Zur Theorie der Curven, deren Bogenlänge ein elliptisches Integral erster Art ist.

INAUGURAL-DISSERTATION

ZUR

ERLANGUNG DER DOCTORWÜRDE

VON DER PHILOSOPHISCHEN FACULTÄT

DER

FRIEDRICH-WILHELM'S-UNIVERSITÄT ZU BERLIN

GENEHMIGT

UND

ÖFFENTLICH ZU VERTHEIDIGEN

am 8. Februar 1882

von

Reinhold von Lilienthal

aus Berlin.

OPPONENTEN:

Johannes Knoblauch, Dr. phil.
Richard Schmeltzer, Referendar.
Jacob Haenlein, Cand. math.

BERLIN.

BUCHDRUCKEREI VON GUSTAV SCHADE (OTTO FRANCKE).
Liniestr. 158.
Seinem väterlichen Freunde

Ludwig von Lilienthal

dankbarlichst gewidmet

vom

Verfasser.
Mit der Frage nach denjenigen algebraischen Curven, deren Koordinaten eindeutige elliptische Functionen sind, in welchen das Argument \(\nu \) die Bogenlänge der Curve gezählt von einem beliebigen Punkte aus bedeutet, hat sich in neuerer Zeit besonders Herr Kiepert beschäftigt. Nachdem Serret eine Schaar solcher Curven in der Ebene aufgestellt hatte, deren Koordinaten rationale Functionen einer Variabelen \(z \) sind, gelang es Herrn Kiepert, sowohl die Anzahl dieser um ein Bedeutendes zu vermehren, als auch Curven der verlangten Eigenschaft von Geschlecht 1 aufzustellen, deren Koordinaten also rational in \(z \) und \(R(z) \) sind. Beide, Serret sowohl wie Herr Kiepert, gehen aus von dem Ausdruck \(z + iy \), indem sie für ihn eine elliptische Function aufstellen und untersuchen, wann die Gleichung

\[
\left(\frac{dx}{du} \right)^2 + \left(\frac{dy}{du} \right)^2 = \text{const.}
\]

besteht. Auf Curven im Raum ist eine solche Methode nicht anwendbar. Es soll daher im Folgenden für jede Coordinate der Curve, sei sie nun eben oder doppelter Krümmung, eine elliptische Function aufgestellt und die Bedingungen der Existenz der Gleichung

\[
\left(\frac{dx}{du} \right)^2 + \left(\frac{dy}{du} \right)^2 = \text{const.}
\]

resp.

\[
\left(\frac{dx}{du} \right)^2 + \left(\frac{dy}{du} \right)^2 + \left(\frac{dz}{du} \right)^2 = \text{const.}
\]

betrachtet werden.

Für ebene Curven wollen wir diese Methode an den Beispielen der Lemniskate und der von Herrn Kiepert gefundenen
Curve, deren Gleichung in Polarcoordinaten \(r^3 = \cos 3\varphi \) ist, erläutern. In Betreff der Raumcurven werden wir zunächst den durch Verallgemeinerung der Gleichung der Lemniskate entstehenden Fall ausführlich behandeln, sodann zeigen, dass der von Serret gefundenen Schaar ebener Curven eine solche sphärischer Curven entspricht, und zum Schluss einen Zusammenhang zwischen sphärischen Curven der verlangten Eigenschaft und Minimalflächen darlegen.

Es sind überall bei der Darstellung elliptischer Functionen die bequemen Methoden des Herrn Professor Weierstrass benutzt. In Betreff ihrer sei auf „Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen von H. A. Schwarz, Göttingen 1881“ verwiesen.

§ 1.

Es sollen also die Gleichungen solcher Curven aufgestellt werden, deren Coordinaten eindeutige elliptische Functionen sind, in denen das Argument \(u \) die Bedeutung des Bogens der Curve hat. Diese Functionen müssen daher zunächst für reelle Werthe von \(u \) selbst reell sein. Da sie ferner periodisch sind, so folgt, dass die gesuchten Curven sämmtlich geschlossene sein, und somit jene elliptischen Functionen keine reellen Unendlichkeitsstellen besitzen werden.

