adjustment process as well as a partially negative coefficient of unemployment outflows with respect to vacancies in some years. Moreover, we find locally increasing returns to scale in job-matching, which may be responsible for multiple equilibrium unemployment rates in the Czech Republic during the transformation process.

JEL Classification: C14, C52, J64

Keywords: Job-matching, returns to scale, nonparametric analysis, testing additivity, marginal integration, Czech Republic.

*This research was financially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 373 “Quantifikation und Simulation Ökonomischer Prozesse” at Humboldt-Universität Berlin. Contact the authors via (profit, sperlich)@wiwi.hu-berlin.de. We thank Knut Bartels, Michael Burda, and Antje Mertens and Olaf Bunke for helpful discussion and comments.
1 Introduction

The emergence of open unemployment in central and eastern European economies during the transformation process has created the need to establish modern institutions able to coordinate these newly created labor markets. The question, whether job and worker reallocation processes in transition economies have evolved to exhibit a similar pattern known from western European labor markets, has been subject to extensive research in recent years (see Burda (1994), Boeri and Burda (1996), Burda and Profi (1996), Münch, Svenjar and Terrell (1995) for studies on Czech labor markets).

Most previous studies have failed to account sufficiently for the heterogeneity of matching technologies: differences may not only appear in regional and district fixed effects but also in marginal effects of the matching factors. It seems likely that labor market reforms in transition economies have not evolved uniformly since the outset of the transformation period, and returns to scale may vary geographically and over time. Considering this heterogeneity in the matching technology is important, since finding locally increasing returns to scale for certain regions and periods, even with constant and decreasing returns to scale on aggregate, may induce multiple equilibria (see Weder (1997)).

The main contribution of this study is to present a mainly data adaptive analysis of the matching function with a minimum of restrictions on the empirical model. The motivation here is not to prove in a statistical sense that the linearized economic model is misspecified. Since, in general, test procedures put all power on the (parametric) hypothesis, such a test would only reject in case of extreme misspecification or at a convenient (high) significance level. Recently developed marginal integration techniques (going back to Tjøstheim and Auestad (1994)) allow for nonparametric analysis, which avoids so far necessary restrictive assumptions of parametric modelling.

Section 2 provides a brief survey of recent theoretical and empirical studies on job-matching. Section 3 introduces the nonparametric methods we will apply. In Section 4 we discuss potential problems with the data and present estimation results a parametric benchmark model. Section 5 summarizes the nonparametric results and estimates of returns to scale for the Czech matching function. Section 6 concludes.

1The only assumptions are continuity of marginal effects and absence of higher order interaction.
2 Theory and Evidence on Job-Matching in Transition Economies

An analytical tool frequently applied to describe the process of unemployed workers’ transition to jobs is the matching function. It models job-matches over an incremental time interval as a non-linear function of the number of total unemployed and vacancies in a well-defined labor market, \(F = G(U, V) \), where \(F \) is the number of matches between unemployed job-seekers and firms, \(U \) is the stock of unemployed, \(V \) the stock of vacancies and \(G \) the matching function. Assuming that the job-search behavior of workers and firms can be described by a random sampling process, the matching function \(G \) can be shown to exhibit positive derivatives in both arguments (see Hall (1977) and Pissarides, 1990)). Empirical studies usually applied a Cobb-Douglas specification, where factor elasticities describe the marginal (linear) effects of unemployment and vacancies on unemployment exits and a parameter which measures the efficiency of the matching process. Since the matching technology plays a crucial role in determining the equilibrium rate of unemployment, various attempts have been made to parameterize this measure.

Another prominent feature of the matching function generally imposed in theoretical models is the constant returns to scale property, i.e. doubling the number of unemployed and vacancies doubles the number of matches (see for example Mortensen and Pissarides (1994)). This property of the matching function has found empirical support, as the assumption of constant returns to job-matching is consistent with a constant unemployment rate along a steady-state growth path in theories of equilibrium unemployment (Pissarides (1990)).

Recently, many studies have challenged the validity of assumptions concerning the functional form and returns to scale in job-matching, in particular when it is applied to transition economies. A first group of studies is concerned with the functional form of the matching function, more precisely with the heterogeneity of the unemployment and vacancy pool, and their separability with respect to job-matching. If different types of inputs are not separable, marginal rates of substitution among unemployed and vacancies of separated groups are not independent of the level of inputs in another group (Denny and Fuss (1977) for an analogue application of these concepts to production functions). Boeri (1994) splits the pool of unemployed into long and short spells, and fits a CES function. Boeri (1995), Burgess (1993) and Profit (1997) consider (directly or indirectly) the role of on-the-job search. Storer (1994) introduces a test of concavity of the matching function as a possibility to differentiate a job-search from a simple queuing framework where the short side of the market always serves as the rationing factor. Another set of studies tries to fit more flexible translog functions of the matching technology (Warren (1995), Fox (1996) and Münch, Svenjar and
This approach has been extensively used to estimate production functions (see Berndt and Christensen (1973) and Christensen, Jorgensen and Lau (1973)), and allows for interactions among production factors. Finally, Coles and Smith (1994) and Gregg and Petrongolo (1997) present models which drop the assumption of random sampling and re-specify the matching function such that the stock of vacancies is matched with the flow of newly unemployed and the unemployment stock with vacancy inflows.

A second group of studies is concerned with biases of matching parameters due to (dis-)aggregation. Courtney (1992) estimates matching functions on a sectoral level. Burda and Profit (1996) and Burgess and Profit (1998) show that generalizing the matching function to a multi-regional setting, and allowing for spatial spillovers, yields complex functional forms and possibly reveals constant returns to scale. Burdett, Coles, and van Ours (1994) argue that standard estimates of matching parameters may underestimate the underlying coefficients as a result of temporal aggregation. Finally, another set of studies underlines the importance to consider the time-series properties of unemployment-to-job transitions by estimating dynamic versions of the matching function (Baker, Hogan and Ragan (1996), Profit (1997) and Münch, Svenjar and Terrell (1997)).

