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Abstract

We introduce a Nelson-Siegel type interest rate term structure model with the

underlying yield factors following autoregressive processes revealing time-varying

stochastic volatility. The factor volatilities capture risk inherent to the term struc-

ture and are associated with the time-varying uncertainty of the yield curve’s level,

slope and curvature. Estimating the model based on U.S. government bond yields

applying Markov chain Monte Carlo techniques we find that the yield factors and

factor volatilities follow highly persistent processes. Using the extracted factors

to explain one-year-ahead bond excess returns we observe that the slope and cur-

vature yield factors contain the same explanatory power as the return-forecasting

factor recently proposed by Cochrane and Piazzesi (2005). Moreover, we identify
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slope and curvature risk as important additional determinants of future excess

returns. Finally, we illustrate that the yield and volatility factors are closely con-

nected to variables reflecting macroeconomic activity, inflation, monetary policy

and employment growth. It is shown that the extracted yield curve components

have long-term prediction power for macroeconomic fundamentals.

Key words: Term Structure Modelling; Yield Curve Risk; Stochastic Volatility;

Factor Models; Macroeconomic Fundamentals

JEL classification: C5, E4, G1

1 Introduction

Much research in financial economics has been devoted to the modelling and forecast-

ing of interest rates and the term structure thereof. Popular theoretical approaches to

term structure modelling are equilibrium models as proposed by Vasicek (1977), Cox,

Ingersoll, and Ross (1985), Duffie and Kan (1996), Dai and Singleton (2002) or Duffee

(2002) and no-arbitrage models in the line of Hull and White (1990) or Heath, Jarrow,

and Morton (1992). Though these approaches are successful in capturing the term

structure over the cross-section of maturities, they typically reveal a rather limited

performance when they are used to dynamically predict future interest rates. Diebold

and Li (2006) employ the Nelson and Siegel (1987) exponential components framework

to dynamically model the yield curve in terms of three underlying factors associated

with its level, slope, and curvature. They document that it provides significantly better

out-of-sample forecasts than equilibrium factor models and competing time series ap-

proaches based on forward rates, yield levels or yield changes. Diebold, Rudebusch, and

Aruoba (2006) illustrate causalities between the Nelson-Siegel factors and macroeco-

nomic fundamentals which can be exploited for predictions of the latter. Alternatively,

Cochrane and Piazzesi (2005) use a single ”tent-shaped” linear combination of forward

rates to predict one-year bond excess returns. They show that the so-called return

forecasting factor significantly outperforms the predictive power of the level, slope and

curvature factors stemming from the first three principal components extracted from

the bond return covariance matrix (see Litterman and Scheinkman (1991)). Cochrane

and Piazzesi argue that the return-forecasting factor contains information which is not

easily captured by level, slope and curvature term structure factors.

Building on this literature, the objective of this paper is twofold: Firstly, we aim to

empirically close the gap between the factor based term structure models proposed by

Diebold and Li (2006) and Cochrane and Piazzesi (2005) and to study the relationships
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between Nelson-Siegel yield curve factors and the Cochrane-Piazzesi return-forecasting

factor. Secondly, we extend the dynamic Nelson-Siegel framework in order to capture

time-varying interest rate risk. We study the importance of the latter for explaining

future excess returns and link it to macroeconomic fundamentals. Specifically, we

address the following three research questions: (i) Do Nelson-Siegel yield factors and

the Cochrane-Piazzesi factor have the same explanatory power for future bond excess

returns or do they capture different pieces of yield curve information? (ii) To which

extent reveal the yield curve factors time-varying volatility and gives the latter rise to

risk premia in future bond excess returns? (iii) How are the factor volatilities linked to

macroeconomic fundamentals and what are their short-run and long-run relations?

Stochastic volatility in the Nelson-Siegel factors capture uncertainty in the yield

curve shape. Empirical evidence suggests that changes in bond return premia over

time are related to time-varying changes in the riskiness of bonds. Using GARCH-in-

Mean models this is confirmed by Engle, Ng, and Rothschild (1990) and Engle and

Ng (1993) showing that the return premium of a Treasury bill is driven by the time-

varying risk premium of an equally weighted bill (market) portfolio which depends

on its own conditional excess return variance. Whereas Engle and Ng (1993) analyze

the influences of a changing bill market volatility on the shape of the yield curve, we

focus on the importance of these effects for the predictability of bond return premia.

This task is performed by extending the dynamic version of the Nelson and Siegel

(1987) model proposed by Diebold and Li (2006) to allow the level, slope and curvature

factors revealing time-varying volatility. Expressing the model in a state space form,

we assume that the (unobservable) yield factors are driven by autoregressive processes

with stochastic volatility. The stochastic factor volatilities reflect the bond market

volatility in terms of the risk inherent to the shape of the yield curve and constitute

a parsimonious alternative to a high-dimensional GARCH or SV model for the yields

themselves. Hence, while Engle and Ng (1993) approximate the bill market volatility in

terms of the conditional variance of a bill market portfolio’s excess return, we extract

volatility components from the yield curve itself. This allows us to link the approach by

Engle and Ng (1993) with those by Diebold and Li (2006) and Cochrane and Piazzesi

(2005).

Following Cochrane and Piazzesi (2005) we use monthly unsmoothed Fama-Bliss

zero yields covering a period from January 1964 through December 2003 with maturities

of up to five years. This allows us to directly compare our findings with those of

Cochrane and Piazzesi (2005). The yield factors and factor volatilities are extracted

from the data using Markov chain Monte Carlo (MCMC) methods and are used in
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rolling window regressions of one-year-ahead excess returns.

Based on our empirical study, we can summarize the following main findings: (i)

The slope and curvature yield factors describe the time-variation in future one-year-

ahead bond excess returns with an R2 of about 36 percent clearly rejecting the expecta-

tions hypothesis of the term structure of interest rates. Hence, whereas Cochrane and

Piazzesi (2005) conclude that their ”tent-shaped” return forecasting factor has more

prediction power than the level, slope and curvature factors stemming from principal

components based on the yield covariance matrix, we find that this conclusion does not

hold when the corresponding factors are extracted from a dynamic Nelson-Siegel model.

Rather, we find that particularly the slope and curvature factor reveal a similar ex-

planatory power as the Cochrane-Piazzesi return forecasting factor. (ii) We find strong

evidence for persistent stochastic volatility dynamics in the Nelson-Siegel factors. It

turns out that risks inherent to the shape of the yield curve as represented by the

extracted slope and curvature volatility have explanatory power for future yearly bond

excess returns beyond Cochrane and Piazzesi’s return-forecasting factor. In particular,

including the volatility factors in rolling window regressions increases the (adjusted) R2

from 36 percent to up to 50 percent. (iii) Our results provide evidence that the factor

volatilities’ explanatory power for future excess returns arises because of two effects.

Firstly, it stems from a risk premium due to the uncertainty in the yield curvature.

Secondly, we observe a converse effect arising from a negative relation between the slope

volatility and expected excess returns. (iv) It turns out that both yield factors and

factor volatilities are closely linked to macroeconomic fundamentals, such as capacity

utilization, industrial production, inflation, employment growth as well as the federal

funds rate. Prediction error variance decompositions show evidence for significant long-

run effects of macroeconomic variables on term structure movements and volatilities

thereof. Converse relations are found as well and reveal a particular importance of

the curvature volatility. (v) Finally, we observe that the factor volatilities are clearly

increased during economic recession periods.

The remainder of the paper is structured as follows. In Section 2, we describe the

dynamic Nelson and Siegel (1987) model as put forward by Diebold and Li (2006) and

Diebold, Rudebusch, and Aruoba (2006) and discuss the proposed extension allowing

for stochastic volatility processes in the yield factors. Section 3 presents the data and

illustrates the estimation of the model using MCMC techniques. Empirical results from

regressions of one-year excess bond returns on the extracted yield factors are shown in

Section 4. Section 5 gives the corresponding results when factor volatilities are used as

regressors. In Section 6, the dynamic interdependencies between yield factors, factor

4



volatilities and macroeconomic fundamentals are investigated. Finally, Section 7 gives

the conclusions.

2 A Dynamic Nelson-Siegel Model with Stochastic Volatil-

ity

Let p
(n)
t denote the log price of an n-year zero-coupon bond at time t with t = 1, . . . , T

denoting monthly periods and n = 1, . . . , N denoting the maturities. Then, the yearly

log yield of an n-year bond is given by y
(n)
t := − 1

n
p
(n)
t . The one-year forward rate at

time t for loans between time t+12(n−1) and t+12n is given by f
(n)
t := p

(n−1)
t −p

(n)
t =

ny
(n)
t − (n − 1)y

(n−1)
t . In the following we focus on one-year returns observed on a

monthly basis. Then, the log holding-period return from buying an n-year bond at time

t−12 and selling it as an (n−1)-year bond at time t is defined by r
(n)
t := p

(n−1)
t −p

(n)
t−12.

Finally, we define excess log returns by z
(n)
t := r

(n)
t − y

(1)
t−12.

Nelson and Siegel (1987) propose modeling the forward rate curve in terms of a

constant plus a Laguerre polynomial function as given by

f
(n)
t = β1t + β2te

−λtn + β3λte
−λtn.

Small (large) values of λt produce slow (fast) decays and better fit the curve at long

(short) maturities. Though the Nelson-Siegel model is neither an equilibrium model nor

a no-arbitrage model it can be heuristically motivated by the expectations hypothesis

of interest rates. As stressed by Nelson and Siegel (1987), Laguerre polynomials belong

to a class of functions which are associated with solutions to differential equations. In

this context, forward rates can be interpreted as solutions to a differential equation

underlying the spot rate.