Abgesehen von einer additiven Constanten ist daher die allgemeine Form der zu betrachtenden Functionen

\[
\varphi (u) = \sum_{\lambda=0}^{l} \sum_{\nu=1}^{r_\lambda} \frac{(-1)^{\nu-1}}{(\nu - 1)!} \frac{d^\nu \log \sigma (u - b_\lambda)}{du^\nu} + \sum_{\lambda'=0}^{l} \sum_{\nu=1}^{r_{\lambda'}} \frac{(-1)^{\nu-1}}{(\nu - 1)!} \frac{d^\nu \log \sigma (u - b'_{\lambda'})}{du^\nu}
\]

worin die Grössen \(b \) die Unendlichkeitsstellen von \(\varphi (u) \), die Grössen \(c \) Constante sind, \(r_\lambda \) die zu \(b_\lambda \) resp. \(b'_{\lambda'} \) gehörige Ord-
nungszahl, \((l + 1)\) die halbe Anzahl der Grössen \(b\) bedeutet, sowie die gestrichenen Grössen den entsprechenden nicht gestrichenen conjugirt sind.

Betrachtet man nun solche Functionen mit denselben Unendlichkeitsstellen als Coordinaten einer Curve, bildet dann den Ausdruck für das Quadrat des Bogenelements \(- ds^2\) und setzt in ihm die Coeffizienten der negativen Potenzen von \((u - b_1)\) gleich Null, so verschwinden auch die Coeffizienten der entsprechenden negativen Potenzen von \((u - b'_1)\), da sie den ersteren conjugirt sind. \(\left(\frac{dz}{du}\right)^2\) besitzt dann keine Unendlichkeitsstellen mehr und ist nach einem bekannten Satze constant.

Die Variabele \(u\) hat dann die Bedeutung des Bogens der Curve.

Die einfachsten Fälle für die Ebene sind diejenigen, bei denen \(\varphi(u)\) an 4 Stellen je von der zweiten oder an 6 Stellen je von der ersten Ordnung unendlich wird.

\[\text{§. 2.}\]

Es sei nun:

\[x = A\varphi(u - a_1) + A'\varphi(u - a_2) + A_1\varphi(u - a_3) + A_1'\varphi(u - a_4)\]
\[y = B\varphi(u - a_1) + B'\varphi(u - a_2) + B_1\varphi(u - a_3) + B_1'\varphi(u - a_4)\]

worin

\[a_2 a_4 A' A_1 B' B_1\]

zu

\[a_1 a_3 A A_1 B B_1\]

conjugirt sind, und es werde die Aufgabe gestellt, die Grössen

\[a_1 a_3 A A_1 B B_1\]

so zu bestimmen, dass der Ausdruck \(\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2\)

constant ist.

Man hat:

\[\frac{dx}{du} = A\varphi'(u - a_1) + A'\varphi'(u - a_2) + A_1\varphi'(u - a_3) + A_1'\varphi'(u - a_4),\]

somit ist die Entwicklung in der Nähe von \(a_1:\)
\[
\frac{dx}{du} = -\frac{2A}{(u-a_1)^3} + A'\varphi'(a_1-a_2) + A_1\varphi'(a_1-a_3) + A_1\varphi'(a_1-a_4) + A_1\varphi''(a_1-a_3) + \frac{Ag_3}{10}(u-a_1)
\]
\[
+ \left\{ A'\varphi''(a_1-a_2) + A_1\varphi''(a_1-a_3) + A_1\varphi''(a_1-a_4) + \frac{u-a_1}{2} \right\} + \ldots
\]

Daher:

\[
\left(\frac{dx}{du} \right)^2 = \frac{4A^2}{(u-a_1)^6}
\]
\[
+ 4A \left\{ A'\varphi'(a_1-a_2) + A_1\varphi'(a_1-a_3) + A_1\varphi'(a_1-a_4) \right\}
\]
\[
+ \frac{4A \left\{ A'\varphi''(a_1-a_2) + A_1\varphi''(a_1-a_3) + A_1\varphi''(a_1-a_4) + \frac{Ag_3}{10} \right\}}{(u-a_1)^3}
\]
\[
+ \frac{2A \left\{ A'\varphi'''(a_1-a_2) + A_1\varphi'''(a_1-a_3) + A_1\varphi'''(a_1-a_4) \right\}}{u-a_1} + \varphi(u-a_1)
\]
wo \(\varphi(u-a_1) \) an der Stelle \(u = a_1 \) endlich ist.

