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Disretisation of stohasti ontrol problems for ontinuoustime dynamis with delay∗Markus FisherWeierstraÿ-Institut für AngewandteAnalysis und Stohastik (WIAS)Mohrenstr. 3910117 BerlinGermany
Markus ReiÿWeierstraÿ-Institut für AngewandteAnalysis und Stohastik (WIAS)Mohrenstr. 3910117 BerlinGermanyAugust 2, 2005AbstratAs a main step in the numerial solution of ontrol problems in ontinuous time,the ontrolled proess is approximated by sequenes of ontrolled Markov hains, thusdisretizing time and spae. A new feature in this ontext is to allow for delay in thedynamis. The existene of an optimal strategy with respet to the ost funtionalan be guaranteed in the lass of relaxed ontrols. Weak onvergene of the approxi-mating extended Markov hains to the original proess together with onvergene ofthe assoiated optimal strategies is established.1 IntrodutionA general strategy for rendering ontrol problems in ontinuous time aessible to numerialomputation is the following: Taking as a starting point the original dynamis, onstruta family of ontrol problems in disrete time with disrete state spae and disretized ostfuntional. Standard numerial shemes an be applied to �nd an optimal ontrol and toalulate the minimal osts for eah of the disrete ontrol problems. The important pointto establish is then whether the disrete optimal ontrols and minimal osts onverge tothe ontinuous-time limit as the mesh size of the disretisation tends to zero. If that is thease, then the disrete ontrol problems are a valid approximation to the original problem.The dynamis of the ontrol problem we are interested in are desribed by a stohastidelay di�erential equation (SDDE). Thus, the future evolution of the dynamis may dependnot only on the present state, but also on the past evolution. For an exposition of thegeneral theory of SDDEs see Mohammed (1984) or Mao (1997). The development of
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numerial methods for SDDEs has attrated muh attention reently, see Bukwar (2000),Hu et al. (2004) and the referenes therein. In Calzolari et al. (2003), segmentwise Eulershemes are used in a non-linear �ltering problem for approximating the state proess,whih is given by an SDDE. Numerial proedures for deterministi ontrol with delayeddynamis have already been used in appliations, see Bouekkine et al. (2005) for theanalysis of an eonomi growth model. The algorithm proposed there is based on thedisretisation method studied here, but no formal proof of onvergene is given.Also the mathematial analysis of stohasti ontrol problems with time delay in thestate equation has been the objet of reent works, see e.g. Elsanosi et al. (2000) forertain expliitly available solutions, Øksendal and Sulem (2001) for the derivation of amaximum priniple and Larssen (2002) for the dynami programming approah. Althoughone an invoke the dynami programming priniple to derive a Hamilton-Jaobi-Bellmanequation for the value funtion, suh an equation will in general be a non-linear di�erentialequation with in�nite-dimensional state spae. A di�erent approah to treat stohastiontrol problems with delay is based on representing the state equation as an evolutionequation in Hilbert spae, see Bensoussan et al. (1992).The lass of ontrol problems is spei�ed in Setion 2. In Setion 3 we prove theexistene of optimal strategies for those problems in the lass of relaxed ontrols. Setion 4introdues the approximating proesses and provides a tightness result. Finally, in Setion 5the disrete ontrol problems are de�ned and the onvergene of the minimal osts andoptimal strategies is shown.2 The ontrol problemWe onsider the ontrol of a dynamial system given by a one-dimensional stohastidelay di�erential equation (SDDE) driven by a Wiener proess. Both drift and di�usionoe�ient may depend on the solution's history a ertain amount of time into the past.Let r > 0 denote the delay length, i. e. the maximal length of dependene on the past.For simpliity, we restrit attention to the ase, where only the drift term an be diretlyontrolled.Typially, the solution proess of an SDDE does not enjoy the Markov property, whilethe segment proess assoiated with that solution does. For a real-valued àdlàg funtion(i.e., right-ontinuous funtion with left-hand limits) ψ living on the time interval [−r,∞)the segment at time t ∈ [0,∞) is de�ned to be the funtion
ψt : [−r, 0] → R, ψt(s) := ψ(t+s).Thus, the segment proess (Xt)t≥0 assoiated with a real-valued àdlàg proess (X(t))t≥−rtakes its values in D0 := D([−r, 0]), the spae of all real-valued àdlàg funtions on theinterval [−r, 0]. There are two natural topologies on D0. The �rst is the one indued bythe supremum norm, whih we denote by ‖.‖∞. The seond is the Skorohod topology of2



àdlàg onvergene (e. g. Billingsley, 1999). The main di�erene between the Skorohodand the uniform topology lies in the di�erent evaluation of onvergene of funtions withjumps, whih appear naturally as initial segments and disretized proesses. For ontinuousfuntions both topologies oinide. Similar statements hold for D∞ := D([−r,∞)) and
D̃∞ := D([0,∞)), the spaes of all real-valued àdlàg funtions on the intervals [−r,∞)and [0,∞), respetively. The spaes D∞ and D̃∞ will always be supposed to arry theSkorohod topology, while D0 will anonially be equipped with the uniform topology.Let (Γ, dΓ) be a ompat metri spae, the spae of ontrol ations. Denote by bthe drift oe�ient of the ontrolled dynamis, and by σ the di�usion oe�ient. Let
(W (t))t≥0 be a one-dimensional standard Wiener proess on a �ltered probability spae
(Ω,F , (Ft)t≥0,P) satisfying the usual onditions, and let (u(t))t≥0 be a ontrol proess, i. e.an (Ft)-adapted measurable proess with values in Γ. Consider the ontrolled SDDE(1) dX(t) = b

