Discretisation of Stochastic Control Problems for Continuous Time Dynamics with Delay

Markus Fischer*
Markus Reiss*

* Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS), Germany

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de
ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin
Discretisation of stochastic control problems for continuous
time dynamics with delay*

MARKUS FISCHER
Weierstraß-Institut für Angewandte
Analysis und Stochastik (WIAS)
Mohrenstr. 39
10117 Berlin
Germany

MARKUS REISS
Weierstraß-Institut für Angewandte
Analysis und Stochastik (WIAS)
Mohrenstr. 39
10117 Berlin
Germany

August 2, 2005

Abstract

As a main step in the numerical solution of control problems in continuous time, the controlled process is approximated by sequences of controlled Markov chains, thus discretizing time and space. A new feature in this context is to allow for delay in the dynamics. The existence of an optimal strategy with respect to the cost functional can be guaranteed in the class of relaxed controls. Weak convergence of the approximating extended Markov chains to the original process together with convergence of the associated optimal strategies is established.

1 Introduction

A general strategy for rendering control problems in continuous time accessible to numerical computation is the following: Taking as a starting point the original dynamics, construct a family of control problems in discrete time with discrete state space and discretized cost functional. Standard numerical schemes can be applied to find an optimal control and to calculate the minimal costs for each of the discrete control problems. The important point to establish is then whether the discrete optimal controls and minimal costs converge to the continuous-time limit as the mesh size of the discretisation tends to zero. If that is the case, then the discrete control problems are a valid approximation to the original problem.

The dynamics of the control problem we are interested in are described by a stochastic delay differential equation (SDDE). Thus, the future evolution of the dynamics may depend not only on the present state, but also on the past evolution. For an exposition of the general theory of SDDEs see Mohammed (1984) or Mao (1997). The development of

*Financial support by the DFG-Sonderforschungsbereich 649 Economic Risk is gratefully acknowledged.
numerical methods for SDDEs has attracted much attention recently, see Buckwar (2000), Hu et al. (2004) and the references therein. In Calzolari et al. (2003), segmentwise Euler schemes are used in a non-linear filtering problem for approximating the state process, which is given by an SDDE. Numerical procedures for deterministic control with delayed dynamics have already been used in applications, see Boucekine et al. (2005) for the analysis of an economic growth model. The algorithm proposed there is based on the discretisation method studied here, but no formal proof of convergence is given.

Also the mathematical analysis of stochastic control problems with time delay in the state equation has been the object of recent works, see e.g. Elsanosi et al. (2000) for certain explicitly available solutions, Øksendal and Sulem (2001) for the derivation of a maximum principle and Larssen (2002) for the dynamic programming approach. Although one can invoke the dynamic programming principle to derive a Hamilton-Jacobi-Bellman equation for the value function, such an equation will in general be a non-linear differential equation with infinite-dimensional state space. A different approach to treat stochastic control problems with delay is based on representing the state equation as an evolution equation in Hilbert space, see Bensoussan et al. (1992).

The class of control problems is specified in Section 2. In Section 3 we prove the existence of optimal strategies for these problems in the class of relaxed controls. Section 4 introduces the approximating processes and provides a tightness result. Finally, in Section 5 the discrete control problems are defined and the convergence of the minimal costs and optimal strategies is shown.

2 The control problem

We consider the control of a dynamical system given by a one-dimensional stochastic delay differential equation (SDDE) driven by a Wiener process. Both drift and diffusion coefficient may depend on the solution's history a certain amount of time into the past. Let $r > 0$ denote the delay length, i.e. the maximal length of dependence on the past. For simplicity, we restrict attention to the case, where only the drift term can be directly controlled.

Typically, the solution process of an SDDE does not enjoy the Markov property, while the segment process associated with that solution does. For a real-valued càdlàg function (i.e., right-continuous function with left-hand limits) ψ living on the time interval $[-r, \infty)$ the segment at time $t \in [0, \infty)$ is defined to be the function

$$\psi_t : [-r, 0] \to \mathbb{R}, \quad \psi_t(s) := \psi(t+s).$$

Thus, the segment process $(X_t)_{t \geq 0}$ associated with a real-valued càdlàg process $(X(t))_{t \geq -r}$ takes its values in $D_0 := D([-r, 0])$, the space of all real-valued càdlàg functions on the interval $[-r, 0]$. There are two natural topologies on D_0. The first is the one induced by the supremum norm, which we denote by $\| \cdot \|_\infty$.

The second is the Skorohod topology of
cadlag convergence (e.g. Billingsley, 1999). The main difference between the Skorohod and the uniform topology lies in the different evaluation of convergence of functions with jumps, which appear naturally as initial segments and discretized processes. For continuous functions both topologies coincide. Similar statements hold for $D_\infty := D([{-r}, \infty))$ and $\hat{D}_\infty := D([0, \infty))$, the spaces of all real-valued cadlag functions on the intervals $[{-r}, \infty)$ and $[0, \infty)$, respectively. The spaces D_∞ and \hat{D}_∞ will always be supposed to carry the Skorohod topology, while D_0 will canonically be equipped with the uniform topology.

Let $(\Gamma, d\Gamma)$ be a compact metric space, the space of control actions. Denote by b the drift coefficient of the controlled dynamics, and by σ the diffusion coefficient. Let $(W(t))_{t \geq 0}$ be a one-dimensional standard Wiener process on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$ satisfying the usual conditions, and let $(u(t))_{t \geq 0}$ be a control process, i.e. an (\mathcal{F}_t)-adapted measurable process with values in Γ. Consider the controlled SDDE

$$
(1) \quad dX(t) = b(X_t, u(t)) \, dt + \sigma(X_t) \, dW(t), \quad t \geq 0.
$$

The control process $u(\cdot)$ together with its stochastic basis including the Wiener process is called an admissible control if, for every deterministic initial condition $\varphi \in D_0$, equation (1) has a unique solution which is also weakly unique. Write \mathcal{U}_{ad} for the set of admissible controls of equation (1). The stochastic basis coming with an admissible control will often be omitted in the notation.

