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Abstract� Additive regression models have a long history in nonparametric regression� It is well

known that these models can be estimated at the one dimensional rate� Until recently� however� these

models have been estimated by a back�tting procedure� Although the procedure converges quickly�

its iterative nature makes analyzing its statistical properties di�cult� Furthermore it is unclear how

to estimate derivatives with this approach since it does not give a closed form for the estimator�

Recently� an integration approach has been studied that allows for the derivation of a closed form

for the estimator� This paper extends this approach to the simultaneous estimation of both the

function and its derivatives by combining the integration procedure with a local polynomial approach�

Finally the merits of this procedure with respect to the estimation of a production function subject

to separability conditions are discussed� The procedure is applied to livestock production data from

Wisconsin� It is shown that there is some evidence of increasing return to scale for larger farms� �

Keywords� Derivative Estimation� Nonparametric Regression� Additive Models� Production Function�

�� Introduction� An additive nonparametric regression model has the form

m�x� � E�Y j X � x� � c�
dX

���

f��x�����

where Y is a scalar dependent variable� X � �X�� � � � �Xd� is a vector of explana�

tory variables� c is a constant and ff����gd��� is a set of unknown functions satisfying

EX�f��X�� � 	� and x � �x�� � � � � xd�
 Models of this form naturally generalize the

linear regression models and allow for independent interpretation of the e�ect of one

variable on the mean function m
 The linear model� however� assumes �m
�x�

is constant

and so all higher order derivatives vanish
 The model ��� allows for arbitrary derivatives

in each variable
 Models of this form are also interesting from a theoretical point of view

since they combine �exible nonparametric modeling of many variables with statistical

� This paper is a complete revision of Discussion Paper 	 from ������� The research was supported

by Deutsche Forschungsgemeinschaft� SFB ����

�



precision that is typical for just one explanatory variable
 This paper is concerned with

estimation of the functions f���� and m��� and their derivatives


In the statistical literature the additive regression model has been introduced in

the early eighties and it has led to the development of a variety of theoretical and

practical results
 Buja� Hastie and Tibshirani ���� and Hastie and Tibshirani ��	�

give a good overview and analyze estimation techniques based on back�tting
 The

back�tting idea is to project the data onto the space of functions which are additive


This projection is done via least squares� where the least squares problem is solved with

the Gauss�Seidel algorithm
 Stone ����� ���� proves that model ��� can be estimated

with a one�dimensional rate of convergence typical for estimating a single function f�

of one regressor only
 Linton and Nielsen ���� propose a method based on marginal

integration of the mean function m for estimating f�
 Their analysis is restricted to the

case of dimension d � �
 Chen� H�ardle� Linton and Severance�Lossin ���� extended

this result to arbitrary d�

The present paper extends these earlier results in the following ways
 First� a direct

estimator based on the marginal integration idea of Linton and Nielsen is proposed

not only for the function� but also for estimating its derivatives
 Although there is a

growing amount of literature concerned with the estimation of the model ��� and its

generalizations� little attention has been given to the estimation of the derivatives of

the f� ����s
 Second� by using a local polynomial approach the asymptotic bias of the

estimator is independent of � �x� � the density of Xi at x� and so is independent of

design
 We also give a practical method for selecting bandwidths


The integration idea on which the estimator presented here is based comes from

the following observation
 If m�x� � E�Y j X � x� is of the additive form ���� and the

joint density of
�
Xi�� � � � �Xi������Xi������ � � � �Xid

�
is denoted as ���� then for a �xed

x � IR�

f��x�� � c �
Z
m�x�� � � � � x�� � � � � xd�����x�� � � � � xd�

Y
� ���

dx�����

provided EX�
f��X�� � 	� � � �� � � � � d
 In order to estimate the f��x���s we �rst esti�

mate the function m��� with a multidimensional smoother and then integrate out the

variables di�erent from X�
 The smoother proposed in this paper is a local polynomial

regression of degree p in the direction of interest and degree zero in the other directions


