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Abstract

In many regression applications both the independent and dependent variables are mea�

sured with error� When this happens� conventional parametric and nonparametric regression

techniques are no longer valid� We consider two di�erent nonparametric techniques� regression

splines and kernel estimation� of which both can be used in the presence of measurement error�

Within the kernel regression context� we derive the limit distribution of the SIMEX estimate�

With the regression spline technique� two di�erent methods of estimations are used� The �rst

method is the SIMEX algorithm which attempts to estimate the bias� and remove it� The sec�

ond method is a structural approach� where one hypothesizes a distribution for the independent

variable which depends on estimable parameters� A series of examples and simulations illustrate

the methods�
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� INTRODUCTION

We consider the problem of nonparametric regression function estimation in the presence of mea�

surement error in the predictor� Suppose that the regression of a response Y on a predictor X

is given by E�Y jX� � m�X�� Instead of observing X� we can only observe W � an error�prone

measurement related to X by an additive error model W � X	U � where U is a mean�zero normal

random variable with variance ��u� The question is
 how can we estimate m��� when observations

on Y and W are all that are available�

This problem has been addressed previously� most notably by Fan � Truong �
����� who found

the following discouraging result� Suppose that we allow m��� to have up to k derivatives� They

showed that if the measurement error was normally distributed� even with known error variance�

then based on a sample of size n� no consistent nonparametric estimator of m��� converges faster

than the rate flog�n�gk� Since� for example� log�
�� ���� ���� � 
�� e�ectively this result might be

interpreted to say that consistent nonparametric regression function estimation in the presence of

measurement error is impractical�

The Fan � Truong result can be interpreted in two ways� The �rst is pessimistic
 nonparametric

regression in the presence of measurement error is insolvable in practice� The second� and positive�

interpretation focuses on the phrase �in practice�� As reviewed by Carroll� Ruppert � Stefanski

�
����� much of the enormous progress made in the �eld of measurement error for nonlinear models

has been through the use of approximately consistent estimators� i�e�� estimators which correct for

most of measurement error induced bias� but not all� Practically� these classes of estimators do

an e�ective job of removing such bias� Theoretically� for small errors ���u � ��� the bias of naive

estimators is of the order O���u�� while the approximate error correctors have a bias of order O��
�
u�

or less�

A second positive interpretation is to remember that the Fan � Truong result pertains to

globally consistent estimation� i�e�� estimators of E�Y jX� which are consistent without anything

but smoothness assumptions� Such results say nothing about estimators which are consistent for

a �exible yet parametric subclass of the nonparametric family� For example� regression splines

are a well�known parametric family with the capability of estimating wide classes of regression

functions �although not all functions�� It stands to reason that if one is willing to estimate E�Y jX�

by a regression spline� then e�ective semiparametric estimation of E�Y jX� is possible even in the

presence of measurement error�

This paper develops the two ideas of approximately consistent and regression spline estimation






in the presence of measurement error� In Section � we show how to implement the SIMEX method

�Cook � Stefanski� 
���� Carroll� Ruppert� and Stefanski 
���� Stefanski � Cook� 
���� Carroll�

K�uchenho�� Lombard � Stefanski� 
���� in ordinary nonparametric regression� while Section �

develops this idea for regression splines� The SIMEX method is a functional method� i�e�� one that

can be applied without estimation of the distribution of the unobservable X� In Section �� we take

up the structural approach in the context of regression splines� showing that the observed data

follow a type of regression spline depending on the conditional distribution of X given W � If W

given X is normally distributed� X given W depends on the marginal distribution of X� which

we �t �exibly by a mixture of normal distributions with an unknown number of mixtures� This

�exible distribution is �t by modifying the Gibbs sampling algorithm of Wasserman � Roeder

�
����� Section � gives a number of numerical examples and simulations� Section � has concluding

remarks�

While the discussion to follow is easiest in the case that the measurement error variance ��u is

known� in practice this is not the case� In some instances� ��u is estimated by an external data

set� Otherwise� internal replicates are used� so that we observe Wij � Xi 	 Uij for i � 
� � � � � n

and j � 
� � � � �Ki � 
� where the measurement errors �Uij� are independent� mean zero� normally

distributed random variables with variance ��u� a components of variance estimate is given as

equation ����� in Carroll� Ruppert� and Stefanski �
����� In theory� for either external or internal

data� ��u is estimated at ordinary parametric rates OP �n
������ and so the asymptotic e�ect of such

estimation on nonparametric regression functions is often nil�

� THE SIMEX ESTIMATOR

The SIMEX estimator was developed by Cook � Stefanski �
����� see Carroll� K�uchenho�� Lombard