A solution in the sense used here is an adapted cadlag process defined on the stochastic basis of the control process such that the integral version of equation (1) is satisfied. Given a control process together with a standard Wiener process, a solution to equation (1) is unique if it is indistinguishable from any other solution almost surely satisfying the same initial condition. A solution is weakly unique if it has the same law as any other solution with the same initial distribution and satisfying equation (1) for a control process on a possibly different stochastic basis so that the joint distribution of control and driving Wiener process is the same for both solutions. Let us specify regularity assumptions to be imposed on the coefficients b and σ:

(A1) Cadlag functionals: the mappings

$$(\psi, \gamma) \mapsto \begin{bmatrix} t \mapsto b(\psi, \gamma), & t \geq 0 \end{bmatrix}, \quad \psi \mapsto \begin{bmatrix} t \mapsto \sigma(\psi), & t \geq 0 \end{bmatrix}$$

define measurable functionals $D_\infty \times \Gamma \to \hat{D}_\infty$ and $D_\infty \to \hat{D}_\infty$, respectively, where D_∞, \hat{D}_∞ are equipped with the Borel σ-algebras.

(A2) Continuity of the drift coefficient: there is a countable subset of $[{-r}, 0]$, denoted by I_{ev}, such that for every $t \geq 0$ the function defined by

$$
D_\infty \times \Gamma \ni (\psi, \gamma) \mapsto b(\psi_t, \gamma)
$$

is continuous on $D_{ev}(t) \times \Gamma$ uniformly in $\gamma \in \Gamma$, where

$$
D_{ev}(t) := \{ \psi \in D_\infty \mid \psi \text{ is continuous at } t + s \text{ for all } s \in I_{ev} \}.
$$
(A3) Global boundedness: \(|b|, |\sigma|\) are bounded by a constant \(K > 0\).

(A4) Uniform Lipschitz condition: There is a constant \(K_L > 0\) such that for all \(\varphi, \psi \in D_0\), all \(\gamma \in \Gamma\)
\[|b(\varphi, \gamma) - b(\psi, \gamma)| + |\sigma(\varphi) - \sigma(\psi)| \leq K_L \|\varphi - \psi\|_{\infty}.
\]

(A5) Ellipticity of the diffusion coefficient: \(\sigma(\varphi) \geq \sigma_0\) for all \(\varphi \in D_0\), where \(\sigma_0 > 0\) is a positive constant.

Assumptions (A1) and (A4) on the coefficients allow us to invoke Theorem V.7 in Protter (2003: p.253), which guarantees the existence of a unique solution to the controlled SDDE (1) for every piecewise constant control attaining only finitely many different values. The boundedness Assumption (A3) poses no limitation except for the initial conditions, because the state evolution will be stopped when the state process leaves a bounded interval. Assumption (A2) allows us to use “segmentwise approximations” of the solution process, see the proof of Proposition 1. The assumptions imposed on the drift coefficient \(b\) are satisfied, for example, by
\[b(\varphi, \gamma) := f(\varphi(r_1), \ldots, \varphi(r_n), \int_{-r}^{0} \varphi(s)w(s) ds) \cdot g(\gamma),\]
where \(r_1, \ldots, r_n \in [-r, 0]\) are fixed, \(f, g\) are bounded continuous functions and \(f\) is Lipschitz, and the weight function \(w\) lies in \(L^1([-r, 0])\).

We consider control problems in the weak formulation (cf. Yong and Zhou, 1999: p. 64). Given an admissible control \(u(\cdot)\) and a deterministic initial segment \(\varphi \in D_0\), denote by \(X^{\varphi, u}\) the unique solution to equation (1). Let \(I\) be a compact interval with non-empty interior. Define the stopping time \(\tau_{\varphi, u}\) of first exit from the interior of \(I\) before time \(\bar{T} > 0\) by
\[\tau_{\varphi, u} := \inf\{t \geq 0 | X^{\varphi, u}(t) \notin \text{int}(I)\} \wedge \bar{T}.
\]
In order to define the costs, we prescribe a cost rate \(k: \mathbb{R} \times \Gamma \to [0, \infty)\) and a boundary cost \(g: \mathbb{R} \to [0, \infty)\), which are (jointly) continuous bounded functions. Let \(\beta \geq 0\) denote the exponential discount rate. Then define the cost functional on \(D_0 \times \mathcal{U}_{ad}\) by
\[J(\varphi, u) := \mathbb{E}\left(\int_{0}^{\tau} \exp(-\beta s) \cdot k(X^{\varphi, u}(s), u(s)) ds + g(X^{\varphi, u}(\tau))\right),\]
where \(\tau = \tau_{\varphi, u}\). Our aim is to minimize \(J(\varphi, \cdot)\). We introduce the value function
\[V(\varphi) := \inf\{J(\varphi, u) | u \in \mathcal{U}_{ad}\}, \quad \varphi \in D_0.
\]
The control problem now consists in calculating the function \(V\) and finding admissible controls that minimize \(J\). Such control processes are called optimal controls or optimal strategies.
3 Existence of optimal strategies

In the class \mathcal{U}_{ad} of admissible controls it may happen that there is no optimal control (Kushner and Dupuis, 2001: p. 86). A way out is to enlarge the class of controls, allowing for so-called relaxed controls, so that the existence of an optimal (relaxed) control is guaranteed, while the infimum of the costs over the new class coincides with the value function V as given by (4).

A deterministic relaxed control is a positive measure ρ on the Borel σ-algebra $\mathcal{B}(\Gamma \times [0, \infty))$ such that

\begin{equation}
\rho(\Gamma \times [0, t]) = t \quad \text{for all } t \geq 0.
\end{equation}

For each $G \in \mathcal{B}(\Gamma)$, the function $t \mapsto \rho(G \times [0, t])$ is absolutely continuous with respect to Lebesgue measure on $[0, \infty)$ by virtue of property (5). Denote by $\dot{\rho}(\cdot, G)$ any Lebesgue density of $\rho(G \times [0, \cdot])$. The family of densities $\dot{\rho}(\cdot, G)$, $G \in \mathcal{B}(\Gamma)$, can be chosen in a Borel measurable way such that $\dot{\rho}(t, \cdot)$ is a probability measure on $\mathcal{B}(\Gamma)$ for each $t \geq 0$, and

$$
\rho(B) = \int_0^\infty \int_{\Gamma} 1_{\{(\gamma, t) \in B\}} \dot{\rho}(t, d\gamma) \, dt \quad \text{for all } B \in \mathcal{B}(\Gamma \times [0, \infty)).
$$

Denote by \mathcal{R} the space of deterministic relaxed controls which is equipped with the weak-compact topology induced by the following notion of convergence: a sequence $(\rho_n)_{n \in \mathbb{N}}$ of relaxed controls converges to $\rho \in \mathcal{R}$ if

$$
\int_{\Gamma \times [0, \infty)} g(\gamma, t) \, d\rho_n(\gamma, t) \xrightarrow{n \to \infty} \int_{\Gamma \times [0, \infty)} g(\gamma, t) \, d\rho(\gamma, t) \quad \text{for all } g \in \mathcal{C}_c(\Gamma \times [0, \infty)),
$$

where $\mathcal{C}_c(\Gamma \times [0, \infty))$ is the space of all real-valued continuous functions on $\Gamma \times [0, \infty)$ having compact support. Under the weak-compact topology, \mathcal{R} is a (sequentially) compact space.