The corresponding yield curve is given by

y
(n)
t = β1t + β2t

(

1 − e−λtn

λtn

)

+ β3t

(

1 − e−λtn

λtn
− e−λtn

)

.

Diebold and Li (2006) interprete the parameters β1t, β2t and β3t as three latent dynamic

factors with loadings 1, (1 − e−λtn)/λtn, and {(1 − e−λtn)/λtn} − e−λtn, respectively.

Then, β1t represents a long-term factor whose loading is constant for all maturities.

In contrast, the loading of β2t starts at one and decays monotonically and quickly

to zero. Consequently, β2t may be viewed as a short-term factor. Finally, β3t is a

medium-term factor with a loading starting at zero, increasing and decaying to zero in

the limit. Since it can be shown that y∞t = β1t, y∞t −y0
t = −β2t, and y0

t = β1t +β2t it is
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naturally to associate the long-term factor β1t with the level of the yield curve, whereas

β2t and β3t capture its slope and curvature, respectively. Figure 11 illustrates plots of

the Nelson-Siegel factor loadings with fixed λ = 0.045 stemming from our estimation

results below.

Denoting the yield factors in the sequel by Lt := β1t, St := β2t and Ct := β3t, we

can represent the model in state-space form

yt = Aft + εt, (1)

where ft := (Lt, St, Ct)
′ denotes the (3 × 1) vector of latent factors,

yt :=
(

y
(1)
t , y

(2)
t , . . . , y

(N)
t

)′
is the (N × 1) vector of yields and

A :=















1 1−e−λ·1

λ·1
1−e−λ·1

λ·1 − e−λ·1

1 1−e−λ·2

λ·2
1−e−λ·2

λ·2 − e−λ·1

...
...

...

1 1−e−λ·N

λ·N
1−e−λ·N

λ·N − e−λ·N















represents the (N ×3) matrix of factor loadings. Finally, for the (N ×1) vector of error

terms εt we assume

εt :=
(

ε
(1)
t , ε

(2)
t , . . . , ε

(N)
t

)

∼ i.i.d. N(0, Σ)

with

Σ = diag
{

(σ(1))
2
, (σ(2))

2
, . . . , (σ(N))

2
}

. (2)

Note that we assume the decaying factor λt = λ to be constant over time. This is in

accordance with Diebold and Li (2006) and the common finding that time variations

in λt have only a negligible impact on the model’s fit and prediction power.2

Following Diebold and Li (2006), the latent dynamic yield factors are assumed to

follow a first order vector autoregressive (VAR) process,

ft = µ + Φft−1 + ηt, (3)

where Φ is a (3 × 3) parameter matrix, µ denotes a (3 × 1) parameter vector, and the

(3 × 1) vector ηt is assumed to be independent from εt with

ηt ∼ i.i.d. N(0, Ht). (4)

1All figures and tables are shown in the appendix.

2This is also confirmed by own analyzes. Actually, we also allowed λt to be time-varying but indeed

found that this extra flexibility is not important for the model’s goodness-of-fit.
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Diebold and Li (2006) assume the conditional variances to be constant over time,

i.e. Ht = H. This enables a straightforward two-step estimation of the model. In

particular, fixing λ to a predetermined value, the latent factors Lt, St, and Ct can be

estimated period-by-period using ordinary least squares. Then, in a second step, the

estimated factors can be used in a VAR model as represented by (3).

Given the objective of our study, we aim to extend the model to capture time-

varying interest rate risk. This allows us to link the factor based approaches by Diebold

and Li (2006), Diebold, Rudebusch, and Aruoba (2006), and Cochrane and Piazzesi

(2005) to the work by Engle, Ng, and Rothschild (1990) and Engle and Ng (1993)

relating bond market risk to bond return premia. Therefore, we propose specifying the

covariance matrix Ht in terms of a (multivariate) SV process of the form

vech(ln Ht) = µh + Φhvech(lnHt−1) + ξt, (5)

where vech(·) denotes the vech-operator stacking the distinct elements of the covariance

matrix, µh is a (6 × 1) dimensional parameter vector and Φh is a (6 × 6) dimensional

parameter matrix. The error terms ξt are assumed to be independent from ηt and εt

and are normally distributed with covariance matrix Σh capturing the ”covariance of

covariance”,

ξt ∼ i.i.d. N(0, Σh). (6)

However, fully parameterizing the matrices Φ, Ht and Φh leads to a complicate

model which is difficult to estimate and is typically over-parameterized in order to

parsimoniously capture interest rate dynamics and associated risks. Hence, to overcome

the computational burden and curse of dimensionality, we propose restricting the model

to a diagonal specification with

Φ = diag(φL, φS , φC), (7)

Ht = diag(hL
t , hS

t hC
t ), (8)

Φh = diag(φL
h , φS

h φC
h ), (9)

where diag(·) captures the diagonal elements of a (symmetric) matrix in a corresponding

vector. As shown in the empirical analysis below, these restrictions are well supported
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by the data.3 Then, the latent factor structure can be expressed by









Lt

St

Ct









=









µL

µS

µC









+









φL 0 0

0 φS 0

0 0 φC

















Lt−1

St−1

Ct−1









+ ηt , (10)

where ηt ∼ i.i.d. N(0, Ht) with

diag(lnHt) =









ln(hL
t )

ln(hS
t )

ln(hC
t )









=









µL
h

µS
h

µC
h









+









φL
h 0 0

0 φS
h 0

0 0 φC
h

















ln(hL
t−1)

ln(hS
t−1)

ln(hC
t−1)









+









ξL
t

ξS
t

ξC
t









. (11)

We refer hL
t , hS

t and hC
t to as so-called ”factor volatilities” capturing the time-varying

uncertainty in the level, slope and curvature of the yield curve. The level volatility

hL
t corresponds to a component which is common to the time-varying variances of

all yields. It is associated with underlying latent (e.g. macroeconomic) information

driving the uncertainty in the overall level of interest rates. Indeed, it can be seen as

a model implied proxy of the bond market volatility which is captured by Engle, Ng,

and Rothschild (1990) in terms of the conditional excess return variance of an equally

weighted bill market portfolio. Correspondingly, hS
t is associated with risk inherent to

the slope of the yield curve. It reflects the riskiness in yield spreads, and thus time-

variations in the risk premium which investors require to hold long bonds instead of

short bonds. Finally, hC
t captures uncertainties associated with the curvature of the

yield curve, which can vary between convex, linear and concave forms. Obviously, such

variations mainly stem from time-varying volatility in bonds with mid-term maturities.

An alternative way to capture time-varying volatility in the term structure of in-

terest rates would be to allow Σ itself to be time-varying. However, this would result

in N -dimensional MGARCH or SV models which are not very tractable if the cross-

sectional dimension N is high. Therefore, we see our approach as a parsimonious

alternative to capture interest rate risk. Note that the slope and curvature factors

can be interpreted as particular (linear) combinations of yields associated with fac-

tor portfolios mimicking the steepness and convexity of the yield curve.4 Then, the

corresponding slope and curvature volatilities are associated with the volatilities of

3Note that we also estimated models with non-zero off-diagonal elements in Φ and in a time-invariant

matrix H and found that most off-diagonal parameters are indeed statistically insignificant.

4This interpretation is also reflected in the linear combinations of yields which are typically used to

empirically approximate the underlying yield curve factors. In particular, level, slope and curvature

are often approximated by 1
3
(y

(1)
t + y

(3)
t + y

(5)
t ), y

(5)
t − y

(1)
t , and 2y

(3)
t − y

(5)
t − y

(1)
t . See also Section 3.3.
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the underlying factor portfolios. In this sense, they capture time-variations in yields’

variances and covariances driving the yield curve shape.

Using this structure and the imposed normality assumptions, the unconditional

moments of the yields are straightforwardly given by E[yt] = A E[ft] and Var[yt] =

A Var[ft] A, where the moments of the i-th element are given by

E
[

f
(i)
t

]

= µi(1 − φi)−1, (12)

Var
[

f
(i)
t

]

=
1

1 − φi2

[

µi
h

1 − φi
h

+

(

σi
h

)2

2(1 − φi2
h )

]

, (13)

Corr
[

f
(i)
t , f

(i)
t−k

]

= φik, k > 0, (14)

where i ∈ {L, S, C}.
Accordingly, the correlation structure in higher-order moments of de-meaned yield

factors corresponds to that of a basic SV model and can be approximated by

Corr
[

aip
t , aip

t−k

]

≈ C
(

p,
(

σi
h

)2
)

φik
h , k > 0, (15)

where ai
t := ln

∣

∣ηi
t

∣

∣ = ln
∣

∣

∣f
(i)
t − µ − φif

(i)
t−1

∣

∣

∣ and

C
(

p,
(

σi
h

)2
)

=
A(p,

(

σi
h

)2
) − 1

A(p,
(

σi
h

)2
)B(p) − 1

, (16)

B(p) =
√

πΓ

(

p +
1

2

)

Γ

(

p

2
+

1

2

)−2

, (17)

A
(

p,
(

σi
h

)2
)

= exp

(

p2

(

σi
h

)2

1 − φi2
h

)

. (18)

3 Extracting Yield Curve Factors and Factor Volatilities

3.1 Data

In order to make our results comparable to those by Cochrane and Piazzesi (2005),

we use the same set of monthly unsmoothed Fama-Bliss zero-coupon yields covering

a period from January 1964 through December 2003 with maturities ranging between

one and five years. The data is available from the Center for Research in Security

Prices (CRSP) and is constructed using the method of Fama and Bliss (1987) based

on end-of-month data of U.S. taxable, non-callable bonds for annual maturities up to

five years. Here, each month a term structure of one-day continuously compounded

forward rates is calculated from available maturities up to one year. To extend beyond
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a year, Fama and Bliss (1987) use the assumption that the daily forward rate for the

interval between successive maturities is the relevant discount rate for each day in the

interval. This allows to compute the term structure based on a step-function in which

one-day forward rates are the same between successive maturities. Then, the resulting

forward rates are aggregated to generate end-of-month term structures of yields for

annual maturities up to five years. Summary statistics of the data are given in Panel

A of Table 2.