We establish the asymptotic normal distribution of the estimator for f� explicitly de�

riving its bias and variance
 In establishing this result we shall see that the rate of
�



convergence for estimating the conditional mean function� m �x� � is the usual rate for

regression smoothing with just one explanatory variable


The rest of the paper is organized as follows
 Section � presents a technique for

estimating the functions and their derivatives for the additive model ���
 A brief dis�

cussion of bandwidth selection is given in Section �
 A small simulation study in given

in Section �
 The estimator is used to estimate a production function and its associated

elasticities in Section �
 Section � concludes
 Proofs of the asymptotic results for the

estimator are given in the Appendix


�� The Estimator� Let �Xi�� � � � �Xid� Yi�� i � �� � � � � n be an i
i
d
 random sample

related by

Yi � c�
dX

���

f��Xi�� � �i�

where �i has mean 	 with variance �� �Xi� and is independent of allXi��s
 The functions

f�����s and the constant c are identi�ed by the assumption
R
f��t����t�dt � 	� where

����� is the marginal density ofXi�� LetK ��� and L ��� be kernel functions withKh �u� �
�
h
K
�
u
h

�
and Lg ��� de�ned similarly� For any kernel�K ��� � de�ne �q �K� �

R
uqK �u� du

and kKk�� �
R
K� �u� du� De�ne X i to be the ith observation with the 	th coordinate

removed
 Now consider the estimator of f ���� �x��� the 
th derivative of f��x��� given by

bf ���� �x�� � �
��
�

n

nX
l��

E�
� �Z

�WlZ�
��
Z �WlY�

where Zik �
�
�Xi� � x��k

�
� Y � �Yi�� i � �� � � � � n� k � 	� � � � � p� E� � IRp�� is a

vector of zeros with the 
 � �th element equal to �� and Wl � diag
�
�
n
Kh �Xi� � x��

�Lg

�
X i �X l

� �n
i��

� compare Chen� H�ardle� Linton� Severance�Lossin ���� and Fan�

Gasser� Gijbels� Brockmann and Engel ����


In order to derive the limiting distribution of this estimator we will make use of

the idea of equivalent kernels as in the second paper of the above mentioned
 We will

show that the above estimator is asymptotically equivalent to a kernel estimator with

a higher order kernel given by

K�
� �u� �

pX
t��

s�tu
tK�u�

�



with S � �
R
ut�sK�u�du���t�s�p and S�� � �sst���t�s�p � K

�
�h is de�ned analogously to

Kh
 Derivatives are estimated by taking di�erent rows of S���

The following theorem gives the asymptotic behavior of the estimates
 To simplify

the notation we always write the 	th component of � ��� �rst
 Since the constant� c� can
be estimated at rate n���� without loss of generality we may assume c � 	


Theorem �� Under conditions �A����A�� given in the Appendix� p� 
 odd and x

in the interior of the support of � ��� the asymptotic bias and variance of the estimator

can be expressed as n�
p����

�p�� b��x�� and n
���p�����

�p�� v��x��� where

b��x�� �

�hp�����

�p � ���
�p�� �K

�
� �
�
f �p���� �x��

�
and

v��x�� �

��

h�����

kK�
�k��

Z
�� �x�� x�

��
�� �x�

� �x�� x�
dx�

furthermore�

n
p����

�p��

n bf ���� �x��� f ���� �x��
o

L� N �b��x��� v��x��� �

The assumption that p � 
 is odd assures that the lowest order term asymptotic

bias does not include any terms involving � or its derivatives
 So the estimator is design

adaptive in the sense of Fan ����
 Note that under the bandwidth assumption �A��

the rate of convergence is exactly that of the one�dimensional problem� so that the

procedure avoids the curse of dimensionality and the bias is exactly the same as for the

one dimensional case
 Noting that the expression
R
�� �x�� x�

��
���x�

��x��x�
dx is the expectation

of the variance over the conditional density of x� we can see that the variance is also

what we would expect from the one�dimensional problem


Unfortunately we can obtain the one dimensional rate given in Theorem � only by

using higher order kernels for the nuisance directions with order q
 Here q is dependent

on the dimension d� the degree of the polynomials and the derivative � see Assumtion

�A�� in the appendix �
 As an alternative Masry and Tj�stheim ���� avoided using

higher order kernels and prefered to renounce the optimal rate in their proof
 We

agree with them that the optimal one dimensional rate of convergence is probably also

