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Abstract

As a main step in the numerical solution of control problems in continuous time,
the controlled process is approximated by sequences of controlled Markov chains, thus
discretizing time and space. A new feature in this context is to allow for delay in the
dynamics. The existence of an optimal strategy with respect to the cost functional
can be guaranteed in the class of relaxed controls. Weak convergence of the approxi-
mating extended Markov chains to the original process together with convergence of
the associated optimal strategies is established.

1 Introduction

A general strategy for rendering control problems in continuous time accessible to numerical
computation is the following: Taking as a starting point the original dynamics, construct
a family of control problems in discrete time with discrete state space and discretized cost
functional. Standard numerical schemes can be applied to find an optimal control and to
calculate the minimal costs for each of the discrete control problems. The important point
to establish is then whether the discrete optimal controls and minimal costs converge to
the continuous-time limit as the mesh size of the discretisation tends to zero. If that is the
case, then the discrete control problems are a valid approximation to the original problem.

The dynamics of the control problem we are interested in are described by a stochastic
delay differential equation (SDDE). Thus, the future evolution of the dynamics may depend
not only on the present state, but also on the past evolution. For an exposition of the
general theory of SDDEs see Mohammed (1984) or Mao (1997). The development of
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numerical methods for SDDEs has attracted much attention recently, see Buckwar (2000),
Hu et al. (2004) and the references therein. In Calzolari et al. (2003), segmentwise Euler
schemes are used in a non-linear filtering problem for approximating the state process,
which is given by an SDDE. Numerical procedures for deterministic control with delayed
dynamics have already been used in applications, see Boucekkine et al. (2005) for the
analysis of an economic growth model. The algorithm proposed there is based on the
discretisation method studied here, but no formal proof of convergence is given.

Also the mathematical analysis of stochastic control problems with time delay in the
state equation has been the object of recent works, see e.g. Elsanosi et al. (2000) for
certain explicitly available solutions, @Oksendal and Sulem (2001) for the derivation of a
maximum principle and Larssen (2002) for the dynamic programming approach. Although
one can invoke the dynamic programming principle to derive a Hamilton-Jacobi-Bellman
equation for the value function, such an equation will in general be a non-linear differential
equation with infinite-dimensional state space. A different approach to treat stochastic
control problems with delay is based on representing the state equation as an evolution
equation in Hilbert space, see Bensoussan et al. (1992).

The class of control problems is specified in Section 2. In Section 3 we prove the
existence of optimal strategies for those problems in the class of relaxed controls. Section 4
introduces the approximating processes and provides a tightness result. Finally, in Section 5
the discrete control problems are defined and the convergence of the minimal costs and

optimal strategies is shown.

2 The control problem

We consider the control of a dynamical system given by a one-dimensional stochastic
delay differential equation (SDDE) driven by a Wiener process. Both drift and diffusion
coefficient may depend on the solution’s history a certain amount of time into the past.
Let » > 0 denote the delay length, i.e. the maximal length of dependence on the past.
For simplicity, we restrict attention to the case, where only the drift term can be directly
controlled.

Typically, the solution process of an SDDE does not enjoy the Markov property, while
the segment process associated with that solution does. For a real-valued cadlag function
(i.e., right-continuous function with left-hand limits) v living on the time interval [—r, co0)

the segment at time t € [0, 00) is defined to be the function

P [-r,0] = R, Pi(s) == P(t+s).

Thus, the segment process (X¢)¢>0 associated with a real-valued cadlag process (X (t))e>—r
takes its values in Dy := D([—r,0]), the space of all real-valued cadlag functions on the
interval [—r,0]. There are two natural topologies on Dy. The first is the one induced by

the supremum norm, which we denote by ||.||[s- The second is the Skorohod topology of



cadlag convergence (e.g. Billingsley, 1999). The main difference between the Skorohod
and the uniform topology lies in the different evaluation of convergence of functions with
jumps, which appear naturally as initial segments and discretized processes. For continuous
functions both topologies coincide. Similar statements hold for Dy, := D([—r,o0)) and
Do := D([0,00)), the spaces of all real-valued cadlag functions on the intervals [—7, o)
and [0, 00), respectively. The spaces Do, and Do, will always be supposed to carry the
Skorohod topology, while Dy will canonically be equipped with the uniform topology.

Let (I',dr) be a compact metric space, the space of control actions. Denote by b
the drift coefficient of the controlled dynamics, and by o the diffusion coefficient. Let
(W(t))e>0 be a one-dimensional standard Wiener process on a filtered probability space
(Q, F, (Ft)t>0, P) satisfying the usual conditions, and let (u(t));>0 be a control process, i.e.
an (F;)-adapted measurable process with values in I'. Consider the controlled SDDE

(1) dX(t) = b(Xe,u(t)) dt + o(Xy)dW (1), t>0.

The control process u(.) together with its stochastic basis including the Wiener process is
called an admissible control if, for every deterministic initial condition ¢ € Dy, equation
(1) has a unique solution which is also weakly unique. Write U4 for the set of admissible
controls of equation (1). The stochastic basis coming with an admissible control will often
be omitted in the notation.