(

Xt, u(t)
)

dt + σ(Xt) dW (t), t ≥ 0.The ontrol proess u(.) together with its stohasti basis inluding the Wiener proess isalled an admissible ontrol if, for every deterministi initial ondition ϕ ∈ D0, equation(1) has a unique solution whih is also weakly unique. Write Uad for the set of admissibleontrols of equation (1). The stohasti basis oming with an admissible ontrol will oftenbe omitted in the notation.A solution in the sense used here is an adapted àdlàg proess de�ned on the stohastibasis of the ontrol proess suh that the integral version of equation (1) is satis�ed. Givena ontrol proess together with a standard Wiener proess, a solution to equation (1) isunique if it is indistinguishable from any other solution almost surely satisfying the sameinitial ondition. A solution is weakly unique if it has the same law as any other solutionwith the same initial distribution and satisfying equation (1) for a ontrol proess ona possibly di�erent stohasti basis so that the joint distribution of ontrol and drivingWiener proess is the same for both solutions. Let us speify regularity assumptions to beimposed on the oe�ients b and σ:(A1) Càdlàg funtionals: the mappings
(ψ, γ) 7→

[

t 7→ b(ψt, γ), t ≥ 0
]

, ψ 7→
[

t 7→ σ(ψt), t ≥ 0
]de�ne measurable funtionals D∞ × Γ → D̃∞ and D∞ → D̃∞, respetively, where

D∞, D̃∞ are equipped with the Borel σ-algebras.(A2) Continuity of the drift oe�ient: there is a ountable subset of [−r, 0], denoted by
Iev, suh that for every t ≥ 0 the funtion de�ned by

D∞ × Γ ∋ (ψ, γ) 7→ b(ψt, γ)is ontinuous on Dev(t) × Γ uniformly in γ ∈ Γ, where
Dev(t) := {ψ ∈ D∞ | ψ is ontinuous at t+ s for all s ∈ Iev}.3



(A3) Global boundedness: |b|, |σ| are bounded by a onstant K > 0.(A4) Uniform Lipshitz ondition: There is a onstant KL > 0 suh that for all ϕ,ψ ∈ D0,all γ ∈ Γ

|b(ϕ, γ) − b(ψ, γ)| + |σ(ϕ) − σ(ψ)| ≤ KL ‖ϕ− ψ‖∞.(A5) Elliptiity of the di�usion oe�ient: σ(ϕ) ≥ σ0 for all ϕ ∈ D0, where σ0 > 0 is apositive onstant.Assumptions (A1) and (A4) on the oe�ients allow us to invoke Theorem V.7 in Protter(2003: p.253), whih guarantees the existene of a unique solution to the ontrolled SDDE(1) for every pieewise onstant ontrol attaining only �nitely many di�erent values. Theboundedness Assumption (A3) poses no limitation exept for the initial onditions, beausethe state evolution will be stopped when the state proess leaves a bounded interval.Assumption (A2) allows us to use �segmentwise approximations� of the solution proess,see the proof of Proposition 1. The assumptions imposed on the drift oe�ient b aresatis�ed, for example, by
b(ϕ, γ) := f

(

ϕ(r1), . . . , ϕ(rn),

∫ 0

−r

ϕ(s)w(s) ds
)

· g(γ),where r1, . . . , rn ∈ [−r, 0] are �xed, f , g are bounded ontinuous funtions and f is Lips-hitz, and the weight funtion w lies in L1([−r, 0]).We onsider ontrol problems in the weak formulation (f. Yong and Zhou, 1999: p. 64).Given an admissible ontrol u(.) and a deterministi initial segment ϕ ∈ D0, denote by
Xϕ,u the unique solution to equation (1). Let I be a ompat interval with non-emptyinterior. De�ne the stopping time τ T̄

ϕ,u of �rst exit from the interior of I before time T̄ > 0by(2) τ T̄
ϕ,u := inf{t ≥ 0 | Xϕ,u(t) /∈ int(I)} ∧ T̄ .In order to de�ne the osts, we presribe a ost rate k : R × Γ → [0,∞) and a boundaryost g : R → [0,∞), whih are (jointly) ontinuous bounded funtions. Let β ≥ 0 denotethe exponential disount rate. Then de�ne the ost funtional on D0 × Uad by(3) J(ϕ, u) := E

(∫ τ

0
exp(−βs) · k

(

Xϕ,u(s), u(s)
)

ds + g
(

Xϕ,u(τ)
)

)

,where τ = τ T̄
ϕ,u. Our aim is to minimize J(ϕ, .). We introdue the value funtion(4) V (ϕ) := inf{J(ϕ, u) | u ∈ Uad}, ϕ ∈ D0.The ontrol problem now onsists in alulating the funtion V and �nding admissibleontrols that minimize J . Suh ontrol proesses are alled optimal ontrols or optimalstrategies. 4