�



attainable with the common bandwidth restrictions but not trivial to proof
 Further

it is our view that at typical samples sizes other bias reduction techniques than using

higher order kernels might be more useful
 A method which might perform better in

practice would be e
 g
 to use higher order local polynomials in the directions not of

interest
 In a typical derivative estimation problem one often chooses p � 
 �� as it is

proposed and motivated in Fan� Gasser� Gijbels� Brockmann and Engel ����


The asymptotic distribution of the estimate of the entire function is given by the

following theorem


Theorem �� Under the assumptions of Theorem ��

n
p��
�p�� fcm �x��m �x�g L� N �b�x�� v�x�� �

where b�x� �
dP

���
b� �x�� and v�x� �

dP
���

v� �x�� �

It is worth noting that assumption �A�� is stronger than required to obtain the one

dimensional rate of convergence
 All that is needed is that is that the f� ����s have

pth Lipschitz continuous derivatives
 In this case� however� the bias can neither be

explicitly calculated nor estimated
 Since the bandwidth selection procedure described

in the next section relies on a estimate of the bias we only state the result under the

stronger smoothness assumption


�� Bandwidth Selection� Choosing a bandwidth in practice is often a di�cult

problem
 In this section we describe a �plug�in� method for selecting a bandwidth
 Our

goal is not to �nd the optimummethod for selecting a bandwidth� but rather to provide

a method which is reasonable and can be applied easily
 We make use of the fact that

this estimation procedure allows for the estimation of the derivatives of the regression

functions which are needed to determine the constant h�� and that the expression for

h� does not contain derivatives of � ��� �
The asymptotically optimal bandwidth constant� with respect to the integrated

�



mean squared error �MISE� is given by

h� �

�����
��
 � �� kK��

� k��
R
�� �x�� x�

��
���x����x��

��x��x�
dxdx�

� �p � �� 
�
n

�
�p���	

�p�� �K�
� �
o� R n

f
�p���
� �x��

o�
�� �x�� dx�

��	�

�

�p��

����

We suggest the following method for estimating the unknown quantities in ���


The integral in the denominator is just the marginal expectation of
n
f �p���� �x��

o�
and can be estimated by

Z
f �p���� �x���� �x�� dx� � �

n

nX
i��

n bf �p���� �Xi��
o�
�

Also�Z
�� �x�� x�

��
�� �x��� �x��

� �x�� x�
dxdx� � E

�
�� �x�� x�

��
�� �x��� �x��

�� �x�� x�

�
� �

n

nX
i��

b��i bwi�

where b�i is the residual of the regression at Xi and

bwi �

���
nP
t��

Lg

�
X i �X t

�
nP
t��

Kh �Xi� �Xt��Lg

�
X i �X t

�
����
� �

�

n

nX
t��

Kh �Xi� �Xt��

�
�

which is an estimation of the unknown density quantities
 Since the estimates of the

expectations are n���� consistent one should undersmooth the estimates to get a bias

of this order


The bandwidths in the directions not of interest� g � �g�� � � � � g������ g������ � � � � gd��
should be chosen so that the contribution to the bias from these directions is small

compared to the direction of interest
 Assume L �u� �
Q

� ��� L� �u�� then� a careful

examination of the proof of Theorem � shows that the contribution to the squared bias

in the �th direction is

b�� � g�q� �
�
� �L��

�
E

�
�

�
f
��

� �X��� �
f
�

� �X���

� �X��

�� �X��

�x�

���

�

We can again plug�in estimates and take a sample average
 Since a good estimate is

not needed only a rough idea of the size of the expression� we recommend plugging in

a parametric estimate� at least for the quantities involving � ��� � For example we could

approximate � ��� by a normal distribution
 Then choose g� so that

b�� �� n
���p�����

�p��

n

�hp�����

o� ��p�� �K�
� �u��

�p � ���

��
�

n

nX
i��

n bf �p���� �Xi��
o�
�





�� Simulation Results� In this section we do a small simulation study to evaluate

the procedure�s performance on data of typical sample size
 The local polynomial

based estimator is compared to the Nadaraya�Watson based estimator presented in

Chen� H�ardle� Linton and Severance�Lossin ����
 Since the Nadaraya�Watson based

estimator has a closed form expression for bf �x� one can di�erentiate this expression to

get an estimate of the derivative
 We compare the two estimators for both the additive

functions and their �rst derivatives


We consider two di�erent designs with n � �		 observations� X � IR
� and distri�

bution U ���� ��
 and N�	���� with variance � and covariance 	��
 The regression model

is m�x� �
P


��� g��x��� where

g��x� � �x g��x� � x� � E�x��

g��x� � sin��x� g
�x� � ex � E�ex��

We used the optimal bandwidth minimizing the integrated mean squared error �MISE�

of the estimated function on trimmed data


In table � and � we give a survey of results of two di�erent sets of designs
 We

present the averaged mean squared error of the estimators of the additive functions on

trimmed data


Since each estimator requires a di�erent optimal bandwidths and the asymptot�

ically optimal bandwidths are not necessarily the best for any given set of data� we

compared the estimates using the optimal bandwidths for each estimator conditional

on the data
 Finding these bandwidths is computationally time consuming
 A complete

study comparing the two procedures with the back�tting algorithm is the subject of

forthcoming work
 We present the results of two typical replications for each design in