A solution in the sense used here is an adapted cadlag process defined on the stochastic
basis of the control process such that the integral version of equation (1) is satisfied. Given
a control process together with a standard Wiener process, a solution to equation (1) is
unique if it is indistinguishable from any other solution almost surely satisfying the same
initial condition. A solution is weakly unique if it has the same law as any other solution
with the same initial distribution and satisfying equation (1) for a control process on
a possibly different stochastic basis so that the joint distribution of control and driving
Wiener process is the same for both solutions. Let us specify regularity assumptions to be

imposed on the coefficients b and o

(A1) Cadlag functionals: the mappings

() = [t = by, ), t > 0], P [t a(ty), t > 0]

define measurable functionals Dog X I' — Do and Doy — Do, respectively, where

Doo, Do are equipped with the Borel o-algebras.

(A2) Continuity of the drift coefficient: there is a countable subset of [—r, 0], denoted by
Iy, such that for every ¢ > 0 the function defined by

Do x T'3 (1,7) — b(1,7)

is continuous on D, (t) x I' uniformly in v € I, where

Dey(t) :== {¢ € Do | ¢ is continuous at t + s for all s € I, }.



(A3) Global boundedness: |b|, |o| are bounded by a constant K > 0.

(A4) Uniform Lipschitz condition: There is a constant K, > 0 such that for all ¢, € Dy,
allve

16(@,7) = b(¥,7)| + lo(p) =) < Kille — -

(A5) Ellipticity of the diffusion coefficient: o(¢) > ¢ for all ¢ € Dy, where og > 0 is a

positive constant.

Assumptions (A1) and (A4) on the coefficients allow us to invoke Theorem V.7 in Protter
(2003: p.253), which guarantees the existence of a unique solution to the controlled SDDE
(1) for every piecewise constant control attaining only finitely many different values. The
boundedness Assumption (A3) poses no limitation except for the initial conditions, because
the state evolution will be stopped when the state process leaves a bounded interval.
Assumption (A2) allows us to use “segmentwise approximations” of the solution process,
see the proof of Proposition 1. The assumptions imposed on the drift coefficient b are

satisfied, for example, by

0

b) == F(p(r),- . p(rn), / p(s)w(s)ds) - (),

-T

where 71,...,7, € [-1,0] are fixed, f, g are bounded continuous functions and f is Lips-
chitz, and the weight function w lies in L!([—r,0]).

We consider control problems in the weak formulation (cf. Yong and Zhou, 1999: p. 64).
Given an admissible control u(.) and a deterministic initial segment ¢ € Dy, denote by
X %" the unique solution to equation (1). Let I be a compact interval with non-empty
interior. Define the stopping time Tg:u of first exit from the interior of I before time T > 0

by

2) 7L, = int{t > 0| X?*(t) ¢ int(I)} A T

In order to define the costs, we prescribe a cost rate k: R x I' — [0,00) and a boundary
cost g: R — [0,00), which are (jointly) continuous bounded functions. Let 5 > 0 denote

the exponential discount rate. Then define the cost functional on Dy X U,q by
® e = B( [ enl- k) ds + g(x0)).
0

where 7 = Tgu. Our aim is to minimize J(yp,.). We introduce the value function

(4) V(e) := inf{J(p,u) | u € Usa}, ¢ € Do.

The control problem now consists in calculating the function V' and finding admissible
controls that minimize J. Such control processes are called optimal controls or optimal

strategies.



3 Existence of optimal strategies

In the class U,y of admissible controls it may happen that there is no optimal control
(Kushner and Dupuis, 2001: p.86). A way out is to enlarge the class of controls, allowing
for so-called relaxed controls, so that the existence of an optimal (relaxed) control is guar-
anteed, while the infimum of the costs over the new class coincides with the value function
V as given by (4).

A deterministic relazed control is a positive measure p on the Borel o-algebra B(I' x
[0,00)) such that

(5) p(I'x [0,t]) = t forallt>0.

For each G € B(T'), the function t — p(G x [0,t]) is absolutely continuous with respect
to Lebesgue measure on [0,00) by virtue of property (5). Denote by p(.,G) any Lebesgue
density of p(G % [0,.]). The family of densities p(.,G), G € B(I'), can be chosen in a Borel
measurable way such that p(¢,.) is a probability measure on B(I") for each ¢t > 0, and

p(B) = / /1{(7,t)eB} p(t,dvy)dt for all B € B(I' x [0, 00)).
0 r

Denote by R the space of deterministic relaxed controls which is equipped with the weak-
compact topology induced by the following notion of convergence: a sequence (pp)nen of

relaxed controls converges to p € R if

/ 91, t) dpn(v,t) "= / 9(v,t) dp(v,t) for all g € C(T x [0,00)),
I'x[0,00) I'x[0,00)

where C.(I'x [0, c0)) is the space of all real-valued continuous functions on I'x [0, c0) having
compact support. Under the weak-compact topology, R is a (sequentially) compact space.

Suppose (pn)nen is a convergent sequence in R with limit p. Given 7' > 0, let py,r
denote the restriction of p, to the Borel g-algebra on I' x [0,T], and denote by pr the
restriction of p to B(I' x [0,T1]). Then pyp, n € N, pp are all finite measures, and (py,r)
converges weakly to pr.