Suppose $(\rho_n)_{n \in \mathbb{N}}$ is a convergent sequence in \mathcal{R} with limit ρ. Given $T > 0$, let $\rho_n|T$ denote the restriction of ρ_n to the Borel σ-algebra on $\Gamma \times [0, T]$, and denote by $\rho|T$ the restriction of ρ to $\mathcal{B}(\Gamma \times [0, T])$. Then $\rho_n|T$, $n \in \mathbb{N}$, $\rho|T$ are all finite measures, and $(\rho_n|T)$ converges weakly to $\rho|T$.

A relaxed control process is an \mathcal{R}-valued random variable R such that the mapping $\omega \mapsto R(G \times [0, t])(\omega)$ is \mathcal{F}_t-measurable for all $t \geq 0$, $G \in \mathcal{B}(\Gamma)$. For a relaxed control process R equation (1) takes on the form

\begin{equation}
\begin{aligned}
\quad &dX(t) = \left(\int_{\Gamma} b(X_t, \gamma) \, \dot{R}(t, d\gamma) \right) dt + \sigma(X_t) \, dW(t), \quad t \geq 0,
\end{aligned}
\end{equation}

where $(\dot{R}(t, \cdot))_{t \geq 0}$ is the family of derivative measures associated with R. The family $(\dot{R}(t, \cdot))$ can be constructed in a measurable way (cf. Kushner, 1990: p. 52). A relaxed control process together with its stochastic basis including the Wiener process is called admissible relaxed control if, for every deterministic initial condition, equation (6) has
a unique solution which is also weakly unique. Any ordinary control process \(u \) can be represented as a relaxed control process by setting

\[
R(B) := \int_0^\infty \int_{\Gamma} 1_{\{(\gamma,t) \in B\}} \delta_{u(t)}(d\gamma) \, dt, \quad B \in \mathcal{B}(\Gamma \times [0, \infty)),
\]

where \(\delta_\gamma \) is the Dirac measure at \(\gamma \in \Gamma \).

Denote by \(\hat{U}_{ad} \) the set of all admissible relaxed controls. Instead of (3) we define a cost functional on \(D_0 \times \hat{U}_{ad} \) by

\[
(7) \quad \hat{J}(\varphi, R) := E \left(\int_0^T \int_{\Gamma} \exp(-\beta s) \cdot k(X^{\varphi,R}(s), \gamma) \, R(s, d\gamma) \, ds + g(X^{\varphi,R}(\tau)) \right).
\]

where \(X^{\varphi,R} \) is the solution to equation (6) with initial segment \(\varphi \) and \(\tau \) is defined in analogy to (2). Instead of (4) as value function we have

\[
(8) \quad \hat{V}(\varphi) := \inf \{ \hat{J}(\varphi, R) \mid R \in \hat{U}_{ad} \}, \quad \varphi \in D_0.
\]

The cost functional \(\hat{J} \) depends only on the joint distribution of the solution \(X^{\varphi,R} \) and the underlying control process \(R \), since \(\tau \), the time horizon, is a deterministic function of the solution. The distribution of \(X^{\varphi,R} \), in turn, is determined by the initial condition \(\varphi \) and the joint distribution of the control process and its accompanying Wiener process. Letting the time horizon vary, we may regard \(\hat{J} \) as a function of the law of \((X, R, W, \tau) \), that is, to be defined on a subset of the set of probability measures on \(\mathcal{B}(D_\infty \times \mathcal{R} \times D_\infty \times [0, \infty]) \). The domain of definition of \(\hat{J} \) is determined by the class of admissible relaxed controls for equation (6), the definition of the time horizon and the distributions of the initial segments \(X_0 \).

The idea in proving existence of an optimal strategy is to check that \(\hat{J}(\varphi, \cdot) \) is a (sequentially) lower semi-continuous function defined on a (sequentially) compact set. It then follows from a theorem by Weierstraß (cf. Yong and Zhou, 1999: p. 65) that \(\hat{J}(\varphi, \cdot) \) attains its minimum at some point of its compact domain. The following proposition gives the analogue of Theorem 10.1.1 in Kushner andDupuis (2001: pp. 271-275) for our setting. We present the proof in detail, because the identification of the limit process is different from the classical case.

Proposition 1. Assume (A1) - (A4). Let \(((R^n, W^n))_{n \in \mathbb{N}} \) be any sequence of admissible relaxed controls for equation (6), defined on a filtered probability space \((\Omega_n, \mathcal{F}_n, (\mathcal{F}_t^n)_{t \geq 0}, P_n) \). Let \(X^n \) be a solution to equation (6) under control \((R^n, W^n) \) with deterministic initial condition \(\varphi^n \in D_0 \), and assume that \((\varphi^n) \) tends to \(\varphi \) uniformly for some \(\varphi \in D_0 \). For each \(n \in \mathbb{N} \), let \(\tau^n \) be an \((\mathcal{F}_t^n) \)-stopping time. Then \(((X^n, R^n, W^n, \tau^n))_{n \in \mathbb{N}} \) is tight.

Denote by \((X, R, W, \tau) \) a limit point of the sequence \(((X^n, R^n, W^n, \tau^n))_{n \in \mathbb{N}} \). Define a filtration by \(\mathcal{F}_t := \sigma(X(s), R(s), W(s), \tau 1_{\{t \leq \tau\}}, \ s \leq t), \ t \geq 0 \). Then \(W(.) \) is an \((\mathcal{F}_t) \)-adapted Wiener process, \(\tau \) is an \((\mathcal{F}_t) \)-stopping time, \((R, W) \) is an admissible relaxed control, and \(X \) is a solution to (6) under \((R, W) \) with initial condition \(\varphi \).
Proof. Tightness of \((X^n)\) follows from the Aldous criterion (cf. Billingsley, 1999: pp.176-179): given \(n \in \mathbb{N}\), any bounded \((\mathcal{F}_n^n)\)-stopping time \(\nu\) and \(\delta > 0\) we have

\[
\mathbb{E}_n\left(\left| X^n(\nu + \delta) - X^n(\nu) \right|^2 \right| \mathcal{F}_\nu \leq 2K^2\delta(\delta + 1)
\]
as a consequence of Assumption (A3) and the Itô isometry. Notice that we have \(X^n(0) \to X(0)\) as \(n \to \infty\) by hypothesis. The sequences \((R^n)\) and \((\tau^n)\) are tight, because the value spaces \(\mathcal{R}\) and \([0, \infty]\), respectively, are compact. The sequence \((W^n)\) is tight, since all \(W^n\) induce the same measure. Finally, componentwise tightness implies tightness of the product (cf. Billingsley, 1999: p.65).