3 Existene of optimal strategiesIn the lass Uad of admissible ontrols it may happen that there is no optimal ontrol(Kushner and Dupuis, 2001: p. 86). A way out is to enlarge the lass of ontrols, allowingfor so-alled relaxed ontrols, so that the existene of an optimal (relaxed) ontrol is guar-anteed, while the in�mum of the osts over the new lass oinides with the value funtion
V as given by (4).A deterministi relaxed ontrol is a positive measure ρ on the Borel σ-algebra B(Γ ×
[0,∞)) suh that(5) ρ(Γ × [0, t]) = t for all t ≥ 0.For eah G ∈ B(Γ), the funtion t 7→ ρ(G × [0, t]) is absolutely ontinuous with respetto Lebesgue measure on [0,∞) by virtue of property (5). Denote by ρ̇(., G) any Lebesguedensity of ρ(G× [0, .]). The family of densities ρ̇(., G), G ∈ B(Γ), an be hosen in a Borelmeasurable way suh that ρ̇(t, .) is a probability measure on B(Γ) for eah t ≥ 0, and

ρ(B) =

∫ ∞

0

∫

Γ
1{(γ,t)∈B} ρ̇(t, dγ) dt for all B ∈ B(Γ × [0,∞)).Denote by R the spae of deterministi relaxed ontrols whih is equipped with the weak-ompat topology indued by the following notion of onvergene: a sequene (ρn)n∈N ofrelaxed ontrols onverges to ρ ∈ R if

∫

Γ×[0,∞)

g(γ, t) dρn(γ, t)
n→∞−→

∫

Γ×[0,∞)

g(γ, t) dρ(γ, t) for all g ∈ Cc(Γ × [0,∞)),where Cc(Γ×[0,∞)) is the spae of all real-valued ontinuous funtions on Γ×[0,∞) havingompat support. Under the weak-ompat topology, R is a (sequentially) ompat spae.Suppose (ρn)n∈N is a onvergent sequene in R with limit ρ. Given T > 0, let ρn|Tdenote the restrition of ρn to the Borel σ-algebra on Γ × [0, T ], and denote by ρ|T therestrition of ρ to B(Γ × [0, T ]). Then ρn|T , n ∈ N, ρ|T are all �nite measures, and (ρn|T )onverges weakly to ρ|T .A relaxed ontrol proess is an R-valued random variable R suh that the mapping
ω 7→ R(G × [0, t])(ω) is Ft-measurable for all t ≥ 0, G ∈ B(Γ). For a relaxed ontrolproess R equation (1) takes on the form(6) dX(t) =

(

∫

Γ
b(Xt, γ) Ṙ(t, dγ)

)

dt + σ(Xt) dW (t), t ≥ 0,where (Ṙ(t, .))t≥0 is the family of derivative measures assoiated with R. The family
(Ṙ(t, .)) an be onstruted in a measurable way (f. Kushner, 1990: p. 52). A relaxedontrol proess together with its stohasti basis inluding the Wiener proess is alledadmissible relaxed ontrol if, for every deterministi initial ondition, equation (6) has5



a unique solution whih is also weakly unique. Any ordinary ontrol proess u an berepresented as a relaxed ontrol proess by setting
R(B) :=

∫ ∞

0

∫

Γ
1{(γ,t)∈B} δu(t)(dγ) dt, B ∈ B(Γ × [0,∞)),where δγ is the Dira measure at γ ∈ Γ.Denote by Ûad the set of all admissible relaxed ontrols. Instead of (3) we de�ne a ostfuntional on D0 × Ûad by(7) Ĵ(ϕ,R) := E

(∫ τ

0

∫

Γ
exp(−βs) · k

(

Xϕ,R(s), γ
)

Ṙ(s, dγ) ds + g
(

Xϕ,R(τ)
)

)

,where Xϕ,R is the solution to equation (6) with initial segment ϕ and τ is de�ned inanalogy to (2). Instead of (4) as value funtion we have(8) V̂ (ϕ) := inf{Ĵ(ϕ,R) | R ∈ Ûad}, ϕ ∈ D0.The ost funtional Ĵ depends only on the joint distribution of the solution Xϕ,R and theunderlying ontrol proess R, sine τ , the time horizon, is a deterministi funtion of thesolution. The distribution of Xϕ,R, in turn, is determined by the initial ondition ϕ andthe joint distribution of the ontrol proess and its aompanying Wiener proess. Lettingthe time horizon vary, we may regard Ĵ as a funtion of the law of (X,R,W, τ), that is, tobe de�ned on a subset of the set of probability measures on B(D∞ × R × D̃∞ × [0,∞]).The domain of de�nition of Ĵ is determined by the lass of admissible relaxed ontrols forequation (6), the de�nition of the time horizon and the distributions of the initial segments
X0.The idea in proving existene of an optimal strategy is to hek that Ĵ(ϕ, .) is a (se-quentially) lower semi-ontinuous funtion de�ned on a (sequentially) ompat set. It thenfollows from a theorem by Weierstraÿ (f. Yong and Zhou, 1999: p. 65) that Ĵ(ϕ, .) attainsits minimum at some point of its ompat domain. The following proposition gives theanalogue of Theorem 10.1.1 in Kushner and Dupuis (2001: pp. 271-275) for our setting. Wepresent the proof in detail, beause the identi�ation of the limit proess is di�erent fromthe lassial ase.Proposition 1. Assume (A1) � (A4). Let ((Rn,Wn))n∈N be any sequene of admissible re-laxed ontrols for equation (6), de�ned on a �ltered probability spae (Ωn,Fn, (Fn