Tables � and �


With one exception the local polynomial version of the estimator performed better

in terms of average squared error
 The local polynomial estimator seemed to have some

trouble detecting the �nal upward sloping portion of the sin curve
 Since both estimators

performed poorly near the boundaries the average squared error was calculated over a

trimmed region of data
 To get a better idea of where these estimators performed well

and where they performed poorly we graphed the bias and variance of the derivative

estimates over a trimmed range of data for one replication
 These results are shown in

Figures ���


�



These preliminary results show that the local polynomial version of the estimator

provides gains in estimation accuracy
 These gains while noticeable for the estimates

of the functions are substantial in the case of derivative estimation


�� Application to Production Function Estimation�

���� Parametric vs� Nonparametric Estimation� We consider the nonpara�

metric estimation of a production function subject to strong separability conditions


Separable production functions have a long history dating back to Leontief �����


These conditions yield many well known economic results �e�g� they allow one to ag�

gregate inputs into indices�
 In addition� based on the results given in the previous

sections of this paper� we are able to estimate a production function of this form

at the one dimensional rate
 Since we avoid the curse of dimensionality which plagues

multi�dimensional nonparametric regression we are able to get reasonable results with

sample sizes which are typical in economic applications


Estimating production technologies subject to separability constraints has been ex�

tensively studied and applied in a �exible functional forms �parametric� setting
 In

this setting separability conditions can be written as constraints on the parameters of

the �exible functional form
 The parametric estimation is then done subject to these

constraints
 The use of �exible functional forms has been rationalized by considering

the functional forms to be the �rst terms of a Taylor series expansion of the true un�

derlying technology
 Unfortunately� there is evidence which suggests that this view is

unreasonable and that least squared estimates of these parameters do not necessarily

correspond well to the actual coe�cients �Driscoll and Boisvert ����� Chalfant and

Gallant ������
 There is also evidence that these �exible functional forms can per�

form quite poorly as a global approximation to a general function subject to the same

constraints


In addition to these estimated �exible functional forms not corresponding well to

their Taylor series expansions for the low number of terms in the expansion typically

employed in estimation� there is some question about how �exible these parametric

functional forms really are
 The work of Driscoll� McGuirk and Alwang ���� shows

that imposing separability conditions on the parameters of a parametric model can lead

to a reduction of the model�s �exibility beyond that implied by the imposed condition







They de�ne a model as �exible if the value of the function and its �rst two derivatives

can all be independently estimated at a single point in the input space
 This de�nition

is motivated by the fact that the values typically considered in economic analyses are

the level of production� the marginal productivity� and measures of elasticity� which are

all determined by the function value and the values of its �rst two derivatives
 They

show that imposing separability conditions on commonly used parametric forms leaves

less estimable parameters than those required for �exibility at a point


We propose a nonparametric model which imposes strong separability of every

input from every other input on the production function
 Although it is not completely

�exible at any single point in the support of the production inputs� it is nearly so and it

maintains its level of �exibility globally
 A parametric model may be more �exible at a

single point� although commonly used forms such as the translog are not� no parametric

model can maintain �exibility globally
 In addition to estimating the function itself we

also estimate its derivatives allowing for the estimation of various measures of elasticity


���� The Model� Strong separability of every good from every other good requires

a production function to be of the form�

y � G

�
dX

���

g� �x��

�
����

where G�x� is a monotonic function
 In this paper we consider a slightly restricted form

of ���
 The model we estimate is of the form

ln �y� �
dX

���

g� �x�� � c����

This model could be viewed as a nonparametric generalization of the Cobb�Douglas

production technology
 In the Cobb�Douglas model g� �x�� � ��x�� while we allow for

arbitrary g� �x���s


The model given by ��� is not completely �exible with respect to the de�nition

given in Driscoll� McGuirk and Alwang ����
 They show that for a function to be

�exible at a point and strongly separable the functional form needs �d�� independent

values for the function value and its �rst two derivatives
 The model considered here

allows for the independent estimation of the function value and d �rst derivatives and

d second derivatives
 These derivatives� whether they are estimated or not� are only
�



constrained by smoothness conditions in the nonparametric regression
 This gives �d��

independent values for estimation at each point which is one less than that required for

their de�nition of �exibility
 However this independence holds globally
 It is possible

that a parametric model may have greater �exibility at a single point� but then the

values for all other points are determined
 The Cobb�Douglas model allows for the

independent estimation of d�� parameters and so is not as �exible as ��� at any point