By abuse of notation, we do not distinguish between the convergent subsequence and the original sequence and we assume that \(((X^n, R^n, W^n, \tau^n))\) converges weakly to \((X, R, W, \tau)\). The random time \(\tau\) is an \((\mathcal{F}_t)\)-stopping time by construction of the filtration. Likewise, \(R\) is \((\mathcal{F}_t)\)-adapted by construction, and it is indeed a relaxed control process, because \(R(t, \Gamma) = t, t \geq 0\), \(\mathbb{P}\)-almost surely by weak convergence of the relaxed control processes \((R^n)\) to \(R\). The process \(W\) has Wiener distribution and continuous paths with probability one, being the limit of standard Wiener processes. To check that \(W\) is an \((\mathcal{F}_t)\)-Wiener process, we use the martingale characterization of Brownian motion. To this end, for \(g \in C_c(\Gamma \times [0, \infty))\), \(\rho \in \mathcal{R}\) define the pairing

\[
(g, \rho)(t) := \int_{\Gamma \times [0, t]} g(\gamma, s) d\rho(\gamma, s), \quad t \geq 0.
\]

Notice that real-valued continuous functions on \(\mathcal{R}\) can be approximated by functions of the form

\[
\mathcal{R} \ni \rho \mapsto \tilde{H}((g_j, \rho)(t_i), (i, j) \in \mathbb{N}_p \times \mathbb{N}_q) \in \mathbb{R},
\]

where \(p, q\) are natural numbers, \(\{t_i \mid i \in \mathbb{N}_p\} \subset [0, \infty)\), and \(\tilde{H}, g_j, j \in \mathbb{N}_q\), are suitable continuous functions with compact support and \(\mathbb{N}_N := \{1, \ldots, N\}\) for any \(N \in \mathbb{N}\). Let \(t \geq 0, t_1, \ldots, t_p \in [0, t], h \geq 0, g_1, \ldots, g_q\) be functions in \(C_c(\Gamma \times [0, \infty))\), and \(H\) be a continuous function of \(2p + p\cdot q + 1\) arguments with compact support. Since \(W^n\) is an \((\mathcal{F}_t^n)\)-Wiener process for each \(n \in \mathbb{N}\), we have for all \(f \in C^2_c(\mathbb{R})\)

\[
\mathbb{E}_n\left(\int_{\Gamma \times [0, t]} \tilde{H}(g_j, \rho)(t_i), (i, j) \in \mathbb{N}_p \times \mathbb{N}_q) \right.
\]

\[
\cdot \left(f(W^n(t + h)) - f(W^n(t)) - \frac{1}{2} \int_t^{t+h} \frac{\partial^2 f}{\partial x^2}(W^n(s))ds \right) = 0.
\]

By the weak convergence of \(((X^n, R^n, W^n, \tau^n))_{n \in \mathbb{N}}\) to \((X, R, W, \tau)\) we see that

\[
\mathbb{E}\left(\int_{\Gamma \times [0, t]} \tilde{H}(g_j, \rho)(t_i), (i, j) \in \mathbb{N}_p \times \mathbb{N}_q) \right.
\]

\[
\cdot \left(f(W(t + h)) - f(W(t)) - \frac{1}{2} \int_t^{t+h} \frac{\partial^2 f}{\partial x^2}(W(s))ds \right) = 0
\]
for all $f \in C_c^2(\mathbb{R})$. As H, p, q, t_i, g_j vary over all possibilities, the corresponding random variables $H(X(t_i), (g_j, R(t_i), W(t_i), \tau_{t \leq t_i}, (i, j) \in \mathbb{N}_p \times \mathbb{N}_q)$ induce the σ-algebra \mathcal{F}_t. Since $t \geq 0$, $h \geq 0$ were arbitrary, it follows that

$$f(W(t)) - f(W(0)) - \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(W(s))ds \quad t \geq 0,$$

is an (\mathcal{F}_t)-martingale for every $f \in C_c^2(\mathbb{R})$. Consequently, W is an (\mathcal{F}_t)-Wiener process.

It remains to show that X solves equation (6) under control (R, W) with initial condition φ. Notice that X has continuous paths on $[0, \infty)$ P-almost surely, because the process $(X(t))_{t \geq 0}$ is the weak limit in \tilde{D}_∞ of continuous processes. Fix $T > 0$. We have to check that P-almost surely

$$X(t) = \varphi(0) + \int_0^t \int_\Gamma b(X_s, \gamma) \hat{R}(s, d\gamma) ds + \int_0^t \sigma(X_s) dW(s) \text{ for all } t \in [0, T].$$

By virtue of the Skorohod representation theorem (cf. Billingsley, 1999: p. 70) we may assume that the processes (X^n, R^n, W^n), $n \in \mathbb{N}$, are all defined on the same probability space (Ω, \mathcal{F}, P) as (X, R, W) and that convergence of $((X^n, R^n, W^n))$ to (X, R, W) is P-almost sure. Since X, W have continuous paths on $[0, T]$ and (φ^n) converges to φ in the uniform topology, one finds $\hat{\Omega} \in \mathcal{F}$ with $P(\hat{\Omega}) = 1$ such that for all $\omega \in \hat{\Omega}$

$$\sup_{t \in [-r, T]} |X^n(t)(\omega) - X(t)(\omega)| \xrightarrow{n \to \infty} 0, \quad \sup_{t \in [-r, T]} |W^n(t)(\omega) - W(t)(\omega)| \xrightarrow{n \to \infty} 0,$$

and also $R^n(\omega) \to R(\omega)$ in \mathcal{R}. Let $\omega \in \hat{\Omega}$. We first show that

$$\int_0^t \int_\Gamma b(X^n_s(\omega), \gamma) \hat{R}^n(s, d\gamma)(\omega) ds \xrightarrow{n \to \infty} \int_0^t \int_\Gamma b(X_s(\omega), \gamma) \hat{R}(s, d\gamma)(\omega) ds$$

uniformly in $t \in [0, T]$. As a consequence of Assumption (A4), the uniform convergence of the trajectories on $[-r, T]$ and property (5) of the relaxed controls, we have

$$\int_{\Gamma \times [0, T]} |b(X^n_s(\omega), \gamma) - b(X_s(\omega), \gamma)| dR^n(\gamma, s)(\omega) \xrightarrow{n \to \infty} 0.$$

