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Dis
retisation of sto
hasti
 
ontrol problems for 
ontinuoustime dynami
s with delay∗Markus Fis
herWeierstraÿ-Institut für AngewandteAnalysis und Sto
hastik (WIAS)Mohrenstr. 3910117 BerlinGermany
Markus ReiÿWeierstraÿ-Institut für AngewandteAnalysis und Sto
hastik (WIAS)Mohrenstr. 3910117 BerlinGermanyAugust 2, 2005Abstra
tAs a main step in the numeri
al solution of 
ontrol problems in 
ontinuous time,the 
ontrolled pro
ess is approximated by sequen
es of 
ontrolled Markov 
hains, thusdis
retizing time and spa
e. A new feature in this 
ontext is to allow for delay in thedynami
s. The existen
e of an optimal strategy with respe
t to the 
ost fun
tional
an be guaranteed in the 
lass of relaxed 
ontrols. Weak 
onvergen
e of the approxi-mating extended Markov 
hains to the original pro
ess together with 
onvergen
e ofthe asso
iated optimal strategies is established.1 Introdu
tionA general strategy for rendering 
ontrol problems in 
ontinuous time a

essible to numeri
al
omputation is the following: Taking as a starting point the original dynami
s, 
onstru
ta family of 
ontrol problems in dis
rete time with dis
rete state spa
e and dis
retized 
ostfun
tional. Standard numeri
al s
hemes 
an be applied to �nd an optimal 
ontrol and to
al
ulate the minimal 
osts for ea
h of the dis
rete 
ontrol problems. The important pointto establish is then whether the dis
rete optimal 
ontrols and minimal 
osts 
onverge tothe 
ontinuous-time limit as the mesh size of the dis
retisation tends to zero. If that is the
ase, then the dis
rete 
ontrol problems are a valid approximation to the original problem.The dynami
s of the 
ontrol problem we are interested in are des
ribed by a sto
hasti
delay di�erential equation (SDDE). Thus, the future evolution of the dynami
s may dependnot only on the present state, but also on the past evolution. For an exposition of thegeneral theory of SDDEs see Mohammed (1984) or Mao (1997). The development of
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numeri
al methods for SDDEs has attra
ted mu
h attention re
ently, see Bu
kwar (2000),Hu et al. (2004) and the referen
es therein. In Calzolari et al. (2003), segmentwise Eulers
hemes are used in a non-linear �ltering problem for approximating the state pro
ess,whi
h is given by an SDDE. Numeri
al pro
edures for deterministi
 
ontrol with delayeddynami
s have already been used in appli
ations, see Bou
ekkine et al. (2005) for theanalysis of an e
onomi
 growth model. The algorithm proposed there is based on thedis
retisation method studied here, but no formal proof of 
onvergen
e is given.Also the mathemati
al analysis of sto
hasti
 
ontrol problems with time delay in thestate equation has been the obje
t of re
ent works, see e.g. Elsanosi et al. (2000) for
ertain expli
itly available solutions, Øksendal and Sulem (2001) for the derivation of amaximum prin
iple and Larssen (2002) for the dynami
 programming approa
h. Althoughone 
an invoke the dynami
 programming prin
iple to derive a Hamilton-Ja
obi-Bellmanequation for the value fun
tion, su
h an equation will in general be a non-linear di�erentialequation with in�nite-dimensional state spa
e. A di�erent approa
h to treat sto
hasti

ontrol problems with delay is based on representing the state equation as an evolutionequation in Hilbert spa
e, see Bensoussan et al. (1992).The 
lass of 
ontrol problems is spe
i�ed in Se
tion 2. In Se
tion 3 we prove theexisten
e of optimal strategies for those problems in the 
lass of relaxed 
ontrols. Se
tion 4introdu
es the approximating pro
esses and provides a tightness result. Finally, in Se
tion 5the dis
rete 
ontrol problems are de�ned and the 
onvergen
e of the minimal 
osts andoptimal strategies is shown.2 The 
ontrol problemWe 
onsider the 
ontrol of a dynami
al system given by a one-dimensional sto
hasti
delay di�erential equation (SDDE) driven by a Wiener pro
ess. Both drift and di�usion
oe�
ient may depend on the solution's history a 
ertain amount of time into the past.Let r > 0 denote the delay length, i. e. the maximal length of dependen
e on the past.For simpli
ity, we restri
t attention to the 
ase, where only the drift term 
an be dire
tly
ontrolled.Typi
ally, the solution pro
ess of an SDDE does not enjoy the Markov property, whilethe segment pro
ess asso
iated with that solution does. For a real-valued 
àdlàg fun
tion(i.e., right-
ontinuous fun
tion with left-hand limits) ψ living on the time interval [−r,∞)the segment at time t ∈ [0,∞) is de�ned to be the fun
tion
ψt : [−r, 0] → R, ψt(s) := ψ(t+s).Thus, the segment pro
ess (Xt)t≥0 asso
iated with a real-valued 
àdlàg pro
ess (X(t))t≥−rtakes its values in D0 := D([−r, 0]), the spa
e of all real-valued 
àdlàg fun
tions on theinterval [−r, 0]. There are two natural topologies on D0. The �rst is the one indu
ed bythe supremum norm, whi
h we denote by ‖.‖∞. The se
ond is the Skorohod topology of2