Model ��� remains unchanged if we rewrite it as

ln �y� �
dX

���

f� �ln �x��� � c����

This form has the advantage of giving relatively simple expressions for measures of

elasticity
 The elasticity of output with respect to input x� is simply f
�

� �ln�x��� � so

that scale elasticity can be expressed as

 �
dX

���

f
�

� �ln �x��� ����

Note that ��� and ��� can be expressed in terms of the functions f� ��� and their deriva�

tives which can be estimated using the methods presented in the Section �


���� Estimation Results� We consider the estimation of a production function

for livestock in Wisconsin
 We use a subset ���	 observations� of an original data set of

over �			 Wisconsin farms collected by the Farm Credit Service of St
 Paul� Minnesota

in ���
 The data were cleaned� removing outliers and incomplete records and selecting

farms which only produce animal outputs
 The data consists of farm level inputs and

outputs measured in dollars
 The output �Y � used in this analysis is livestock� and the

input variables used are family labor� hired labor� miscellaneous inputs �repairs� rent�

custom hiring� supplies� insurance� gas� oil� and utilities�� animal inputs �purchased feed�

breeding� and veterinary services�� and intermediate run assets �assets with a useful life

of one to �	 years� resulting in a �ve dimensional X variable


We estimated the model using a normal kernel
 The data were rescaled to have

mean zero and standard deviation one
 We used a bandwidth h � �� in the direction of

interest and g � ��� in the directions not of interest for estimating the functions and set

h � �� and g � ��� for the estimation of the derivatives
 In the direction of interest the

bandwidths are very close to the optimal bandwidths found by the procedure outlined
�	



in Section �
 We slightly oversmoothed here in order to present a less wiggly estimator


We found that in order to get reasonable results in areas of sparse data we had to

choose a larger bandwidth in the directions not of interest
 Because of this it is likely

that we have a larger bias than one would expect based on Theorem �
 It is probable

that using a design adaptive bandwidths would alleviate this �nite sample problem� but

investigating the behavior of such bandwidths in this setting is beyond the scope of this

paper
 The results of the estimation of the additive components and their derivatives

are displayed in Figure � and Figure �
 The graphs in Figure � give some indication of

nonlinearity
 Figure � shows that for the two labor inputs and animal inputs this e�ect

is real and systematic
 The graphs seem to indicate that the elasticities for these inputs

increases with their use
 The sum of the derivatives �scale elasticity� is also shown in

Figure �
 In order to get some idea of the variability of the estimates� con�dence bands

for the derivatives were constructed using the wild bootstrap method of H�ardle and

Marron ����


Although we can not reject the hypothesis that the scale elasticity is constant

there seems to be a strong indication that scale elasticity increases with farm size


Our estimate of scale elasticity is greater than one� indicating increasing returns to

scale� for larger farms� however� we can not reject constant or diminishing returns to

scale everywhere based on our results
 Eventhough our evidence is far from conclusive

this study does give some indication that there are nonmarket forces constraining the

amount of livestock produced on

Wisconson farms� since a farmer producing at an increasing returns to scale por�

tion of the production frontier could increase pro�t by increasing production
 There is

stronger evidence of this e�ect for larger farms
 It is worth noting that the elasticity

estimates from a linear� Cobb�Douglas� model systematically underestimate the elas�

ticities in regions of high data density
 The estimates for the Cobb�Douglas model are

also displayed in Figure �


Farms producing on regions of the production frontier which exhibit increasing

returns to scale implies that these farms are not behaving as pro�t maximizers
 Farms

facing a production function which exhibits increasing returns to scale could increase

pro�ts by increasing the scale of their operation
 It is very likely that there exist

nonmarket pressures �e�g� liquidity constraints� imperfect land markets� which prevent

them from increasing the size of their operation
 It is interesting to note that this seems

��



to be more the case for larger farms
 This implies that alleviating these constraints on

farm size might have little e�ect on smaller farms since they would receive no marginal

bene�ts and would have to increase their size drastically to realize any gain in pro�t