Ebenso hat man in der Umgebung der Stelle \(a_3 \)

\[
\left(\frac{dx}{du} \right)^2 = \frac{4A_1^2}{(u-a_3)^6}
\]
\[
+ 4A_1 \left\{ A'\varphi'(a_3-a_1) + A'\varphi'(a_3-a_2) + A_1\varphi'(a_3-a_4) \right\}
\]
\[
+ \frac{4A_1 \left\{ A'\varphi''(a_3-a_1) + A'\varphi''(a_3-a_2) + A_1\varphi''(a_3-a_4) + \frac{Ag_3}{10} \right\}}{(u-a_3)^3}
\]
\[
+ \frac{2A_1 \left\{ A'\varphi'''(a_3-a_1) + A'\varphi'''(a_3-a_2) + A_1\varphi'''(a_3-a_4) \right\}}{u-a_3} + \varphi_1(u-a_3)
\]

Die entsprechenden Ausdrücke für \(\left(\frac{dy}{du} \right)^2 \) erhält man hieraus, indem man \(A \) mit \(B \) vertauscht. Setzt man nun die Coefficienten der negativen Potenzen von \((u-a_1) \) und \((u-a_3) \) in dem Ausdruck \(\left(\frac{dx}{du} \right)^2 + \left(\frac{dy}{du} \right)^2 \) gleich Null, so entstehen die Gleichungen:
I. \[A^2 + B^2 = 0 \]
\[A_1^2 + B_1^2 = 0 \]

II. \((A A' + B B') \varphi' (a_1 - a_2) + (A A_1 + B B_1) \varphi' (a_1 - a_3) + (A A_1' + B B_1') \varphi' (a_1 - a_4) = 0\)
\((A_1 A + B_1 B) \varphi' (a_3 - a_1) + (A_1 A' + B_1 B') \varphi' (a_3 - a_2) + (A_1 A_1' + B_1 B_1') \varphi' (a_3 - a_4) = 0\)

III. \((A A' + B B') \varphi'' (a_1 - a_2) + (A A_1 + B B_1) \varphi'' (a_1 - a_3) + (A A_1' + B B_1') \varphi'' (a_1 - a_4) = 0\)
\((A_1 A + B_1 B) \varphi'' (a_3 - a_1) + (A_1 A' + B_1 B') \varphi'' (a_3 - a_2) + (A_1 A_1' + B_1 B_1') \varphi'' (a_3 - a_4) = 0\)

IV. \((A A' + B B') \varphi''' (a_1 - a_2) + (A A_1 + B B_1) \varphi''' (a_1 - a_3) + (A A_1' + B B_1') \varphi''' (a_1 - a_4) = 0\)
\((A_1 A + B_1 B) \varphi''' (a_3 - a_1) + (A_1 A' + B_1 B') \varphi''' (a_3 - a_2) + (A_1 A_1' + B_1 B_1') \varphi''' (a_3 - a_4) = 0\)

Aus den Gleichungen I folgt:

\[B = \pm i A \]
\[B_1 = \pm i A_1. \]

Hier kann man \(B\) stets gleich \(i A\) nehmen, da man sonst statt \(y\) nur zu setzen braucht — \(y\).

Die beiden Fälle \(B_1 = \pm i A_1\) führen auf dasselbe Resultat, sodass wir nur den ersteren betrachten.

Es ist also:

\[B = i A \quad B' = -i A' \]
\[B_1 = i A_1 \quad B_1' = -i A_1'. \]

Daraus folgt:

\[A A' + B B' = 2 A A' \]
\[A A_1 + B B_1 = 0 \]
\[A A_1' + B B_1' = 2 A A_1' \]
\[A_1 A' + B_1 B' = 2 A_1 A' \]
\[A_1 A_1' + B_1 B_1' = 2 A_1 A_1' \]

sodass unsere Bedingungsgleichungen in die folgenden übergehen:
\[A' \varphi' (a_1 - a_2) + A'_1 \varphi' (a_1 - a_4) = 0 \]
\[A' \varphi' (a_3 - a_2) + A'_1 \varphi' (a_3 - a_4) = 0 \]
\[A' \varphi'' (a_1 - a_2) + A'_1 \varphi'' (a_1 - a_4) = 0 \]
\[A' \varphi'' (a_3 - a_2) + A'_1 \varphi'' (a_3 - a_4) = 0 \]
\[A' \varphi''' (a_1 - a_2) + A'_1 \varphi''' (a_1 - a_4) = 0 \]
\[A' \varphi''' (a_3 - a_2) + A'_1 \varphi''' (a_3 - a_4) = 0 \]

Diese Gleichungen sind offenbar erfüllt, wenn es gelingt, eine elliptische Funktion aufzufinden, welche an den Stellen \(a_2 \) und \(a_4 \) unendlich und an den Stellen \(a_1 \) und \(a_3 \) Null wird.