� Stefanski �
���� and Stefanski � Cook �
���� for related theory� and Carroll� Ruppert� and

Ruppert �
���� for detailed discussion of implementation� We con�ne our discussion here to local

linear kernel regression� although the methods are easily extended to higher order polynomial

regression�

First consider the case that number of replicates mi � 
 and that �u is known� Fix B � � to

be a large but �nite integer ������� in practice�� and consider estimation of E�Y jX� at x�� For

b � 
� � � � � B and any � � �� let ��ib�
n
� be a set of independent standard normal random variables

which are then transformed to have sample mean zero� variance one and to be uncorrelated with

the Y �s and the W �s� De�ne Wib��� � Wi 	 �u�
����ib� For a kernel density function K��� and

bandwidth h� de�ne Kh�u� � h��K�u�h�� Local linear kernel estimates solve the weighted least

�



squares equation in B � �	�� 	��
t�

� �
nX
i��

h
Yi �Gt

� fWib���� x�g B
i
G� fWib���� x�gKh fWib���� x�g � �
�

where G��v� � �
� v�
t� The kernel estimate is bmb���x�� h� � b	�� In general� one must estimate h as

well� and we do this using EBBS �Empirical Bias Bandwidth Selection�� see Ruppert �
����� The

resulting implemented estimate is bmb���x��� The average of these estimates over b � 
� � � � � B is

bm��x���

The SIMEX estimator is then de�ned by a three step process
 �a� select a �nite set of ��s such

as � � �� 
��� 
� ���� � and compute bm��x��� �b� �t a convenient function of �� such as a quadratic�

to the terms bm��x��� �c� extrapolate this �t back to � � �
� resulting in bm�x��� Some asymptotic
distribution theory is derived in the appendix� in particular the limiting values of bias and variance

are derived for a quadratic extrapolant�

When �u is unknown� it is replaced by an estimate� If the number of replicates is constant�

�
i � 
� then Wib��� � W i� 	 ��u

����
i �����ib�� The only remaining step is how to handle the

case that the number of replicates is not constant� Carroll� et al� �
���� use the de�nition of

Wib��� given immediately above� but there is a theoretical di�culty� namely E
�
Y jW i�� 
i � 


�
�� E�Y jW i�� 
i � ��� This causes some problems of theory and even more of notation because if

we de�ne m��x�� 
i� � E�Y jW i�� 
i�� then the naive kernel regression which ignores measurement

error converges to n��
Pn

i��m��x�� 
i�� which is a mixture of regression functions depending on the

design� Despite this technical complication� the results derived in the appendix extend immediately�

Finally� we note that the results in the appendix show an interesting feature� namely that the

bias and variance of the SIMEX estimator depends only on the bias and variance of the naive

estimator at � � �� The bias contribution to the SIMEX estimator from the naive estimator is

proportional to h��� and the variance contribution is a delta�method derivable linear function of the

variance of the naive estimator� In principle� at least� one can select h� to obtain a good SIMEX

estimator� and not merely a good naive estimator� However� the best method of bandwidth selection

for the SIMEX method is an open problem�

� REGRESSION SPLINES AND SIMEX

We write the regression spline of order p and with � knots ���� � � � � ��� as

mp��x��� �
pX

j��

	jx
j 	

�X
j��

	p�j�x� �j�
p
�� ���

�



where v� � vI�v � ��� and I��� is the indicator function� If the number of knots and the knots

themselves are �xed� then �tting ��� to error�prone data is simply a parametric problem� to which

the SIMEX idea applies� Extrapolation can take one of two forms
 �a� direct application of the

SIMEX algorithm requires that one extrapolate the coe�cients back to � � �
 and then announce

the resulting function� and �b� for each �xed x� extrapolate the �tted function mp�fx� b����g back
to � � �
� Both methods have something to recommend to them� With either option� the �xed

knot selection method can be implemented extremely quickly using an idea of Ruppert � Carroll