3.2 MCMC Based Inference

The diagonal model specified above corresponds to a three-level latent hierarchical

model with six latent processes.

Let Θ denote the collection of the model parameters. Moreover, let Ft := (Lt, St, Ct)

and Vt := (hL
t , hS

t , hC
t ). Then, the likelihood function of the model is given by

p(Θ|Y ) =

∫

F1

∫

F2

· · ·
∫

FT

p(Y |Θ, F1, F2, · · · , FT )p(F1, F2, · · · , FT |Θ)dF1dF2 · · · dFT ,

where p(Y |Θ, F1, F2, · · · , FT ) denotes the (conditional) density of the data Y given the

parameters Θ and the latent factors and reflects the imposed structure as given by (1)

and (2). Furthermore, p(F1, F2, · · · , FT |Θ) denotes the (conditional) joint density of the

latent factors, given the model parameters Θ and is determined by (3). Since the factors

are unobservable, they have to be integrated out resulting in a (3 ·T )-dimensional inte-

gral. Obviously, p(F1, F2, · · · , FT |Θ) depends on a further set of unknown components

as represented by the volatility components V1, . . . , VT . It is computed as

p(F1, F2, · · · , FT |Θ) =

∫

V1

∫

V2

· · ·
∫

VT

p(F1, F2, · · · , FT |Θ, V1, V2, · · · , VT )

× p(V1, V2, · · · , VT |Θ)dV1dVt · · · dVT ,

where p(V1, V2, · · · , VT |Θ) denotes the joint density of the volatility factors as deter-

mined by (5). This likelihood function cannot be computed analytically in closed form

and requires numerical approximation techniques. We propose estimating the model

using Markov chain Monte Carlo (MCMC) based inference. Consequently, we consider

Ω := {Θ, F1, . . . , FT , V1, . . . , VT } to be a random vector whose posterior distribution
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p(Ω|Y ) can be arranged according to

p(Ω|Y ) = p(F1, F2, · · · , FT , V1, V2, · · · , VT , Θ|Y ) (19)

∝ p(Y |F1, F2, · · · , FT , V1, V2, · · · , VT , Θ)

× p(F1, F2, · · · , FT |V1, V2, · · · , VT , Θ)

× p(V1, V2, · · · , VT |Θ)

× p(Θ).

By specifying the prior distributions p(Θ)5, we utilize Gibbs and Metropolis-Hastings

samplers to simulate the posterior distribution, p(Ω|Y ). Then, both parameter and fac-

tor estimates are obtained by taking the sample averages of the corresponding MCMC

samples. The estimated latent yield factors and volatility factors will be used in the

following subsections as predictors for future excess returns. In order to make our

results comparable to those by Cochrane and Piazzesi (2005), we use the estimates of

smoothed factors E[ft|yT ] with yt = (y1, . . . , yT ) denoting all observations up to time

T .6

3.3 MCMC Estimation Results

We start our analysis by estimating the model with constant volatility factors corre-

sponding to the specification proposed by Diebold and Li (2006).7 The estimation

results are given in Panel A of Table 1. The dynamics of Lt, St and Ct are very persis-

tent with estimated autoregressive coefficients of 0.98, 0.96 and 0.91, respectively. In

particular, whereas the level of interest rates close to a unit root, the persistence of the

spread component is lower but still relatively high. This finding is in strong accordance

with the literature.

The model implied unconditional mean of the level factor, given by µL/(1 − φL),

equals 7.96 which is close to its empirical mean of 7.12. Correspondingly, the mean

value of the slope factor equals −1.96 reflecting that during the sample period the

yield curve has been on average upward sloped.8 Finally, the mean of the curvature

5For specific details on the choice of the prior distributions, see Appendix A.

6Using instead filtered factors E[ft|y
t−1] would allow us to evaluate the out-of-sample prediction

performance of the model in line with Diebold and Li (2006). We keep this issue for further research.

7Exploiting the linearity of the model, it could be alternatively estimated using quasi maximum

likelihood based on the Kalman filter, see e.g. Harvey (1990). However, to keep our econometric

approach consistent, we estimate all specifications in this paper using MCMC techniques.

8Recall that we define the slope as the difference between short yields and long yields.
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factor is −0.28 but not significantly different from zero. Hence, on average we do not

observe a strong curvature in the yield curve. The estimated decay factor λ equals

0.055, implying the curvature loading (1 − exp(−λn))/(λn) − exp(−λn) to be maxi-

mized for a maturity of 2.72 years. The last column in Table 1 reports the Geweke

(1992) Z-scores which are used to test the convergence of the Markov chains generated

from the MCMC algorithm.9 It turns out that all Markov chains have been properly

converged. The descriptive statistics shown in Panel B of Table 2 indicate that the

dynamic Nelson-Siegel model captures a substantial part of the dynamics in the yields

confirming the findings by Diebold and Li (2006). Nevertheless, it turns out that there

are still autocorrelations in the residuals as well as squared residuals indicating that

there are neglected dynamics in the first and second moments of the process.

Figure 2 plots the resulting estimated Nelson-Siegel factors and their corresponding

empirical approximations. We observe that the estimated slope factor is basically

perfectly correlated with its empirical counterpart yielding a correlation of −0.99. The

corresponding correlations for the level and curvature factors are 0.90 and 0.59. This

indicates that level and slope factors can be easily approximated by their corresponding

empirical counterparts whereas approximations of the curvature factor tend to be rather

difficult.

Panel B of Table 1 shows the parameter estimates of the model with stochastic

volatility components, given by equations (1) - (3) and (5). The estimated decay pa-

rameter equals 0.045 implying that the curvature loading is maximized at a maturity

of 3.33 years. The estimates of the yield factor parameters are close to those of the con-

stant volatility model. The estimated dynamic parameters in the volatility components

are 0.977, 0.964 and 0.933 for the level, slope and curvature volatilities, respectively.

Hence, as for the yield curve factors we also find a high persistence in the stochastic

volatility processes. This is particularly true for the level and slope volatility.

4 Explaining Bond Excess Returns Using Yield Factors

4.1 Nelson-Siegel Factors as Predictors

In this section, we examine the explanatory power of the extracted Nelson-Siegel factors

for future bond excess returns. Following Cochrane and Piazzesi (2005), we regress

monthly one-year-ahead bond excess returns with maturities of two up to five years on

9For details, see Appendix A.
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the estimated level, slope and curvature factors, i.e.,

z
(n)
t = c + βLLt−12 + βSSt−12 + βCCt−12 + ε

(n)
t , n = 2, 3, 4, 5. (20)

Panel A of Table 3 reports the estimation results based on alternative regressions.

Two caveats should be taken into account. Firstly, because of the overlapping windows,

the errors ε
(n)
t are per construction strongly autocorrelated. This requires using esti-

mators of the parameter covariances which are robust against serial correlation (and

potential heteroscedasticity). In accordance with Cochrane and Piazzesi (2005) we

apply the classical heteroscedasticity and autocorrelation consistent (HAC) estimators

proposed by Hansen and Hodrick (1980) given by

Cov[b̂] = E[xtx
′
t]
−1





k
∑

j=−k

E[xtx
′
t−jǫt+1ǫt+1−j ]



E[xtx
′
t]
−1 (21)

and the (Bartlett) kernel estimator proposed by Newey and West (1987) given by

Cov[b̂] = E[xtx
′
t]
−1





k
∑

j=−k

k − |j|
k

E[xtx
′
t−jǫt+1ǫt+1−j ]



E[xtx
′
t]
−1, (22)

where xt denotes the vector of regressors and j denotes the order of lag truncation.

Secondly, high persistence in the yield factors used as regressors might cause spu-

rious effects affecting the R2. Accordingly, we evaluate the goodness-of-fit based on

R2-values only in combination with Newey-West and Hansen-Hodrick adjusted tests

for joint significance. Moreover, it turns out that information criteria such as the

Bayes Information Criterion confirm the evaluation results based on R2 numbers and

joint significance test.10 Finally, as shown below, we observe that the predictability

arises typically from those factors which reveal the lowest persistence. This confirms

the robustness of our results.

It is shown that the level factor is virtually insignificant and has no explanatory

power for future bond excess returns. Neglecting the latter in the regression reduces the

R2 values11 and Hansen Hodrick HAC χ2-statistics for joint significance only slightly.

This result is mostly true for maturities longer than two years. These results consistent

with Duffee (2002) showing based on the essentially affine term structure model that the

level factor is irrelevant for bond excess returns. Though the Nelson-Siegel framework is

different from Duffee’s model, the extracted yield factors behave in a quite similar way.

10For sake of brevity, these measures are not shown in the paper.

11Throughout the paper, the R2 refers to the coefficient of determination, adjusted by the number

of regressors.
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As stressed by Diebold, Piazzesi, and Rudebusch (2005) the loadings in (1) are quite

close to those estimated from the three factor essentially affine model. In contrast, the

coefficients for the slope and curvature factor are highly significant. We find that future

excess returns decrease with the slope (defined as short minus long) and increase with

the curvature. This result is consistent with, for instance, Fama and Bliss (1987) and

Campbell and Shiller (1991). The positive coefficient for the curvature factor indicates

that future excess returns are expected to be higher the more hump-shaped, i.e. convex

or concave the current yield curve. Hence, a major factor driving future excess returns

is the yield spread between mid-term and short-term bonds.