\[\varphi (u) = c \varphi' (u - a_2) + c_1 \varphi' (u - a_4) \]

d. h. es muss bestehen:
\[C \frac{\varphi'(u-a_1)^3}{\varphi'(u-a_2)^3} \frac{\varphi'(u-a_3)^3}{\varphi'(u-a_4)^3} e^{(2p \eta + 2q \eta')u} = c \varphi'(u-a_2) + c_1 \varphi'(u-a_4). \]

Hier genügt es zunächst, die Zahlen \(p \) und \(q \) gleich Null zu setzen oder \(a_1 + a_3 = a_2 + a_4 \) anzunehmen, eine Voraussetzung, deren Richtigkeit man im Verlauf der Entwicklung leicht einsieht, sodass wir die Gleichung
\[\frac{1}{C} \varphi (u) = \frac{\varphi'(u-a_1)^3}{\varphi'(u-a_2)^3} \frac{\varphi'(u-a_3)^3}{\varphi'(u-a_4)^3} = c \varphi'(u-a_2) + c_1 \varphi'(u-a_4) \]
zu befriedigen haben.

Die Entwicklung von \(\frac{1}{C} \varphi (u) \) in der Nähe von \(a_2 \) ist:
\[\frac{\varphi (a_2 - a_1)^3}{\varphi (a_2 - a_4)^3} \left[\frac{1}{(u-a_2)^3} + 3 \left(\frac{\varphi'}{\varphi} (a_2 - a_1) + \frac{\varphi'}{\varphi} (a_2 - a_3) \right) \frac{1}{(u-a_2)^2} \right. \]
\[- \frac{\varphi'}{\varphi} (a_2 - a_4) \left. \right] + \frac{1}{2 (u - a_2)} + \ldots \]

woraus sich die Entwicklung für die Umgebung von \(a_4 \) durch Vertauschen von \(a_2 \) und \(a_4 \) ergibt.
Setzt man zur Abkürzung:

\[\frac{\sigma (a_2 - a_1)^3 \sigma (a_2 - a_3)^3}{\sigma (a_2 - a_4)^3} = K \]

\[\frac{\sigma'}{\sigma} (a_2 - a_1) + \frac{\sigma'}{\sigma} (a_2 - a_3) - \frac{\sigma'}{\sigma} (a_2 - a_4) = K_1 \]

\[\varphi (a_2 - a_1) + \varphi (a_2 - a_3) - \varphi (a_2 - a_4) = K_2 \]

und bezeichnet die analogen durch Vertauschen von \(a_2 \) und \(a_4 \) hervorgehenden Ausdrücke mit \(K' \), \(K'_1 \), \(K'_2 \), so ist:

\[
\frac{1}{C} \varphi (u) = \frac{-K}{2} \varphi' (u - a_2) + \frac{-K'}{2} \varphi' (u - a_4) \\
+ 3KK_1 \varphi (u - a_2) + 3K'K'_1 \varphi (u - a_4) \\
+ \frac{1}{2} K(9K_1^2 - 3K_2) \frac{\sigma'}{\sigma} (u - a_2) \\
+ \frac{1}{2} K' (9K_1^2 - 3K_2') \frac{\sigma'}{\sigma} (u - a_4) + \text{Const. ,}
\]

wo

\[\text{Const.} = \frac{K}{2} (9K_1^2 - 3K_2) \frac{\sigma'}{\sigma} (a_2) + \frac{K'}{2} (9K_1^2 - 3K_2') \frac{\sigma'}{\sigma} (a_4) \\
- 3KK_1 \varphi (a_2) - 3K'K'_1 \varphi (a_4) - \frac{K}{2} \varphi' (a_2) - \frac{K'}{2} \varphi' (a_4) \\
+ \frac{\sigma (a_1)^3 \sigma (a_3)^3}{\sigma (a_2)^3 \sigma (a_4)^3}. \]

Damit nun \(\varphi (u) \) die verlangte Form annehme, ist notwendig und hinreichend, dass die Grössen \(K_1 \), \(K_2 \), \(K'_1 \), \(K'_2 \), sowie die Constante verschwinden.