�� Conclusion� In this paper the integration idea of Linton and Nielson ����

is applied to the estimation of the derivatives of the regression functions in an additive

model
 The results are obtained by averaging a local polynomial regression over the

sample rather than by just averaging a kernel estimator
 The derivatives are easily ob�

tained from the local polynomial regression
 Also� by using local polynomial regression

instead of kernel regression the estimator is design adaptive since the bias is independent

of � ���

In our presentation the one dimensional rate of convergence can only be realized

for restricted values of d
 One can weaken the restriction on d by exploiting extra

smoothness in the directions not of interest
 Although this can be done by choosing

L ��� to be a higher order kernel� in practice a better idea might be to use a higher order

local polynomial in the directions not of interest in the initial estimation


The application in Section � demonstrates these methods in practice
 Although the

results are not conclusive there is some evidence that the regression is� in fact� nonlinear

and that scale elasticity increases with farm size
 If it is true that there are farms

producing on regions of the production frontier which have increasing returns to scale

it is likely that there are nonmarket forces at work which are constraining production

to lower levels than the pro�t maximizing level
 This study seems to indicate that this

is more likely to be a problem faced by the larger farms in Wisconsin
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A� Appendix� This section establishes results characterizing the asymptotic be�

havior of the estimator
 The following conditions are assumed to hold


A�� The kernels K ��� and L ��� are positive� bounded� symmetric� compactly sup�

ported and Lipschitz continuous with
R
K �u� du � �
 L��� is of order q


A�� Bandwidths satisfy nhg��d���

ln��n�
���� gq

hp���� � 	 and h � h�n
��

�p�� �

A�� The functions fs ���	s have bounded Lipschitz continuous �p� ��th derivatives��

A�� The variance function� �� ��� � is bounded and Lipschitz continuous�

A�� � and ��� are uniformly bounded away from zero and in
nity and are Lipschitz

continuous�

The proof of Theorem � makes use of the following lemmas


Lemma �� Let Dn � A � Bn where A�� exists and Bn � �bij���i�j�p where bij �

Op��n� then D��
n � A�� �I � Cn� where Cn � �cij���i�j�p and cij � Op��n�� where �n

denotes a function of n�

Proof	 Dn � �I � BnA
���A then Dn is invertible and has an inverse given by

D��
n � A��

�
I �

�P
i��

�BnA
���

i
�
if and only if the series on the right hand side converges

with respect to the usual matrix norm
 kBnA
��k 	 kBnk kA��k � and kBnk 	P

�bij� �

Op��n�� With probability one kBnk 	 �
�
� so with probability tending to one Dn is

invertible
 Since kD��
n �A��k 	 �P

i��
kBnA

��ki kA��k and since maxfjcij jg 	 kCnk and

A is invertible the result follows


Lemma �� �H��Z �WlZH
���

��
� �

��x��Xl�
S��

�
I �Op

�
h� lnnp

nhgd��

��
uniformly�

where W�Z and S are de
ned above and H � diag�hi���i�������p���

��



Proof	 The elements of H��Z �WZH�� can all be expressed in the form

�
n

nP
i��

Kh �Xi� � x��Lg

�
�Xi � �Xl

� �
xi��x

h

�m

� E
h
Kh �Xi� � x��Lg

�
�Xi � �Xl

� �
xi��x

h

�mi
� op�n

��
� �

�
R
umK�u�L �u��

�
x� � hu� �Xl � gu

�
dudu� op�n

��
� �

� ��x�� �Xl�
R
umK�u�du�Op

�
h� lnnp

nhgd��

�
�

The result is obtained by applying lemma �
 It should be noted that the op ��� is

uniform over the interior of the support of � �x� x� � by the bandwidth conditions and

Silverman �����


Proof of Theorem �	

De�ne Ei �W � � E �W j Xi� and E� �W � � E �W j X�� � � � �Xn� � Let �� ��� be the

marginal density of �X�� Let

Fi �

���������

f� �x�� �
P
� ���

f� �Xi��

f �� �x��





�
p	
fp� �x��

����������
�

where �ji � � if i � j and 	 otherwise
 The di�erence between the function and the