Including all yield factors leads to a R2 of up to 36 percent, revealing basically the

same explanatory power as in Cochrane and Piazzesi (2005) using their “tent-shaped”

return-forecasting factor. The corresponding χ2-values are clearly well above the five

percent critical value indicating that Nelson-Siegel factors jointly do contain significant

information for future bond excess returns. Obviously, the explanatory power arises

mainly from the slope and curvature factors which are statistically significant for all

individual bonds. Omitting both factors from the regressions clearly reduces the R2

and χ2-values. This is particularly true for longer maturities and the curvature factor

which turns out to be most important for the prediction of future excess returns.

4.2 The Cochrane-Piazzesi Return-Forecasting Factor

Cochrane and Piazzesi (2005) propose forecasting bond excess returns with the so called

return-forecasting factor, ϑt, defined as a linear combination

ϑt = γ′ft (23)

of five forward rates ft = (1, y
(1)
t , f

(2)
t , · · · , f

(5)
t ) with weights γ = (γ(0), γ(1), · · · , γ(5)).

The weights are estimated by running a (restricted) regression of average (across ma-

turity) excess returns on the forward rates,

1

4

5
∑

n=2

z
(n)
t = γ(0) + γ(1)y

(1)
t−12 + γ(2)f

(2)
t−12 + · · · + γ(5)f

(5)
t−12 + ut. (24)

Then, the return forecasting regression for individual bond excess returns is given by

z
(n)
t = b(n)ϑt−12 + ε

(n)
t , n = 2, 3, 4, 5, (25)

with regression coefficients b(n) and the restriction 1
4

∑5
n=2 b(n) = 1.

Cochrane and Piazzesi (2005) show that ϑt contain information for future excess

returns which are not captured by yield factors as represented by the first three prin-

cipal components of the covariance matrix of yields. As suggested by Litterman and
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Scheinkman (1991), the latter serve as empirical proxies for the level, slope and curva-

ture movements of the term structure. Panel A in Table 4 reports the R2 values and

Hansen-Hodrick HAC χ2-statistics based on regressions where zn
t is regressed on (i) the

principal components (PC’s), (ii) the return-forecasting factor, ϑt, and (iii) the Nelson-

Siegel yield curve factors. It turns out that both the return-forecasting factor and the

Nelson-Siegel factors have effectively the same explanatory power with an R2 ≈ 0.37

implied by ϑt and an R2 ≈ 0.36 implied by the Nelson-Siegel factors. This results

is widely confirmed by the χ2-statistics which are similar for longer maturities. Run-

ning regressions of the return-forecasting factor on the estimated Nelson-Siegel factors

yields12:

ϑt = 0.025
(0.819)

· Lt − 0.629
(−6.968)

· St + 0.901
(9.359)

· Ct, R2 = 0.704
[186.4]

,

ϑt = − 0.676
(−9.235)

· St + 0.902
(8.333)

· Ct, R2 = 0.699
[137.8]

.

Hence, we observe that around 70 percent variation in the return-forecasting factor

is explained by the slope and the curvature factor, whereas the level factor Lt is sta-

tistically insignificant. This result illustrates that the return-forecasting factor and

the Nelson-Siegel slope and curvature factors are closely related and capture similar

information for future excess returns.

However, the close correspondence between the return-forecasting factor and yield

curve factors does not hold if the latter are constructed from principal components

of the covariance matrix. Principal component factors reveal a significantly lower ex-

planatory power with an R2 of approximately 0.25 and clearly reduced χ2-statistics.

Figure 3 shows the Nelson-Siegel curvature loading ((1−e−λtn)/λtn)−e−λtn, the return-

forecasting factor loading γ(n), and the loading of the third PC factor. We observe that

both the return-forecasting factor and the Nelson-Siegel curvature factor are curved at

the long end of the yield curve, whereas the PC curvature is curved only at the short

end. Cochrane and Piazzesi (2005) argue that in order to capture relevant information

about future bond excess returns contained in the four-year to five-year yield spread,

the factor loading should be curved at long end.13 This might explain why the Nelson-

Siegel yield factors outperform the PC yield factors and why the former have similar

forecasting power as the return-forecasting factor. It also stresses the importance of

the curvature factor.

12In parentheses we show the robust t-statistics, where the brackets contain the Hansen-Hodrick

HAC χ2-test statistics on joint significance.

13Note that the return-forecasting factor is only ’tent-shaped’ when it is estimated from forward

rates. If it is estimated from yields, it is curved at long end.
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In order to test the joint performance of both the Nelson-Siegel yield factors as well

as the Cochrane-Piazzesi forecasting factor we run the regression

z
(n)
t = βLLt−12 + βSSt−12 + βCCt−12 + ϕϑt + ε

(n)
t . (26)

Panel B of Table 4 gives the corresponding estimation results. We observe that the joint

inclusion of Nelson-Siegel factors and the return-forecasting factor further increases

the explanatory power compared to the cases where both sets of factors are included

individually. This is evident by a clear increase of the χ2-statistics and a slight increase

of the R2 values. Given the close correspondence between both types of factors, it is

not surprising that the inclusion of the return-forecasting factor reduces the significance

of the individual Nelson-Siegel factors. This is particularly true for the slope factor

where the curvature factor still provides significant information beyond the return-

forecasting factor. Hence, we can conclude that even though both types of factors

individually provide similar explanatory power they partly capture different pieces of

information which can be exploited for the prediction of bond excess returns. These

results complement the findings by Cochrane and Piazzesi (2005). Hence, we can

conclude that the Nelson-Siegel factors do not contain significant explanatory power

on bond excess returns beyond the return-forecasting factor, and vice versa.

5 Explaining Bond Excess Returns Using Factor Volatil-

ities

As stressed above, the extracted factor volatilities can be heuristically interpreted as

the volatilities of factor portfolios representing the level, steepness and convexity of the

yield curve. A crucial question is whether riskiness in the yield curve is reflected in

expected bond excess returns and give rise to a risk premium. By including the factor

volatilities hL
t , hS

t and hC
t we run the regression

z
(n)
t = c + αLhL

t−12 + αShS
t−12 + αChC

t−12 + ε
(n)
t . (27)

As shown in Panel B of Table 3 the volatility factors do contain significant information

for future bond excess returns. Including all volatility components yields an R2 of up to

18 percent with all factors being jointly significant. The main explanatory power comes

from the slope and curvature factor volatility, but not from the level volatility. Most

interestingly, the impact of the slope volatility on future excess returns is negative.

Hence, increasing uncertainty regarding the slope of the yield curve decreases future

bond return premia. In other words, if the yield curve slope turns out to be stable,
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positive excess returns become more likely. This result is in contrast to the hypothesis

of a positive risk premium and is rather in line with a ”stability compensation”. In

contrast, we find that future bond excess returns increase with the curvature volatil-

ity. As discussed above, the latter reflects the time-varying uncertainty regarding the

convexity or concavity of the yield curve, respectively, and is dominantly driven by the

riskiness of mid-term bonds. The positive impact on future excess returns is clearly in

line with the hypothesis of a risk premium. Hence, our results provide evidence that

the riskiness regarding yield curve slope and yield curve convexity work in opposite

directions: Investors are compensated for taking risk regarding medium-term maturi-

ties and avoiding risk regarding long-term maturities. Hence, future excess returns are

expected to be highest if spreads between long-term and short-term bonds are high and

stable but the yield curve convexity is uncertain.14

A crucial question is whether the factor volatilities have still explanatory power

if we control for the yield curve factors themselves. The corresponding estimation

results are given in Panel C of Table 3. Interestingly, it turns out that the use of

both Nelson-Siegel factors and factor volatilities yields an R2 of about 50 percent. In

other words, the inclusion of volatility factors in addition to yield factors shifts the

R2 from 36 percent to up to 50 percent. This indicates that factor volatilities have

significant explanatory power for future excess returns even when we account for yield

curve factors. These results are also strongly supported by a significant increase of the

χ2-statistics showing that this additional prediction power mainly stems from the slope

and curvature volatility.

The regression results shown in Panel C of Table 4 show that the volatility factors

have also explanatory power beyond the Cochrane-Piazessi return-forecasting factor.

Actually, the R2 increases from 36 percent to up to 42 percent if the volatility factors

are added to the Cochrane-Piazzesi return-forecasting factor. This implies that the

volatility factors do contain significant information on bond excess returns which is

neither subsumed by yield curve factors nor by the return-forecasting factor.

14A potential explanation for the predictive power of volatility components for future excess returns

could be that we predict log returns instead of simple returns. However, redoing the whole analysis

based on simple returns even enforces our results and indicates that our findings are not due to a

predictable volatility components in the mean of log returns.
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6 Yield Factors, Factor Volatilities, and Macroeconomic

Fundamentals

In this section, we aim to analyze in which sense yield factors and factor volatilities serve

as mimicking portfolios for underlying macroeconomic fundamentals. Correspondingly,

we extend our analysis by five macroeconomic variables: the inflation rate (INF), mea-

sured by monthly relative changes of the consumer price index, the manufacturing

capacity utilization (CU), the federal funds rate (FFR), the employment growth rate

(EMP) as well as industrial production (IP). The choice of the variables is motivated

by the results by Diebold, Rudebusch, and Aruoba (2006) who identify manufactur-

ing capacity utilization, the federal funds rate as well as annual price inflation as the

minimum set of important variables driving the term structure of interest rates. By

augmenting the set of variables by the employment growth rate as well as industrial

production we aim parsimoniously capturing the (relative) level of industrial utiliza-

tion, labor market activity, inflation as well as the monetary policy as key underlying

macroeconomic fundamentals characterizing the state of the economy.

To analyze the contemporaneous correlations between yield factors and macroeco-

nomic fundamentals we regress the yield factors on the contemporaneous (monthly)

macroeconomic variables, i.e.