�
����� Here one uses a large number of knots� and then obtains smoothness by a type of ridge

regression and Cp� see the appendix for details�

Alternatively� one may allow either or both of the number of knots � or their locations to vary

with each of the 
 	B�C � 
� data sets formed by C values of �� including zero� and b � 
� � � � � B

simulations in SIMEX� Here one would clearly use option �b�� because the meaning of 	 would

vary for each of the data sets formed by combinations of �b� ��� This variable knot size�location

method would appear to have an advantage over the �xed knot method in that for each set of

computer�generated �data�� one is in some sense optimizing to the data at hand� One has to be

aware of a weakness of this approach� besides the fact that it is not at all clear that each data set is

much better �t this way than by our �xed knot method� The issue here is computation� If C � �

and B � 
��� with variable knot size and selection� the computing time required to implement knot

size�location is at least ��� times that of a single �t� which may become prohibitive� especially if

the bootstrap is used to form con�dence intervals�

� STRUCTURAL APPROACH TO REGRESSION SPLINES

Structural estimation in measurement error models means that one hypothesizes a distribution for

X depending on a parameter  � Since W given X is normal with variance ��u� ��u� � together

produce the conditional distribution of X given W � Thus� if Y given X has mean determined by

the spline ���� Y given W has mean

E�Y jW � �
pX

j��

	jE�X
j jW � 	

�X
j��

	p�jE
�
�X � �j�

p
�jW

�
� ���

Under a parametric model forX givenW � all the conditional expectations in ��� are easily calculated

numerically� and the 	�s can be estimated by ordinary least squares� or ridge regression �see Section

��
 in the Appendix�

The asymptotic distributions of the parameter estimates and �tted values are also easily ob�
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tained� Estimation of ��u� � can be done based only on theW �s themselves� by solving an equation

of the form � �
Pn

� 
��Wi� �u� �� If we de�ne

G�Wi� �u� � �

�

� E�XjW� � �u�� � � � � E�X

pjW� � �u��

E
�
�X � ���

p
�jW� � �u

�
� � � � � E

�
�X � ���

p
�jW� � �u

� �t
�

then we estimate B by solving � �
Pn

� 
��Yi�Wi� � �u�B�� where


��Y�W � �u�V� �
n
Y �Gt�W��u� �B

o
G�W��u� ��

It follows from estimating equation methods �Carroll� Ruppert� and Stefanski� 
���� that

n���
�b�u � �u� b � � bB � B� is asymptotically normally distributed with mean zero and variance

A��B�A���t� where

A � E

�	

�

��u

�

�

� t

� �

�

��u

�

�

� t

� �GGt

��
 � B �

�
E
�


t
� �

� E
�

t
�

�
�

since E
�

t
� � E

�
E
�

�


t
�jW

��
� E

�

�E

�

t
�jW

��
� � under the model� Of course� A and B can

be estimated consistently by sample average of the terms within its expectation� In speci�c applica�

tions� better estimates may be obtainable� For example� if 
� is the likelihood score for estimating

��u� � from the W �s� then E
�

t
� � �E

�
�����u�
� ���� 

t�
�
�
is the Fisher information�

The remaining issue is to specify a distribution forX� The obvious one is the normal distribution

in which case W � X 	 U would be marginally normally distributed� so that the assumption of

normal X can be checked empirically from the observed data� To build some model robustness�

one could use instead a �exible parametric family which includes the normal distribution� e�g�� the

seminonparametric family of Davidian � Gallant �
���� or the mixture of normals family�

A mixture of k�normals has the means e���
k
� ���k� � � � � �kk�� standard deviations e���k � ���k� � � � �

�kk� and proportions epk � �p�k� � � � � pkk�� where Pk
j�� pjk � 
� When X is observable� Wasserman

� Roeder �
���� propose a Bayesian method for estimating �k� e���
k
� e���k� epk� when k is constrained

to lie in the set 
 	 k 	 L for some �xed L� Here we modify their method to account for the

measurement error� Suppose that we observe Wij � Xi 	 Uij for i � 
� � � � � n and j � 
� � � � �mi�

Let �u have the inverse�chi prior density �Au� ru� where ru is known�

!�u" 