àdlàg 
onvergen
e (e. g. Billingsley, 1999). The main di�eren
e between the Skorohodand the uniform topology lies in the di�erent evaluation of 
onvergen
e of fun
tions withjumps, whi
h appear naturally as initial segments and dis
retized pro
esses. For 
ontinuousfun
tions both topologies 
oin
ide. Similar statements hold for D∞ := D([−r,∞)) and
D̃∞ := D([0,∞)), the spa
es of all real-valued 
àdlàg fun
tions on the intervals [−r,∞)and [0,∞), respe
tively. The spa
es D∞ and D̃∞ will always be supposed to 
arry theSkorohod topology, while D0 will 
anoni
ally be equipped with the uniform topology.Let (Γ, dΓ) be a 
ompa
t metri
 spa
e, the spa
e of 
ontrol a
tions. Denote by bthe drift 
oe�
ient of the 
ontrolled dynami
s, and by σ the di�usion 
oe�
ient. Let
(W (t))t≥0 be a one-dimensional standard Wiener pro
ess on a �ltered probability spa
e
(Ω,F , (Ft)t≥0,P) satisfying the usual 
onditions, and let (u(t))t≥0 be a 
ontrol pro
ess, i. e.an (Ft)-adapted measurable pro
ess with values in Γ. Consider the 
ontrolled SDDE(1) dX(t) = b

(

Xt, u(t)
)

dt + σ(Xt) dW (t), t ≥ 0.The 
ontrol pro
ess u(.) together with its sto
hasti
 basis in
luding the Wiener pro
ess is
alled an admissible 
ontrol if, for every deterministi
 initial 
ondition ϕ ∈ D0, equation(1) has a unique solution whi
h is also weakly unique. Write Uad for the set of admissible
ontrols of equation (1). The sto
hasti
 basis 
oming with an admissible 
ontrol will oftenbe omitted in the notation.A solution in the sense used here is an adapted 
àdlàg pro
ess de�ned on the sto
hasti
basis of the 
ontrol pro
ess su
h that the integral version of equation (1) is satis�ed. Givena 
ontrol pro
ess together with a standard Wiener pro
ess, a solution to equation (1) isunique if it is indistinguishable from any other solution almost surely satisfying the sameinitial 
ondition. A solution is weakly unique if it has the same law as any other solutionwith the same initial distribution and satisfying equation (1) for a 
ontrol pro
ess ona possibly di�erent sto
hasti
 basis so that the joint distribution of 
ontrol and drivingWiener pro
ess is the same for both solutions. Let us spe
ify regularity assumptions to beimposed on the 
oe�
ients b and σ:(A1) Càdlàg fun
tionals: the mappings
(ψ, γ) 7→

[

t 7→ b(ψt, γ), t ≥ 0
]

, ψ 7→
[

t 7→ σ(ψt), t ≥ 0
]de�ne measurable fun
tionals D∞ × Γ → D̃∞ and D∞ → D̃∞, respe
tively, where

D∞, D̃∞ are equipped with the Borel σ-algebras.(A2) Continuity of the drift 
oe�
ient: there is a 
ountable subset of [−r, 0], denoted by
Iev, su
h that for every t ≥ 0 the fun
tion de�ned by

D∞ × Γ ∋ (ψ, γ) 7→ b(ψt, γ)is 
ontinuous on Dev(t) × Γ uniformly in γ ∈ Γ, where
Dev(t) := {ψ ∈ D∞ | ψ is 
ontinuous at t+ s for all s ∈ Iev}.3



(A3) Global boundedness: |b|, |σ| are bounded by a 
onstant K > 0.(A4) Uniform Lips
hitz 
ondition: There is a 
onstant KL > 0 su
h that for all ϕ,ψ ∈ D0,all γ ∈ Γ

|b(ϕ, γ) − b(ψ, γ)| + |σ(ϕ) − σ(ψ)| ≤ KL ‖ϕ− ψ‖∞.(A5) Ellipti
ity of the di�usion 
oe�
ient: σ(ϕ) ≥ σ0 for all ϕ ∈ D0, where σ0 > 0 is apositive 
onstant.Assumptions (A1) and (A4) on the 
oe�
ients allow us to invoke Theorem V.7 in Protter(2003: p.253), whi
h guarantees the existen
e of a unique solution to the 
ontrolled SDDE(1) for every pie
ewise 
onstant 
ontrol attaining only �nitely many di�erent values. Theboundedness Assumption (A3) poses no limitation ex
ept for the initial 
onditions, be
ausethe state evolution will be stopped when the state pro
ess leaves a bounded interval.Assumption (A2) allows us to use �segmentwise approximations� of the solution pro
ess,see the proof of Proposition 1. The assumptions imposed on the drift 
oe�
ient b aresatis�ed, for example, by
b(ϕ, γ) := f

(

ϕ(r1), . . . , ϕ(rn),

∫ 0

−r

ϕ(s)w(s) ds
)

· g(γ),where r1, . . . , rn ∈ [−r, 0] are �xed, f , g are bounded 
ontinuous fun
tions and f is Lips-
hitz, and the weight fun
tion w lies in L1([−r, 0]).We 
onsider 
ontrol problems in the weak formulation (
f. Yong and Zhou, 1999: p. 64).Given an admissible 
ontrol u(.) and a deterministi
 initial segment ϕ ∈ D0, denote by
Xϕ,u the unique solution to equation (1). Let I be a 
ompa
t interval with non-emptyinterior. De�ne the stopping time τ T̄

ϕ,u of �rst exit from the interior of I before time T̄ > 0by(2) τ T̄
ϕ,u := inf{t ≥ 0 | Xϕ,u(t) /∈ int(I)} ∧ T̄ .In order to de�ne the 
osts, we pres
ribe a 
ost rate k : R × Γ → [0,∞) and a boundary
ost g : R → [0,∞), whi
h are (jointly) 
ontinuous bounded fun
tions. Let β ≥ 0 denotethe exponential dis
ount rate. Then de�ne the 
ost fun
tional on D0 × Uad by(3) J(ϕ, u) := E

(∫ τ

0
exp(−βs) · k

(

Xϕ,u(s), u(s)
)

ds + g
(

Xϕ,u(τ)
)