Ft = µ + β1INFt + β2IPt + β3FFRt + β4EMPt + β5CUt + εt, (28)

where Ft := {Lt, St, Ct, h
L
t , hS

t , hC
t }. The results reported by Table 5 show that the

federal funds rate and capacity utilization are significant determinants of the level and

slope factor and explain a substantial part in variations of the latter.15 The positive

signs for FFR and negative signs for CU signs of the coefficients are economically

plausible and in line with theory. While the level and slope factor are closely connected

to monetary policy and macroeconomic activity, only a small fraction of variations in

the yield curve curvature can be explained by the latter. Including all macroeconomic

variables yields an R2 of just 14%. This result illustrates that it is rather difficult to

explain the shape of the yield curve by observable variables.

The results in Table 5 show that not only the yield curve factors themselves but

15As above, one might argue that the R2 values should be treated with caution since some of the

regressors, such as CU and IP, are relatively persistent and might cause spurious correlation effects.

However, robust tests on joint significance of the regressors yield the same conclusions. Moreover, the

low explanatory power of the curvature factor regression indicates that spurious effects cannot be the

major reason for high R2’s.
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also their volatilities are significantly driven by underlying macroeconomic dynamics.

It turns out that periods of high inflation and capacity utilization are generally ac-

companied by a lower volatility in interest rate levels. This might be partly explained

by monetary policy interventions. Moreover, we find evidence for leverage effects in

the sense of higher (lower) level and slope volatilities in periods of higher (lower) fed-

eral fund rate levels. This confirms the results by Engle, Ng, and Rothschild (1990)

and Engle and Ng (1993) of (positive) GARCH-in-Mean effects.16 Whereas the curva-

ture factor is not easily explained by observable macroeconomic variables, this is not

true for the corresponding volatility. Actually, we observe that particularly the federal

funds rate, the employment growth rate as well as capacity utilization are significant

determinants of the time-varying uncertainty in the yield curve shape yielding an R2

of about 0.48. It turns out that periods of a high federal funds rate, low capacity

utilization and negative employment growth induce higher variations in medium-term

bonds and thus the term structure convexity. Overall, we can summarize that factor

volatilities are even closer connected to observable macroeconomic variables than the

factors themselves.

Table 6 shows the estimation results of a VAR(1) model of monthly yield factors

and macroeconomic variables,

Ft = µ + A Ft−12 + εt, (29)

where Ft := {Lt, St, Ct, INFt, IPt, FFRt, EMPt, CUt}. We can summarize the follow-

ing results: Firstly, the yield factors primarily depend on their own lags but not on

those of the other factors confirming the diagonal specification of Φ in (7). Secondly, we

observe that the yield factors are not (short-term) predictable based on macroeconomic

fundamentals. This is particularly true for the level and the curvature factor whereas

for the curvature factor slight dependencies from lagged inflation rates, federal fund

rates, and employment growth rates are observable. Thirdly, it turns out that level and

slope factors have significant short-term prediction power for nearly all macroeconomic

variables. In particular, rising interest rate levels and yield spreads predict increases in

industrial production, federal funds rates, the growth rate of employment as well as the

capacity utilization. In contrast, the term structure curvature contains no information

for one-month-ahead macroeconomic variables. Overall these results widely confirm

those by Diebold, Rudebusch, and Aruoba (2006).

16In preliminary studies we found evidence for SV-in-Mean effects for the level factor. Given the

close relation between the federal funds rate and the level of interest rates this effect is now obviously

reflected in the present regressions. The results are not shown here but are available upon request from

the authors.
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In order to study the dynamic interdependencies between macroeconomic variables

and the factor volatilities we estimate (29) with

Ft := {hL
t , hS

t , hC
t , INFt, IPt, FFRt, EMPt, CUt}. The results shown in Table 7 in-

dicate that most of the (short-term) dynamics are driven by process-own dependencies

confirming also the assumption of a diagonal structure of Ht in (8). It turns out that the

level volatility is dominantly predicted by past level and slope volatilities but not based

on macroeconomic variables. Similar relations are also observed for the slope volatil-

ity where the latter also significantly (positively) depends on the lagged federal funds

rate. In contrast, the curvature volatility depends solely on its own history. Hence, we

can conclude that in the short run term structure volatilities are not predictable based

on macroeconomic factors. Conversely we observe a weak predictability of the level

volatility for future macroeconomic fundamentals. In particular, higher level volatil-

ities predict increases in industrial production, employment growth rates as well as

decreasing inflation rates and manufacturing capacity utilizations. Similar effects on

inflation rates and capacity utilization is observed for the slope volatility. Interestingly,

the strongest impact on future macroeconomic variables stems from the curvature fac-

tor which has significant prediction power for all macroeconomic factors. This finding

illustrates again the importance of term structure curvature risk confirming our results

above.

Long-term relations between the individual variables are analyzed based on pre-

diction error variance decompositions (see e.g. Hamilton (1994)) implied by the VAR

estimates discussed above. The corresponding plots are shown in Figures 5 to 12. We

observe that not only in the short run but also in the long run macroeconomic variables

virtually do not contribute to the prediction error variances in yield curve levels and

curvatures. Only for the yield curve slope, particularly capacity utilization and indus-

trial production can explain about 25% in prediction error variances after 100 months.

Conversely, we observe significantly higher long-run forecasting ability of yield term

factors for macroeconomic fundamentals. This is particularly apparent for the federal

funds rate whose prediction error variance is dominated by the level and slope factor

(by nearly 80%). For CU, EMP and IP we observe that yield curve factors - predomi-

nantly level and slope - can explain around 40% in long-run prediction error variances.

Hence, in line with Diebold, Rudebusch, and Aruoba (2006) we can conclude that level

factors serve as long-run predictors of future industrial utilization, employment growth

and short-term monetary policy. A notable exception is the inflation rate which is not

predictable based on yield curve factors, neither over the short run nor the long run.

Figures 9 to 12 show the corresponding variance decompositions implied by the
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VAR estimates of Ft := {hL
t , hS

t , hC
t , INFt, IPt, FFRt, EMPt, CUt}. It is evident that

macroeconomic fundamentals explain a major part in long-term prediction error vari-

ances of level and slope volatilities. Particularly capacity utilization and industrial

production explain approximately 50% and 40% in long-term prediction error vari-

ances of the level volatility and slope volatility, respectively. In contrast, long-term

curvature volatility is significantly more difficult to predict based on macroeconomic

variables. Here, we find that the latter explain less than 20% in prediction error vari-

ances. Overall, we can conclude that the production intensity is an important long-term

predictor of the riskiness in interest levels and slopes but to less extent in the curva-

ture. Vice versa, we observe a more important role of the curvature volatility for the

prediction of future macroeconomic activity. This is again particularly true for the ca-

pacity utilization, employment growth and (to less extent) industrial production whose

prediction error variation after 100 months is significantly influenced by the current

curvature volatility. In contrast, virtually no long-run explanatory power of level and

slope volatilities for future macroeconomic variables can be identified. Hence, we ob-

serve that particularly the uncertainty with respect to the shape of the yield curve has

long-term consequences for production activity and employment growth.

Further insights into the role of the extracted factor volatilities can be gained by Fig-

ure 4 which plots the latter over the sample period. It turns out that the slope volatility

peaks in April 1974, April 1980 and March 2001 corresponding to three major economic

recession periods in the U.S. as identified by the National Bureau of Economic Research

(NBER). Viewing the slope factor as a short-term factor, its high fluctuations in these

periods might be attributed to monetary policy reflected in short-term yields during

economic recessions. The same pattern is observed for the curvature volatility captur-

ing mainly the uncertainty in medium-term yields and significantly peaking during all

recessions periods. Hence, we observe that interest rate risk during economic recessions

is dominantly reflected in the shape of the yield curve but not in the overall level.

7 Conclusions

We propose a dynamic Nelson-Siegel type yield curve factor model, where the factors

themselves reveal stochastic volatility. By estimating the model using MCMC tech-

niques we extract both the Nelson-Siegel factors as well as their volatility components

and use them to predict bond return premia and to relate them to underlying macroe-

conomic variables. This approach allows us to link the approaches by Diebold and

Li (2006), Diebold, Rudebusch, and Aruoba (2006), Cochrane and Piazzesi (2005) on
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factor-based term structure modeling with the GARCH-in-Mean models by Engle, Ng,

and Rothschild (1990) and Engle and Ng (1993) capturing interest rate risk premia.

We can summarize the following main findings: (i) We find that the slope and cur-

vature factors extracted from the dynamic Nelson-Siegel model describe time-variations

in future yearly bond excess returns with an R2 of up to 36 percent. (ii) The Nelson-

Siegel yield factors have basically the same explanatory power as the return-forecasting

factor proposed by Cochrane and Piazzesi (2005). This result arises mainly because of

a close similarity between the loadings of the “tent-shaped” return-forecasting factor

and that of the slope and curvature Nelson-Siegel factor. This forecasting performance

is not achieved when principal components are used as predictors. (iii) We show that

the time-varying volatility associated with the level, slope and curvature factors have

significant explanatory power for future excess returns beyond the factors themselves.