A relazed control process is an R-valued random variable R such that the mapping
w +— R(G x [0,t])(w) is Fi-measurable for all ¢ > 0, G € B(I'). For a relaxed control

process R equation (1) takes on the form

(6) ax(t) = ( /F b(Xp) Rt ) )t + o(X)dW(1), >0,

where (R(t,.))s>0 is the family of derivative measures associated with R. The family
(R(t,.)) can be constructed in a measurable way (cf. Kushner, 1990:p.52). A relaxed
control process together with its stochastic basis including the Wiener process is called

admissible relaxed control if, for every deterministic initial condition, equation (6) has



a unique solution which is also weakly unique. Any ordinary control process u can be

represented as a relaxed control process by setting

RB) = [ [ Lembu(@di Be BT« .0,

where 0, is the Dirac measure at v € I
Denote by Uy,q the set of all admissible relaxed controls. Instead of (3) we define a cost

functional on Dy X Uyyg by

A~

(7)  J(e,R):= E (/OT/FeXp(—ﬁs) . k‘(X‘P’R(S),W) R(s,dvy)ds + g(X‘p’R(T))> ,

where X#® is the solution to equation (6) with initial segment ¢ and 7 is defined in

analogy to (2). Instead of (4) as value function we have
(8) V() = inf{J(p, R) | R € Usa}, ¢ € Do.

The cost functional .J depends only on the joint distribution of the solution X#% and the
underlying control process R, since 7, the time horizon, is a deterministic function of the
solution. The distribution of X% in turn, is determined by the initial condition ¢ and
the joint distribution of the control process and its accompanying Wiener process. Letting
the time horizon vary, we may regard J as a function of the law of (X, R, W, T), that is, to
be defined on a subset of the set of probability measures on B(Duy X R X Do x [0, 00]).
The domain of definition of J is determined by the class of admissible relaxed controls for
equation (6), the definition of the time horizon and the distributions of the initial segments
Xo.

The idea in proving existence of an optimal strategy is to check that j(cp, .) is a (se-
quentially) lower semi-continuous function defined on a (sequentially) compact set. It then
follows from a theorem by WeierstraR (cf. Yong and Zhou, 1999: p. 65) that J(i,.) attains
its minimum at some point of its compact domain. The following proposition gives the
analogue of Theorem 10.1.1 in Kushner and Dupuis (2001: pp. 271-275) for our setting. We
present the proof in detail, because the identification of the limit process is different from

the classical case.

Proposition 1. Assume (A1)—-(A4). Let (R™,W™))nen be any sequence of admissible re-
lazed controls for equation (6), defined on a filtered probability space (2, F™, (Fi")t>0, Pn)-
Let X™ be a solution to equation (6) under control (R™, W™) with deterministic initial con-
dition ¢" € Dy, and assume that (™) tends to ¢ uniformly for some ¢ € Dy. For each
n €N, let 7" be an (F")-stopping time. Then ((X™, R™, W™, 7"))pen is tight.

Denote by (X, R,W,T) a limit point of the sequence ((X", R™, W™ 7))pen. Define
a filtration by Fy:= o(X(s), R(s), W(s), Tl{r<sy, s < t), t > 0. Then W(.) is an (F)-
adapted Wiener process, T is an (F;)-stopping time, (R, W) is an admissible relazed control,

and X is a solution to (6) under (R, W) with initial condition .



Proof. Tightness of (X") follows from the Aldous criterion (cf. Billingsley, 1999: pp. 176-
179): given n € N, any bounded (F}')-stopping time v and § > 0 we have

E.(|X"(v+08) - X"W)[* | ) < 2K%(6+1)

as a consequence of Assumption (A3) and the It6 isometry. Notice that we have X™(0) —
X (0) as n — oo by hypothesis. The sequences (R™) and (7") are tight, because the value
spaces R and [0,00], respectively, are compact. The sequence (W™) is tight, since all
W™ induce the same measure. Finally, componentwise tightness implies tightness of the
product (cf. Billingsley, 1999: p. 65).

By abuse of notation, we do not distinguish between the convergent subsequence and the
original sequence and we assume that ((X", R", W™, 7")) converges weakly to (X, R, W, 7).
The random time 7 is an (F;)-stopping time by construction of the filtration. Likewise,
R is (F;)-adapted by construction, and it is indeed a relaxed control process, because
R(t,T") = t, t > 0, P-almost surely by weak convergence of the relaxed control processes
(R™) to R. The process W has Wiener distribution and continuous paths with probability
one, being the limit of standard Wiener processes. To check that W is an (F;)-Wiener
process, we use the martingale problem characterization of Brownian motion. To this end,
for g € C.(I" x [0,00)), p € R define the pairing

(9,p)(t) := /F [Ot]g(%é‘)dp(v,s), t>0.