Many of these studies have examined the constant returns to scale property. In contrast to theoretical predictions, they predominantly find mildly increasing returns to scale. This finding has important consequences since increasing returns to matching have been identified as a necessary (though not sufficient) condition for multiple equilibria in unemployment rates (Diamond (1982) and Pissarides (1986)). Profit (1997) has suggested that increasing returns may have been responsible for the appearance of equilibria of high and low unemployment rates across labor market districts in the Czech Republic during the transformation process. Münch, Svenjar and Terrell (1997) argue that increasing returns to job-matching may be responsible for the superior performance of Czech labor markets compared to those in other central and eastern European countries.

While most studies treat the matching technology as a black-box, this paper aims at exploring non-uniformities through nonparametric estimation and testing. Our specification covers all commonly used models for the estimation of production or matching functions (see Fuss, McFadden and Mundlak (1978)). Furthermore, this approach allows us to analyze returns to scale for each combination of matching factors, and to study regional and temporal regularities of unemployment outflows in Czech labor markets.
3 Nonparametric Estimation and Testing in Additive Models

In this section we give a brief introduction to the nonparametric methods for regression estimation and testing we use in this paper. These methods were developed, shown to be consistent, empirically studied and discussed in Severance-Lossin and Sperlich (1997), Sperlich, Tjøstheim and Yang (1998) and Sperlich, Linton and Härdle (1997).

3.1 Nonparametric Regression Estimation

We consider an additive regression model with arbitrary but smooth functions \(f_\alpha \) and allow for interaction terms \(f_{\alpha\beta} \). The underlying model is

\[
Y = m(X) + \sigma(X) \varepsilon, \quad (1)
\]

\[
m(x) = c + \sum_{\alpha=1}^{d} f_\alpha(x_\alpha) + \sum_{1 \leq \alpha < \beta \leq d} f_{\alpha\beta}(x_\alpha, x_\beta),
\]

where \(X = (X_1, \ldots, X_d) \) is a vector of explanatory variables, \(\varepsilon \) is independent of \(X \) with \(E(\varepsilon) = 0 \) and \(Var(\varepsilon) = 1 \) and \(Y \) is the response vector. \(^2\)

Stone (1985) has proved that in these models \(f_\alpha \ (f_{\alpha\beta}) \) can be estimated with the one (two) dimensional rate. Thus, such a model does not suffer from the curse of dimensionality, typical for nonparametric methods in higher dimensions. Traditionally, additive models have been estimated using backfitting (Hastie and Tibshirani (1990)), but recently the method of marginal integration (Linton and Nielsen (1995), Newey (1994), Tjøstheim and Auestad (1994)) has attracted a fair amount of attention.

In this paper we also focus on the latter approach since for this kind of estimator, theory for derivative estimation (Severance-Lossin and Sperlich (1997)), estimation of interaction terms and testing their significance (Sperlich, Tjøstheim and Yang (1998)) has already been developed. These tools are extremely useful for an economic analysis of production or matching functions.

In expression (1), \(\{f_\alpha(\cdot)\}_{\alpha=1}^{d} \) and \(\{f_{\alpha\beta}(\cdot)\}_{1 \leq \alpha < \beta \leq d} \) are real-valued unknown functions. For each \(\alpha \) we assume for identification that these functions are centered to zero, i.e.

\[
Ef_\alpha(X_\alpha) = \int f_\alpha(x_\alpha) \varphi_\alpha(x_\alpha) dx_\alpha = 0, \quad (2)
\]

\(^2\)For small samples it could happen that such a model is not uniquely identified, i.e. the observed data could span a subspace only. This should be checked by an investigation of the sample distribution before starting with the intended estimation.
and for all $1 \leq \alpha < \beta \leq d$,

$$\int f_{\alpha\beta}(x_\alpha, x_\beta) \varphi_\alpha(x_\alpha) dx_\alpha = \int f_{\alpha\beta}(x_\alpha, x_\beta) \varphi_\beta(x_\beta) dx_\beta = 0.$$

Here, $\{\varphi_\alpha(\cdot)\}_{\alpha=1}^d$ are marginal densities of the X_α’s (assumed to exist).\(^3\)

Let X_α be the $(d - 1)$-dimensional random variable obtained by removing X_α from $X = (X_1, \ldots, X_d)$, and let $X_{\alpha\beta}$ be defined analogously. With some abuse of notation we write $X = (X_\alpha, X_\beta, X_{\alpha\beta})$ to highlight the directions in d–space represented by the α and β coordinates. We denote the marginal density of X_α, that of $X_{\alpha\beta}$ and of X by $\varphi_\alpha(x_\alpha)$, $\varphi_{\alpha\beta}(x_{\alpha\beta})$, and $\varphi(x)$ respectively.

We now define by marginal integration

$$F_\alpha(x_\alpha) = \int m(x_\alpha, x_\alpha) \varphi_\alpha(x_\alpha) dx_\alpha,$$

for every $1 \leq \alpha \leq d$ and

$$F_{\alpha\beta}(x_\alpha, x_\beta) = \int m(x_\alpha, x_\beta, x_{\alpha\beta}) \varphi_{\alpha\beta}(x_{\alpha\beta}) dx_{\alpha\beta},$$

for every pair $1 \leq \alpha < \beta \leq d$. Denote by D_α the subset of $\{1, 2, \ldots, d\}$ with α removed for every $1 \leq \alpha \leq d$. Moreover, let

$$D_{\alpha\beta} = \{(\gamma, \delta) \mid 1 \leq \gamma < \delta \leq d, \gamma \in D_\alpha, \delta \in D_\beta\}$$

while

$$D_{\alpha \beta} = \{(\gamma, \delta) \mid 1 \leq \gamma < \delta \leq d, \gamma \in D_\alpha \cap D_\beta, \delta \in D_\alpha \cap D_\beta\}$$

and

$$c_{\alpha \beta} = \int f_{\alpha\beta}(u, v) \varphi_{\alpha\beta}(u, v) du dv$$

for every pair $1 \leq \alpha < \beta \leq d$. Then (2) and (3) entail the following equations:

$$F_\alpha(x_\alpha) = f_\alpha(x_\alpha) + c + \sum_{(\gamma, \delta) \in D_{\alpha\alpha}} c_{\gamma \delta},$$

$$F_{\alpha\beta}(x_\alpha, x_\beta) = f_{\alpha\beta}(x_\alpha, x_\beta) + f_\alpha(x_\alpha) + f_\beta(x_\beta) + c + \sum_{(\gamma, \delta) \in D_{\alpha \beta}} c_{\gamma \delta},$$

which imply:

$$F_{\alpha\beta}(x_\alpha, x_\beta) - F_\alpha(x_\alpha) - F_\beta(x_\beta) + \int m(x) \varphi(x) dx = f_{\alpha\beta}(x_\alpha, x_\beta) + c_{\alpha \beta}$$