By Assumption (A2), we find a countable set $A_{\omega} \subset [0, T]$ such that the mapping $(\gamma, s) \mapsto b(X_s(\omega), \gamma)$ is continuous in all $(\gamma, s) \in \Gamma \times ([0, T] \setminus A_{\omega})$. Since A_{ω} is countable we have $P(\omega)(\Gamma \times A_{\omega}) = 0$. Hence, by the generalized mapping theorem (cf. Billingsley, 1999: p. 21), we obtain

$$\int_{\Gamma \times [0, t]} b(X_s(\omega), \gamma) dR^n(\gamma, s)(\omega) \xrightarrow{n \to \infty} \int_{\Gamma \times [0, t]} b(X_s(\omega), \gamma) dR(\gamma, s)(\omega).$$

The convergence is again uniform in $t \in [0, T]$, as b is bounded and R^n, $n \in \mathbb{N}$, R are all positive measures with mass T on $\Gamma \times [0, T]$.

8
Denote by $(\hat{X}(t))_{t \geq -r}$ the unique solution to equation (6) under control (R, W) with initial condition φ. If we can show that

$$\sup_{t \in [0,T]} \left| X^n(t) - \hat{X}(t) \right| \overset{n \to \infty}{\longrightarrow} 0 \quad \text{in probability } \mathbb{P},$$

then X will be indistinguishable from \hat{X} on $[-r, T]$ and will solve (6) as well. Let us define càdlàg processes C^n, $n \in \mathbb{N}$, on $[0, \infty)$ by

$$C^n(t) := \varphi^n(0) + \int_{\Gamma \times [0,t]} b(X^n_s, \gamma) \, dR^n(\gamma, s), \quad t \geq 0,$$

and define C in analogy to C^n. We already know that $C^n(t) \to C(t)$ holds uniformly over $t \in [0, T]$ for any $T > 0$ with probability one. Define operators F^n, $n \in \mathbb{N}$, mapping càdlàg processes to càdlàg processes by

$$F^n(Y)(t)(\omega) := \sigma \begin{cases} \lbrack -r, 0 \rbrack \ni s \mapsto \begin{cases} Y(t+s)(\omega) \quad \text{if } t \geq -s, \\ \varphi^n(t+s) \quad \text{else} \end{cases}, & t \geq 0, \quad \omega \in \Omega, \end{cases}$$

and define F in the same way as F^n. Assumption (A4) and the uniform convergence of (φ^n) to φ imply that $F^n(\hat{X})$ converges to $F(\hat{X})$ uniformly on compacts in probability (convergence in ucp). Observing that X^n solves

$$X^n(t) = C^n(t) + \int_0^t F^n(X^n(s-)) \, dW^n(s), \quad t \geq 0,$$

and analogously for \hat{X}, Theorem V.15 in Protter (2003: p. 265) asserts that (X^n) converges to \hat{X} in ucp and (9) follows.

If the time horizon were deterministic, then the existence of optimal strategies in the class of relaxed controls would be clear. Given an initial condition $\varphi \in D_0$, one would select a sequence $((R^n, W^n))_{n \in \mathbb{N}}$ such that $(J(\varphi, R^n))$ converges to its infimum. By Proposition 1, a suitable subsequence of $((R^n, W^n))$ and the associated solution processes would converge weakly to (R, W) and the associated solution to equation (6). Taking into account (7), the definition of the costs, this in turn would imply that $J(\varphi, \cdot)$ attains its minimum value at R or, more precisely, (X, R, W).

A similar argument is still valid, if the time horizon depends continuously on the paths with probability one under every possible solution. That is to say, the mapping

$$\hat{\tau} : D_\infty \to [0, \infty], \quad \hat{\tau}(\psi) := \inf \{ t \geq 0 \mid \psi(t) \notin \text{int}(I) \} \wedge \hat{T}$$

is Skorohod continuous with probability one under the measure induced by any solution $X^{\varphi, R}$, R any relaxed control. This is indeed the case if the diffusion coefficient σ is bounded away from zero as required by Assumption (A5).

By introducing relaxed controls, we have enlarged the class of possible strategies. The infimum of the costs, however, remains the same for the new class. This is a consequence of
the fact that stochastic relaxed controls can be arbitrarily well approximated by piecewise constant ordinary stochastic controls which attain only a finite number of different control values. A proof of this assertion is given in Kushner (1990: pp. 59-60) in case the time horizon is finite, and extended to the case of control up to an exit time in Kushner and Dupuis (2001: pp. 282-286). Notice that nothing hinges on the presence or absence of delay in the controlled dynamics. Let us summarize our findings.

Theorem 1. Assume (A1)–(A5). Given any deterministic initial condition \(\varphi \in D_0 \), the relaxed control problem determined by (6) and (7) possesses an optimal strategy, and the minimal costs are the same as for the original control problem as defined by (1) and (3).

4 Approximating chains

In order to construct finite-dimensional approximations to our control problem, we discretize time and state space. Denote by \(h > 0 \) the mesh size of an equidistant time discretization starting at zero. Let \(S_h := \sqrt{h} \mathbb{Z} \) be the corresponding state space, and set \(I_h := I \cap S_h \). Notice that \(S_h \) is countable and \(I_h \) is finite. Let \(\Lambda_h : \mathbb{R} \to S_h \) be a round-off function. We will simplify things even further by considering only mesh sizes \(h = \frac{r}{M} \) for some \(M \in \mathbb{N} \), where \(r \) is the delay length. The number \(M \) will be referred to as discretization degree.

The admissible controls for the finite-dimensional control problems correspond to piecewise constant processes in continuous time. A time-discrete process \(u = (u(n))_{n \in \mathbb{N}_0} \) on \((\Omega, \mathcal{F}, \mathbb{P}) \) with values in \(\Gamma \) is a **discrete admissible control of degree** \(M \) if \(u \) takes on only finitely many different values in \(\Gamma \) and \(u(n) \) is \(\mathcal{F}_{nh} \)-measurable for all \(n \in \mathbb{N}_0 \). Denote by \((\tilde{u}(n))_{n \geq 0}\) the piecewise constant càdlàg interpolation to \(u \).