A
ru��
u

��ru�����#�ru���
��ru��u exp

�
�
Au

���u

�
�

Fix k� Let fW consist of all the observed W �s� eX the latent X�s� eGk the latent group assignment

indicators �Gk�� � � � � Gkn� telling from which of the k normal subpopulations eX is drawn� !Ak" be

proportional to a scaling constant� and !e���
k
� e���k� epk" be the prior de�ned by Wasserman � Roeder�

�



The joint density for given k is

!fW� eX� eGk� �u� Ak� e���k� e���k� epk" 
 !fWj eX� �u"!�u"! eXj eGk� Ak� e���k� e���k� epk"
�! eGkjAk� e���k� e���k� epk"!Ak� e���k� e���k� epk"� ���

Inspection of ��� reveals that the Gibbs sampler has an especially convenient form� Once one has

generated the latent variables eX and �u in a Gibbs step� the generation of � eGk� Ak� e���k� e���k� epk� is
exactly the same as if eX were known and there were no measurement error� we can adapt without

change the Gibbs steps derived by Wasserman � Roeder� The Gibbs steps for �u and eX are also

easy� One sees that �u given all the rest is inverse�chi with parameters Ar 	
Pn

i��

Pmi

j���Wij �

Xi�
�� ru 	

Pn
i��mi� while any Xi given all the rest and that Gki � j is normal with

� �
Wi��

�
j 	 �j�

�
u

m��j 	 ��u
and �� �

��u�
�
j

m��j 	 ��u
� where Wi� �

mX
j��

Wij�

Following Wasserman � Roeder� having generated estimates of  k � ��u� e���k� e���k� epk� for given
k� namely the median of the value ��u� e���k� e���k� and the mean of the values epk in the Gibbs steps�
we estimate the posterior probability that there are k mixtures as n�	k���

�b k

�
� where �� k� is

the likelihood of fWk evaluated at the parameters  k� This likelihood is

� � k� �
nY
i��

miY
j��

lX
k��

pk��
�
k 	 ��u�

������������exp

�
��Wij � �k�

�

����k 	 ��u�

�
�

We now return to ���� To implement this� we need the conditional distribution of Xi given

�Wi�� � � � �Wimi
� for i � 
� � � � � n� When X is a mixture of k�normals� this conditional distribution

is easily seen to be a mixture of k�normals with

jth mean � ��j�
�
u 	Wm��j ���

�
u 	m��j �

���

jth variance � ��j�
�
u��

�
u 	m��j �

���

jth proportion � pj

�e�jPk
i��

�
pje���i exp

�
��W � �i�

�

�e��i
���

��

exp

�
��W � �j�

�

�e��j
�
�

where e�j � ���j 	m����u�
���� If �b��� � � � � b�L� are the estimated posterior probabilities formed from

Gibbs sampling� we take Xi given �Wi�� � � � �Wimi
� to be a mixture of the previously de�ned mixture

normals� with mixing proportions �b��� � � � b�L��
� EXAMPLES AND SIMULATIONS

��� Simulations

In this section we present a few examples showing the improved estimating abilities of the Gibbs

regression spline� For all simulations the average squared error �ASE� and average absolute error

�



X values

Yh
at 

va
lue

s

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Quadratic Spline (15 knots)

True Curve
Gibbs Curve
Naive Curve

Figure 

 Comparison of Gibbs spline to Naive spline

�AAE� were computed for each type of spline to facilitate comparisons� The spline coe�cients were

found using the ridge regression method outlined in Section ��
� using a quadratic order spline with


� equally spaced knot points�

First� we compare the Gibbs spline to the naive spline� For this example� there were ��� data

points� �X�� which were generated from an Uniform���
� random variable� The true curve was then

generated as Y � sin���X� 	 �� where � 
 N��� ������ The measurement error was generated from

the N��� ���� distribution� and there were two replications at each X point� The comparison of the

naive spline to the Gibbs spline can be found in Figure 
� The Gibbs spline had an ASE and AAE

of ����� and ����� respectively� which compares to the ASE and AAE values for the naive spline

of ���
� and ���
��

The SIMEX estimator was found by the following algorithm� At each point in a grid of equally

spaced points over the X range� mp�fx� b	���g was found� This was done for B � 
��� generated

datasets� and the mean was recorded for each level of � � ��� ��� ��� ��� �$� 
�� The SIMEX estimate

for that point was then found by linearly and quadratically extrapolating back to � � �
� These

estimators will be referred to as SIMEX�L� and SIMEX�Q�� For the SIMEX�Q� estimator� the ASE

and AAE were found as ����� and ���
� respectively� whereas SIMEX�L� estimator had ASE and