\(^3\)Given a function $m(\cdot)$ of the form given in (1) not necessarily satisfying (2) and (3), the following steps could be taken to normalize them in the sense of (2) and (3):

1) Replace all $\{f_{\alpha\beta}(x_\alpha, x_\beta)\}_{\alpha < \beta \leq d}$ by $\{f_{\alpha\beta}(x_\alpha, x_\beta) - \int f_{\alpha\beta}(x_\alpha, u) \varphi_\beta(u) du - \int f_{\alpha\beta}(u, x_\beta) \varphi_\alpha(u) du + \int f_{\alpha\beta}(u, v) \varphi_\alpha(u) \varphi_\beta(v) du dv\}$.

2) Replace all $\{f_{\beta}(x_\beta)\}_{\alpha=1}^d$ by $\{f_{\beta}(x_\beta) - \int f_{\beta}(u) \varphi_\beta(v) du\}$.

3) and adjust the constant term c accordingly so as to keep $m(\cdot)$ the same function.
\[f_{a\beta}(x_a, x_\beta) = F_{a\beta}(x_a, x_\beta) - F_a(x_a) - \int \{ F_{a\beta}(u, x_\beta) - F_a(u) \} \varphi_a(u) \, du \]
and finally
\[e_{a\beta} = \int \{ F_{a\beta}(u, x_\beta) - F_a(u) \} \varphi_a(u) \, du - F_{\beta}(x_\beta) + \int m(x) \varphi(x) \, dx . \]

To estimate these expressions and the derivatives of the \(f_a \) we are using a kernel smoother. Imagine the \(X \)-variables to be equally scaled so that we can choose the same bandwidth \(h \) for the directions represented by \(\alpha, \beta \) and \(g \) for \(a\beta \). Further, let \(K \) and \(L \) be kernel functions and define \(K_h(\cdot) = \frac{1}{h} K(\cdot/h) \) and \(L_g(\cdot) = \frac{1}{g} L(\cdot/g) \).

We use the same letters \(K \) and \(L \) to denote kernel functions of varying dimensions. It will be clear from the context what the dimensions are in each specific case.

The marginal influence of \(x_a, x_\beta \) and \((x_a, x_\beta) \) can be estimated by

\[
(9) \quad \hat{F}_a(x_a) = \frac{1}{n} \sum_{i=1}^{n} \hat{m}(x_a, X_i^\alpha), \quad \hat{F}_{a\beta}(x_a, x_\beta) = \frac{1}{n} \sum_{i=1}^{n} \hat{m}(x_a, x_\beta, X_i^{a\beta}),
\]

where \(X_i^{a\beta} = (X_i^\alpha, X_i^\beta) \) is the \(i \)-th observation of \(X \) with \(X_\alpha \) and \(X_\beta \) (\(X_a \)) removed.

To compute the pre-estimator \(\hat{m}(x_a, X_i^\alpha) \) we make use of a special kind of multi-dimensional local polynomial kernel estimation; see Ruppert and Wand (1994) for the general case.

When we are speaking of a local quadratic estimator at point \(x_a \), we consider the problem of minimizing

\[
\sum_{i=1}^{n} \{ Y_i - a_0 - a_1(X_{i\alpha} - x_a) - a_2(X_{i\alpha} - x_a)^2 \}^2 K_h(X_{i\alpha} - x_a) L_g(X_i^\beta - X_{i\beta}),
\]

for each \(l \) fixed. This results in

\[
\hat{m}(x_a, X_i^\alpha) = e_1(Z_a^TW_{i,a}Z_a)^{-1}Z_a^TW_{i,a}Y
\]

in which \(Y = (Y_1, \ldots, Y_n)^T \), \(e_1 = (1, 0, 0) \),

\[
W_{i,a} = \text{diag}\left\{ \frac{1}{n} K_h(X_{i\alpha} - x_a) L_g(X_i^\beta - X_{i\beta}) \right\}_{i=1}^{n},
\]

and

\[
Z_a = \begin{pmatrix}
1 & X_{1\alpha} - x_a & (X_{1\alpha} - x_a)^2 \\
\vdots & \vdots & \vdots \\
1 & X_{n\alpha} - x_a & (X_{n\alpha} - x_a)^2
\end{pmatrix}.
\]

Notice that this is a local quadratic estimator in the direction \(\alpha \) and a local constant estimator for the other (nuisance) directions.

By centering \(\hat{F}_a \) we obtain the estimator \(\hat{f}_a \). If we set \(a_2 = 0 \) we get what we will call the local linear estimator.
To estimate the first derivative of f_α we simply take

$$
\hat{f}'_\alpha = \hat{F}'_\alpha(x_\alpha) = \frac{1}{n} \sum_{i=1}^{n} c_2(Z^T_\alpha W_{i,\alpha} Z_\alpha)^{-1} Z^T_\alpha W_{i,\alpha} Y,
$$

with $c_2 = (0, 1, 0)$.

Similarly, we get the other pre-estimator of (9)

$$
\hat{m}(x_\alpha, x_\beta, X_{1\alpha \beta}) = c_1(Z^T_{\alpha \beta} W_{i,\alpha \beta} Z_{\alpha \beta})^{-1} Z^T_{\alpha \beta} W_{i,\alpha \beta} Y
$$

in which, for the local linear case, $c_1 = (1, 0, 0)$,

$$
W_{i,\alpha \beta} = \text{diag}\left\{ \frac{1}{n} K_k(X_{1\alpha} - x_\alpha, X_{1\beta} - x_\beta) L_2(X_{i\alpha \beta} - X_{1\alpha \beta}) \right\}_{i=1}^{n},
$$

and $Z_{\alpha \beta} =
\begin{pmatrix}
1 & X_{1\alpha} - x_\alpha & X_{1\beta} - x_\beta \\
\vdots & \vdots & \vdots \\
1 & X_{n\alpha} - x_\alpha & X_{n\beta} - x_\beta
\end{pmatrix}$.