t )t≥0,Pn).Let Xn be a solution to equation (6) under ontrol (Rn,Wn) with deterministi initial on-dition ϕn ∈ D0, and assume that (ϕn) tends to ϕ uniformly for some ϕ ∈ D0. For eah
n ∈ N, let τn be an (Fn

t )-stopping time. Then ((Xn, Rn,Wn, τn))n∈N is tight.Denote by (X,R,W, τ) a limit point of the sequene ((Xn, Rn,Wn, τ))n∈N. De�nea �ltration by Ft := σ(X(s), R(s),W (s), τ1{τ≤t}, s ≤ t), t ≥ 0. Then W (.) is an (Ft)-adapted Wiener proess, τ is an (Ft)-stopping time, (R,W ) is an admissible relaxed ontrol,and X is a solution to (6) under (R,W ) with initial ondition ϕ.6



Proof. Tightness of (Xn) follows from the Aldous riterion (f. Billingsley, 1999: pp. 176-179): given n ∈ N, any bounded (Fn
t )-stopping time ν and δ > 0 we have

En

(∣

∣Xn(ν + δ) −Xn(ν)
∣

∣

2 ∣
∣ Fν

)

≤ 2K2δ(δ + 1)as a onsequene of Assumption (A3) and the It� isometry. Notie that we have Xn(0) →
X(0) as n→ ∞ by hypothesis. The sequenes (Rn) and (τn) are tight, beause the valuespaes R and [0,∞], respetively, are ompat. The sequene (Wn) is tight, sine all
Wn indue the same measure. Finally, omponentwise tightness implies tightness of theprodut (f. Billingsley, 1999: p. 65).By abuse of notation, we do not distinguish between the onvergent subsequene and theoriginal sequene and we assume that ((Xn, Rn,Wn, τn)) onverges weakly to (X,R,W, τ).The random time τ is an (Ft)-stopping time by onstrution of the �ltration. Likewise,
R is (Ft)-adapted by onstrution, and it is indeed a relaxed ontrol proess, beause
R(t,Γ) = t, t ≥ 0, P-almost surely by weak onvergene of the relaxed ontrol proesses
(Rn) to R. The proess W has Wiener distribution and ontinuous paths with probabilityone, being the limit of standard Wiener proesses. To hek that W is an (Ft)-Wienerproess, we use the martingale problem haraterization of Brownian motion. To this end,for g ∈ Cc(Γ × [0,∞)), ρ ∈ R de�ne the pairing

(g, ρ)(t) :=

∫

Γ×[0,t]
g(γ, s) dρ(γ, s), t ≥ 0.Notie that real-valued ontinuous funtions on R an be approximated by funtions ofthe form

R ∋ ρ 7→ H̃
(

(gj , ρ)(ti), (i, j) ∈ Np × Nq

)

∈ R,where p, q are natural numbers, {ti | i ∈ Np} ⊂ [0,∞), and H̃, gj , j ∈ Nq, are suitableontinuous funtions with ompat support and NN := {1, . . . , N} for any N ∈ N. Let
t ≥ 0, t1, . . . , tp ∈ [0, t], h ≥ 0, g1, . . . , gq be funtions in Cc(Γ × [0,∞)), and H be aontinuous funtion of 2p + p ·q + 1 arguments with ompat support. Sine Wn is an
(Fn

t )-Wiener proess for eah n ∈ N, we have for all f ∈ C
2
c(R)

En

(

H
(

Xn(ti), (gj , R
n)(ti),W

n(ti), τ
n
1{τn≤t}, (i, j) ∈ Np × Nq

)

·
(

f
(

Wn(t+ h)
)

− f
(

Wn(t)
)

− 1

2

t+h
∫

t

∂2f

∂x2

(

Wn(s)
)

ds
))

= 0.By the weak onvergene of ((Xn, Rn,Wn, τn))n∈N to (X,W,R, τ) we see that
E

(

H
(

X(ti), (gj , R)(ti),W (ti), τ1{τ≤t}, (i, j) ∈ Np × Nq

)

·
(

f
(

W (t+ h)
)

− f
(

W (t)
)

− 1

2

t+h
∫

t

∂2f

∂x2

(

W (s)
)

ds
))

= 0
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for all f ∈ C
2
c(R). As H, p, q, ti, gj vary over all possibilities, the orresponding randomvariables H(X(ti), (gj , R)(ti),W (ti), τ1{τ≤t}, (i, j) ∈ Np × Nq) indue the σ-algebra Ft.Sine t ≥ 0, h ≥ 0 were arbitrary, it follows that

f
(

W (t)
)

− f
(

W (0)
)