AAE values of ����� and ����
�

The second example compares the Gibbs spline to the SIMEX estimator� For this example�

��� X values were generated from a Beta��� �� distribution� The true curve was then generated

�



X values

Yh
at 

va
lue

s

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

Quadratic Spline (15 knots)

True Curve
Gibbs Curve
SIMEX curve

Figure �
 Comparison of Gibbs spline to SIMEX�L� spline

by Y � f�� sin���X�g�� 	 �� where � 
 N��� ������ The measurement error was generated from

the N��� ���� distribution� with two replications at each point� The Gibbs spline� and the SIMEX

spline�L� produced with this data can be found in Figure �� The Gibbs curve had an ASE and AAE

of ������� and ������
 respectively� whereas the SIMEX spline�L� had ASE and AAE of �������

and ����

� respectively� The SIMEX�Q� spline was also found� and had ASE and AAE values of

���

$� and ���$��� respectively� All of these can be compared to the naive spline which had ASE

and AAE values of ������� and ���$�
��

��� Framingham Heart Study Data

For this example� we use non�simulated data to again see the �attening e�ects of measurement

error� First let X be a person�s true systolic blood pressure and Y be the person�s true diastolic

blood pressure� Then clearly when blood pressure measurements are taken� both X and Y are

measured with error� The data for this example comes from the well known Framingham Heart

Study� This dataset contains 
��� individuals who had repeated blood pressures measurements

taken� The spline estimates for this dataset are found in Figure �� As in the simulated datasets�

the naive splines estimates tended to be pulled toward the null line�

��� Fan � Truong Simulation Comparison

In the �nal example� we compare the Gibbs and SIMEX spline to the deconvoluting kernel esti�

mators found in Fan and Truong �
����� The notation from their paper has been changed to be

$
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consistent with the notation used in this paper� In their simulation they had X 
 Normal����� �����

and de�ned the measurement error variance to be ��� �
�

�
� var�X�� and W � X 	 �� where

the measurement error was either � 
 N��� ����� or� � 
 LogNormal��� ����� Random samples

�W�� Y��� � � � � �Wn� Yn� were generated� where Y � X	
��
 � X�	� 	 �� � 
 N��� ���
��� or Y �


	�X 	 �� � 
 N��� ������ The Average Squared Error �ASE� was then computed over a grid of


�
 equally spaced points from �
 to ��� This was done for sample sizes of n � ���� n � ���� n � $��

and for � di�erent kernels� We will compare the SIMEX splines and Gibbs splines only to the de�

convoluting kernel with non�data dependent bandwidth chosen to have the lowest ASE� The results

from the �rst model can be found in Table 
� the results for the second model are similar� The

quadratically interpolated SIMEX spline again performed poorly� but the linearly interpolated es�

timate� SIMEX�L�� had a signi�cant improvement over the estimators found by Fan and Truong�

The Gibbs spline had an even further improvement to the SIMEX�L� estimate for the normal mea�

surement error case� However� in the double exponential error case� the Gibbs spline tended to be

undersmoothed� causing the poorer performance compared to the SIMEX�L� estimator although

both still outperformed the estimators found by Fan and Truong�

� DISCUSSION AND GENERALIZATIONS

This paper focuses on ordinary nonparametric regression estimation� However� it can be extended

to the class of generalized linear models with mean �fm�x�g and variance ��V fm�x�g with known

�



functions ���� and V ���� Here we provide a brief discussion
 further details will be described in a

future publication�

Nonparametric kernel regression in GLIM�s was described by Fan� Heckman � Wand �
�����

The bias and variance formulae are of a similar order of magnitude as in the ordinary regression

case� and hence application of SIMEX should follow the same general outline as in Section ��

Ruppert � Carroll �
���� discuss regression spline estimation in GLIM�s� and their methods can

be combined directly with SIMEX as in Section ��

The structural approach of Section � is more complicated in the GLIM context� Writing the

spline as before as m�x�	�� we have

E�Y jW � � E!� fm�X�	�g jW "�

var�Y jW � � ��E!V fm�X�	�gjW " 	 var!�fm�X�	�gjW "�

Both the mean and variance functions are easily calculated numerically given a model for !XjW "�

The parameter 	 can be estimated using quasilikelihood ideas� SIMEX provides starting values�

Selection of knots is more complex� and would follow the traditional AIC criterion� or an extension

of the ridge regression method�

We have assumed without comment that W � X 	U � with U normally distributed and having

mean zero� In fact� for purposes of �nearly� nonparametric estimation� it su�ces merely that some

monotone transformation of originally observed W �s follow this additive error model� i�e�� g�W � �

g�X� 	 U � because if g��� is any strictly monotone function� E�Y jX � x�� � E fY jg�X� � g�x��g�

See Nusser� Carriquiry� Dodd � Fuller �
���� and Eckert � Carroll �
���� for such methods of

transformation� the former di�ers from the latter in requiring that g�X� also be normally dis�

tributed�
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� APPENDIX

��� Roughness Penalty Approach to Regression Spline Estimation

Here we brie�y review the work of Ruppert � Carroll �
����� Suppose that we have data �Xi� Yi�

where Xi is univariate� Yi � m�Xi� 	 �i� and m is a smooth function� To estimate m we let

� � �	�� � � � � 	p� 	p��� � � � � 	p�k� and use a regression spline model

m�x��� � 	� 	 	�x	 � � �	 	px
p 	

�X
j��

	p�j�x� �j�
p
��

where p � 
 is an integer and �� � � � � � �� are �xed knots� The traditional method of �smoothing�

the estimate is through knot selection� Ruppert � Carroll �
���� use a di�erent approach by

allowing � to be large and using a roughness penalty on f	p�jg
�
j�� which is the set of jumps in the

pth derivative of m�x���� They use this as a penalty on the �p	 
�th derivative of m�x��� where

that derivative is a generalized function� They recommend � between 
� and �� and letting kj be

the j�� th sample quantile of the Xi�s�







De�ne %���� to be the minimizer of

nX
i��

��Yi � !	� 	 	�x	 � � �	 	px
p 	

�X
j��

	p�j�x� kj�
p
�"

�A�

	 �
�X

j��

	�p�j �

Let X be the �design matrix� for the regression spline and let D be a diagonal matrix whose

�rst �
 	 p� diagonal elements are � and whose remaining diagonal elements are 
� Then simple

calculations show that %���� is given by

%���� �
�
XTX 	 �D

�
��

XTY ���

This is a ridge regression estimator that shrinks the regression spline towards the least�squares �t

to a pth degree polynomial model� with the amount of shrinkage determined by the smoothing

parameter ��

Computing ��� is extremely quick� even for a relatively large number� say ��� values of �� This

allows rapid selection of � by Cp� or perhaps by GCV� Here we look at Cp� Let

ASR��� � n��
nX
i��

fYi �m�Xi������g
�

be the average squared residuals using �� Let S��� � X
�
XTX 	 �D

�
��

XT be the �smoother�

or �hat� matrix� Then� let �� be a small value of � implying little smoothing� Then

%�� �

Pn
i��fYi �m�Xi����

���g�

n� tr!�S����� S�����"
�

is a nearly unbiased estimator of the variance of the �i�s� Finally�

Cp��� � ASR��� 	 �tr�S����%�
��n

is the Cp statistic� We choose � by computing Cp��� for a grid of � values and choosing the

minimizer of Cp�

��� SIMEX Estimate in Kernel Regression

Let f���� be the density function of W 	 �����u�� so that if fW ��� is the density of W �

f��x�� �

Z �
��������u

�
��

fW �z��
n
�x� � z��������u�

o
dz�

Let m��x�� � E
n
Y jW 	 �����u� � x�

o
� Implicit in the work of Fan �
���� and Ruppert � Wand

�
���� and as explicitly derived by Carroll� Ruppert � Welsh �
���� is the expansion for any �xed