Notice that real-valued continuous functions on R can be approximated by functions of

the form
R3p— I:I((gj,p)(ti), (Z,j) S Np X Nq) € R,

where p, ¢ are natural numbers, {¢; | i € N,} C [0,00), and H, gj, j € Ny, are suitable
continuous functions with compact support and Ny := {1,... N} for any N € N. Let
t >0, ty,...,t, € [0,t], h >0, g1,...,94 be functions in C.(I' x [0,00)), and H be a
continuous function of 2p 4+ p-q + 1 arguments with compact support. Since W" is an
(F')-Wiener process for each n € N, we have for all f € C%(R)

E, (H(Xn(tz)v (gj7 Rn)(ti)’ Wn(ti)a Tn]—{T"St]n (Z,]) € Np X Nq)

t+h2
-(f(W”(tJrh))—f(W”(t))—% g;;(wn(s))ds)) = o

t

By the weak convergence of (X", R", W™, 7"))pen to (X, W, R, T) we see that

E(H (X (1), (95, B)(t:), W (), T o<y, (i) € Ny x Ny)
t+h 9
-(f(W(t+h))—f(W(t))—% %(W(s))ds)) = 0

t



for all f € C2(R). As H, p, q, t;, g; vary over all possibilities, the corresponding random
variables H (X (;), (g5, R)(t:), W (t:), T1{r<¢y, (i,5) € Np x Ny) induce the o-algebra F;.
Since t > 0, h > 0 were arbitrary, it follows that

013 G

is an (F;)-martingale for every f € C%(R). Consequently, W is an (JF;)-Wiener process.

°"\
~

FW(t) - s, t>0,

[\ \

It remains to show that X solves equation (6) under control (R, W) with initial condi-
tion ¢. Notice that X has continuous paths on [0, c0) P-almost surely, because the process
(X (t))¢>0 is the weak limit in Dy, of continuous processes. Fix T > 0. We have to check
that P-almost surely

X(t) =¢(0) + /0 /Fb(Xs,’y) R(s,dv)ds + /0 o(Xs)dW (s) for all t € [0,T].

By virtue of the Skorohod representation theorem (cf. Billingsley, 1999:p.70) we may
assume that the processes (X", R",W"), n € N, are all defined on the same probability
space (2, F,P) as (X, R, W) and that convergence of ((X", R",W")) to (X, R,W) is P-
almost sure. Since X, W have continuous paths on [0, 7] and (¢") converges to ¢ in the
uniform topology, one finds Q € F with P(Q) = 1 such that for all w € Q

sup ‘X”(t)(w)—X(t)(w)‘ == 0, sup ‘W" (W) — W (t)(w) n—oe 0,
te[-rT] te[—r,T]

and also R"(w) — R(w) in R. Let w € Q. We first show that

// b(X3 (W), ) R (s, dv)(w ’Hoo// R(s,dy)(w) ds

uniformly in ¢ € [0,7]. As a consequence of Assumption (A4), the uniform convergence of

the trajectories on [—r, T] and property (5) of the relaxed controls, we have

/ (X2 (@),7) — b(Xa(w), )| dR" (7, 5)(w) "5° 0.
I'x[0,T]

By Assumption (A2), we find a countable set A, C [0,T] such that the mapping (v, s) —
b(Xs(w), ) is continuous in all (y,s) € I' x ([0,7] \ A,). Since A, is countable we have
R(w)(I'x A,) = 0. Hence, by the generalized mapping theorem (cf. Billingsley, 1999: p. 21),

we obtain
/ b(Xs(w),7) AR (7, 8)(w) "5 / b(Xo(w),7) dR(, 5)(w).
'x[0,] I'x[0,t]

The convergence is again uniform in ¢ € [0,77], as b is bounded and R", n € N, R are all

positive measures with mass 7" on I" x [0, T7].



A~

Denote by (X(t))i>—, the unique solution to equation (6) under control (R, W) with

initial condition . If we can show that

(9) sup |X™(t) — X(t)] "= 0 in probability P,

t€[0,T]
then X will be indistinguishable from X on [—r, T] and will solve (6) as well. Let us define
cadlag processes C™, n € N, on [0, 00) by

€)= PO+ [ WX AR (s), 20,
I'x[0,t]
and define C' in analogy to C™. We already know that C"(t) — C(t) holds uniformly over
t € [0,T] for any T > 0 with probability one. Define operators F™, n € N, mapping cadlag
processes to cadlag processes by

Y(t+s)(w) ift> —s,

FrY)(0)(w) = o | [-r,0]3 5 - 120, wen,
O (t+s) else

and define F' in the same way as F"™. Assumption (A4) and the uniform convergence of

(¢™) to @ imply that F™(X) converges to F'(X) uniformly on compacts in probability

convergence in ucp). Observing that X™ solves
( g D) g
t
X"t) = C™t) + / F*"(X"™)(s—)dW"(s), t>0,
0

and analogously for X, Theorem V.15 in Protter (2003: p. 265) asserts that (X”) converges
to X in ucp and (9) follows. O

If the time horizon were deterministic, then the existence of optimal strategies in the
class of relaxed controls would be clear. Given an initial condition ¢ € Dy, one would select
a sequence ((R™, W"™))en such that (J (g, R™)) converges to its infimum. By Proposition 1,
a suitable subsequence of ((R™, W™)) and the associated solution processes would converge
weakly to (R, W) and the associated solution to equation (6). Taking into account (7), the
definition of the costs, this in turn would imply that J(p,.) attains its minimum value at
R or, more precisely, (X, R, W).