These estimators are consistent if the underlying model is of the form (1). Even if the model has not this kind of additive structure, these estimates are still giving the marginal influences of the input variables. But certainly, then the sum of these functions is no longer an estimator for the regression function m.

In small samples these estimators can have a non-negligible bias, especially in areas where data are sparse (in the multidimensional space). There the estimates often oversmooth. But taking a local linear smoother we can at least estimate linear functions unbiased. The same holds for estimating derivatives if we take local quadratic kernel smoothers. For a further discussion of the behavior of these nonparametric methods in additive models and of small sample properties, see Sperlich, Linton and Härdle (1997).

3.2 Testing for Interaction using Nonparametric Methods

Proceeding from model (1), we present a significance test for the interaction terms $f_{\alpha \beta}$. First, define the auxiliary function

$$
\tilde{f}_{\alpha \beta}(x_\alpha, x_\beta) := F_{\alpha \beta}(x_\alpha, x_\beta) - F_\alpha(x_\alpha) - F_\beta(x_\beta) + \int m(x) \varphi(x) dx = f_{\alpha \beta}(x_\alpha, x_\beta) + c_{\alpha \beta}
$$

which fulfills $\tilde{f}_{\alpha \beta}(x_\alpha, x_\beta) \equiv 0 \iff f_{\alpha \beta}(x_\alpha, x_\beta) \equiv 0$, compare (6). Thus for testing the presence of the interaction term $f_{\alpha \beta}(x_\alpha, x_\beta)$ we check whether

$$
\int \tilde{f}_{\alpha \beta}^2(x_\alpha, x_\beta) \varphi_{\alpha \beta}(x_\alpha, x_\beta) dx_\alpha dx_\beta \neq 0
$$
where

\[\hat{f}_{\alpha \beta}(x_\alpha, x_\beta) = \hat{F}_{\alpha \beta}(x_\alpha, x_\beta) - \hat{F}_\alpha(x_\alpha) - \hat{F}_\beta(x_\beta) + \frac{1}{n} \sum_{j=1}^{n} Y_j. \]

It follows from the strong law of large numbers that

\[\frac{1}{n} \sum_{j=1}^{n} Y_j \stackrel{a.s.}{\longrightarrow} \int m(x) \varphi(x) dx. \]

The test statistic we apply is

\[R = \frac{1}{n} \sum_{i=1}^{n} \hat{\gamma}^2 \int \hat{f}_{\alpha \beta}(X_{i\alpha}, X_{i\beta}). \]

In Sperlich, Tjøstheim and Yang (1998) this test statistic and its asymptotic distribution is derived. However, for small and moderate sample sizes, typically found in economic applications, one has to be careful when using the asymptotic distribution in practice. In our case we have the additional problem of having unknown expressions in the bias and variance of the test statistics. Here the nonparametric test functional has been known to possess a low degree of accuracy in its asymptotic distribution.

One possible alternative, which avoids these shortcomings, is to use the bootstrap or the wild bootstrap, the latter being first introduced by Wu (1986) and Liu (1988). The basic idea is to resample from residuals estimated under the null hypothesis by drawing each bootstrap residual from a two-point distribution \(G_{(a, \delta, i)} \), which has mean zero, variance equal to the square of the residual and third moment equal to the cube of the residual for all \(i = 1, \ldots, n \). Thus, through the use of one single observation one attempts to reconstruct the distribution for each residual separately up to the third moment without additional assumptions on \(\varepsilon \) or \(\sigma(\cdot) \). Drawing \(n^* \) bootstrap replicates we obtain \(n^* \) different test statistics \(R^* \) with the same distribution as \(R \) under the hypothesis. So we finally can determine a p-value for \(R \).

4 Data and Parametric Analysis

We begin with estimating a parametric benchmark model. Unemployment and vacancy stocks, unemployment inflows and outflows constitute registry data provided by the Czech Ministry of Social and Labor Affairs. The data suffer from the known deficiencies of underreporting of vacancies and exits from the registry due to exhausted benefit eligibility. Moreover, the distribution of the intensity of underreporting is likely to be uneven across districts. On the other hand, the data provide a unique opportunity of mirroring regional labor market processes during transition at a high time frequency.

We regress log unemployment-to-job exits in some labor market district \(i \) over period \(t \) on log unemployment and vacancies in this district at the beginning of
the month. Accounting for the bias arising from differences in size of districts (Münch, Svenjar and Terrell (1997)), we divide all variables by the size of the labor force at the beginning of the month.\(^4\)

As in Boeri (1994), we account for a diminishing job finding probability of unemployed at longer spells by allowing different matching efficiencies for long-term and newly unemployed. The number of short-term unemployed in period \(t\) is approximated with unemployment inflows in period \(t-1, I_{i,t-1}\). Moreover, we correct the unemployment stock at the end of period \(t-1\) with unemployment inflows of the previous period, hence \(U_{i,t-1}^* \equiv U_{i,t-1} - I_{i,t-1}\).

Burda and Lubyova (1995) and Burda and Proft (1996) have demonstrated that residuals of the static Czech matching function show strong serial correlation. Accounting for a time lag between matching and hiring of workers with firms induces a complex partial adjustment pattern to the matching function and removes the correlation of residuals. Finally, we capture the heterogeneity among districts by estimating individual constants for each district, and aggregate time trends by introducing period fixed effects. The parametric benchmark model is then described by the following regression:

\[
\ln F_{i,t} = \nu_i + \delta_t + \gamma \ln F_{i,t-1} + \alpha_U \ln U_{i,t-1}^* + \alpha_I \ln I_{i,t-1} + \alpha_V \ln V_{i,t-1} + \epsilon_{i,t},
\]

where \(\ln F_{i,t}\) are log unemployment to job exits in district \(i\) during month \(t\), and \(\ln V_{i,t-1}\) is the log number of vacancies at the beginning of the period. \(\nu_i\) and \(\delta_t\) are district and time fixed effects. Moreover, we assume at this point, that \(\epsilon_{i,t} \sim \mathcal{N}(0, \sigma^2)\) and \(\text{COV}(\epsilon_{i,t}, \epsilon_{j,s}) = 0 \quad \forall i, j, s, t \quad \text{with} \quad i \neq j \quad \text{or} \quad s \neq t\) applies.