In Folge der Gleichung

\[a_1 + a_3 = a_2 + a_4 \]

wird aber

\[K_1 = -K', \quad K_2 = K'_2, \]

sodass die Bedingungen \(K_1 = 0, \ K_2 = 0 \) fortfallen. Es bleibt daher:

\[
\frac{\sigma'}{\sigma} (a_2 - a_1) + \frac{\sigma'}{\sigma} (a_2 - a_3) - \frac{\sigma'}{\sigma} (a_2 - a_4) = 0 \quad (1) \\
\varphi (a_2 - a_1) + \varphi (a_2 - a_3) - \varphi (a_2 - a_4) = 0 \quad (2)
\]

sowie \(\text{Const.} = 0. \)
Man hat nun:

\[a_3 - a_4 = a_2 - a_1 + a_2 - a_3. \]

Wandet man daher auf \(\sigma' (a_2 - a_4) \) und \(\varphi (a_2 - a_4) \) die Formeln:

\[
\begin{align*}
\sigma' (u - v) &= \sigma' (u) + \sigma' (v) + \frac{1}{2} \frac{\varphi' u - \varphi' v}{\varphi u - \varphi v} \\
\varphi (u + v) &= \frac{1}{4} \left(\frac{\varphi' u - \varphi' v}{\varphi u + \varphi v} \right)^2 - \varphi u - \varphi v
\end{align*}
\]

an, so werden die Gleichungen 1) und 2) zu:

\[
\begin{align*}
\varphi' (a_2 - a_1) - \varphi' (a_2 - a_3) &= 0 \\
\varphi (a_2 - a_1) - \varphi (a_2 - a_3) &= 0 \\
\varphi (a_2 - a_1) + \varphi (a_2 - a_3) &= 0.
\end{align*}
\]

Die Gleichung 3) ist erfüllt, wenn \(a_2 - a_1 \) und \(a_2 - a_3 \) halbe Perioden sind. Die Gleichung 4) vergleichen wir mit der bekannten Relation:

\[e_1 + e_2 + e_3 = 0, \]

wo

\[e_1 = \varphi (\omega), \quad e_2 = \varphi (\omega + \omega'), \quad e_3 = \varphi (\omega') \]

— indem wir mit \(2 \omega \) und \(2 \omega' \) die Perioden von \(\varphi (u) \) bezeichnen — und fragen, welche der Grössen \(e \) kann gleich Null sein.

Nennen wir das Quadrat des Moduls \(k \), so ist:

\[k = \frac{e_2 - e_3}{e_1 - e_3} \]

und muss zwischen den Grenzen 0 und 1 liegen.

Für \(e_1 = 0 \) wird \(k = 2 \),

für \(e_2 = 0 \) wird \(k = \frac{1}{2} \)

und für \(e_3 = 0 \) wird \(k = -1 \).

Es kann daher nur \(e_2 = 0 \) gleich Null werden.

Wir nehmen daher:

\[a_2 - a_1 = \omega', \quad a_2 - a_3 = \omega, \]
somit

\[a_1 = \alpha - \frac{\omega'}{2} \]

\[a_2 = \alpha + \frac{\omega'}{2} \]

\[a_3 = \alpha - \omega + \frac{\omega'}{2} \]

\[a_4 = \alpha - \omega - \frac{\omega'}{2} , \]

wo \(\alpha \) eine beliebige reelle Größe ist, die wir gleich Null setzen wollen.

Für die Größen \(K \) und \(K' \) erhält man die Ausdrücke:

\[K = \frac{\sigma (\omega')^3 \sigma (\omega)^3}{\sigma (\omega + \omega')^3}, \quad K' = -K. \]

Es erübrigt noch zu zeigen, dass auch die Konstante verschwindet.

Dieselbe wird jetzt:

\[-\frac{\sigma (\omega)^3 \sigma (\omega')^3}{2 \sigma (\omega + \omega')^3} \left\{ \varphi' \left(\frac{\omega'}{2} \right) + \varphi' \left(\frac{\omega'}{2} + \omega \right) \right\} - \frac{\sigma \left(\frac{\omega'}{2} - \omega \right)^3}{\sigma \left(\frac{\omega'}{2} - \omega \right)^3} = \]

\[-\frac{\sigma (\omega)^3 \sigma (\omega')^3}{2 \sigma (\omega + \omega')^3} \left\{ \varphi' \left(\frac{\omega'}{2} \right) + \varphi' \left(\frac{\omega'}{2} + \omega \right) \right\} - e^{-3\eta \omega'}. \]