b that as h� � and nh�� �assuming that K is scaled so that
R
z�K�z�dz � 
��

bmb���x�� h��m��x��� �h
����m

���
� �x�� � fnf��x��g

��
nX
i��

!Yi �m� fWib���g"Kh fWib���� x�g �

where the error is of order op
n
h� 	 �nh�����

o
�


�



In what follows� it is convenient notationally to use the same bandwidth h for every b � 
� � � � � B�

but to allow this bandwidth to depend on �� hence h�� Of course� in practice one might estimate

h for each � and b� but as n�� the error in estimating this bandwidth becomes negligible� and

hence asymptotically the same bandwidths are being used� As stated in the text� the best method

of bandwidth selection for the SIMEX method remains an open problem�

Using the decomposition of Carroll� et al� �
����� since B is �xed� and since bm��x�� h� �

B��PB
b�� bmb���x�� h���

bm��x�� h���m��x���
�
h����

�
m

���
� �x��

� fnf��x��g
��

nX
i��

�
B��

BX
b��

!Yi �m� fWib���g"Kh� fWib���� x�g

�
� ���

In what follows� we will use the following slight abuse of notation� We will write expressions for

moments of bm��x�� h��� but these will actually apply to the asymptotically equivalent version on

the right side of ���� The terms inside the parentheses on the right hand side of ��� are independent

mean zero random variables� Letting eY � �Y�� � � � � Yn� and fW � �W�� � � � �Wn�� and using right

hand side of ��� as equivalent to the left side� consider

var f bm��x�� h��g � E
h
var

n bm��x�� h��j eY� fWoi
	var

h
E
n bm��x�� h���m��x��� �h

�
����m

���
� �x��j

eY� fWoi
� ���

If � � � or if ��u � �� then m��x�� � E�Y jW � x��� f��x�� � fW �x��� and ��� becomes

bm��x�� h���m��x��� �h
�
����m

���
� �x�� � fnf��x��g

��
nX
��i

fYi �m��Wi�gKh��Wi � x���

which has mean zero and asymptotic variance

fnh�f��x��g
�� Var�Y jW � x��

Z
K��v�dv� �$�

If � � � and ��u � �� we study the terms of ��� in turn� For the �rst� note that given
eY and fW�

the only remaining random variables are the ��ib�� which are all mutually independent� Hence

var
n bm��x�� h��j eY� fWo

�
n
nBf���x��

o
��

n��
nX
i��

var
hn
Yi �m��Wi 	 �u�

�����
o
Kh��Wi 	 �u�

����� x��jYi�Wi

i
�
n
nBf���x��

o
��

n��
nX
i��

Z n
Yi �m�

�
Wi 	 �u�

����
�o�

K�
h�

�
Wi 	 �u�

����� x�
�
����d�

�
n
nBf���x��

o
��

n��
nX
i��

�Z n
Yi �m��Wi 	 �u�

�����
o
Kh�

�
Wi 	 �u�

����� x�
�
����d�

��
�

Setting z � �Wi	�u�
�����x���h� so thatWi	�u�

���� � x�	zh� and � � �x�	zh��Wi���u�
����

we compute the two terms as

�
n
nh�Bf

�
��x���u�

���
o
��

n��
nX
i��

Z
fYi �m��x� 	 zh��g

�K��z��

�
zh� 	 x� �Wi

�u����

�
dz

�
n
nBf���x���

�
u�
o
��

n��
nX
i��

�Z
fYi �m��x� 	 zh��gK�z��

�
zh� 	 x� �Wi

�u����

�
dz

��
�


�



The second term is O�n���� so we are left with

var
n bm��x�� h�j eY� fWo

�n
nh�Bf

�
��x���u�

���
o
��
�Z

K��z�dz

�
n��

nX
i��

fYi �m��x��g
� �

�
Wi � x�
�u����

�
� ���

Note the curious fact that there is a B in the denominator� This means that if B is large� ��� is

small in comparison to what happens when � � �� see �$�� In fact� as B ��� ��� converges to

fnf��x��g
��

nX
i��

E

�n
Yi �m�

�
Wi 	 �u�

����
�o

Kh�

�
Wi 	 �u�

����
� ����Yi�Wi

�
� �
��

and this random variable has zero variance given � eY� fW�� just as predicted by ����

We next turn to the second term in ���� Continuing to assume that � � � and ��u � �� the

expectation in question is just

fnf��x��g
��

nX
i��

Z n
Yi �m�

�
Wi 	 �u�

����
�o

Kh�

�
Wi 	 �u�

����� x�
�
����d� �

�

� fnf��x��g
��

nX
i��

Z
fYi �m� �x� 	 zh��gK�z��

�
zh� 	 x� �Wi

�u����

��
�u�

���
�
��

dz

� fnf��x��g
��

nX
i��

fYi �m��x��g�

�
Wi � x�
�u����

��
�u�

���
�
��

�

which has variance of order O�n���� We have thus shown that for � � �� ��u � ��

var f bm��x�� h�g � O
n
�nhB���

o
	O�n���� �
��

It is important to note that the second term in ��� is O
�
n��

�
only when � � � and ��u � �� If

either equal �� the expectation calculated above is

fnf� �x��g
��

nX
i��

fYi �m��Wi�gKh� �Wi � x�� �

which has mean zero and variance O
n
�nh���

o
� The di�erence is that when � � � and ��u � �� �
��

represents a �double�smooth�� i�e�� summation and integration� and it is well�known that double

smoothing increases rates of convergence�

If we compare �$� with �
��� we note that for n and B su�ciently large� the latter will be

negligible with respect to the former� at least in practice� Hence� in what follows� we will ig�

nore this variability by treating B as if it were equal to in�nity� This makes the analysis of the

SIMEX extrapolants easy� For example� if one is �tting a quadratic model� one minimizes in

���� ��� ����
P

�

� bm� �x�� h��� �� � ���� ���
�
��
� and thus solves

� �
X
�

n bm��x�� h��� �� � ���� ���
�
o �

� �� ��

�t
�

Using standard least�squares results� we get�� b�� � ��b�� � ��b�� � ��

�A � �X
�

�

� �� ��

�t
�
� �� ���

�
��X

�

n bm��x�� h��� �� � ���� ���
�
o�

� �� ��

�t
� �
��


�



Assuming the terms m��x�� actually follow a quadratic� this means that the left�hand�side of �
��

has approximate mean�X
�

�

� �� ��

�t
�
� �� ���

�
��X

�

�
h����

�
m

���
� �x���
� �� �

��t�

and� because B is large� its approximate variance is

fnh�f��x��g
�� var�Y jW � x��

Z
K��z�dz

�

�X
�

�
� �� ���t�
� �� ���

�
��

�
� �� ��t�
� �� ��

�X
�

�
� �� ���t�
� �� ���

�
��

�

The SIMEX estimate is just b�� � b�� 	 b�� � �
��
� 
� �b��� b��� b���t so that its asymptotic bias is
c�x��

t
X
�

�
h����

�
m

���
� �x���
� �� �

��t

and its asymptotic variance is

fnh�f��x��g
�� var�Y jW � x��

Z
K��z�dz ct�x���
� �� ��

t�
� �� ��c�x���

where

ct�x�� � �
��
� 
�

�X
�

�
� �� ���t�
� �� ���

�
��

�

It is clearly easy to derive the bias and variance for any extrapolation function�
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Table 

 ASE��
���� for estimating m�x� � x	��
� x�	�

Size Measure Gibbs Simex�L� Simex�Q� Fan�Truong

Normal Measurement Error

Bias� ��
�
 ����� ��
��
��� ��&j %m�mj ��
����� 
������� ��������

ASE ����� ����� 
����
 ����

Bias� ����� ����$ ����$
��� ��&j %m�mj 
������� ������� 
��
����

ASE 
��

 ��
�� 
����$ ����

Bias� ����� ����� ��
$

$�� ��&j %m�mj 
������� ������� $���$��

ASE ����� ���$� 
����� ��$�

Double Exponential Measurement Error

Bias� ��
�� ����� �����
��� ��&j %m�mj ���$��$� 
��
���� �����
��

ASE ����� ����� $���� ���$

Bias� ��
�
 ����� ��

�
��� ��&j %m�mj �
������ ����$�� 
�
�����

ASE ����� 
���� ��
�� ����

Bias� ���$� ���
$ �����
$�� ��&j %m�mj �����
�
 ������� �������

ASE ����� 
�
�� ����
 ����
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