Allowing for fixed effects is equivalent to applying to each variable the usual within transformation, which transforms \(x_{i,t}\) to \(\tilde{x}_{i,t} = x_{i,t} - \bar{x}_i - \bar{x}_t + \bar{x}_{..}\), where \(\bar{x}_i\) and \(\bar{x}_t\) are the respective means over districts and time, \(\bar{x}_{..}\) is the overall mean, and \(x_{i,t} \in \{\ln F_{i,t}, \ln F_{i,t-1}, \ln U_{i,t-1}^*, \ln V_{i,t-1}, \ln I_{i,t-1}\}\). This wipes out district and time fixed effects \(\nu_i\) and \(\delta_t\) in the regression model. For the ease of notation we keep the name of the variables as above.

Our findings resemble those found in previous studies for the Czech matching function: the coefficient on (long-term) unemployment is positive and highly significant, the coefficient on vacancies is, except for 1992, positive but very small and insignificant in most years. Moreover, we find a positive and significant coefficient of lagged unemployment inflows, which is however smaller than the

\(^4\)The size correction is empirically unimportant for the parametric regression, but is a useful standardization of the data for our nonparametric analysis. Burdett et al. (1994) and Gregg and Petrongolo (1997) discuss the time aggregation bias arising from using discrete-time data to estimate a continuous-time process. Since we use monthly data, we assume that the time aggregation bias is not too large in our estimates.
coefficient on unemployment stocks. This result is at odds with the findings of Boeri (1994) who found a higher matching efficiency of newly unemployed. One possible explanation could be that unemployment inflows of the previous period are an inadequate measure for the short-term unemployed. If newly unemployed find new jobs within the same month, as likely in overheated local labor markets such as Prague, previous month’s inflows overestimate short-term unemployment in these districts.

Comparing regression over time reveals the instability of matching coefficients. Moreover, the coefficients of the regression which pools the observations from 1992 to 1996 are by no means averages of the coefficients of the single year regressions. This implies that structural changes during the transformation process obviously had a strong impact on unemployment-to-job exits, and alter the districts’ fixed effects over time. Therefore, we estimate the matching function nonparametrically on a year-by-year basis in the following section.

Table 1: Standard errors are given in parentheses. We had 684 observations in 1996, 912 in all other years and 4332 in the pooled regression. An F-test for returns to scale is given in parentheses below the returns to scale estimate, asterisks indicate rejection of Null hypotheses at 5% significance.

Recently, increasing returns to scale in job-matching in the Czech Republic were held responsible for the emergence of regional disparities (Profot (1997)) and the superior performance of Czech labor markets compared to other CEECs (Münch, Svenjar, and Terrell (1997)). In particular, both studies showed that accounting

5 Münch, Svenjar, and Terrell (1997) have rejected stability of matching coefficients over time in a similar specification.
for the fixed-effects bias in least squares dummy variable regressions (LSDV) may produce matching coefficients which indicate increasing returns to scale (see also (Nickell (1981)). Table 1 shows, however, that even a simple LSDV regression indicates increasing returns to scale (RTS) in 1994, whereas constant returns to scale cannot be rejected for all other years. Since the nonparametric methods applied in the subsequent section do not yet allow for instrumental variable techniques, we disregard the effect of the Nickell-bias for the rest of this study, and consider returns to scale estimates as lower bounds.

5 Nonparametric Analysis

This section presents an explorative analysis of the job-matching process on local labor markets in the Czech Republic. As before, we allow for district and time fixed effects by standardizing the variables as above. In order to facilitate the interpretation of the nonparametric estimates and comparisons to their parametric counterparts, we show density estimates in Figures 1a to 1e of each exogenous variable and for each year between 1992 and 1996. Note that the 1996 sample only contains observations for January to September. Even with a fairly small bandwidth \((h = 0.05)\) all densities appear well behaved and look close to normal. Due to the within transformation, all densities are centered to a value of zero.

Figures 2 to 11 show estimates of additive components, which represent the marginal effects \(f_\alpha(x_\alpha)\) in equation (1) where the respective \(x_\alpha\) are lagged unemployment-to-job exits, \(\ln F_{i,t}^{\alpha}\), long- and short-term unemployment and vacancies within each year. Separately estimated derivatives are given in the panel below each marginal effect. The additive components are obtained using a local linear estimator with bandwidths \(h = 0.3\) for the direction of interest and \(g = 0.6\) for the nuisance directions from 1992 to 1995, and \((h, g) = (0.4, 0.8)\) in 1996, which yield reasonable smoothness. The derivatives are obtained by applying a local quadratic polynomial estimator. There, the bandwidths were set to \((h, g) = (0.5, 0.9)\) between 1992 to 1995, and to \((h, g) = (0.75, 1.2)\) in 1996 respectively.

The two upper-left panels show marginal contribution and derivatives for \(\ln F_{i,t-1}^{\alpha}\), the upper-right panels plot \(\ln U_{i,t-1}^{\alpha}\), the lower-left panels \(\ln V_{i,t-1}^{\alpha}\), and the lower-right panels \(\ln I_{i,t-1}^{\alpha}\). Note that the range of additive components on the vertical axis indicate the strength of the effects. The solid lines in each diagram show the parametric estimate, which are centered at the origin. In addition, derivative

\(^6\) Since we have less observations for 1996, and given a similar support of the densities, larger bandwidths are chosen accordingly. For a detailed discussion of the optimal choice of bandwidths when the integration estimator is applied, see Sperlich, Linton, Härdle (1997).
plots contain 90% significance intervals from the parametric model as dashed lines.