)

,where τ = τ T̄
ϕ,u. Our aim is to minimize J(ϕ, .). We introdu
e the value fun
tion(4) V (ϕ) := inf{J(ϕ, u) | u ∈ Uad}, ϕ ∈ D0.The 
ontrol problem now 
onsists in 
al
ulating the fun
tion V and �nding admissible
ontrols that minimize J . Su
h 
ontrol pro
esses are 
alled optimal 
ontrols or optimalstrategies. 4



3 Existen
e of optimal strategiesIn the 
lass Uad of admissible 
ontrols it may happen that there is no optimal 
ontrol(Kushner and Dupuis, 2001: p. 86). A way out is to enlarge the 
lass of 
ontrols, allowingfor so-
alled relaxed 
ontrols, so that the existen
e of an optimal (relaxed) 
ontrol is guar-anteed, while the in�mum of the 
osts over the new 
lass 
oin
ides with the value fun
tion
V as given by (4).A deterministi
 relaxed 
ontrol is a positive measure ρ on the Borel σ-algebra B(Γ ×
[0,∞)) su
h that(5) ρ(Γ × [0, t]) = t for all t ≥ 0.For ea
h G ∈ B(Γ), the fun
tion t 7→ ρ(G × [0, t]) is absolutely 
ontinuous with respe
tto Lebesgue measure on [0,∞) by virtue of property (5). Denote by ρ̇(., G) any Lebesguedensity of ρ(G× [0, .]). The family of densities ρ̇(., G), G ∈ B(Γ), 
an be 
hosen in a Borelmeasurable way su
h that ρ̇(t, .) is a probability measure on B(Γ) for ea
h t ≥ 0, and

ρ(B) =

∫ ∞

0

∫

Γ
1{(γ,t)∈B} ρ̇(t, dγ) dt for all B ∈ B(Γ × [0,∞)).Denote by R the spa
e of deterministi
 relaxed 
ontrols whi
h is equipped with the weak-
ompa
t topology indu
ed by the following notion of 
onvergen
e: a sequen
e (ρn)n∈N ofrelaxed 
ontrols 
onverges to ρ ∈ R if

∫

Γ×[0,∞)

g(γ, t) dρn(γ, t)
n→∞−→

∫

Γ×[0,∞)

g(γ, t) dρ(γ, t) for all g ∈ Cc(Γ × [0,∞)),where Cc(Γ×[0,∞)) is the spa
e of all real-valued 
ontinuous fun
tions on Γ×[0,∞) having
ompa
t support. Under the weak-
ompa
t topology, R is a (sequentially) 
ompa
t spa
e.Suppose (ρn)n∈N is a 
onvergent sequen
e in R with limit ρ. Given T > 0, let ρn|Tdenote the restri
tion of ρn to the Borel σ-algebra on Γ × [0, T ], and denote by ρ|T therestri
tion of ρ to B(Γ × [0, T ]). Then ρn|T , n ∈ N, ρ|T are all �nite measures, and (ρn|T )
onverges weakly to ρ|T .A relaxed 
ontrol pro
ess is an R-valued random variable R su
h that the mapping
ω 7→ R(G × [0, t])(ω) is Ft-measurable for all t ≥ 0, G ∈ B(Γ). For a relaxed 
ontrolpro
ess R equation (1) takes on the form(6) dX(t) =

(

∫

Γ
b(Xt, γ) Ṙ(t, dγ)

)

dt + σ(Xt) dW (t), t ≥ 0,where (Ṙ(t, .))t≥0 is the family of derivative measures asso
iated with R. The family
(Ṙ(t, .)) 
an be 
onstru
ted in a measurable way (
f. Kushner, 1990: p. 52). A relaxed
ontrol pro
ess together with its sto
hasti
 basis in
luding the Wiener pro
ess is 
alledadmissible relaxed 
ontrol if, for every deterministi
 initial 
ondition, equation (6) has5



a unique solution whi
h is also weakly unique. Any ordinary 
ontrol pro
ess u 
an berepresented as a relaxed 
ontrol pro
ess by setting
R(B) :=

∫ ∞

0

∫

Γ
1{(γ,t)∈B} δu(t)(dγ) dt, B ∈ B(Γ × [0,∞)),where δγ is the Dira
 measure at γ ∈ Γ.Denote by Ûad the set of all admissible relaxed 
ontrols. Instead of (3) we de�ne a 
ostfun
tional on D0 × Ûad by(7) Ĵ(ϕ,R) := E

(∫ τ

0

∫

Γ
exp(−βs) · k

(

Xϕ,R(s), γ
)

Ṙ(s, dγ) ds + g
(

Xϕ,R(τ)
)

)

,where Xϕ,R is the solution to equation (6) with initial segment ϕ and τ is de�ned inanalogy to (2). Instead of (4) as value fun
tion we have(8) V̂ (ϕ) := inf{Ĵ(ϕ,R) | R ∈ Ûad}, ϕ ∈ D0.The 
ost fun
tional Ĵ depends only on the joint distribution of the solution Xϕ,R and theunderlying 
ontrol pro
ess R, sin
e τ , the time horizon, is a deterministi
 fun
tion of thesolution. The distribution of Xϕ,R, in turn, is determined by the initial 
ondition ϕ andthe joint distribution of the 
ontrol pro
ess and its a