estimate can be written as

��



�
�	

�
 f���x��� f���x��

�
� �

n

nP
i��

E�
� �Z

�WiZ�
��
Z �WiY � �

�	
f���x��

� �
n

nP
i��

E�
� �Z

�WiZ�
��
Z �WiY � E�

� �Z
�WiZ�

��
Z �WiZFi �O�n�����

� �
n

nP
i��

E�
� �Z

�WiZ�
��
Z �Wi �Y � ZFi� �O�n�����

� �
n

nP
i��

E�
� �Z

�WiZ�
��
Z �Wi �Y � ZFi� �O�n�����

� �
h�n

nP
i��

E�
� �H

��Z �WiZH
���

��
H��Z �Wi �Y � ZFi� �O�n�����

� �
h�n

nP
i��

�
��x�� �Xi�

E�
�S

��

�
I �Op

�
h� lnnp

nhgd��

��
H��Z �Wi

�Y � ZFi� �O�n�����

Writing the above in terms of sums gives

�
�	

�
 f���x��� f���x��

�
� �

h�n

nP
i��

�
��x�� �Xi�

�
n

nP
l��

K�
�h �Xl� � x��Lg

�
X l �X i

�
�
�
� �Op

�
h� lnnp

nhgd��

��� P
� ���

ff� �Xl��� f� �Xi��g� f
p��
� �x�
�p���	

� �Xl� � x��
p�� �O ��Xl� � x��p��� � �l

�
�O

�
n����

�
���

It can be seen that he kernel� K�
�h ��� � is of order �
� p � ��� so that

Z
uqK�

�h �u� du �

���������
	 q 	 p� q 
� 


� q � 


! 
� 	 q � p� �

����	���
 �

where ! is some constant
 The last condition follows from p � 
 odd


The proof of the theorem partly follows Chen� H�ardle� Linton� Severance�Lossin

����
 We separate ��� into a systematic "bias" and a stochastic "variance"

��



�

n

nX
i��

Ei�bai�
��x�� �Xi�

�
�

n

nX
i��

bai �Ei�bai�
��x�� �Xi�

�Op

�� hq
nhgd��

�
lnn

nhgd��

�A

where�

bai � �
h�n

nP
l��

K�
�h �Xl� � x��Lg

�
X l �X i

�
�
�
fp��
� �x��
�p���	 �Xl� � x��

p�� �O ��Xl� � x��p��� �
P
� ���

ff� �Xl��� f� �Xi��g� �l

�

It remains to work with the �rst order approximations


Let

T�n �
�

n

nX
i��

Ei�bai�
��x�� �Xi�

# T�n �
�

n

nX
i��

bai � Ei�bai�
��x�� �Xi�

�

We prove the theorem by showing�

I
 T�n � n
��p�����

�p�� b� �x�� �Op�hp�����

II
 T�n �
nP

j��
wj��j �Op�n������

where wj� � �
h�n

K�
�h�x� � Xj��

���Xj��

��x��Xj��
� and n

p����

�p��
nP

j��
wj��j obeys a Central Limit

Theorem with asymptotic variance as stated in Theorem �
 To see this note that

E

��
���n p����

�p��

nX
j��

wj��j

�	

�
��� � n

��p�����
�p��

nX
j��

E
h
w�
j��

�
j

i
� n

�p����

�p�� E
h
w�
���

�
�

i
�

since wj��j are mean zero and i
i
d
� and

E �w�
���

�
�� � �

n�

R
���z�w�K��

�h�x� � z�
����w�

���x��w�
� �z�w� dzdw�

�



Changing variables to u � x��z
h

gives

E �w�
���

�
�� � �

n�h����

R
���x� � hu�w�K��

	 �u�
����w�

���x��w�
� �x� � hu�w� dudw

� n
� �p����

�p�� kK�k��
R
���x�� w�

����w�

��x��w�
dw � o�n�

�p����
�p�� ��

by assumption �A�� and the bandwidth conditions
 To establish the Lindeberg condi�

tion� required for the CLT� note that

w�
���

�
�

E �w�
���

�
��
��

�
w�
���

�
�

E �w�
���

�
��
� �n

�
	 D���

for some constant D� by assumptions �A��� �A�� and �A��
 The Lindeberg condition

then follows from the Lebesgue Dominated Convergence Theorem


We now establish the approximations in I and II


I
 Consider ��x�� �Xi���Ei�bai�� which is� in fact� an approximation of the conditional