Interactions among exogenous variables allow for more complex functional forms of the matching function. Economically, estimated interactions provide a basis for testing the separability of matching factors. This concerns first the degree of heterogeneity of the unemployment stock, i.e. the separability between short- and long-term unemployed, and second the separability between newly unemployed and vacancies. If long-term (\(\ln U_{i,t-1}^*\)) and short-term unemployed (\(\ln I_{i,t-1}\)) were not separable, aggregating them into a single variable would render a misspecified model, and neglecting interactions would bias the additive components and derivative estimates. Münch, Svenjar and Terrell (1997) consider the special case of multiplicative interactions and reject strong separability among \(\ln U_{i,t-1}^*\) and \(\ln I_{i,t-1}\) in the Czech Republic except in 1995. Beside the problem of aggregation of \(\ln U_{i,t-1}^*\) and \(\ln I_{i,t-1}\), significant interaction can provide evidence for non-random job search as inflows of unemployed may only match with the current pool of vacancies, and vice versa (see Coles and Smith (1994), and Gregg and Petrongolo (1997)). Nonparametric interactions among the matching factors are displayed as three-dimensional surfaces following additive components and their derivative plots for each year in Figures 2 to 11. Bandwidths for the estimation of interactions were set according to the estimation of the additive components. For the derivation of the (bootstrap) test statistics \(\hat{R}^*\) and \(R\) for significance of interactions, larger bandwidths have to be chosen (see Härdle and Marron (1991)).

The following subsections summarize the results for marginal contributions of each matching factor and the autoregressive variable, their derivatives and interaction effects.

5.1 Additive Components and Derivative Estimates

The overall impression is that marginal contributions for \(\ln U_{i,t-1}^*\) and \(\ln I_{i,t-1}\) display the theoretically expected shape and are fairly similar to the parametric coefficients. For the other additive components, the nonparametric estimates reveal clear non-linearities which are partly contradictory to economic theory. For 1992 and 1996 regressions, the additive components for vacancies seem to be negatively sloped over considerable ranges of the underlying distribution. Moreover, the slopes of several marginal contributions are non-uniform for certain ranges of the respective exogenous variable.

The marginal contribution of the autoregressive variable \(\ln F_{i,t-1}\) appears to be S-shaped or even kinked in some years. For an intermediate range of lagged district outflow rates, the additive component is positively sloped, but somewhat steeper than suggested by the parametric model. This implies a slower adjustment.
process of short-term effect of a change in matching factors to their long-term level. The marginal effect of $\ln F_{i,t-1}$ is the strongest in 1992, which lends support to the hypothesis, that labor market adjustments were much slower in early stages of the transition. However, the partial adjustment process is non-uniform over the whole range of $\ln F_{i,t-1}$. Especially, for districts, where the fraction of vacancies to labor force is small, the slope becomes negative, which means that the short-term effect of a change in matching factors overshoots the long-run effects. The higher persistence of unemployment in 1992 is probably due to a malfunctioning job-matching process at the outset of the transition process or to discouragement effects in the job search behavior caused by the generosity of unemployment benefits at that time.

The additive components for $\ln U_{i,t}^2$ and $\ln I_{i,t}^2$ both closely resemble the linear estimators from Table 1. However, both marginal contributions show slight S-shapes becoming flatter towards the tails of the distribution of long- and short-term unemployment rates. Moreover, analyzing the location of single observations in multidimensional space spanned by the explanatory variables reveals that these short-run reactions of unemployment exits cannot generally be explained by counter movements in the partial adjustment process. Furthermore, the size of the range of the vertical axis for (long-term) unemployed indicates the importance of these effects.

A comparison of the regression functions for each year between 1992 and 1996 confirms the non-uniformity of job-matching over time already gained from the inspection of Table 1. This is particularly true for vacancies, of which the marginal effect is positive between 1993 and 1995 as expected from matching theory, but negative in 1992 and 1996 at least for certain ranges of the distribution. The nonlinearities explain the insignificance of α_V in the parametric regression. The kinked form of the marginal distribution of vacancies in districts with weak job creation during 1992 is only a short-term effect, which is at least for some districts mitigated through the overshooting behavior of unemployment-to-job transitions in this range. Note however, that the overall range of the marginal contribution of vacancies on the vertical axis is small compared to the other variables in all years. Moreover, derivative estimates lie outside 90% confidence bands in important ranges of the underlying distributions for several matching factors, underlining the superiority of nonparametric estimation in fitting the data for this application.

5.2 Interactions

Together with the single additive components, we also estimated the contribution of interactions between each pair of explanatory variables (except the autoregressive variable). Plots for all three interactions follow the figures of marginal effects and derivatives for each year. Although interaction surfaces form distinctive
shapes, their significance can be formally tested as described in Section 3. These tests indicate that except for 1992, all interactions were far from being significant, i.e. they have p-values of about 45% or more. Only for 1992, strong separability between $\ln U_{t-1}$ and $\ln I_{t-1}$ is rejected with a p-value of less than 1%. This is in line with our findings for marginal contributions, which showed that during 1992 Czech labor markets behaved quite differently, compared to later years as well as compared to theoretical considerations.

5.3 Returns to Scale

Given the insignificance of interaction effects, local returns to scale can be determined directly through summing up the derivatives of all exogenous variables for each observation in the four-dimensional space. 7

Figure 12 shows density estimates of local returns to scale in job-matching for each year. The distribution of local returns to scale in 1992 should be interpreted with great caution, since, as reported in the previous section, interaction effects were significant (though small in size) for this year. The figures demonstrate that the distribution of local returns to scale is skewed to the left with a single mode clearly above one. For 1992, 43% of all observations exhibit increasing returns to scale. Neglecting the interaction term it is only 37%. In 1993, this fraction increases to 55% in 1993, and 82% in 1994 and 1996 (in 1995 it drops to 41%). In 1995 and 1996, the variance of the distribution of local returns to scale increases compared to previous years. Hence, the nonparametric estimates confirm the findings of slightly increasing returns to job-matching on Czech labor markets as in Profit (1997). Moreover, we find some seasonal variation in returns to scale estimates with higher values during spring and summer (not reported).