− 1

2

t
∫

0

∂2f

∂x2

(

W (s)
)

ds, t ≥ 0,is an (Ft)-martingale for every f ∈ C
2
c(R). Consequently, W is an (Ft)-Wiener proess.It remains to show that X solves equation (6) under ontrol (R,W ) with initial ondi-tion ϕ. Notie that X has ontinuous paths on [0,∞) P-almost surely, beause the proess

(X(t))t≥0 is the weak limit in D̃∞ of ontinuous proesses. Fix T > 0. We have to hekthat P-almost surely
X(t) = ϕ(0) +

∫ t

0

∫

Γ
b(Xs, γ) Ṙ(s, dγ) ds+

∫ t

0
σ(Xs) dW (s) for all t ∈ [0, T ].By virtue of the Skorohod representation theorem (f. Billingsley, 1999: p. 70) we mayassume that the proesses (Xn, Rn,Wn), n ∈ N, are all de�ned on the same probabilityspae (Ω,F ,P) as (X,R,W ) and that onvergene of ((Xn, Rn,Wn)) to (X,R,W ) is P -almost sure. Sine X, W have ontinuous paths on [0, T ] and (ϕn) onverges to ϕ in theuniform topology, one �nds Ω̃ ∈ F with P(Ω̃) = 1 suh that for all ω ∈ Ω̃

sup
t∈[−r,T ]

∣

∣Xn(t)(ω) −X(t)(ω)
∣

∣

n→∞−→ 0, sup
t∈[−r,T ]

∣

∣Wn(t)(ω) −W (t)(ω)
∣

∣

n→∞−→ 0,and also Rn(ω) → R(ω) in R. Let ω ∈ Ω̃. We �rst show that
∫ t

0

∫

Γ
b
(

Xn
s (ω), γ

)

Ṙn(s, dγ)(ω) ds
n→∞→

∫ t

0

∫

Γ
b
(

Xs(ω), γ
)

Ṙ(s, dγ)(ω) dsuniformly in t ∈ [0, T ]. As a onsequene of Assumption (A4), the uniform onvergene ofthe trajetories on [−r, T ] and property (5) of the relaxed ontrols, we have
∫

Γ×[0,T ]

∣

∣b
(

Xn
s (ω), γ

)

− b
(

Xs(ω), γ
)∣

∣ dRn(γ, s)(ω)
n→∞→ 0.By Assumption (A2), we �nd a ountable set Aω ⊂ [0, T ] suh that the mapping (γ, s) 7→

b(Xs(ω), γ) is ontinuous in all (γ, s) ∈ Γ × ([0, T ] \ Aω). Sine Aω is ountable we have
R(ω)(Γ×Aω) = 0. Hene, by the generalized mapping theorem (f. Billingsley, 1999: p. 21),we obtain

∫

Γ×[0,t]
b
(

Xs(ω), γ
)

dRn(γ, s)(ω)
n→∞→

∫

Γ×[0,t]
b
(

Xs(ω), γ
)

dR(γ, s)(ω).The onvergene is again uniform in t ∈ [0, T ], as b is bounded and Rn, n ∈ N, R are allpositive measures with mass T on Γ × [0, T ].8



Denote by (X̂(t))t≥−r the unique solution to equation (6) under ontrol (R,W ) withinitial ondition ϕ. If we an show that(9) sup
t∈[0,T ]

∣

∣Xn(t) − X̂(t)
∣

∣

n→∞−→ 0 in probability P,then X will be indistinguishable from X̂ on [−r, T ] and will solve (6) as well. Let us de�neàdlàg proesses Cn, n ∈ N, on [0,∞) by
Cn(t) := ϕn(0) +

∫

Γ×[0,t]
b(Xn

s , γ) dR
n(γ, s), t ≥ 0,and de�ne C in analogy to Cn. We already know that Cn(t) → C(t) holds uniformly over

t ∈ [0, T ] for any T > 0 with probability one. De�ne operators Fn, n ∈ N, mapping àdlàgproesses to àdlàg proesses by
Fn(Y )(t)(ω) := σ



[−r, 0] ∋ s 7→







Y (t+s)(ω) if t ≥ −s,
ϕn(t+s) else 

 , t ≥ 0, ω ∈ Ω,and de�ne F in the same way as Fn. Assumption (A4) and the uniform onvergene of
(ϕn) to ϕ imply that Fn(X̂) onverges to F (X̂) uniformly on ompats in probability(onvergene in up). Observing that Xn solves

Xn(t) = Cn(t) +

∫ t

0
Fn(Xn)(s−) dWn(s), t ≥ 0,and analogously for X̂, Theorem V.15 in Protter (2003: p. 265) asserts that (Xn) onvergesto X̂ in up and (9) follows.If the time horizon were deterministi, then the existene of optimal strategies in thelass of relaxed ontrols would be lear. Given an initial ondition ϕ ∈ D0, one would seleta sequene ((Rn,Wn))n∈N suh that (J(ϕ,Rn)) onverges to its in�mum. By Proposition 1,a suitable subsequene of ((Rn,Wn)) and the assoiated solution proesses would onvergeweakly to (R,W ) and the assoiated solution to equation (6). Taking into aount (7), thede�nition of the osts, this in turn would imply that J(ϕ, .) attains its minimum value at