A similar argument is still valid, if the time horizon depends continuously on the paths

with probability one under every possible solution. That is to say, the mapping
(10) 7 Do — [0, 00], #(¢) :== inf{t > 0| (t) ¢int(I)} AT

is Skorohod continuous with probability one under the measure induced by any solution
X%F R any relaxed control. This is indeed the case if the diffusion coefficient o is bounded
away from zero as required by Assumption (A5).

By introducing relaxed controls, we have enlarged the class of possible strategies. The

infimum of the costs, however, remains the same for the new class. This is a consequence of



the fact that stochastic relaxed controls can be arbitrarily well approximated by piecewise
constant ordinary stochastic controls which attain only a finite number of different control
values. A proof of this assertion is given in Kushner (1990:pp.59-60) in case the time
horizon is finite, and extended to the case of control up to an exit time in Kushner and
Dupuis (2001: pp. 282-286). Notice that nothing hinges on the presence or absence of delay

in the controlled dynamics. Let us summarize our findings.

Theorem 1. Assume (A1) - (A5). Given any deterministic initial condition ¢ € Dy, the
relaxed control problem determined by (6) and (7) possesses an optimal strategqy, and the

minimal costs are the same as for the original control problem as defined by (1) and (3).

4 Approximating chains

In order to construct finite-dimensional approximations to our control problem, we dis-
cretize time and state space. Denote by h > 0 the mesh size of an equidistant time
discretization starting at zero. Let Sp := VhZ be the corresponding state space, and
set I, := I N Sy. Notice that S} is countable and I is finite. Let Ay : R — S be a
round-off function. We will simplify things even further by considering only mesh sizes
h = 4 for some M € N, where r is the delay length. The number M will be referred to
as discretization degree.

The admissible controls for the finite-dimensional control problems correspond to piece-
wise constant processes in continuous time. A time-discrete process u = (u(n))nen, on
(Q,F,P) with values in T is a discrete admissible control of degree M if u takes on only
finitely many different values in I" and u(n) is F,p-measurable for all n € Ny. Denote by
(a(t))t>0 the piecewise constant cadlag interpolation to w.

We call a time-discrete process (£(n))nef—n,....oyun on (2, F, P) a discrete chain of de-
gree M if (£(n)) takes its values in Sy, and £(n) is F,p-measurable for all n € Ny. In analogy
to @, write (£(t))¢>_, for the cadlag interpolation to the discrete chain (€(n))nef—m,...03uN-
We denote by & the Dy-valued segment of £(.) at time ¢ > 0.

Let ¢ € Dy be a deterministic initial condition, and suppose we are given a sequence of
discrete admissible controls (u™)ren, that is uM
M on a stochastic basis (Qpr, FM, (FM),Pys) for each M € N. In addition, suppose

that the sequence (™) of interpolated discrete controls converges weakly to some relaxed

is a discrete admissible control of degree

control R. We are then looking for a sequence approximating the solution X of equation
(1) under control (R, W) with initial condition ¢, where the Wiener process W has to be
constructed from the approximating sequence.

Given M-step or extended Markov transition functions p™ : S,]LV[+1 x ' x S, — [0,1],
M € N, we define a sequence of approrimating chains associated with ¢ and (uM) as a
family (£M)aren of processes such that &M is a discrete chain of degree M defined on the
same stochastic basis as ™, provided the following conditions are fulfilled for h = hjp;:= 7

tending to zero:

10



(i) Initial condition: €M (n) = Ap(@(nh)) for all n € {—M, ..., 0}.
(ii) Extended Markov property: for all n € Ny, all x € S,
M+ =z | FY) = pM(E(n—-M),....M(n),uM(n), ).
(iii) Local consistency with the drift coefficient:
pem(n) o= Ear(§M(n41) — M (n) | Fi)

= heb(&pou () +o(h) = b by (&, ut ().
(iv) Local consistency with the diffusion coefficient:
By (6" (1) = €Y (n) — pexe (m)*| F3h) = h-0*(E3f) +o(h) =: h- 7 (EL).
(v) Jump heights: there is a positive number N, independent of M, such that

sup [€¥ (n + 1) — €Y (n)] < Nvhar

It is straightforward, under Assumptions (A3) and (A5), to construct a sequence of ex-
tended transition functions such that the jump height and the local consistency conditions
are fulfilled.

We will represent the interpolation §~M as a solution to an equation corresponding to
equation (1) with control process @ and initial condition . Define the discrete process
(LM (n))pen, by LM (0):= 0 and

M) = +Zh (€M, uM @) + LM(n), neN,

Observe that LM is a martingale in discrete time with respect to the filtration (FM).
Setting

L%J_l t B
> hebp(E,aM(ih)) — / o(EM aM(s))ds,  t>0,
=0 0

the interpolated process EM can be represented as solution to

&) = p0) + [ @) ds + LN + . ez
For the error term we have
1)1 )
w(eM @) < hEM(|bh(£%,uM<i))—b( s M(z))l) + K-h
1=0

hlf] ~ -
n / Bar ([6(E) 3 (5)) — b(EM, 3" (5))]) ds,

11



which tends to zero as M — oo uniformly in ¢ € [0,7] by Assumptions (A2), (A3),
dominated convergence and the defining properties of (¢M). The discrete-time martingale
LM can be rewritten as discrete stochastic integral. Define (W™ (n)),en, by WM(0) :=0

and

—_

WM (n) .= z_: (gM)(LM(H—l)—LM(i)), n € N.
i=0 9\Sih

Using the piecewise constant interpolation WM of WM the process §~M can be expressed

as solution to

t

(1) 0 =)+ [ @) ds+ [ (@ )i (s) + <)

0

for t > 0, where the error terms (¢27) converge to zero as (¢}) before.