ompanying Wiener pro
ess. Lettingthe time horizon vary, we may regard Ĵ as a fun
tion of the law of (X,R,W, τ), that is, tobe de�ned on a subset of the set of probability measures on B(D∞ × R × D̃∞ × [0,∞]).The domain of de�nition of Ĵ is determined by the 
lass of admissible relaxed 
ontrols forequation (6), the de�nition of the time horizon and the distributions of the initial segments
X0.The idea in proving existen
e of an optimal strategy is to 
he
k that Ĵ(ϕ, .) is a (se-quentially) lower semi-
ontinuous fun
tion de�ned on a (sequentially) 
ompa
t set. It thenfollows from a theorem by Weierstraÿ (
f. Yong and Zhou, 1999: p. 65) that Ĵ(ϕ, .) attainsits minimum at some point of its 
ompa
t domain. The following proposition gives theanalogue of Theorem 10.1.1 in Kushner and Dupuis (2001: pp. 271-275) for our setting. Wepresent the proof in detail, be
ause the identi�
ation of the limit pro
ess is di�erent fromthe 
lassi
al 
ase.Proposition 1. Assume (A1) � (A4). Let ((Rn,Wn))n∈N be any sequen
e of admissible re-laxed 
ontrols for equation (6), de�ned on a �ltered probability spa
e (Ωn,Fn, (Fn

t )t≥0,Pn).Let Xn be a solution to equation (6) under 
ontrol (Rn,Wn) with deterministi
 initial 
on-dition ϕn ∈ D0, and assume that (ϕn) tends to ϕ uniformly for some ϕ ∈ D0. For ea
h
n ∈ N, let τn be an (Fn

t )-stopping time. Then ((Xn, Rn,Wn, τn))n∈N is tight.Denote by (X,R,W, τ) a limit point of the sequen
e ((Xn, Rn,Wn, τ))n∈N. De�nea �ltration by Ft := σ(X(s), R(s),W (s), τ1{τ≤t}, s ≤ t), t ≥ 0. Then W (.) is an (Ft)-adapted Wiener pro
ess, τ is an (Ft)-stopping time, (R,W ) is an admissible relaxed 
ontrol,and X is a solution to (6) under (R,W ) with initial 
ondition ϕ.6



Proof. Tightness of (Xn) follows from the Aldous 
riterion (
f. Billingsley, 1999: pp. 176-179): given n ∈ N, any bounded (Fn
t )-stopping time ν and δ > 0 we have

En

(∣

∣Xn(ν + δ) −Xn(ν)
∣

∣

2 ∣
∣ Fν

)

≤ 2K2δ(δ + 1)as a 
onsequen
e of Assumption (A3) and the It� isometry. Noti
e that we have Xn(0) →
X(0) as n→ ∞ by hypothesis. The sequen
es (Rn) and (τn) are tight, be
ause the valuespa
es R and [0,∞], respe
tively, are 
ompa
t. The sequen
e (Wn) is tight, sin
e all
Wn indu
e the same measure. Finally, 
omponentwise tightness implies tightness of theprodu
t (
f. Billingsley, 1999: p. 65).By abuse of notation, we do not distinguish between the 
onvergent subsequen
e and theoriginal sequen
e and we assume that ((Xn, Rn,Wn, τn)) 
onverges weakly to (X,R,W, τ).The random time τ is an (Ft)-stopping time by 
onstru
tion of the �ltration. Likewise,
R is (Ft)-adapted by 
onstru
tion, and it is indeed a relaxed 
ontrol pro
ess, be
ause
R(t,Γ) = t, t ≥ 0, P-almost surely by weak 
onvergen
e of the relaxed 
ontrol pro
esses
(Rn) to R. The pro
ess W has Wiener distribution and 
ontinuous paths with probabilityone, being the limit of standard Wiener pro
esses. To 
he
k that W is an (Ft)-Wienerpro
ess, we use the martingale problem 
hara
terization of Brownian motion. To this end,for g ∈ Cc(Γ × [0,∞)), ρ ∈ R de�ne the pairing

(g, ρ)(t) :=

∫

Γ×[0,t]
g(γ, s) dρ(γ, s), t ≥ 0.Noti
e that real-valued 
ontinuous fun
tions on R 
an be approximated by fun
tions ofthe form

R ∋ ρ 7→ H̃
(

(gj , ρ)(ti), (i, j) ∈ Np × Nq

)

∈ R,where p, q are natural numbers, {ti | i ∈ Np} ⊂ [0,∞), and H̃, gj , j ∈ Nq, are suitable
ontinuous fun
tions with 
ompa
t support and NN := {1, . . . , N} for any N ∈ N. Let
t ≥ 0, t1, . . . , tp ∈ [0, t], h ≥ 0, g1, . . . , gq be fun
tions in Cc(Γ × [0,∞)), and H be a
ontinuous fun
tion of 2p + p ·q + 1 arguments with 
ompa
t support. Sin
e Wn is an
(Fn

t )-Wiener pro
ess for ea
h n ∈ N, we have for all f ∈ C
2
c(R)

En

(

H
(

Xn(ti), (gj , R
n)(ti),W

n(ti), τ
n
1{τn≤t}, (i, j) ∈ Np × Nq

)

·
(

f
(

Wn(t+ h)
)

− f
(

Wn(t)
)

− 1

2

t+h
∫

t

∂2f

∂x2

(

Wn(s)
)

ds
))

= 0.By the weak 
onvergen
e of ((Xn, Rn,Wn, τn))n∈N to (X,W,R, τ) we see that
E

(

H
(

X(ti), (gj , R)(ti),W (ti), τ1{τ≤t}, (i, j) ∈ Np × Nq

)

·
(

f
(

W (t+ h)
)

− f
(

W (t)
)

− 1

2

t+h
∫

t

∂2f

∂x2

(

W (s)
)

ds
))

= 0

7



for all f ∈ C
2
c(R). As H, p, q, ti, gj vary over all possibilities, the 
orresponding randomvariables H(X(ti), (gj , R)(ti),W (ti), τ1{τ≤t}, (i, j) ∈ Np × Nq) indu
e the σ-algebra Ft.Sin
e t ≥ 0, h ≥ 0 were arbitrary, it follows that

f
(

W (t)
)