R or, more preisely, (X,R,W ).A similar argument is still valid, if the time horizon depends ontinuously on the pathswith probability one under every possible solution. That is to say, the mapping
τ̂ : D∞ → [0,∞], τ̂(ψ) := inf{t ≥ 0 | ψ(t) /∈ int(I)} ∧ T̄(10)is Skorohod ontinuous with probability one under the measure indued by any solution

Xϕ,R, R any relaxed ontrol. This is indeed the ase if the di�usion oe�ient σ is boundedaway from zero as required by Assumption (A5).By introduing relaxed ontrols, we have enlarged the lass of possible strategies. Thein�mum of the osts, however, remains the same for the new lass. This is a onsequene of9



the fat that stohasti relaxed ontrols an be arbitrarily well approximated by pieewiseonstant ordinary stohasti ontrols whih attain only a �nite number of di�erent ontrolvalues. A proof of this assertion is given in Kushner (1990: pp. 59-60) in ase the timehorizon is �nite, and extended to the ase of ontrol up to an exit time in Kushner andDupuis (2001: pp. 282-286). Notie that nothing hinges on the presene or absene of delayin the ontrolled dynamis. Let us summarize our �ndings.Theorem 1. Assume (A1) � (A5). Given any deterministi initial ondition ϕ ∈ D0, therelaxed ontrol problem determined by (6) and (7) possesses an optimal strategy, and theminimal osts are the same as for the original ontrol problem as de�ned by (1) and (3).4 Approximating hainsIn order to onstrut �nite-dimensional approximations to our ontrol problem, we dis-retize time and state spae. Denote by h > 0 the mesh size of an equidistant timedisretization starting at zero. Let Sh :=
√
hZ be the orresponding state spae, andset Ih := I ∩ Sh. Notie that Sh is ountable and Ih is �nite. Let Λh : R → Sh be around-o� funtion. We will simplify things even further by onsidering only mesh sizes

h = r
M

for some M ∈ N, where r is the delay length. The number M will be referred toas disretization degree.The admissible ontrols for the �nite-dimensional ontrol problems orrespond to piee-wise onstant proesses in ontinuous time. A time-disrete proess u = (u(n))n∈N0
on

(Ω,F ,P) with values in Γ is a disrete admissible ontrol of degree M if u takes on only�nitely many di�erent values in Γ and u(n) is Fnh-measurable for all n ∈ N0. Denote by
(ũ(t))t≥0 the pieewise onstant àdlàg interpolation to u.We all a time-disrete proess (ξ(n))n∈{−M,...,0}∪N on (Ω,F ,P) a disrete hain of de-gree M if (ξ(n)) takes its values in Sh and ξ(n) is Fnh-measurable for all n ∈ N0. In analogyto ũ, write (ξ̃(t))t≥−r for the àdlàg interpolation to the disrete hain (ξ(n))n∈{−M,...,0}∪N .We denote by ξ̃t the D0-valued segment of ξ̃(.) at time t ≥ 0.Let ϕ ∈ D0 be a deterministi initial ondition, and suppose we are given a sequene ofdisrete admissible ontrols (uM )M∈N , that is uM is a disrete admissible ontrol of degree
M on a stohasti basis (ΩM ,FM , (FM

t ),PM ) for eah M ∈ N. In addition, supposethat the sequene (ũM ) of interpolated disrete ontrols onverges weakly to some relaxedontrol R. We are then looking for a sequene approximating the solution X of equation(1) under ontrol (R,W ) with initial ondition ϕ, where the Wiener proess W has to beonstruted from the approximating sequene.Given M -step or extended Markov transition funtions pM : SM+1
h × Γ × Sh → [0, 1],

M ∈ N, we de�ne a sequene of approximating hains assoiated with ϕ and (uM ) as afamily (ξM )M∈N of proesses suh that ξM is a disrete hain of degree M de�ned on thesame stohasti basis as uM , provided the following onditions are ful�lled for h = hM := r
Mtending to zero: 10



(i) Initial ondition: ξM (n) = Λh(ϕ(nh)) for all n ∈ {−M, . . . , 0}.(ii) Extended Markov property: for all n ∈ N0, all x ∈ Sh

PM

(

ξM (n+1) = x
∣

∣ FM
nh

)

= pM
(

ξM (n−M), . . . , ξM (n), uM (n), x
)

.(iii) Loal onsisteny with the drift oe�ient:
µξM (n) := EM

(

ξM (n+1) − ξM (n)
∣

∣ FM
nh

)

= h · b
(

ξ̃M
nh, u

M (n)
)

+ o(h) =: h · bh
(

ξ̃M
nh, u

M (n)
)

.(iv) Loal onsisteny with the di�usion oe�ient:
EM

((

ξM (n+1) − ξM (n) − µξM (n)
)2∣
∣ FM

nh

)