We are now prepared for the convergence result, which should be compared to Theorem
10.4.1 in Kushner and Dupuis (2001: p.290). The proof is similar to that of Proposition 1.

We merely point out the main differences.

Proposition 2. Assume (A1) - (A5). For each M € N, let 7™ be a stopping time with
respect to the o-algebra generated by (€M (s),aM (s), WM (s)), s < t. If (') converges
to @ in the uniform topology, then ((€M,RM WM M)\ cn is tight. For any limit point
(X, R,W,T) define

Fii=0(X(s),R(s), W(s),T1{r<yy, s <), t>0.

Then W is an (F;)-adapted Wiener process, T is an (Fy)-stopping time, (R, W) is an

admissible relazed control, and X is a solution to (6) under (R, W) with initial condition
®.
Proof. For the first part, the only difference is the proof of tightness for (WM ) and the

identification of the limit points. We calculate the order of convergence for the discrete-time

previsible quadratic variations of (W™M):

n—1 -
) = SR ) = WP F) = o)y
= i=0 77 \Sin

for all M € N, n € Ny. Taking into account Assumption (A5) and the definition of
the time-continuous processes WM, we see that <WM> tends to Idjg ) in probability
for M — oo. By Theorem VIII.3.11 of Jacod and Shiryaev (1987:p.432) we conclude
that (WM ) converges weakly to a standard Wiener process W. That W has independent
increments with respect to the filtration (F;) can be seen by considering the first and
second conditional moments of the increments of WM for each M € N and applying the
conditions on local consistency and the jump heights of (¢M).

By virtue of Skorohod’s theorem, we may again work under P-almost sure convergence.

The remaining slightly different part is the identification of X as solution to equation (6)

12



under (R, W) with initial condition ¢. Notice that X is continuous on [0, c0) because of the
condition on the jumps of the ¢V, cf. Theorem 3.10.2 in Ethier and Kurtz (1986: p. 148).
Let us define cadlag processes CM | C on [0,00) by

cMt) .= M(0) + /tb(zw,ﬂM(s)) ds + (1), t>0,
0

C(t) == ¢(0) + /F><[0 ] b(Xs,v)dR(7,s), t>0.

We then infer that CM — C in ucp as before. Define operators FM, mapping cadlag

processes to cadlag processes, by

Y (h| L]+ ift > —
Y(hlil+s) ift> s, t>0,

~ ) -

(L%j ) else

and define F as in the proof of Proposition 1. Denote by (X (t))s>_, the unique solution to

FMY)(t):= o | [-r,0] 25—

equation (6) under control (R, W) with initial condition ¢. Assumption (A4), the uniform
convergence of (éé\/[) to ¢ and the right-continuity of ¢ imply that FM(X) converges to

F(X') in ucp. Notice that X is continuous on [0,00) as solution to (6). §~M solves
¢
&1 = M+ [ PYEE a6, ez,
0

where we have taken a continuous martingale interpolation W of W instead of WM as
integrator in the stochastic integral, which yields an identical result since the integrand is
a pure jump process with jump times at kh, k € Ny. (WM) also converges to W in ucp,
such that by Exercise 1V.4.14 in Revuz and Yor (1999) convergence in the semimartin-
gale topology follows. We conclude again by Theorem V.15 in Protter (2003) that (X™)
converges to X in ucp and that X and X are indistinguishable. O

5 Convergence of the minimal costs

The objective behind the introduction of sequences of approximating chains was to obtain
a device for approximating the value function V' of the original problem. The idea now is to
define, for each discretization degree M € N, a discrete control problem with cost functional
JM 50 that JM is an approximation of the cost functional J of the original problem in the
following sense: Given an initial segment ¢ € Dy and a sequence of discrete admissible
controls (uM) such that (@) weakly converges to @, we have JM (o, uM) — J(p,a) as
M — oo. Under the assumptions introduced above, it will follow that also the value
functions associated with the discrete cost functionals converge to the value function of
the original problem.

Fix M € N, and let h:= 7;. Denote by Z/{M the set of discrete admissible controls of
degree M. Define the cost functional of degree M by

Nj,—1

(12) JM(p,u) = E ( D " exp(=pnh) - k(&(n),u(n)) - h + g(fuvh))) :

n=0

13



where ¢ € Dy, u € UM is defined on the stochastic basis (Q,F, (F),P) and (£(n)) is a
discrete chain of degree M defined according to p™ and u with initial condition . The

discrete exit time step Ny is given by
(13) Nj, = min{n € Ng | £(n) ¢ I} A L]

Denote by 7™ := h - N}, the exit time for the corresponding interpolated processes. The

value function of degree M is defined as
(14) VM (p) = inf{J (o, u) ! welMy e Dy

We are now in a position to state the result about convergence of the minimal costs.
Proposition 3 and Theorem 2 are comparable to Theorems 10.5.1 and 10.5.2 in Kushner
and Dupuis (2001: pp. 292-295).