− f
(

W (0)
)

− 1

2

t
∫

0

∂2f

∂x2

(

W (s)
)

ds, t ≥ 0,is an (Ft)-martingale for every f ∈ C
2
c(R). Consequently, W is an (Ft)-Wiener pro
ess.It remains to show that X solves equation (6) under 
ontrol (R,W ) with initial 
ondi-tion ϕ. Noti
e that X has 
ontinuous paths on [0,∞) P-almost surely, be
ause the pro
ess

(X(t))t≥0 is the weak limit in D̃∞ of 
ontinuous pro
esses. Fix T > 0. We have to 
he
kthat P-almost surely
X(t) = ϕ(0) +

∫ t

0

∫

Γ
b(Xs, γ) Ṙ(s, dγ) ds+

∫ t

0
σ(Xs) dW (s) for all t ∈ [0, T ].By virtue of the Skorohod representation theorem (
f. Billingsley, 1999: p. 70) we mayassume that the pro
esses (Xn, Rn,Wn), n ∈ N, are all de�ned on the same probabilityspa
e (Ω,F ,P) as (X,R,W ) and that 
onvergen
e of ((Xn, Rn,Wn)) to (X,R,W ) is P -almost sure. Sin
e X, W have 
ontinuous paths on [0, T ] and (ϕn) 
onverges to ϕ in theuniform topology, one �nds Ω̃ ∈ F with P(Ω̃) = 1 su
h that for all ω ∈ Ω̃

sup
t∈[−r,T ]

∣

∣Xn(t)(ω) −X(t)(ω)
∣

∣

n→∞−→ 0, sup
t∈[−r,T ]

∣

∣Wn(t)(ω) −W (t)(ω)
∣

∣

n→∞−→ 0,and also Rn(ω) → R(ω) in R. Let ω ∈ Ω̃. We �rst show that
∫ t

0

∫

Γ
b
(

Xn
s (ω), γ

)

Ṙn(s, dγ)(ω) ds
n→∞→

∫ t

0

∫

Γ
b
(

Xs(ω), γ
)

Ṙ(s, dγ)(ω) dsuniformly in t ∈ [0, T ]. As a 
onsequen
e of Assumption (A4), the uniform 
onvergen
e ofthe traje
tories on [−r, T ] and property (5) of the relaxed 
ontrols, we have
∫

Γ×[0,T ]

∣

∣b
(

Xn
s (ω), γ

)

− b
(

Xs(ω), γ
)∣

∣ dRn(γ, s)(ω)
n→∞→ 0.By Assumption (A2), we �nd a 
ountable set Aω ⊂ [0, T ] su
h that the mapping (γ, s) 7→

b(Xs(ω), γ) is 
ontinuous in all (γ, s) ∈ Γ × ([0, T ] \ Aω). Sin
e Aω is 
ountable we have
R(ω)(Γ×Aω) = 0. Hen
e, by the generalized mapping theorem (
f. Billingsley, 1999: p. 21),we obtain

∫

Γ×[0,t]
b
(

Xs(ω), γ
)

dRn(γ, s)(ω)
n→∞→

∫

Γ×[0,t]
b
(

Xs(ω), γ
)

dR(γ, s)(ω).The 
onvergen
e is again uniform in t ∈ [0, T ], as b is bounded and Rn, n ∈ N, R are allpositive measures with mass T on Γ × [0, T ].8



Denote by (X̂(t))t≥−r the unique solution to equation (6) under 
ontrol (R,W ) withinitial 
ondition ϕ. If we 
an show that(9) sup
t∈[0,T ]

∣

∣Xn(t) − X̂(t)
∣

∣

n→∞−→ 0 in probability P,then X will be indistinguishable from X̂ on [−r, T ] and will solve (6) as well. Let us de�ne
àdlàg pro
esses Cn, n ∈ N, on [0,∞) by
Cn(t) := ϕn(0) +

∫

Γ×[0,t]
b(Xn

s , γ) dR
n(γ, s), t ≥ 0,and de�ne C in analogy to Cn. We already know that Cn(t) → C(t) holds uniformly over

t ∈ [0, T ] for any T > 0 with probability one. De�ne operators Fn, n ∈ N, mapping 
àdlàgpro
esses to 
àdlàg pro
esses by
Fn(Y )(t)(ω) := σ



[−r, 0] ∋ s 7→







Y (t+s)(ω) if t ≥ −s,
ϕn(t+s) else 

 , t ≥ 0, ω ∈ Ω,and de�ne F in the same way as Fn. Assumption (A4) and the uniform 
onvergen
e of
(ϕn) to ϕ imply that Fn(X̂) 
onverges to F (X̂) uniformly on 
ompa
ts in probability(
onvergen
e in u
p). Observing that Xn solves

Xn(t) = Cn(t) +

∫ t

0
Fn(Xn)(s−) dWn(s), t ≥ 0,and analogously for X̂, Theorem V.15 in Protter (2003: p. 265) asserts that (Xn) 
onvergesto X̂ in u
p and (9) follows.If the time horizon were deterministi
, then the existen
e of optimal strategies in the
lass of relaxed 
ontrols would be 
lear. Given an initial 
ondition ϕ ∈ D0, one would sele
ta sequen
e ((Rn,Wn))n∈N su
h that (J(ϕ,Rn)) 
onverges to its in�mum. By Proposition 1,a suitable subsequen
e of ((Rn,Wn)) and the asso
iated solution pro
esses would 
onvergeweakly to (R,W ) and the asso
iated solution to equation (6). Taking into a

ount (7), thede�nition of the 
osts, this in turn would imply that J(ϕ, .) attains its minimum value at