= h · σ2(ξ̃M
nh) + o(h) =: h · σ2

h(ξ̃M
nh).(v) Jump heights: there is a positive number N̄ , independent of M , suh that

sup
n

|ξM (n+ 1) − ξM (n)| ≤ N̄
√

hM .It is straightforward, under Assumptions (A3) and (A5), to onstrut a sequene of ex-tended transition funtions suh that the jump height and the loal onsisteny onditionsare ful�lled.We will represent the interpolation ξ̃M as a solution to an equation orresponding toequation (1) with ontrol proess ũM and initial ondition ϕ. De�ne the disrete proess
(LM (n))n∈N0

by LM (0) := 0 and
ξM (n) = ϕ(0) +

n−1
∑

i=0

h · bh
(

ξ̃M
ih , u

M (i)
)

+ LM (n), n ∈ N.Observe that LM is a martingale in disrete time with respet to the �ltration (FM
nh).Setting

εM1 (t) :=

⌊ t

h
⌋−1
∑

i=0

h · bh
(

ξ̃M
ih , ũ

M (ih)
)

−
∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds, t ≥ 0,the interpolated proess ξ̃M an be represented as solution to
ξ̃M (t) = ϕ(0) +

∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds + LM (⌊ t
h
⌋) + εM1 (t), t ≥ 0.For the error term we have

EM

(

|εM1 (t)|
)

≤
⌊ t

h
⌋−1
∑

i=0

hEM

(

∣

∣bh
(

ξ̃M
ih , u

M (i)
)

− b
(

ξ̃M
ih , u

M (i)
)∣

∣

)

+ K · h

+

∫ h⌊ t

h
⌋

0
EM

(

∣

∣b
(

ξ̃M
h⌊ s

h
⌋, ũ

M (s)
)

− b
(

ξ̃M
s , ũM (s)

)∣

∣

)

ds,
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whih tends to zero as M → ∞ uniformly in t ∈ [0, T ] by Assumptions (A2), (A3),dominated onvergene and the de�ning properties of (ξM ). The disrete-time martingale
LM an be rewritten as disrete stohasti integral. De�ne (WM (n))n∈N0

by WM (0) := 0and
WM (n) :=

n−1
∑

i=0

1

σ(ξ̃M
ih )

(

LM (i+1) − LM (i)
)

, n ∈ N.Using the pieewise onstant interpolation W̃M of WM , the proess ξ̃M an be expressedas solution to(11) ξ̃M (t) = ϕ(0) +

∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds+

∫ t

0
σ(ξ̃M

h⌊ s−

h
⌋
) dW̃M (s) + εM2 (t)for t ≥ 0, where the error terms (εM2 ) onverge to zero as (εM1 ) before.We are now prepared for the onvergene result, whih should be ompared to Theorem10.4.1 in Kushner and Dupuis (2001: p. 290). The proof is similar to that of Proposition 1.We merely point out the main di�erenes.Proposition 2. Assume (A1) � (A5). For eah M ∈ N, let τM be a stopping time withrespet to the σ-algebra generated by (ξ̃M (s), ũM (s), W̃M (s)), s ≤ t. If (ξ̃M

0 ) onvergesto ϕ in the uniform topology, then ((ξ̃M , RM , W̃M , τM ))M∈N is tight. For any limit point
(X,R,W, τ) de�ne

Ft := σ
(

X(s), R(s),W (s), τ1{τ≤t}, s ≤ t
)

, t ≥ 0.Then W is an (Ft)-adapted Wiener proess, τ is an (Ft)-stopping time, (R,W ) is anadmissible relaxed ontrol, and X is a solution to (6) under (R,W ) with initial ondition
ϕ.Proof. For the �rst part, the only di�erene is the proof of tightness for (W̃M ) and theidenti�ation of the limit points. We alulate the order of onvergene for the disrete-timeprevisible quadrati variations of (WM ):

〈WM 〉n =
n−1
∑

i=0

E
(

(WM (i+1) −WM (i))2
∣

∣ FM
ih

)

= nh + o(h)
n−1
∑

i=0

1

σ2(ξ̃M
ih )for all M ∈ N, n ∈ N0. Taking into aount Assumption (A5) and the de�nition ofthe time-ontinuous proesses W̃M , we see that 〈W̃M 〉 tends to Id[0,∞) in probabilityfor M → ∞. By Theorem VIII.3.11 of Jaod and Shiryaev (1987: p. 432) we onludethat (W̃M ) onverges weakly to a standard Wiener proess W . That W has independentinrements with respet to the �ltration (Ft) an be seen by onsidering the �rst andseond onditional moments of the inrements of WM for eah M ∈ N and applying theonditions on loal onsisteny and the jump heights of (ξM ).By virtue of Skorohod's theorem, we may again work under P-almost sure onvergene.The remaining slightly di�erent part is the identi�ation of X as solution to equation (6)12



under (R,W ) with initial ondition ϕ. Notie that X is ontinuous on [0,∞) beause of theondition on the jumps of the ξM , f. Theorem 3.10.2 in Ethier and Kurtz (1986: p. 148).Let us de�ne àdlàg proesses CM , C on [0,∞) by
CM (t) := ϕM (0) +

∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds + εM2 (t), t ≥ 0,

C(t) := ϕ(0) +

∫

Γ×[0,t]
b(Xs, γ) dR(γ, s), t ≥ 0.We then infer that CM → C in up as before. De�ne operators FM , mapping àdlàgproesses to àdlàg proesses, by