Including the extracted factor volatilities in rolling window regressions increases the

(adjusted) R2 to approximately 50 percent. It turns out that the explanatory power in

the volatility factors mainly stem from the risk inherent to the yield curve’s slope and

curvature. (iv) We document that riskiness regarding the yield curve shape (convex-

ity) but not the riskiness regarding the slope induces a positive risk premium in excess

returns. Actually, we find that slope uncertainties decrease future bond return premia

revealing a compensation for stability in term structure slopes. (v) Yield term factors

and - to an even larger extent - factor volatilities are closely connected to key macroe-

conomic variables reflecting capacity and production utilization, employment growth,

inflation and monetary policy. (vi) We observe that macroeconomic variables have

more long-run predictability for term structure volatilities than for the term structure

itself. It turns out that capacity utilization and industrial production are important

long-term predictors for risk inherent to the level and slope of the yield curve. Con-

versely, we observe that yield factors have significant forecasting ability for capacity

utilization, employment growth and industrial production but only negligible impacts

on the volatilities thereof. Nevertheless, we identify an important role of the curvature

volatility for long-term predictions of macroeconomic variables. These results provide

hints that risk inherent to the shape of the yield curve is relevant and seems to be

effectively captured by a stochastic volatility component in the curvature factor.
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A MCMC based Bayesian Inference

Let Ω collect all model parameters including the latent variables, and let Y denote the

observed data. Applying Clifford-Hammersley’s theorem (see Hammersley and Clifford

(1971), Besag (1974)), the posterior distribution

p(Ω|Y ) ∝ p(Y |Ω)p(Ω) (30)

can be broken up into a complete set of conditional posteriors, p(Ωi|Ω−i, Y ), i =

1, . . . , N , where p(Ω) denotes the prior distribution of Ω, N is the number of blocks,

Ωi denotes the i-th block and Ω−i denotes all the elements of Ω excluding Ωi. Then,

the elements Ωi can be sampled according to the following Markov chain:

• Initialize Ω(0).

• For i = 1, . . . , G:

1. draw Ω
(i)
1 from p(Ω1|Ω(i−1)

2 , Ω
(i−1)
3 , · · · , Ω

(i−1)
N , Y ),

2. draw Ω
(i)
2 from p(Ω2|Ω(i)

1 , Ω
(i−1)
3 , · · · , Ω

(i−1)
N , Y ),

...

N. draw Ω
(i)
N from p(ΩN |Ω(i)

1 , Ω
(i)
2 , · · · , Ω

(i)
N−1, Y ),

where G is the number of MCMC iterations. In dependence of the form of the condi-

tional posteriors we employ Gibbs or Metropolis-Hastings samplers as implemented in

the software package BUGS (see Spiegelhalter, Thomas, Best, and Gilks (1996)). The

procedure works well but is relatively inefficient in the given context. In order to guar-

antee a proper convergence of the Markov chain we run 2,500,000 MCMC iterations

with a burn-in period of 500,000 iterations.17

All model parameters are assumed to be a priori independent and are distributed

as follows:

• Σ is the variance-covariance matrix with zero off-diagonal elements of equation

(1). We assume that each of its elements follows an Inverse-Gamma(2.5,0.025) distri-

bution with mean of 0.167 and standard deviation 0.024.

• For λ we assign a uniform distribution on the interval [0, 1].

• For the persistent parameters of the yield curve factors φi, i = L, S, C, we assume

their transformations (φi + 1)/2 to follow a beta distribution with parameters 20 and

1.5 implying a mean of 0.86 and a standard deviation of 0.11.

17More efficient estimation algorithms for the model are on the future research agenda but are beyond

the scope of the current paper.
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• µi, i = L, S, C in (3) are assumed to be independently normally distributed with

mean 0 and variance 10.

• hi, i = L, S, C in (3) are assumed to follow an Inverse-Gamma(2.5,0.025) distri-

bution.

• For φi
h, i = L, S, C in (5), we assume their transformations (φi + 1)/2 to follow a

beta distribution with parameters 20 and 1.5 implying a mean of 0.86 and a standard

deviation of 0.11.

• µi
h, i = L, S, C in (5) are assumed to be independently normally distributed with

mean 0 and variance 10.

• σi
h, i = L, S, C in (5) are assumed to follow an Inverse-Gamma(2.5,0.025) distri-

bution.

• di, i = L, S, C are assumed to be normally distributed with mean 0 and variance

10.

To test for the convergence of the generated Markov chain, we use the Z-score by

Geweke (1992). Let {Ω(i)}G
i=1 denote the generated Markov chain with

Ω̄1 =
1

G1

G1
∑

i=1

Ω(i), Ω̄2 =
1

G2

G
∑

i=p∗

Ω(i), p∗ = G − G2 + 1, (31)

and let Ŝ1(0) and Ŝ2(0) denote consistent spectral density estimates (evaluated at zero)

for {Ω(i)}G1
i=1 and {Ω(i)}G

i=p∗ , respectively. If the sequence {Ω(i)}G
i=1 is stationary, then

as G → ∞,

(Ω̄1 − Ω̄2)/[G−1
1 Ŝ1(0) + G−1

2 Ŝ2(0)]
d→ N(0, 1) (32)

given the ratios G1/G and G2/G are fixed, and (G1 + G2)/G < 1. Geweke (1992)

suggests using G1 = 0.1G and G2 = 0.5G.
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Table 1: MCMC estimation results for dynamic Nelson-Siegel models. Based on monthly observations of unsmoothed U.S. Fama-Bliss

zero coupon yields from January 1964 to December 2003 with maturities of one to five years. 480 observations.

A. Model without volatility factors

µL µS µC φL φS φC hL hS hC λ

Mean 0.028 -0.053 -0.028 0.994 0.956 0.906 0.307 0.597 0.757 0.055

SD 0.014 0.030 0.036 0.003 0.013 0.023 0.022 0.024 0.060 0.006

95% CI, lower 0.007 -0.116 -0.099 0.987 0.929 0.860 0.266 0.552 0.637 0.046

95% CI, upper 0.062 -0.001 0.042 0.998 0.980 0.947 0.351 0.645 0.871 0.069

Z-score -0.171 1.198 1.615 0.196 1.352 -0.507 -1.737 -0.381 1.418 0.172

B. Model with stochastic volatility factors

µL µS µC φL φS φC µL

h
µS

h
µC

h
φL

h
φS

h
φC

h
(σL

h
)2 (σS

h
)2 (σC

h
)2 λ

Mean 0.023 -0.008 -0.025 0.994 0.981 0.879 -0.082 -0.083 -0.038 0.977 0.964 0.933 0.246 0.343 0.269 0.045

SD 0.011 0.008 0.034 0.002 0.006 0.024 0.053 0.037 0.023 0.016 0.017 0.034 0.078 0.070 0.083 0.002

95% CI, lower 0.005 -0.028 -0.092 0.988 0.966 0.830 -0.214 -0.169 -0.096 0.936 0.923 0.851 0.134 0.225 0.042 0.042

95% CI, upper 0.049 0.004 0.042 0.998 0.993 0.925 -0.017 -0.024 -0.005 0.996 0.992 0.987 0.439 0.498 0.048 0.048

Z-score -1.647 -0.902 -1.085 1.615 0.878 1.463 -0.594 0.772 -1.196 -0.486 0.532 -1.383 0.378 -0.493 0.454 0.568

”95% CI” denotes the 95% credibility interval of the posterior distribution. The Z-score statistic is the Geweke (1992) test statistic for the convergence of MCMC samples,

see Appendix A.
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Table 2: Summary statistics of the data and model residuals

A. Zero yields from January 1964 to December 2003

Autocorrelation of residuals Autocorrelation of squared residuals

Mean SD 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 6.520 2.719 0.975 0.945 0.919 0.895 0.876 0.854 0.832 0.818 0.800 0.780 0.963 0.920 0.889 0.865 0.852 0.829 0.808 0.802 0.786 0.769

2 6.741 2.633 0.979 0.953 0.929 0.908 0.890 0.870 0.851 0.834 0.816 0.798 0.973 0.938 0.911 0.890 0.874 0.854 0.835 0.823 0.808 0.792

3 6.914 2.538 0.980 0.957 0.936 0.917 0.900 0.882 0.863 0.846 0.829 0.811 0.977 0.948 0.926 0.908 0.893 0.875 0.855 0.840 0.824 0.808

4 7.049 2.484 0.980 0.959 0.941 0.922 0.906 0.889 0.870 0.854 0.836 0.818 0.978 0.953 0.934 0.917 0.903 0.885 0.864 0.849 0.831 0.814

5 7.127 2.439 0.982 0.963 0.945 0.928 0.913 0.897 0.880 0.864 0.848 0.832 0.981 0.958 0.940 0.924 0.911 0.894 0.875 0.861 0.846 0.831

B. Residuals of the model with constant volatility factors

Autocorrelation of residuals Autocorrelation of squared residuals

Mean SD MAE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0.002 0.049 0.0355 -0.114 -0.069 0.169 -0.077 0.026 0.055 -0.142 0.088 0.040 -0.012 0.223 0.135 0.158 0.179 0.129 0.042 0.137 0.150 0.202 0.145

2 -0.006 0.066 0.0487 0.360 0.257 0.316 0.130 0.073 0.076 0.086 0.105 0.198 0.147 0.221 0.214 0.078 0.241 0.191 0.116 0.141 0.115 0.252 0.208

3 -0.001 0.046 0.0307 0.114 0.073 0.194 0.038 0.036 0.171 -0.005 -0.008 0.091 -0.007 0.140 0.050 0.248 0.126 0.036 0.022 0.118 0.013 0.046 0.035

4 0.011 0.066 0.0463 0.283 0.157 0.386 0.159 0.124 0.188 0.017 0.084 0.006 -0.089 0.196 0.142 0.329 0.163 0.078 0.149 0.057 0.089 0.181 0.246

5 -0.003 0.036 0.0267 0.049 0.042 0.042 0.005 0.002 0.069 0.015 -0.026 0.096 -0.107 0.288 0.208 0.236 0.144 0.171 0.155 0.105 0.241 0.121 0.156

C. Residuals of the model with stochastic volatility factors

Autocorrelation of residuals Autocorrelation of squared residuals

Mean SD MAE 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0.001 0.035 0.027 -0.108 -0.100 0.089 0.006 0.021 0.031 -0.115 0.007 0.088 0.020 0.065 0.019 0.056 0.032 0.009 0.000 0.010 0.065 0.134 0.033