The regional pattern of average returns to scale between 1993 and 1995 is shown in Figure 13, where shaded districts indicate increasing returns to scale. Surprisingly, we find a concentration of increasing returns to scale in labor market districts close to the Slovak border, where unemployment rates are above average, and decreasing returns at the German and Austrian border. A possible explanation of the first finding may be that weak vacancy creation constrains job-matching there, since firms search less. Another possible explanation is related to job search behavior of the employed (see Profit (1997)). If employed

7We estimate returns to scale at each observation as

$$RTS = \sum_{a=1}^{d} \frac{\partial m(x)}{\partial x_{a}} = \sum_{j=1}^{d} \frac{\partial f_{j}(x_{j})}{\partial x_{j}} + \sum_{j=1}^{d} \sum_{j \neq j} \frac{\partial f_{j}(x_{j}, x_{j})}{\partial x_{j}}.$$
job seekers adapt their search intensities very elastically to local labor market conditions, job-competition between employed and unemployed job seekers may cease quickly as unemployment rises, resulting in higher returns to scale in the estimation of our reduced form matching functions. Higher returns to scale at the German and Austrian border may possibly be due to people being in the unemployment register but working illegally abroad.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>StDev</th>
<th>Correlation with RTS 1993-1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment Share in Agriculture, 1994</td>
<td>0.092</td>
<td>0.050</td>
<td>0.001</td>
</tr>
<tr>
<td>Employment Share in Industry, 1994</td>
<td>0.365</td>
<td>0.065</td>
<td>0.258**</td>
</tr>
<tr>
<td>Employment Share in Services, 1994</td>
<td>0.200</td>
<td>0.041</td>
<td>-0.254**</td>
</tr>
<tr>
<td>Real Wage, 1994</td>
<td>4381</td>
<td>318.4</td>
<td>-0.005</td>
</tr>
<tr>
<td>Unemployment Rate, June 1993</td>
<td>0.029</td>
<td>0.015</td>
<td>0.229**</td>
</tr>
<tr>
<td>Population Density, 1994</td>
<td>210.9</td>
<td>392.8</td>
<td>-0.122</td>
</tr>
<tr>
<td>Change in Industrial Production, 1994</td>
<td>-3.39</td>
<td>9.03</td>
<td>0.083</td>
</tr>
<tr>
<td>Immigration as % of Total Pop., 1994</td>
<td>1.046</td>
<td>0.267</td>
<td>-0.177</td>
</tr>
<tr>
<td>Outmigration as % of Total Pop., 1994</td>
<td>0.957</td>
<td>0.222</td>
<td>-0.217*</td>
</tr>
<tr>
<td>Expenditures on ALMP as % of Labor Force, 1993</td>
<td>156.7</td>
<td>102.8</td>
<td>0.248**</td>
</tr>
<tr>
<td>Participants in Publicly Useful Jobs as % of Labor Force, 1993</td>
<td>0.103</td>
<td>0.130</td>
<td>0.258**</td>
</tr>
<tr>
<td>Participants in Socially Purposeful Jobs as % of Labor Force, 1993</td>
<td>1.757</td>
<td>1.412</td>
<td>0.282**</td>
</tr>
<tr>
<td>Participants in Training Programs for Youth and School Leavers as % of Labor Force, 1993</td>
<td>0.425</td>
<td>0.413</td>
<td>0.199*</td>
</tr>
<tr>
<td>DLO Staff involved in ALMP, counseling & mediation as % of Labor Force, 1993</td>
<td>0.054</td>
<td>0.013</td>
<td>0.238**</td>
</tr>
<tr>
<td>DLO Staff involved in Administration as % of Labor Force, 1993</td>
<td>0.039</td>
<td>0.011</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Table 2: One asterisk indicates rejection of Null hypotheses of zero correlation at 10% significance, two at 5%. The SPJ program consists of wage subsidies to employers hiring unemployed workers and assistance to new entrepreneurs. The PJU is a public employment program which provides temporary jobs to the most difficult-to-employ. See Ham et al. (1995). See text for further explanations.

*In the empirical specification job search of employees can not considered since it is not observable.
Table 2 contains simple correlations between average local returns to scale estimates between 1993-1995 to a large number of economic characteristics of Czech labor market districts. The analysis with respect to employment shares shows that RTS are positively related to the share of industrial but negatively to the share in service sector employment. Moreover, the analysis confirms the impression from Figure 13, that returns to scale are positively correlated to the district unemployment rate. We do not find any significant correlation with real wages, the density of population or the change in industrial production. Only the correlation between RTS and migration rates (in 1994) are weakly significant, supporting the findings of Burda and ProfiT (1996). They show that internal mobility induces regional spillovers in the matching function and influences returns to scale.

Finally, Table 2 shows clear evidence, that active labor market policies (ALMP) have a strong impact on the matching technology in the Czech Republic. Higher ALMP expenditures, higher participation in the Publicly Useful Jobs (PUJ), Socially Purposeful Jobs, and Training for Youth and School Leavers program (all measured as % of the district labor force) are associated with significantly higher RTS. Moreover, the analysis shows, that while the provision of District Labor Offices (DLO) with administrative staff has no significant effect on RTS in job-matching, we find a strong and highly significant positive correlation with DLO staff involved in ALMP, job-counseling and mediating employment.

6 Conclusions

The use of nonparametric estimation and testing has enabled us to detect non-uniformities in the job-matching process in the Czech Republic during the transition period. In particular, we find a negatively sloped or hump-shaped marginal contribution of vacancies in some years, which helps to explain why the coefficient on vacancies is small and insignificant in the parametric model. Our analysis has shown that the Czech matching function exhibits mildly increasing returns to scale for important parts of the multidimensional distribution of matching factors. This is an important finding, since "local" returns to scale may be responsible for the emergence of multiple equilibria in unemployment rates. The fact that Czech labor market districts with above average unemployment rates have increasing returns to job-matching is consistent with multiple equilibria with these districts being trapped in a bad equilibrium. Another important finding is the positive correlation of active labor market policies (program participation, staffing of district labor offices and ALMP expenditures) and the matching technology in the Czech Republic.