bias of the Nadaraya�Watson estimator at �x�� �Xi�� This is�

��x�� �Xi�
��Ei�bai� � Ei

� �

��x� xi�
h��n��

nX
l��

Lg� �Xl � �Xi�K
�
�h�Xl� � x��

�
��fp��� �x��

�p � ���
�Xl� � x��

p�� �O
�
�Xl� � x��

p��
�

�
X
� ���

f� �Xl���
X
� ���

f� �Xi�� � �l

�A��
�

h��

��x�� �Xi�

Z
Lg�w � �Xi�K

�
�h�z � x����z�w�

��fp��� �x��

�p � ���
�

�z � x��
p�� �O

�
�z � x��

p��
�
�
X
� ���

f��w��
X
� ���

f� �Xi��

�Adwdz�
��



since E� ��i� � 	� We now change variables to u � z�x�
h

and v � w� �Xi

g
� where v is a

d� ��dimensional vector with �th component v�� so that

��x�� �Xi�
��Ei�bai� �

h��

��x�� �Xi�

Z
L�v�K�

� �u���x� � hu� �Xi � gv�

��fp��� �x�

�p� ���
�hu�p��

�O
�
�hu�p��

�
�
X
� ���

f��Xi� � gv���
X
� ���

f� �Xi��

�Adudv
� hp�����p�� �K

��

�
�

�p � ���
f �p���� �x��

�
� ���

X
� ���

f��Xi��

�op�h
p����� �Op�g

q��

by assumptions �A��� �A��� �A�� and �A��
 Since the ��x� xi���Ei�bai� are independent

and bounded we have

T�n � hp�����p�� �K��
n

�
�p���	

f �p���� �x��
o
� op�hp����� �Op�gq� � ���Op�n�����

� n
��p�����

�p�� b��x�� � op �hp����� �

II
 We now turn to the stochastic term�

T�n �
�

n

nX
i��

bai � Ei�bai�
��x�� �Xi�

�

We further write

bai � Ei�bai� � bai � E��bai� � E��bai�� Ei�bai��

We show that �
h�n

Pn
i��

bai�E��bai�
��x��xi�

�
nP

j��
wj��j �Op

�
n����

�
� where

bai � E��bai� � h��n��
nX

j��

K�
�h�x� �Xj��Lg� �Xi � �Xj��j�

Therefore�

�
n

Pn
i��

bai�E��bai�
��x�� �Xi�

� �
h�n

Pn
i��

�
��x�� �Xi�

n��
Pn

j��K
�
�h�x� �Xj��Lg� �Xi � �Xj��j

� h��n��
Pn

j��K
�
�h�x� �Xj���j

n
�
n

Pn
i��

�
��x�xi�

Lg� �Xi � �Xj�
o

�
Pn

j��wj��j f� � �ig �

��

�




where �i � op �h� and independent of all the �j�s
 The last equality is demonstrated as

follows
 Let

�j �
�

n

nX
i��

�

��x�� �Xi�
Lg� �Xi � �Xj� �

and break �j into Ej ��j� � f�j � Ej ��j�g � Then�

Ej ��j � �
R �

��x��z�
Lg�z � �Xj��� �z� dz

�
R �

��x�� �Xj�gu�
L�u���� �Xj � gu�du

�
��� �Xj�

��x�� �Xj�
�Op�gq��

Also�

Ej

h
f�j � Ej ��j�g�

i
	 �

n

R � �
��x��z�

Lg�z � �Xj� � ��� �Xj�

��x�� �Xj�

��
�� �z� dz �Op �n��g�q�

� �
n

R n �
��x��z�

Lg�z � �Xj�
o�
�� �z� dz �Op �n��� �

By a change of variables we get

Ej

h
f�j � Ej ��j�g�

i
	 �

ngd��

R n �
��x�� �Xj�gv�

L�v�
o�
��� �Xj � gv�dv �Op �n���

� �
ngd��

��� �Xj�

���x�� �Xj�
kLk�� �Op �n��� � op �h� �

by the assumptions �A��� �A��� and �A��
 Thus the last line in �� is shown


By the same conditioning arguments as in �II
�� in the proof of Theorem � in Chen�

H�ardle� Linton and Severance�Lossin ���� It can be shown that �
n

Pn
i��

E��bai��Ei�bai�
��x�� �Xi�

�

Op�n�����O�hp���� � gq� � Op�n�����Op��ngd��h��v�������� � op
�
�n��h��v�������

�
�

which establishes II and thus proves the theorem


Proof of Theorem �	

An argument identical to that in the proof of Theorem � in Chen� H�ardle� Lin�

ton and Severance�Lossin ���� shows that the asymptotic covariance between the

estimates of bf��x�� and bf��x�� is negligible compared with their variances


��
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Figure � 
left�	 Additive functions
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and data points

Figure � 
right�	 Derivative estimates

with 	$ pointwise con�dence intervals
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