We call a time-discrete process \((\xi(n))_{n \in [-M,\ldots,0] \cup \mathbb{N}} \) on \((\Omega, \mathcal{F}, \mathbb{P}) \) a **discrete chain of degree** \(M \) if \(\xi(n) \) takes its values in \(S_h \) and \(\xi(n) \) is \(\mathcal{F}_{nh} \)-measurable for all \(n \in \mathbb{N}_0 \). In analogy to \(\tilde{u} \), write \((\tilde{\xi}(t))_{t \geq -r}\) for the càdlàg interpolation to the discrete chain \((\xi(n))_{n \in [-M,\ldots,0] \cup \mathbb{N}} \). We denote by \(\tilde{\xi}_t \) the \(D_0 \)-valued segment of \(\tilde{\xi}(\cdot) \) at time \(t \geq 0 \).

Let \(\varphi \in D_0 \) be a deterministic initial condition, and suppose we are given a **sequence of discrete admissible controls** \((u^M)_{M \in \mathbb{N}} \), that is \(u^M \) is a discrete admissible control of degree \(M \) on a stochastic basis \((\Omega_M, \mathcal{F}_M, (\mathcal{F}_t^M), P_M) \) for each \(M \in \mathbb{N} \). In addition, suppose that the sequence \((\tilde{u}^M) \) of interpolated discrete controls converges weakly to some relaxed control \(R \). We are then looking for a sequence approximating the solution \(X \) of equation (1) under control \((R,W)\) with initial condition \(\varphi \), where the Wiener process \(W \) has to be constructed from the approximating sequence.

Given \(M \)-step or extended Markov transition functions \(p^M : S_h^{M+1} \times \Gamma \times S_h \to [0, 1] \), \(M \in \mathbb{N} \), we define a **sequence of approximating chains** associated with \(\varphi \) and \((u^M) \) as a family \((\xi^M)_{M \in \mathbb{N}} \) of processes such that \(\xi^M \) is a discrete chain of degree \(M \) defined on the same stochastic basis as \(u^M \), provided the following conditions are fulfilled for \(h = h_M := \frac{r}{M} \) tending to zero:
(i) Initial condition: \(\xi^M(n) = \Lambda_h(\varphi(nh)) \) for all \(n \in \{-M, \ldots, 0\} \).

(ii) Extended Markov property: for all \(n \in \mathbb{N}_0 \), all \(x \in S_h \)
\[
P_M(\xi^M(n+1) = x \mid \mathcal{F}^M_{nh}) = p^M(\xi^M(n-M), \ldots, \xi^M(n), u^M(n), x).
\]

(iii) Local consistency with the drift coefficient:
\[
\mu_{\xi^M}(n) := \mathbb{E}_M(\xi^M(n+1) - \xi^M(n) \mid \mathcal{F}^M_{nh}) = h \cdot b(\xi_{nh}^M, u^M(n)) + o(h) =: h \cdot b_h(\xi_{nh}^M, u^M(n)).
\]

(iv) Local consistency with the diffusion coefficient:
\[
\mathbb{E}_M\left(\left(\xi^M(n+1) - \xi^M(n) - \mu_{\xi^M}(n)\right)^2 \mid \mathcal{F}^M_{nh}\right) = h \cdot \sigma^2(\xi_{nh}^M) + o(h) =: h \cdot \sigma_h^2(\xi_{nh}^M).
\]

(v) Jump heights: there is a positive number \(\bar{N} \), independent of \(M \), such that
\[
\sup_n |\xi^M(n+1) - \xi^M(n)| \leq \bar{N} \sqrt{hM}.
\]

It is straightforward, under Assumptions (A3) and (A5), to construct a sequence of extended transition functions such that the jump height and the local consistency conditions are fulfilled.

We will represent the interpolation \(\tilde{\xi}^M \) as a solution to an equation corresponding to equation (1) with control process \(\tilde{u}^M \) and initial condition \(\varphi \). Define the discrete process \((L^M(n))_{n \in \mathbb{N}_0} \) by \(L^M(0) := 0 \) and
\[
\xi^M(n) = \varphi(0) + \sum_{i=0}^{n-1} h \cdot b_h(\tilde{\xi}_{ih}^M, u^M(i)) + L^M(n), \quad n \in \mathbb{N}.
\]

Observe that \(L^M \) is a martingale in discrete time with respect to the filtration \((\mathcal{F}^M_{nh}) \).

Setting
\[
\varepsilon_1^M(t) := \sum_{i=0}^{\lfloor \frac{t}{h} \rfloor} h \cdot b_h(\tilde{\xi}_{ih}^M, \tilde{u}^M(ih)) - \int_0^t b(\tilde{\xi}_s^M, \tilde{u}^M(s)) \, ds, \quad t \geq 0,
\]
the interpolated process \(\tilde{\xi}^M \) can be represented as solution to
\[
\tilde{\xi}^M(t) = \varphi(0) + \int_0^t b(\tilde{\xi}_s^M, \tilde{u}^M(s)) \, ds + L^M(\lfloor \frac{t}{h} \rfloor) + \varepsilon_1^M(t), \quad t \geq 0.
\]

For the error term we have
\[
\mathbb{E}_M(\varepsilon_1^M(t)) \leq \sum_{i=0}^{\lfloor \frac{t}{h} \rfloor} h \mathbb{E}_M\left(|b_h(\tilde{\xi}_{ih}^M, u^M(i)) - b(\tilde{\xi}_{ih}^M, u^M(i))| \right) + K \cdot h
\]
\[
+ \int_0^{\lfloor \frac{t}{h} \rfloor} \mathbb{E}_M\left(|b(\tilde{\xi}_s^M, \tilde{u}^M(s)) - b(\tilde{\xi}_s^M, \tilde{u}^M(s))| \right) \, ds,
\]

11
which tends to zero as $M \to \infty$ uniformly in $t \in [0, T]$ by Assumptions (A2), (A3), dominated convergence and the defining properties of (ξ^M). The discrete-time martingale L^M can be rewritten as discrete stochastic integral. Define $(W^M(n))_{n \in \mathbb{N}_0}$ by $W^M(0) := 0$ and

$$W^M(n) := \sum_{i=0}^{n-1} \frac{1}{\sigma(\xi^M_n)} (L^M(i+1) - L^M(i)), \quad n \in \mathbb{N}.$$

Using the piecewise constant interpolation \tilde{W}^M of W^M, the process $\tilde{\xi}^M$ can be expressed as solution to

$$(11) \quad \tilde{\xi}^M(t) = \varphi(0) + \int_0^t b(\tilde{\xi}^M_s, \tilde{u}^M(s)) \, ds + \int_0^t \sigma(\tilde{\xi}^M_s) \, d\tilde{W}^M(s) + \tilde{\varepsilon}_2^0(t)$$

for $t \geq 0$, where the error terms (ε_2^M) converge to zero as (ε_1^M) before.