R or, more pre
isely, (X,R,W ).A similar argument is still valid, if the time horizon depends 
ontinuously on the pathswith probability one under every possible solution. That is to say, the mapping
τ̂ : D∞ → [0,∞], τ̂(ψ) := inf{t ≥ 0 | ψ(t) /∈ int(I)} ∧ T̄(10)is Skorohod 
ontinuous with probability one under the measure indu
ed by any solution

Xϕ,R, R any relaxed 
ontrol. This is indeed the 
ase if the di�usion 
oe�
ient σ is boundedaway from zero as required by Assumption (A5).By introdu
ing relaxed 
ontrols, we have enlarged the 
lass of possible strategies. Thein�mum of the 
osts, however, remains the same for the new 
lass. This is a 
onsequen
e of9



the fa
t that sto
hasti
 relaxed 
ontrols 
an be arbitrarily well approximated by pie
ewise
onstant ordinary sto
hasti
 
ontrols whi
h attain only a �nite number of di�erent 
ontrolvalues. A proof of this assertion is given in Kushner (1990: pp. 59-60) in 
ase the timehorizon is �nite, and extended to the 
ase of 
ontrol up to an exit time in Kushner andDupuis (2001: pp. 282-286). Noti
e that nothing hinges on the presen
e or absen
e of delayin the 
ontrolled dynami
s. Let us summarize our �ndings.Theorem 1. Assume (A1) � (A5). Given any deterministi
 initial 
ondition ϕ ∈ D0, therelaxed 
ontrol problem determined by (6) and (7) possesses an optimal strategy, and theminimal 
osts are the same as for the original 
ontrol problem as de�ned by (1) and (3).4 Approximating 
hainsIn order to 
onstru
t �nite-dimensional approximations to our 
ontrol problem, we dis-
retize time and state spa
e. Denote by h > 0 the mesh size of an equidistant timedis
retization starting at zero. Let Sh :=
√
hZ be the 
orresponding state spa
e, andset Ih := I ∩ Sh. Noti
e that Sh is 
ountable and Ih is �nite. Let Λh : R → Sh be around-o� fun
tion. We will simplify things even further by 
onsidering only mesh sizes

h = r
M

for some M ∈ N, where r is the delay length. The number M will be referred toas dis
retization degree.The admissible 
ontrols for the �nite-dimensional 
ontrol problems 
orrespond to pie
e-wise 
onstant pro
esses in 
ontinuous time. A time-dis
rete pro
ess u = (u(n))n∈N0
on

(Ω,F ,P) with values in Γ is a dis
rete admissible 
ontrol of degree M if u takes on only�nitely many di�erent values in Γ and u(n) is Fnh-measurable for all n ∈ N0. Denote by
(ũ(t))t≥0 the pie
ewise 
onstant 
àdlàg interpolation to u.We 
all a time-dis
rete pro
ess (ξ(n))n∈{−M,...,0}∪N on (Ω,F ,P) a dis
rete 
hain of de-gree M if (ξ(n)) takes its values in Sh and ξ(n) is Fnh-measurable for all n ∈ N0. In analogyto ũ, write (ξ̃(t))t≥−r for the 
àdlàg interpolation to the dis
rete 
hain (ξ(n))n∈{−M,...,0}∪N .We denote by ξ̃t the D0-valued segment of ξ̃(.) at time t ≥ 0.Let ϕ ∈ D0 be a deterministi
 initial 
ondition, and suppose we are given a sequen
e ofdis
rete admissible 
ontrols (uM )M∈N , that is uM is a dis
rete admissible 
ontrol of degree
M on a sto
hasti
 basis (ΩM ,FM , (FM

t ),PM ) for ea
h M ∈ N. In addition, supposethat the sequen
e (ũM ) of interpolated dis
rete 
ontrols 
onverges weakly to some relaxed
ontrol R. We are then looking for a sequen
e approximating the solution X of equation(1) under 
ontrol (R,W ) with initial 
ondition ϕ, where the Wiener pro
ess W has to be
onstru
ted from the approximating sequen
e.Given M -step or extended Markov transition fun
tions pM : SM+1
h × Γ × Sh → [0, 1],

M ∈ N, we de�ne a sequen
e of approximating 
hains asso
iated with ϕ and (uM ) as afamily (ξM )M∈N of pro
esses su
h that ξM is a dis
rete 
hain of degree M de�ned on thesame sto
hasti
 basis as uM , provided the following 
onditions are ful�lled for h = hM := r
Mtending to zero: 10



(i) Initial 
ondition: ξM (n) = Λh(ϕ(nh)) for all n ∈ {−M, . . . , 0}.(ii) Extended Markov property: for all n ∈ N0, all x ∈ Sh

PM

(

ξM (n+1) = x
∣

∣ FM
nh

)

= pM
(

ξM (n−M), . . . , ξM (n), uM (n), x
)

.(iii) Lo
al 
onsisten
y with the drift 
oe�
ient:
µξM (n) := EM

(

ξM (n+1) − ξM (n)
∣

∣ FM
nh

)

= h · b
(

ξ̃M
nh, u

M (n)
)

+ o(h) =: h · bh
(

ξ̃M
nh, u

M (n)
)

.(iv) Lo
al 
onsisten
y with the di�usion 
oe�
ient:
EM

((

ξM (n+1) − ξM (n) − µξM (n)
)2∣
∣ FM

nh

)