2 -0.009 0.071 0.053 0.346 0.249 0.327 0.129 0.085 0.088 0.076 0.104 0.196 0.139 0.198 0.204 0.064 0.176 0.207 0.078 0.134 0.121 0.220 0.193

3 -0.003 0.046 0.032 0.141 0.086 0.182 0.036 0.023 0.164 -0.021 -0.004 0.085 -0.010 0.155 0.063 0.226 0.131 0.045 0.019 0.119 0.020 0.063 0.016

4 0.009 0.065 0.045 0.301 0.182 0.375 0.162 0.127 0.174 0.020 0.090 0.005 -0.090 0.203 0.167 0.329 0.172 0.079 0.159 0.052 0.100 0.183 0.255

5 -0.005 0.037 0.029 0.087 0.052 0.081 0.038 0.018 0.033 -0.003 -0.014 0.075 -0.105 0.139 0.151 0.124 0.103 0.012 0.009 -0.001 0.091 0.086 0.081

The individual rows are associated with the corresponding maturities of the underlying data. The columns give the corresponding lags. MAE denotes the mean absolute

error defined as MAE= 1
T

∑

T

t=1 |y
(n)
t

− ŷ
(n)
t

|.
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Table 3: Monthly regressions of one-year-ahead bond excess returns on Nelson-Siegel yield factors and factor volatilities. Yield factors

and factor volatilities extracted from monthly observations of unsmoothed U.S. Fama-Bliss zero coupon yields from January 1964 to

December 2003 with maturities of one to five years.

A. Regression: z
(n)
t

= c + βLLt−12 + βSSt−12 + βCCt−12 + ε
(n)
t

All yield factors No level factor No slope factor No curvature factor

n c βL βS βC Adj.R2 HH NW c βS βC Adj.R2 HH NW c βL βC Adj.R2 HH NW c βL βS Adj.R2 HH NW

2 −0.92
(−1.31)

0.14
(1.54)

−0.25
(−2.37)

0.51
(4.41)

0.31 43.8 49.9 0.18
(0.61)

−0.26
(−2.09)

0.57
(4.10)

0.29 34.4 39.8 −0.68
(−0.73)

0.15
(1.22)

0.53
(3.80)

0.25 25.3 29.2 −1.78
(−1.88)

0.24
(1.84)

−0.27
(−2.21)

0.17 12.2 15.3

3 −0.92
(−0.70)

0.15
(0.82)

−0.51
(−2.48)

1.01
(4.62)

0.32 41.3 46.9 0.19
(0.36)

−0.52
(−2.19)

1.07
(4.36)

0.32 36.7 42.5 −0.44
(−0.25)

0.17
(0.71)

1.06
(4.01)

0.24 23.4 26.7 −2.63
(−1.46)

0.35
(1.35)

−0.57
(−2.31)

0.15 9.8 12.5

4 −1.40
(−0.77)

0.18
(0.74)

−0.79
(−2.78)

1.42
(4.66)

0.35 40.6 47.4 0.02
(0.03)

−0.81
(−2.45)

1.50
(4.46)

0.34 37.0 43.8 −0.65
(−0.26)

0.23
(0.64)

1.49
(3.92)

0.25 23.1 26.5 −3.80
(−1.53)

0.48
(1.31)

−0.87
(−2.57)

0.17 10.9 13.9

5 −1.86
(−0.84)

0.21
(0.69)

−1.01
(−2.93)

1.78
(4.95)

0.36 44.6 51.6 −0.26
(−0.34)

−1.02
(−2.57)

1.87
(4.76)

0.36 40.8 47.9 −0.92
(−0.31)

0.26
(0.60)

1.88
(4.13)

0.25 25.3 28.6 −4.87
(−1.62)

0.57
(1.30)

−1.10
(−2.69)

0.18 11.5 14.7

B. Regression: z
(n)
t

= c + αLhL
t−12 + αShS

t−12 + αChC
t−12 + ε

(n)
t

All volatility factors No level volatility factor No slope volatility factor No curvature volatility factor

n c αL αS βC Adj.R2 HH NW c αS αC Adj.R2 HH NW c αL αC Adj.R2 HH NW c αL αS Adj.R2 HH NW

2 −1.37
(−2.30)

3.50
(1.25)

−2.95
(−2.18)

3.11
(4.02)

0.18 22.1 22.3 −1.22
(−2.00)

−2.21
(−1.9)

3.52
(3.76)

0.14 13.9 14.4 −0.81
(−1.08)

0.84
(0.35)

1.46
(1.44)

0.06 2.18 2.77 0.14
(0.24)

4.69
(1.58)

−1.59
(−1.15)

0.07 2.54 3.18

3 −2.25
(−2.15)

5.42
(1.04)

−5.52
(−2.35)

5.60
(3.93)

0.16 20.6 21.7 −2.02
(−1.91)

−4.37
(−2.23)

6.23
(3.98)

0.14 15.9 16.7 −1.19
(−0.85)

0.44
(0.09)

2.50
(1.25)

0.04 1.53 1.93 0.48
(0.44)

7.56
(1.37)

−3.08
(−1.26)

0.06 2.16 2.71

4 −2.91
(−2.09)

7.37
(1.01)

−7.95
(−2.51)

7.54
(3.77)

0.16 20.6 21.5 −2.59
(−1.80)

−6.39
(−2.41)

8.40
(3.99)

0.11 16.0 16.9 −1.38
(−0.71)

0.21
(0.03)

3.07
(1.06)

0.03 1.11 1.39 0.77
(0.533)

10.26
(1.34)

−4.67
(−1.39)

0.07 2.32 2.92

5 −3.59
(−2.15)

8.95
(1.01)

−9.72
(−2.49)

8.95
(3.65)

0.16 19.3 20.2 −3.21
(−1.85)

−7.82
(−2.41)

9.99
(3.90)

0.13 15.3 16.2 −1.73
(−0.73)

0.19
(0.02)

3.49
(0.98)

0.02 0.95 1.19 0.77
(0.44)

12.38
(1.33)

−5.82
(−1.42)

0.07 2.35 2.95

C. Regression: z
(n)
t

= c + βLLt−12 + βSSt−12 + βCCt−12 + αLhL
t−12 + αShS

t−12 + αChC
t−12 + ε

(n)
t

All factors

n c βL βS βC αL αS αC Adj.R2 HH NW

2 −4.51
(−5.82)

0.56
(2.73)

0.01
(0.10)

0.53
(6.56)

−6.30
(−1.87)

−3.13
(−2.90)

4.65
(4.88)

0.47 114.8 120.4

3 −7.31
(−4.88)

0.87
(2.37)

−0.04
(−0.20)

1.03
(6.67)

−11.1
(−1.86)

−5.54
(−2.91)

8.29
(4.57)

0.46 105.9 109.4

4 −10.4
(−5.04)

1.33
(2.87)

−0.11
(−0.40)

1.45
(6.81)

−17.2
(−2.26)

−7.74
(−3.13)

10.9
(4.32)

0.49 112.2 117.0

5 −12.7
(−5.09)

1.65
(3.11)

−0.17
(−0.49)

1.80
(7.22)

−21.5
(−2.45)

−9.31
(−3.05)

13.1
(4.13)

0.50 118.8 122.8

z
(n)
t

denotes the n-year one-year ahead bond excess return. Lt, St and Ct denote the estimated level, slope and curvature factors, respectively. Their corresponding

volatility factors are hL
t
, hS

t
and hC

t
. Both yield curve factors and volatility factors are extracted from model (1), (3) and (5). HH and NW are χ2 statistics for joint

significance tests using Hansen-Hodrick and Newey-West corrections, respectively. The 5-percent critical values for χ2(2), χ2(3) and χ2(6) are 5.99, 7.82 and 12.59. The

robust t-statistics based on HH corrections are reported in parentheses “( )”.
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Table 4: Monthly regressions of one-year-ahead bond excess returns on PCA factors,

the Cochrane-Piazzesi forecasting factor and Nelson-Siegel yield factors. Yield factors

extracted from monthly observations of unsmoothed U.S. Fama-Bliss zero coupon yields

from January 1964 to December 2003 with maturities of one to five years.

A.