FM (Y )(t) := σ



[−r, 0] ∋ s 7→







Y
(

h⌊ t
h
⌋+s

) if t ≥ −s,
ξ̃M
(

h⌊ t
h
⌋+s

) else 

 , t ≥ 0,and de�ne F as in the proof of Proposition 1. Denote by (X̂(t))t≥−r the unique solution toequation (6) under ontrol (R,W ) with initial ondition ϕ. Assumption (A4), the uniformonvergene of (ξ̃M
0 ) to ϕ and the right-ontinuity of ϕ imply that FM (X̂) onverges to

F (X̂) in up. Notie that X̂ is ontinuous on [0,∞) as solution to (6). ξ̃M solves
ξ̃M (t) = CM (t) +

∫ t

0
FM (ξ̃M )(s−) dW̄M (s), t ≥ 0,where we have taken a ontinuous martingale interpolation W̄M of WM instead of W̃M asintegrator in the stohasti integral, whih yields an idential result sine the integrand isa pure jump proess with jump times at kh, k ∈ N0. (W̄M ) also onverges to W in up,suh that by Exerise IV.4.14 in Revuz and Yor (1999) onvergene in the semimartin-gale topology follows. We onlude again by Theorem V.15 in Protter (2003) that (XM )onverges to X̂ in up and that X and X̂ are indistinguishable.5 Convergene of the minimal ostsThe objetive behind the introdution of sequenes of approximating hains was to obtaina devie for approximating the value funtion V of the original problem. The idea now is tode�ne, for eah disretization degreeM ∈ N, a disrete ontrol problem with ost funtional

JM so that JM is an approximation of the ost funtional J of the original problem in thefollowing sense: Given an initial segment ϕ ∈ D0 and a sequene of disrete admissibleontrols (uM ) suh that (ũM ) weakly onverges to ũ, we have JM (ϕ, uM ) → J(ϕ, ũ) as
M → ∞. Under the assumptions introdued above, it will follow that also the valuefuntions assoiated with the disrete ost funtionals onverge to the value funtion ofthe original problem.Fix M ∈ N, and let h := r

M
. Denote by UM

ad the set of disrete admissible ontrols ofdegree M . De�ne the ost funtional of degree M by(12) JM
(

ϕ, u
)

:= E

(

Nh−1
∑

n=0

exp(−βnh) · k
(

ξ(n), u(n)
)

· h + g
(

ξ(Nh)
)

)

,
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where ϕ ∈ D0, u ∈ UM
ad is de�ned on the stohasti basis (Ω,F , (Ft),P) and (ξ(n)) is adisrete hain of degree M de�ned aording to pM and u with initial ondition ϕ. Thedisrete exit time step Nh is given by(13) Nh := min{n ∈ N0 | ξ(n) /∈ Ih} ∧ ⌊ T̄

h
⌋.Denote by τ̃M := h · Nh the exit time for the orresponding interpolated proesses. Thevalue funtion of degree M is de�ned as(14) VM (ϕ) := inf

{

J
(

ϕ, u
) ∣

∣ u ∈ UM
ad

}

, ϕ ∈ D0.We are now in a position to state the result about onvergene of the minimal osts.Proposition 3 and Theorem 2 are omparable to Theorems 10.5.1 and 10.5.2 in Kushnerand Dupuis (2001: pp. 292-295).Proposition 3. Assume (A1) � (A5). If the sequene (ξ̃M , ũM , W̃M , τ̃M ) of interpolatedproesses onverges weakly to a limit point (X,R,W, τ), then X is a solution to equation(6) under relaxed ontrol (R,W ) with initial ondition ϕ, τ is the exit time for X as givenby (2), and we have
JM (ϕ, uM )

M→∞−→ Ĵ(ϕ,R).Proof. The onvergene assertion for the osts is a onsequene of Proposition 2, the fatthat, by virtue of Assumption (A5), the exit time τ̂ de�ned in (10) is Skorohod-ontinuous,and the de�nition of JM and J (or Ĵ).Theorem 2. Assume (A1) � (A5). Then we have limM→∞ VM (ϕ) = V (ϕ) for all ϕ ∈ D0.Proof. First notie that lim infM→∞ VM (ϕ) ≥ V (ϕ) as a onsequene of Proposition 2.In order to show lim supM→∞ VM (ϕ) ≤ V (ϕ) hoose a relaxed ontrol (R,W ) so that
Ĵ(ϕ,R) = V (ϕ) by Proposition 1. Given ε > 0, one an onstrut a sequene of disreteadmissible ontrols (uM ) suh that ((ξ̃M , ũM , W̃M , τ̃M )) is weakly onvergent, where (ξ̃M ),
(W̃M ), (τ̃M ) are onstruted as above, and lim supM→∞ |JM (ϕ, uM ) − Ĵ(ϕ,R)| ≤ ε. Theexistene of suh a sequene of disrete admissible ontrols is guaranteed, f. the disussionat the end of Setion 3. By de�nition, VM (ϕ) ≤ JM (ϕ, uM ) for eah M ∈ N. UsingProposition 3 we �nd that

lim sup
M→∞

VM (ϕ) ≤ lim sup
M→∞

JM (ϕ, uM ) ≤ V (ϕ) + ε,and sine ε was arbitrary, the assertion follows.
14
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