Proposition 3. Assume (A1)—-(A5). If the sequence (EM,ﬂM,WM,%M) of interpolated
processes converges weakly to a limit point (X, R, W, T), then X is a solution to equation
(6) under relazed control (R, W) with initial condition @, T is the exit time for X as given
by (2), and we have
T (o, uM) M (e, R).

Proof. The convergence assertion for the costs is a consequence of Proposition 2, the fact
that, by virtue of Assumption (A5), the exit time 7 defined in (10) is Skorohod-continuous,
and the definition of J™ and J (or J). O

Theorem 2. Assume (A1)~ (A5). Then we have limys_.oo VM () = V() for all ¢ € Dy.

Proof. First notice that liminfys ... VM(¢) > V(p) as a consequence of Proposition 2.
In order to show limsup,, .. V¥ (¢) < V(p) choose a relaxed control (R, W) so that
J(¢, R) = V(g) by Proposition 1. Given € > 0, one can construct a sequence of discrete
admissible controls (u™) such that (€M, a™, W™ 7)) is weakly convergent, where (€M),
(WM), (M) are constructed as above, and limsup,, . [JM (¢, uM) — J(p, R)| < e. The
existence of such a sequence of discrete admissible controls is guaranteed, cf. the discussion
at the end of Section 3. By definition, VM (p) < JM(p,u) for each M € N. Using

Proposition 3 we find that

limsup VM (¢) < limsup JY (p,uM) < V() +e¢,

M—oco M —o0 o

and since € was arbitrary, the assertion follows. O

14



References

Allain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K. Mitter. Represen-
tation and Control of Infinite-Dimensional Systems, volume 1 of Systems € Control.
Birkh&user, Boston, 1992.

Patrick Billingsley. Conwvergence of probability measures. John Wiley & Sons, New York,
2nd edition, 1999.

Raouf Boucekkine, Omar Licandro, Luis A. Puch, and Fernando del Rio. Vintage capital
and the dynamics of the AK model. Journal of Economic Theory, 120:39-72, 2005.

Evelyn Buckwar. Introduction to the numerical analysis of stochastic delay differential
equations. J. Comput. Appl. Math., 125(1-2):297-307, 2000.

Antonella Calzolari, Patrick Florchinger, and Giovanna Nappo. Convergence in nonlin-
ear filtering for stochastic delay systems. Technical report, Universita di Roma La
Sapienza, 2003.

Ismail Elsanosi, Bernt @ksendal, and Agnes Sulem. Some solvable stochastic control prob-
lems with delay. Stochastics and Stochastic Reports, 71(1-2):69-89, 2000.
Stewart N. Ethier and Thomas G. Kurtz. Markov Processes. Characterization and Con-

vergence. John Wiley & Sons, New York, 1986.

Yaozhong Hu, Salah-Eldin A. Mohammed, and Feng Yan. Discrete-time approximations of
stochastic delay equations: the Milstein scheme. Ann. Probab., 32(1A):265-314, 2004.

Jean Jacod and Albert N. Shiryaev. Limit Theorems for Stochastic Processes, volume 288
of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1987.

Harold J. Kushner. Weak Convergence Methods and Singularly Perturbed Stochastic Control
and Filtering Problems, volume 3 of Systems & Control. Birkhaduser, Boston, 1990.

Harold J. Kushner and Paul Dupuis. Numerical Methods for Stochastic Control Problems
in Continuous time. Springer, New York, 2nd edition, 2001.

Bjogrnar Larssen. Dynamic programming in stochastic control of systems with delay.
Stochastics and Stochastics Reports, 74(3-4):651-673, 2002.

Xuerong Mao. Stochastic Differential Equations and their Applications. Horwood, Chich-
ester, 1997.

Salah-Eldin A. Mohammed. Stochastic functional differential equations. Pitman Publish-
ing, London, 1984.

Bernt @ksendal and Agnés Sulem. A maximum principle for optimal control of stochastic
systems with delay, with applications to finance. In J.L. Menaldi, E. Rofman, and
A. Sulem, editors, Optimal Control and PDE., pages 64-79. 10S Press, Amsterdam,
2001.

Philip E. Protter. Stochastic Integration and Differential Equations. Springer, Berlin, 2nd
edition, 2003.

15



Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of
Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 3rd edition, 1999.

Jiongmin Yong and Xun Yu Zhou. Stochastic Controls. Hamiltonian Systems and HJB
FEquations. Springer, New York, 1999.

16



SFB 649 Discussion Paper Series

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

"Nonparametric Risk Management with Generalized
Hyperbolic Distributions" by Ying Chen, Wolfgang Hardle and
Seok-0Oh Jeong, January 2005.

"Selecting Comparables for the Valuation of the European
Firms" by Ingolf Dittmann and Christian Weiner, February
2005.

"Competitive Risk Sharing Contracts with One-sided
Commitment" by Dirk Krueger and Harald Uhlig, February
2005.