We are now prepared for the convergence result, which should be compared to Theorem 10.4.1 in Kushner and Dupuis (2001: p. 290). The proof is similar to that of Proposition 1. We merely point out the main differences.

Proposition 2. Assume (A1)-(A5). For each $M \in \mathbb{N}$, let τ^M be a stopping time with respect to the σ-algebra generated by $(\tilde{\xi}^M(s), \tilde{u}^M(s), \tilde{W}^M(s))$, $s \leq t$. If $(\tilde{\xi}^M_0)$ converges to φ in the uniform topology, then $((\tilde{\xi}^M, R^M, W^M, \tau^M))_{M \in \mathbb{N}}$ is tight. For any limit point (X, R, W, τ) define

$$\mathcal{F}_t := \sigma(X(s), R(s), W(s), \tau 1_{\{\tau \leq t\}}, s \leq t), \quad t \geq 0.$$

Then W is an (\mathcal{F}_t)-adapted Wiener process, τ is an (\mathcal{F}_t)-stopping time, (R, W) is an admissible relaxed control, and X is a solution to (6) under (R, W) with initial condition φ.

Proof. For the first part, the only difference is the proof of tightness for (\tilde{W}^M) and the identification of the limit points. We calculate the order of convergence for the discrete-time previsible quadratic variations of (W^M):

$$\langle W^M \rangle_n = \sum_{i=0}^{n-1} \mathbb{E}((W^M(i+1) - W^M(i))^2 \mid \mathcal{F}^M_{ih}) = nh + o(h) \sum_{i=0}^{n-1} \frac{1}{\sigma^2(\xi^M_n)}$$

for all $M \in \mathbb{N}$, $n \in \mathbb{N}_0$. Taking into account Assumption (A5) and the definition of the time-continuous processes \tilde{W}^M, we see that $\langle \tilde{W}^M \rangle$ tends to $1_{[0, \infty)}$ in probability for $M \to \infty$. By Theorem VIII.3.11 of Jacod and Shiryaev (1987: p. 432) we conclude that (\tilde{W}^M) converges weakly to a standard Wiener process W. That W has independent increments with respect to the filtration (\mathcal{F}_t) can be seen by considering the first and second conditional moments of the increments of W^M for each $M \in \mathbb{N}$ and applying the conditions on local consistency and the jump heights of (ξ^M).

By virtue of Skorohod's theorem, we may again work under P-almost sure convergence. The remaining slightly different part is the identification of X as solution to equation (6)
under \((R, W)\) with initial condition \(\varphi\). Notice that \(X\) is continuous on \([0, \infty)\) because of the condition on the jumps of the \(\xi^M\), cf.
Theorem 3.10.2 in Ethier and Kurtz (1986, p. 148).
Let us define càdlàg processes \(C^M, C\) on \([0, \infty)\) by
\[
C^M(t) := \varphi^M(0) + \int_0^t b(\xi^M_s, \ddot{u}^M(s)) \, ds + \varepsilon^M_2(t), \quad t \geq 0,
\]
\[
C(t) := \varphi(0) + \int_{\Gamma \times [0,t]} b(X_s, \gamma) \, dR(\gamma, s), \quad t \geq 0.
\]
We then infer that \(C^M \to C\) in \(\text{ucp}\) as before. Define operators \(F^M\), mapping càdlàg processes to càdlàg processes, by
\[
F^M(Y)(t) := \sigma \left([-r, 0] \ni s \mapsto \begin{cases} Y(h|\tau_n^M| + s) & \text{if } t \geq -s, \\ \xi^M(h|\tau_n^M| + s) & \text{else} \end{cases} \right), \quad t \geq 0,
\]
and define \(F\) as in the proof of Proposition 1. Denote by \((\tilde{X}(t))_{t \geq -r}\) the unique solution to equation (6) under control \((R, W)\) with initial condition \(\varphi\). Assumption (A4), the uniform convergence of \((\tilde{\xi}^M_0)\) to \(\varphi\) and the right-continuity of \(\varphi\) imply that \(F^M(\tilde{X})\) converges to \(F(\tilde{X})\) in \(\text{ucp}\). Notice that \(\tilde{X}\) is continuous on \([0, \infty)\) as solution to (6). \(\tilde{\xi}^M\) solves
\[
\tilde{\xi}^M(t) = C^M(t) + \int_0^t F^M(\tilde{\xi}^M) (s- \right)d\tilde{W}^M(s), \quad t \geq 0,
\]
where we have taken a continuous martingale interpolation \(\tilde{W}^M\) of \(W^M\) instead of \(\tilde{W}^M\) as integrator in the stochastic integral, which yields an identical result since the integrand is a pure jump process with jump times at \(kh, k \in \mathbb{N}_0\). \((\tilde{W}^M)\) also converges to \(\tilde{W}\) in \(\text{ucp}\), such that by Exercise IV.4.14 in Revuz and Yor (1999) convergence in the semimartingale topology follows. We conclude again by Theorem V.15 in Protter (2003) that \((X^M)\) converges to \(\tilde{X}\) in \(\text{ucp}\) and that \(X\) and \(\tilde{X}\) are indistinguishable.

\[\square\]

5 Convergence of the minimal costs

The objective behind the introduction of sequences of approximating chains was to obtain a device for approximating the value function \(V\) of the original problem. The idea now is to define, for each discretization degree \(M \in \mathbb{N}\), a discrete control problem with cost functional \(J^M\) so that \(J^M\) is an approximation of the cost functional \(J\) of the original problem in the following sense: Given an initial segment \(\varphi \in D_0\) and a sequence of discrete admissible controls \((u^M)\) such that \((\ddot{u}^M)\) weakly converges to \(\ddot{u}\), we have \(J^M(\varphi, u^M) \to J(\varphi, \ddot{u})\) as \(M \to \infty\). Under the assumptions introduced above, it will follow that also the value functions associated with the discrete cost functionals converge to the value function of the original problem.