Further research could entail a finer disaggregation of matching factors – for
instance with respect to the educational composition of the unemployment pool or vacant positions – to gain more insights into the separability issue or the inclusion of regional spillover effects. Moreover, analyzing the matching process across national borders may help to explain the finding of higher returns to scale in labor market districts neighboring Austria and Germany.
References

Figures

Figure 1a: Density estimates for 1992, upper left: $\ln F_{i,t-1}$, upper right: $\ln U_{i,t-1}$, lower left: $\ln V_{i,t-1}$, lower right: $\ln I_{i,t-1}$
Figure 1b: Density estimates for 1993, upper left: $\ln F_{i,t-1}$, upper right: $\ln U_{i,t-1}^*$, lower left: $\ln V_{i,t-1}$, lower right: $\ln I_{i,t-1}$

Figure 1c: Density estimates for 1994, upper left: $\ln F_{i,t-1}$, upper right: $\ln U_{i,t-1}^*$, lower left: $\ln V_{i,t-1}$, lower right: $\ln I_{i,t-1}$
Figure 1d: Density estimates for 1995, upper left: ln$F_{i,t-1}$, upper right: ln$U_{i,t-1}^*$, lower left: ln$V_{i,t-1}$, lower right: ln$I_{i,t-1}$

Figure 1e: Density estimates for 1996, upper left: ln$F_{i,t-1}$, upper right: ln$U_{i,t-1}^*$, lower left: ln$V_{i,t-1}$, lower right: ln$I_{i,t-1}$
Figure 2: Estimates of additive components and derivatives (each below the corresponding function) for 1992. Solid lines show parametric estimates, dashed lines in panels with derivative estimates show 90% confidence bands. Upper left: lnF_{i,t-1}, upper right: lnU_{i,t-1}, lower left: lnV_{i,t-1}, lower right: lnI_{i,t-1}.
Figure 3: Estimates of the interaction terms for 1992.
Figure 4: Estimates of additive components and derivatives (each below the corresponding function) for 1993. Solid lines show parametric estimates, dashed lines in panels with derivative estimates show 90% confidence bands. Upper left: $\ln F_{i,t-1}$, upper right: $\ln U^*_i(t-1)$, lower left: $\ln V_{i,t-1}$, lower right: $\ln I_{i,t-1}$.
Figure 5: Estimates of the interaction terms for 1993.
Figure 6: Estimates of additive components and derivatives (each below the corresponding function) for 1994. Solid lines show parametric estimates, dashed lines in panels with derivative estimates show 90% confidence bands. Upper left: $\ln F_{i,t-1}$, upper right: $\ln U^*_i\dagger$, lower left: $\ln V^i_{t-1}$, lower right: $\ln I_{t-1}$.
Figure 7: Estimates of the interaction terms for 1994.
Figure 8: Estimates of additive components and derivatives (each below the corresponding function) for 1995. Solid lines show parametric estimates, dashed lines in panels with derivative estimates show 90% confidence bands. Upper left: $\ln F_{i,t-1}$, upper right: $\ln U_{i,t-1}$, lower left: $\ln V_{i,t-1}$, lower right: $\ln I_{i,t-1}$.
Figure 9: Estimates of the interaction terms for 1995.
Figure 10: Estimates of additive components and derivatives (each below the corresponding function) for 1996. Solid lines show parametric estimates, dashed lines in panels with derivative estimates show 90% confidence bands. Upper left: $\ln F_{i,t-1}$, upper right: $\ln U_{i,t-1}$, lower left: $\ln V_{i,t-1}$, lower right: $\ln I_{i,t-1}$.
Figure 11: Estimates of the interaction terms for 1996.
Figure 12: Density estimates for the returns to scale in 1992 - 1996.
Figure 13: Average returns to scale in the Czech Republic in 1993 - 1995, shaded districts indicate increasing returns on average.
Appendix A. Czech Labor Market Districts

Central Bohemia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praha</td>
<td>2</td>
<td>Benesov</td>
<td>3</td>
<td>Beroun</td>
</tr>
<tr>
<td>5</td>
<td>Kolin</td>
<td>6</td>
<td>Kutna Hora</td>
<td>7</td>
<td>Melnik</td>
</tr>
<tr>
<td>9</td>
<td>Nymburk</td>
<td>10</td>
<td>Prague-vychod</td>
<td>11</td>
<td>Prague-zapat</td>
</tr>
<tr>
<td>13</td>
<td>Rakovnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

South Bohemia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>C. Budejovice</td>
<td>15</td>
<td>C. Krumlov</td>
</tr>
<tr>
<td>18</td>
<td>Pisek</td>
<td></td>
<td>Jindr. Hradec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

West Bohemia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Domazlice</td>
<td>23</td>
<td>Cheb</td>
<td>24</td>
<td>Karlovy Vary</td>
</tr>
<tr>
<td>26</td>
<td>Plzen-mesto</td>
<td>27</td>
<td>Plzen-jih</td>
<td>28</td>
<td>Plzen-sever</td>
</tr>
<tr>
<td>30</td>
<td>Sokolov</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

North Bohemia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>C. Lipa</td>
<td>33</td>
<td>Decin</td>
</tr>
<tr>
<td>36</td>
<td>Liberec</td>
<td>37</td>
<td>Litomerice</td>
</tr>
<tr>
<td>40</td>
<td>Teplice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East Bohemia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Hav. Brod</td>
<td>43</td>
<td>H. Kralove</td>
</tr>
<tr>
<td>46</td>
<td>Nachod</td>
<td>47</td>
<td>Pardubice</td>
</tr>
<tr>
<td>50</td>
<td>Stitavy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

South Moravia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Blansko</td>
<td>54</td>
<td>Brno-mesto</td>
<td>55</td>
<td>Brno-venkov</td>
</tr>
<tr>
<td>57</td>
<td>Hodonin</td>
<td>58</td>
<td>Jihlava</td>
<td>59</td>
<td>Kromeriz</td>
</tr>
<tr>
<td>61</td>
<td>Tretic</td>
<td>62</td>
<td>Uherske Hradiste</td>
<td>63</td>
<td>Vyskov</td>
</tr>
<tr>
<td>65</td>
<td>Znojmo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

North Moravia:

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Bruntal</td>
<td>68</td>
<td>Frydek-Mistek</td>
</tr>
<tr>
<td>71</td>
<td>Olomouc</td>
<td>72</td>
<td>Opava</td>
</tr>
<tr>
<td>75</td>
<td>Sumperk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>District</th>
<th></th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>Karvina</td>
<td>70</td>
<td>Novy Jicin</td>
</tr>
<tr>
<td>73</td>
<td>Ostrava-mesto</td>
<td>74</td>
<td>Perov</td>
</tr>
</tbody>
</table>

37