PCA factors Return-forecasting factor Nelson-Siegel factors

n Adj. R2 HH p-value Adj. R2 HH p-value Adj. R2 HH p-value

2 0.204 36.090 0.000 0.309 65.241 0.000 0.313 49.937 0.000

3 0.212 35.984 0.000 0.336 60.443 0.000 0.321 46.971 0.000

4 0.241 34.375 0.000 0.370 55.896 0.000 0.348 47.469 0.000

5 0.247 35.338 0.000 0.343 46.686 0.000 0.361 51.607 0.000

B. Forecasting regressions: z
(n)
t

= βLLt−12 + βSSt−12 + βCCt−12 + ϕϑt + ε
(n)
t

n βL βS βC ϕ Adj. R2 HH NW

2 0.028
( 0.917)

−0.046
(−0.530)

0.283
(2.024)

0.297
(3.760)

0.336 104.524 99.876

3 0.022
( 0.402)

−0.137
(−0.795)

0.533
(2.172)

0.563
(3.862)

0.358 90.910 89.637

4 0.000
( 0.007)

−0.245
(−1.016)

0.717
(2.173)

0.830
(4.167)

0.390 81.581 85.855

5 −0.030
(−0.356)

−0.472
(−1.618)

1.130
(2.782)

0.786
(3.110)

0.381 67.406 73.079

C. Forecasting regressions: z
(n)
t

= αLhL
t−12 + αShS

t−12 + αChC
t−12 + ϕϑt−12 + ε

(n)
t

n αL αS αC ϕ Adj.R2 HH NW

2 −1.039
(−0.552)

−0.956
(−0.993)

1.135
(2.114)

0.442
(6.730)

0.343 113.181 121.356

3 −3.451
(−1.025)

−1.849
(−1.117)

2.394
(2.394)

0.870
(6.747)

0.381 122.700 131.127

4 −5.411
(−1.202)

−2.758
(−1.254)

3.361
(2.569)

1.278
(6.967)

0.421 135.324 145.272

5 −6.198
(−1.094)

−3.514
(−1.290)

3.795
(2.364)

1.509
(6.524)

0.393 109.265 121.594

z
(n)
t

denotes the one-year-ahead bond excess return of n-year bonds. Lt, St and Ct denote the estimated level,

slope and curvature factors, respectively. Their corresponding volatility factors are hL
t
, hS

t
and hC

t
. Both

yield curve factors and volatility factors are extracted from model (1), (3) and (5). ϑt denotes the return-

forecasting factor of Cochrane and Piazzesi (2005). HH and NW are χ2 statistics for joint significance tests

using Hansen-Hodrick and Newey-West corrections, respectively. The 5-percent critical value of χ2(4) is 9.49.
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Table 5: Linear regressions of monthly yield factors Lt, St, Ct, and factor volatilities hL
t ,

hS
t , hC

t , on log changes of the consumer price index (INF), capacity utilization (CU),

employment growth rate (EMP), the federal funds rate (FFR) and industrial produc-

tion (IP). Yield factors and factor volatilities extracted from monthly observations of

unsmoothed U.S. Fama-Bliss zero coupon yields from January 1964 to December 2003

with maturities of one to five years. Robust standard errors in parantheses.

CONST INF CU EMPLOY FFR IP R2

L 27.781
(3.355)

−0.258
(0.160)

−0.298
(0.044)

27.120
(17.756)

0.495
(0.035)

5.324
(4.787)

0.77

S −29.404
(3.302)

0.159
(0.184)

0.322
(0.044)

−13.601
(19.192)

0.357
(0.029)

−7.225
(4.749)

0.69

C 10.248
(4.302)

−0.697
(0.378)

−0.147
(0.050)

38.976
(18.406)

0.104
(0.091)

−1.060
(6.277)

0.12

hL 0.905
(0.206)

−0.040
(0.014)

−0.012
(0.003)

0.041
(0.827)

0.035
(0.002)

0.465
(0.285)

0.76

hS −0.058
(0.461)

−0.029
(0.037)

0.002
(0.006)

−3.207
(1.929)

0.071
(0.008)

−1.202
(0.846)

0.63

hC 1.879
(0.530)

0.063
(0.038)

−0.014
(0.006)

−7.449
(2.316)

0.029
(0.010)

1.371
(0.767)

0.48

Table 6: VAR(1) estimates of the monthly yield factors Lt, St, Ct, log changes of

the consumer price index (INF), capacity utilization (CU), employment growth rate

(EMP), the federal funds rate (FFR) and industrial production (IP). Yield factors and

factor volatilities extracted from monthly observations of unsmoothed U.S. Fama-Bliss

zero coupon yields from January 1964 to December 2003 with maturities of one to five

years. Robust standard errors in parantheses.

Lt St Ct INFt CUt FFRt IPt EMPLOYt

Lt−1 0.966
(0.028)

0.085
(0.085)

−0.096
(0.072)

−0.011
(0.0264)

0.311
(0.059)

0.508
(0.133)

0.004
(0.001)

0.001
(0.000)

St−1 −0.010
(0.023)

0.982
(0.069)

−0.078
(0.063)

0.005
(0.023)

0.231
(0.055)

0.466
(0.127)

0.003
(0.001)

0.001
0.000)

Ct−1 −0.011
(0.009)

0.020
(0.016)

0.894
(0.023)

−0.018
(0.012)

−0.013
(0.020)

−0.031
(0.0213)

0.000
(0.000)

0.000
(0.000)

INFt−1 0.046
(0.046)

−0.026
(0.108)

−0.188
(0.113)

0.211
(0.072)

0.091
(0.077)

0.083
(0.078)

0.001
(0.002)

0.000
(0.000)

CUt−1 −0.004
(0.004)

0.026
(0.013)

−0.018
(0.016)

0.001
(0.006)

0.973
(0.015)

0.006
(0.012)

0.000
(0.000)

0.000
(0.000)

FFRt−1 0.023
(0.020)

−0.066
(0.074)

0.098
(0.059)

0.007
(0.022)

−0.278
(0.050)

0.572
(0.114)

−0.004
(0.001)

−0.001
(0.000)

IPt−1 −0.222
(0.465)

−0.978
(1.272)

−1.359
(2.014)

0.949
(0.609)

4.190
(1.752)

1.466
(1.198)

1.017
(0.029)

0.039
(0.008)

EMPLOYt−1 0.975
(1.463)

3.674
(3.991)

8.901
(5.210)

2.381
(1.768)

−2.675
(3.702)

−4.390
(4.483)

−0.168
(0.074)

0.908
(0.022)

CONST 0.412
(0.355)

−2.428
(1.072)

1.225
(1.410)

−0.138
(0.501)

1.945
(1.249)

−0.812
(0.977)

0.006
(0.021)

−0.001
(0.006)
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Table 7: VAR(1) estimates of the monthly factor volatilities hL
t , hS

t , hC
t , log changes

of the consumer price index (INF), capacity utilization (CU), employment growth rate

(EMP), the federal funds rate (FFR) and industrial production (IP). Yield factors and

factor volatilities extracted from monthly observations of unsmoothed U.S. Fama-Bliss

zero coupon yields from January 1964 to December 2003 with maturities of one to five

years. Robust standard errors in parantheses.

hL
t hS

t hC
t INFt CUt FFRt IPt EMPLOYt

hL
t−1 0.981

(0.010)
−0.116
(0.033)

−0.058
(0.038)

−0.491
(0.246)

−4.829
(3.014)

1.138
(0.732)

0.019
(0.012)

0.005
(0.003)

hS
t−1 0.014

(0.003)
0.987
(0.028)

0.019
(0.014)

−0.145
(0.070)

−2.614
(1.106)

−0.055
(0.416)

0.003
(0.005)

0.001
(0.002)

hC
t−1 0.007

(0.003)
0.019
(0.014)

1.003
(0.016)

0.212
(0.102)

5.321
(1.469)

0.458
(0.286)

−0.011
(0.006)

−0.004
(0.002)

INFt−1 0.001
(0.001)

0.016
(0.010)

0.004
(0.005)

0.190
(0.075)

0.888
(0.339)

0.121
(0.087)

0.002
(0.002)

0.001
(0.001)

CUt−1 0.000
(0.000)

0.001
(0.001)

0.000
(0.000)

0.007
(0.006)

0.586
(0.114)

0.013
(0.015)

0.000
(0.000)

0.000
(0.000)

FFRt−1 0.000
(0.000)

0.005
(0.002)

0.001
(0.002)

0.023
(0.011)

0.361
(0.156)

0.945
(0.026)

−0.001
(0.000)

0.000
(0.000)

IPt−1 0.017
(0.020)

−0.064
(0.083)

−0.069
(0.098)

0.634
(0.620)

−31.098
(11.181)

−1.487
(1.568)

1.025
(0.027)

0.044
(0.008)

EMPLOYt−1 0.095
(0.056)

0.274
(0.219)

0.325
(0.283)

2.436
(1.708)

143.696
(36.878)

9.511
(3.923)

−0.162
(0.076)

0.904
(0.024

CONST −0.027
(0.014)

−0.074
(0.058)

−0.016
(0.073)

−0.751
(0.511)

25.893
(8.430)

−1.460
(1.315)

0.030
(0.027)

0.010
(0.008)
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Figure 1: Plot of the Nelson-Siegel factor loadings. λ = 0.045.
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Figure 2: The estimated yield factors (solid lines) and their empirical approximation

(dotted lines).
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Figure 3: Loadings on the Nelson-Siegel curvature factor (left), λ = 0.045, the return-

forecasting factor (middle) and the PC curvature factor (right).
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Figure 4: The estimated level volatility factor (blue line, top), the slope volatility factor

(green line, middle) and curvature volatility factor (red line, bottom).
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Figure 5: Prediction error decompositions of the level and slope factor. Based on a

VAR(1) model of yield factors and macro factors using a Cholesky decomposition of

the covariance.
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Figure 6: Prediction error decomposition of the curvature factor and DCPI factor.

Based on a VAR(1) model of yield factors and macro factors using a Cholesky decom-

position of the covariance.
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Figure 7: Prediction error decomposition of capacity utilization and of the federal funds

rate. Based on a VAR(1) model of yield factors and macro factors using a Cholesky

decomposition of the covariance.
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Figure 8: Prediction error decomposition of industrial production and of the employ-

ment growth rate. Based on a VAR(1) model of yield factors and macro factors using

a Cholesky decomposition of the covariance.
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Figure 9: Prediction error decomposition of the level and slope volatility. Based on a

VAR(1) model of volatility factors and macro factors using a Cholesky decomposition

of the covariance.
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Figure 10: Prediction error decomposition of the curvature volatility and DCPI. Based

on a VAR(1) model of volatility factors and macro factors using a Cholesky decompo-

sition of the covariance.
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Figure 11: Prediction error decomposition of capacity utilization and of the federal

funds rate. Based on a VAR(1) model of volatility factors and macro factors using a

Cholesky decomposition of the covariance.
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Figure 12: Prediction error decomposition of industrial production and of the employ-

ment growth rate. Based on a VAR(1) model of volatility factors and macro factors

using a Cholesky decomposition of the covariance.
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