= h · σ2(ξ̃M
nh) + o(h) =: h · σ2

h(ξ̃M
nh).(v) Jump heights: there is a positive number N̄ , independent of M , su
h that

sup
n

|ξM (n+ 1) − ξM (n)| ≤ N̄
√

hM .It is straightforward, under Assumptions (A3) and (A5), to 
onstru
t a sequen
e of ex-tended transition fun
tions su
h that the jump height and the lo
al 
onsisten
y 
onditionsare ful�lled.We will represent the interpolation ξ̃M as a solution to an equation 
orresponding toequation (1) with 
ontrol pro
ess ũM and initial 
ondition ϕ. De�ne the dis
rete pro
ess
(LM (n))n∈N0

by LM (0) := 0 and
ξM (n) = ϕ(0) +

n−1
∑

i=0

h · bh
(

ξ̃M
ih , u

M (i)
)

+ LM (n), n ∈ N.Observe that LM is a martingale in dis
rete time with respe
t to the �ltration (FM
nh).Setting

εM1 (t) :=

⌊ t

h
⌋−1
∑

i=0

h · bh
(

ξ̃M
ih , ũ

M (ih)
)

−
∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds, t ≥ 0,the interpolated pro
ess ξ̃M 
an be represented as solution to
ξ̃M (t) = ϕ(0) +

∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds + LM (⌊ t
h
⌋) + εM1 (t), t ≥ 0.For the error term we have

EM

(

|εM1 (t)|
)

≤
⌊ t

h
⌋−1
∑

i=0

hEM

(

∣

∣bh
(

ξ̃M
ih , u

M (i)
)

− b
(

ξ̃M
ih , u

M (i)
)∣

∣

)

+ K · h

+

∫ h⌊ t

h
⌋

0
EM

(

∣

∣b
(

ξ̃M
h⌊ s

h
⌋, ũ

M (s)
)

− b
(

ξ̃M
s , ũM (s)

)∣

∣

)

ds,

11



whi
h tends to zero as M → ∞ uniformly in t ∈ [0, T ] by Assumptions (A2), (A3),dominated 
onvergen
e and the de�ning properties of (ξM ). The dis
rete-time martingale
LM 
an be rewritten as dis
rete sto
hasti
 integral. De�ne (WM (n))n∈N0

by WM (0) := 0and
WM (n) :=

n−1
∑

i=0

1

σ(ξ̃M
ih )

(

LM (i+1) − LM (i)
)

, n ∈ N.Using the pie
ewise 
onstant interpolation W̃M of WM , the pro
ess ξ̃M 
an be expressedas solution to(11) ξ̃M (t) = ϕ(0) +

∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds+

∫ t

0
σ(ξ̃M

h⌊ s−

h
⌋
) dW̃M (s) + εM2 (t)for t ≥ 0, where the error terms (εM2 ) 
onverge to zero as (εM1 ) before.We are now prepared for the 
onvergen
e result, whi
h should be 
ompared to Theorem10.4.1 in Kushner and Dupuis (2001: p. 290). The proof is similar to that of Proposition 1.We merely point out the main di�eren
es.Proposition 2. Assume (A1) � (A5). For ea
h M ∈ N, let τM be a stopping time withrespe
t to the σ-algebra generated by (ξ̃M (s), ũM (s), W̃M (s)), s ≤ t. If (ξ̃M

0 ) 
onvergesto ϕ in the uniform topology, then ((ξ̃M , RM , W̃M , τM ))M∈N is tight. For any limit point
(X,R,W, τ) de�ne

Ft := σ
(

X(s), R(s),W (s), τ1{τ≤t}, s ≤ t
)

, t ≥ 0.Then W is an (Ft)-adapted Wiener pro
ess, τ is an (Ft)-stopping time, (R,W ) is anadmissible relaxed 
ontrol, and X is a solution to (6) under (R,W ) with initial 
ondition
ϕ.Proof. For the �rst part, the only di�eren
e is the proof of tightness for (W̃M ) and theidenti�
ation of the limit points. We 
al
ulate the order of 
onvergen
e for the dis
rete-timeprevisible quadrati
 variations of (WM ):

〈WM 〉n =
n−1
∑

i=0

E
(

(WM (i+1) −WM (i))2
∣

∣ FM
ih

)

= nh + o(h)
n−1
∑

i=0

1

σ2(ξ̃M
ih )for all M ∈ N, n ∈ N0. Taking into a

ount Assumption (A5) and the de�nition ofthe time-
ontinuous pro
esses W̃M , we see that 〈W̃M 〉 tends to Id[0,∞) in probabilityfor M → ∞. By Theorem VIII.3.11 of Ja
od and Shiryaev (1987: p. 432) we 
on
ludethat (W̃M ) 
onverges weakly to a standard Wiener pro
ess W . That W has independentin
rements with respe
t to the �ltration (Ft) 
an be seen by 
onsidering the �rst andse
ond 
onditional moments of the in
rements of WM for ea
h M ∈ N and applying the
onditions on lo
al 
onsisten
y and the jump heights of (ξM ).By virtue of Skorohod's theorem, we may again work under P-almost sure 
onvergen
e.The remaining slightly di�erent part is the identi�
ation of X as solution to equation (6)12



under (R,W ) with initial 
ondition ϕ. Noti
e that X is 
ontinuous on [0,∞) be
ause of the
ondition on the jumps of the ξM , 
f. Theorem 3.10.2 in Ethier and Kurtz (1986: p. 148).Let us de�ne 
àdlàg pro
esses CM , C on [0,∞) by
CM (t) := ϕM (0) +

∫ t

0
b
(

ξ̃M
s , ũM (s)

)

ds + εM2 (t), t ≥ 0,

C(t) := ϕ(0) +

∫

Γ×[0,t]
b(Xs, γ) dR(γ, s), t ≥ 0.We then infer that CM → C in u
p as before. De�ne operators FM , mapping 
àdlàgpro
esses to 
àdlàg pro
esses, by