Fix \(M \in \mathbb{N}\), and let \(h := \frac{\tau_n^M}{M}\). Denote by \(U^M_{ad}\) the set of discrete admissible controls of degree \(M\). Define the cost functional of degree \(M\) by
\[
J^M(\varphi, u) := \mathbb{E}\left(\sum_{n=0}^{N_h-1} \exp(-\beta nh) \cdot k(\xi(n), u(n)) \cdot h + g(\xi(N_h)) \right),
\]

(12)
where \(\phi \in D_0, u \in U_{ad}^M \) is defined on the stochastic basis \((\Omega, \mathcal{F}, (\mathcal{F}_t), P) \) and \((\xi(n)) \) is a discrete chain of degree \(M \) defined according to \(p^M \) and \(u \) with initial condition \(\phi \). The discrete exit time step \(N_h \) is given by

\[
N_h := \min\{n \in \mathbb{N}_0 \mid \xi(n) \notin I_h \} \land \lceil \frac{h}{T} \rceil.
\]

Denote by \(\tilde{\tau}^M := h \cdot N_h \) the exit time for the corresponding interpolated processes. The value function of degree \(M \) is defined as

\[
V^M(\phi) := \inf\{J(\phi, u) \mid u \in U_{ad}^M\}, \quad \phi \in D_0.
\]

We are now in a position to state the result about convergence of the minimal costs. Proposition 3 and Theorem 2 are comparable to Theorems 10.5.1 and 10.5.2 in Kushner and Dupuis (2001: pp. 292-295).

Proposition 3. Assume \((A1)-(A5)\). If the sequence \((\tilde{\xi}^M, \tilde{u}^M, \tilde{W}^M, \tilde{\tau}^M)\) of interpolated processes converges weakly to a limit point \((X, R, W, \tau)\), then \(X\) is a solution to equation (6) under relaxed control \((R, W)\) with initial condition \(\phi\), \(\tau\) is the exit time for \(X\) as given by (2), and we have

\[
J^M(\phi, u^M) \xrightarrow{M \to \infty} \hat{J}(\phi, R).
\]

Proof. The convergence assertion for the costs is a consequence of Proposition 2, the fact that, by virtue of Assumption (A5), the exit time \(\tilde{\tau}\) defined in (10) is Skorohod-continuous, and the definition of \(J^M\) and \(J\) (or \(\hat{J}\)). \(\Box\)

Theorem 2. Assume \((A1)-(A5)\). Then we have \(\lim_{M \to \infty} V^M(\phi) = V(\phi)\) for all \(\phi \in D_0\).

Proof. First notice that \(\liminf_{M \to \infty} V^M(\phi) \geq V(\phi)\) as a consequence of Proposition 2. In order to show \(\limsup_{M \to \infty} V^M(\phi) \leq V(\phi)\) choose a relaxed control \((R, W)\) so that \(\hat{J}(\phi, R) = V(\phi)\) by Proposition 1. Given \(\varepsilon > 0\), one can construct a sequence of discrete admissible controls \((u^M)\) such that \((\tilde{\xi}^M, \tilde{u}^M, \tilde{W}^M, \tilde{\tau}^M)\) is weakly convergent, where \((\xi^M), (\tilde{W}^M), (\tilde{\tau}^M)\) are constructed as above, and \(\limsup_{M \to \infty} |J^M(\phi, u^M) - \hat{J}(\phi, R)| \leq \varepsilon\). The existence of such a sequence of discrete admissible controls is guaranteed, cf. the discussion at the end of Section 3. By definition, \(V^M(\phi) \leq J^M(\phi, u^M)\) for each \(M \in \mathbb{N}\). Using Proposition 3 we find that

\[
\limsup_{M \to \infty} V^M(\phi) \leq \limsup_{M \to \infty} J^M(\phi, u^M) \leq V(\phi) + \varepsilon,
\]

and since \(\varepsilon\) was arbitrary, the assertion follows. \(\Box\)
References

SFB 649 Discussion Paper Series

For a complete list of Discussion Papers published by the SFB 649, please visit http://sfb649.wiwi.hu-berlin.de.

001 "Nonparametric Risk Management with Generalized Hyperbolic Distributions" by Ying Chen, Wolfgang Härdle and Seok-Oh Jeong, January 2005.
003 "Competitive Risk Sharing Contracts with One-sided Commitment" by Dirk Krueger and Harald Uhlig, February 2005.
004 "Value-at-Risk Calculations with Time Varying Copulae" by Enzo Giacomini and Wolfgang Härdle, February 2005.
005 "An Optimal Stopping Problem in a Diffusion-type Model with Delay" by Pavel V. Gapeev and Markus Reiß, February 2005.
007 "Implied Trinomial Trees" by Pavel Čížek and Karel Komorád, February 2005.
008 "Stable Distributions" by Szymon Borak, Wolfgang Härdle and Rafał Weron, February 2005.
009 "Predicting Bankruptcy with Support Vector Machines" by Wolfgang Härdle, Rouslan A. Moro and Dorothea Schäfer, February 2005.
010 "Working with the XQC" by Wolfgang Härdle and Heiko Lehmann, February 2005.
011 "FFT Based Option Pricing" by Szymon Borak, Kai Detlefsen and Wolfgang Härdle, February 2005.
012 "Common Functional Implied Volatility Analysis" by Michal Benko and Wolfgang Härdle, February 2005.
013 "Nonparametric Productivity Analysis" by Wolfgang Härdle and Seok-Oh Jeong, March 2005.
015 "Robust Estimation of Dimension Reduction Space" by Pavel Čížek and Wolfgang Härdle, March 2005.
017 "A Two State Model for Noise-induced Resonance in Bistable Systems with Delay" by Markus Fischer and Peter Imkeller, March 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 "Economic Risk".

"Dynamics of State Price Densities" by Wolfgang Härdle and Zdeněk Hlávka, March 2005.

"DSFM fitting of Implied Volatility Surfaces" by Szymon Borak, Matthias R. Fengler and Wolfgang Härdle, March 2005.

"Towards a Monthly Business Cycle Chronology for the Euro Area" by Emanuel Mönch and Harald Uhlig, April 2005.

"Duality Theory for Optimal Investments under Model Uncertainty" by Alexander Schied and Ching-Tang Wu, April 2005.

"Projection Pursuit For Exploratory Supervised Classification" by Eun-Kyung Lee, Dianne Cook, Sigbert Klinke and Thomas Lumley, May 2005.

"Notes on an Endogenous Growth Model with two Capital Stocks II: The Stochastic Case" by Dirk Bethmann, June 2005.

"Skill Mismatch in Equilibrium Unemployment" by Ronald Bachmann, June 2005.
035 "Uncovered Interest Rate Parity and the Expectations Hypothesis of the Term Structure: Empirical Results for the U.S. and Europe" by Ralf Brüggemann and Helmut Lütkepohl, April 2005.

038 "Discretisation of Stochastic Control Problems for Continuous Time Dynamics with Delay" by Markus Fischer and Markus Reiss, August 2005.