"Value-at-Risk Calculations with Time Varying Copulae" by
Enzo Giacomini and Wolfgang Hardle, February 2005.

"An Optimal Stopping Problem in a Diffusion-type Model with
Delay" by Pavel V. Gapeev and Markus Reif3, February 2005.
"Conditional and Dynamic Convex Risk Measures" by Kai
Detlefsen and Giacomo Scandolo, February 2005.

"Implied Trinomial Trees" by Pavel Cizek and Karel
Komorad, February 2005.

"Stable Distributions"” by Szymon Borak, Wolfgang Hardle
and Rafal Weron, February 2005.

"Predicting Bankruptcy with Support Vector Machines" by
Wolfgang Hardle, Rouslan A. Moro and Dorothea Schafer,
February 2005.

"Working with the XQC" by Wolfgang Hardle and Heiko
Lehmann, February 2005.

"FFT Based Option Pricing" by Szymon Borak, Kai Detlefsen
and Wolfgang Hardle, February 2005.

"Common Functional Implied Volatility Analysis" by Michal
Benko and Wolfgang Hardle, February 2005.

"Nonparametric Productivity Analysis" by Wolfgang Hardle
and Seok-Oh Jeong, March 2005.

"Are Eastern European Countries Catching Up? Time Series
Evidence for Czech Republic, Hungary, and Poland" by Ralf
Briggemann and Carsten Trenkler, March 2005.

"Robust Estimation of Dimension Reduction Space" by Pavel
Cizek and Wolfgang Hardle, March 2005.

"Common Functional Component Modelling" by Alois Kneip
and Michal Benko, March 2005.

"A Two State Model for Noise-induced Resonance in Bistable
Systems with Delay" by Markus Fischer and Peter Imkeller,
March 2005.

SFB 649, Spandauer Straf3e 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".




018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

"Yxilon - a Modular Open-source Statistical Programming
Language" by Sigbert Klinke, Uwe Ziegenhagen and Yuval
Guri, March 2005.

"Arbitrage-free Smoothing of the Implied Volatility Surface"
by Matthias R. Fengler, March 2005.

"A Dynamic Semiparametric Factor Model for Implied
Volatility String Dynamics" by Matthias R. Fengler, Wolfgang
Hardle and Enno Mammen, March 2005.

"Dynamics of State Price Densities" by Wolfgang Hardle and
Zdenék Hlavka, March 2005.

"DSFM fitting of Implied Volatility Surfaces" by Szymon
Borak, Matthias R. Fengler and Wolfgang Hardle, March
2005.

"Towards a Monthly Business Cycle Chronology for the Euro
Area" by Emanuel Ménch and Harald Uhlig, April 2005.
"Modeling the FIBOR/EURIBOR Swap Term Structure: An
Empirical Approach" by Oliver Blaskowitz, Helmut Herwartz
and Gonzalo de Cadenas Santiago, April 2005.

"Duality Theory for Optimal Investments under Model
Uncertainty" by Alexander Schied and Ching-Tang Wu, April
2005.

"Projection Pursuit For Exploratory Supervised Classification"
by Eun-Kyung Lee, Dianne Cook, Sigbert Klinke and Thomas
Lumley, May 2005.

"Money Demand and Macroeconomic Stability Revisited" by
Andreas Schabert and Christian Stoltenberg, May 2005.

"A Market Basket Analysis Conducted with a Multivariate
Logit Model" by Yasemin Boztug and Lutz Hildebrandt, May
2005.

"Utility Duality under Additional Information: Conditional
Measures versus Filtration Enlargements" by Stefan
Ankirchner, May 2005.

"The Shannon Information of Filtrations and the Additional
Logarithmic Utility of Insiders" by Stefan Ankirchner, Steffen
Dereich and Peter Imkeller, May 2005.

"Does Temporary Agency Work Provide a Stepping Stone to
Regular Employment?" by Michael Kvasnicka, May 2005.
"Working Time as an Investment? - The Effects of Unpaid
Overtime on Wages, Promotions and Layoffs" by Silke
Anger, June 2005.

"Notes on an Endogenous Growth Model with two Capital
Stocks II: The Stochastic Case" by Dirk Bethmann, June
2005.

"Skill Mismatch in Equilibrium Unemployment" by Ronald
Bachmann, June 2005.

SFB 649, Spandauer Straf3e 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".




035

036

037

038

"Uncovered Interest Rate Parity and the Expectations
Hypothesis of the Term Structure: Empirical Results for the
U.S. and Europe" by Ralf Briggemann and Helmut
Litkepohl, April 2005.

"Getting Used to Risks: Reference Dependence and Risk
Inclusion" by Astrid Matthey, May 2005.

"New Evidence on the Puzzles. Results from Agnostic
Identification on Monetary Policy and Exchange Rates." by
Almuth Scholl and Harald Uhlig, July 2005.

"Discretisation of Stochastic Control Problems for Continuous
Time Dynamics with Delay" by Markus Fischer and Markus
Reiss, August 2005.

SFB 649, Spandauer Straf3e 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".




	Frontpage 38.pdf
	SFB649DP2005-038xxxx.pdf
	Frontpage 38.pdf
	SFB649DP2005-038xxx.pdf
	Endpage 38.pdf