FM (Y )(t) := σ



[−r, 0] ∋ s 7→







Y
(

h⌊ t
h
⌋+s

) if t ≥ −s,
ξ̃M
(

h⌊ t
h
⌋+s

) else 

 , t ≥ 0,and de�ne F as in the proof of Proposition 1. Denote by (X̂(t))t≥−r the unique solution toequation (6) under 
ontrol (R,W ) with initial 
ondition ϕ. Assumption (A4), the uniform
onvergen
e of (ξ̃M
0 ) to ϕ and the right-
ontinuity of ϕ imply that FM (X̂) 
onverges to

F (X̂) in u
p. Noti
e that X̂ is 
ontinuous on [0,∞) as solution to (6). ξ̃M solves
ξ̃M (t) = CM (t) +

∫ t

0
FM (ξ̃M )(s−) dW̄M (s), t ≥ 0,where we have taken a 
ontinuous martingale interpolation W̄M of WM instead of W̃M asintegrator in the sto
hasti
 integral, whi
h yields an identi
al result sin
e the integrand isa pure jump pro
ess with jump times at kh, k ∈ N0. (W̄M ) also 
onverges to W in u
p,su
h that by Exer
ise IV.4.14 in Revuz and Yor (1999) 
onvergen
e in the semimartin-gale topology follows. We 
on
lude again by Theorem V.15 in Protter (2003) that (XM )
onverges to X̂ in u
p and that X and X̂ are indistinguishable.5 Convergen
e of the minimal 
ostsThe obje
tive behind the introdu
tion of sequen
es of approximating 
hains was to obtaina devi
e for approximating the value fun
tion V of the original problem. The idea now is tode�ne, for ea
h dis
retization degreeM ∈ N, a dis
rete 
ontrol problem with 
ost fun
tional

JM so that JM is an approximation of the 
ost fun
tional J of the original problem in thefollowing sense: Given an initial segment ϕ ∈ D0 and a sequen
e of dis
rete admissible
ontrols (uM ) su
h that (ũM ) weakly 
onverges to ũ, we have JM (ϕ, uM ) → J(ϕ, ũ) as
M → ∞. Under the assumptions introdu
ed above, it will follow that also the valuefun
tions asso
iated with the dis
rete 
ost fun
tionals 
onverge to the value fun
tion ofthe original problem.Fix M ∈ N, and let h := r

M
. Denote by UM

ad the set of dis
rete admissible 
ontrols ofdegree M . De�ne the 
ost fun
tional of degree M by(12) JM
(

ϕ, u
)

:= E

(

Nh−1
∑

n=0

exp(−βnh) · k
(

ξ(n), u(n)
)

· h + g
(

ξ(Nh)
)

)

,

13



where ϕ ∈ D0, u ∈ UM
ad is de�ned on the sto
hasti
 basis (Ω,F , (Ft),P) and (ξ(n)) is adis
rete 
hain of degree M de�ned a

ording to pM and u with initial 
ondition ϕ. Thedis
rete exit time step Nh is given by(13) Nh := min{n ∈ N0 | ξ(n) /∈ Ih} ∧ ⌊ T̄

h
⌋.Denote by τ̃M := h · Nh the exit time for the 
orresponding interpolated pro
esses. Thevalue fun
tion of degree M is de�ned as(14) VM (ϕ) := inf

{

J
(

ϕ, u
) ∣

∣ u ∈ UM
ad

}

, ϕ ∈ D0.We are now in a position to state the result about 
onvergen
e of the minimal 
osts.Proposition 3 and Theorem 2 are 
omparable to Theorems 10.5.1 and 10.5.2 in Kushnerand Dupuis (2001: pp. 292-295).Proposition 3. Assume (A1) � (A5). If the sequen
e (ξ̃M , ũM , W̃M , τ̃M ) of interpolatedpro
esses 
onverges weakly to a limit point (X,R,W, τ), then X is a solution to equation(6) under relaxed 
ontrol (R,W ) with initial 
ondition ϕ, τ is the exit time for X as givenby (2), and we have
JM (ϕ, uM )

M→∞−→ Ĵ(ϕ,R).Proof. The 
onvergen
e assertion for the 
osts is a 
onsequen
e of Proposition 2, the fa
tthat, by virtue of Assumption (A5), the exit time τ̂ de�ned in (10) is Skorohod-
ontinuous,and the de�nition of JM and J (or Ĵ).Theorem 2. Assume (A1) � (A5). Then we have limM→∞ VM (ϕ) = V (ϕ) for all ϕ ∈ D0.Proof. First noti
e that lim infM→∞ VM (ϕ) ≥ V (ϕ) as a 
onsequen
e of Proposition 2.In order to show lim supM→∞ VM (ϕ) ≤ V (ϕ) 
hoose a relaxed 
ontrol (R,W ) so that
Ĵ(ϕ,R) = V (ϕ) by Proposition 1. Given ε > 0, one 
an 
onstru
t a sequen
e of dis
reteadmissible 
ontrols (uM ) su
h that ((ξ̃M , ũM , W̃M , τ̃M )) is weakly 
onvergent, where (ξ̃M ),
(W̃M ), (τ̃M ) are 
onstru
ted as above, and lim supM→∞ |JM (ϕ, uM ) − Ĵ(ϕ,R)| ≤ ε. Theexisten
e of su
h a sequen
e of dis
rete admissible 
ontrols is guaranteed, 
f. the dis
ussionat the end of Se
tion 3. By de�nition, VM (ϕ) ≤ JM (ϕ, uM ) for ea
h M ∈ N. UsingProposition 3 we �nd that

lim sup
M→∞

VM (ϕ) ≤ lim sup
M→∞

JM (ϕ, uM ) ≤ V (ϕ) + ε,and sin
e ε was arbitrary, the assertion follows.
14
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