Aus der Formel:

\[\varphi u - \varphi v = -\frac{\sigma (u + v) \sigma (u - v)}{\sigma^2 (u) \sigma^2 (v)} \]

leitet man her:

\[e_3 - e_1 = \frac{\sigma (\omega + \omega')^2}{\sigma (\omega)^2 \sigma (\omega')^2} e^{-2\eta \omega'}, \]

somit ist

\[e^{-3\eta \omega'} = \frac{\sigma (\omega)^3 \sigma (\omega')^3}{\sigma (\omega + \omega')^3} V(e_3 - e_1)^3, \]

dahe muss

\[\varphi' \left(\frac{\omega'}{2} \right) + \varphi' \left(\frac{\omega'}{2} + \omega \right) + 2 V(e_3 - e_1)^3 \]
oder weil \(e_1 = -e_3 \)

\[
\varphi' \left(\frac{\omega'}{2} \right) + \varphi' \left(\frac{\omega'}{2} + \omega \right) + 4 \sqrt{2} e_3 \cdot e_3 = 0
\]

sein.

Da für \(e_2 = 0, g_2 = 4 e_3^2 \) und \(g_3 = 0 \) ist, so folgt aus der Formel:

\[
\varphi \left(2 u \right) = \frac{\left(\varphi^2(u) + \frac{g_2}{4} \right)^2 + 2 g_3 \varphi u}{\varphi'(u)^2} \]

\[
\varphi'(u) = \pm \frac{\varphi^2(u) + e_3^2}{\sqrt{\varphi(2u)}}
\]

Ferner folgt aus der Formel:

\[
\varphi(u + \omega) = e_1 + \frac{(e_1 - e_3)(e_1 - e_3)}{\varphi u - e_1}
\]

da \(e_3 = 0 \) durch Differentiation:

\[
\varphi'(u + \omega) = e_1 (e_1 - e_3) \frac{- \varphi' u}{(\varphi u - e_1)^2} = 2 e_3^2 \frac{- \varphi' u}{(\varphi u + e_3)^2},
\]

welches zeigt, dass \(\varphi' \left(\frac{\omega'}{2} + \omega \right) \) das entgegengesetzte Zeichen hat wie \(\varphi' \left(\frac{\omega'}{2} \right) \).

Es wird daher unser Ausdruck:

\[
\left\{ \varphi^2 \left(\frac{\omega'}{2} \right) - \varphi^2 \left(\frac{\omega'}{2} + \omega \right) \right\} \frac{1}{\sqrt{e_3}} + 4 e_3 \sqrt{2} e_3.
\]

Nun folgt aus der Relation:

\[
\varphi(2u) - e_3 = \frac{(\varphi^2 u - 2 e_3 \varphi u - e_3^2)^2}{\varphi' u^2}
\]

\[
\varphi \left(\frac{\omega'}{2} \right) = e_3 \left(1 - \sqrt{2} \right)
\]

\[
\varphi \left(\frac{\omega'}{2} + \omega \right) = e_3 \left(1 + \sqrt{2} \right).
\]

Dadurch wird

\[
\varphi^2 \left(\frac{\omega'}{2} \right) - \varphi^2 \left(\frac{\omega'}{2} + \omega \right) = -4 \sqrt{2} e_3^2,
\]

so dass die Constante wirklich den Werth Null hat.
Setzen wir nun:

\[\frac{1}{\mathcal{C}} = - \frac{\mathcal{G}(\omega)^3 \mathcal{G}(\omega')^3}{2 \mathcal{G}(\omega+\omega')^3}, \]

so wird

\[\varphi(u) = \varphi'(u - \alpha_2) - \varphi'(u - \alpha_4). \]

Daher

\[A' = 1, \quad A_i' = -1 \]

und

\[
x = \varphi\left(\frac{u + \omega'}{2}\right) + \varphi\left(\frac{u - \omega'}{2}\right) - \varphi\left(\frac{u + \omega - \omega'}{2}\right) - \varphi\left(\frac{u + \omega + \omega'}{2}\right)
\]

\[
y = i\left\{\varphi\left(\frac{u + \omega}{2}\right) - \varphi\left(\frac{u - \omega}{2}\right) \right\} - i\left\{\varphi\left(\frac{u - \omega + \omega'}{2}\right) - \varphi\left(\frac{u + \omega + \omega'}{2}\right) \right\}.
\]

Wir setzen statt \(u = \frac{\omega}{2} \), wodurch nur der Anfangspunkt des Bogens verlegt wird. Dann hat man:

\[
x = \varphi\left(\frac{u - \omega}{2} + \frac{\omega'}{2}\right) + \varphi\left(\frac{u - \omega}{2} - \frac{\omega'}{2}\right) - \varphi\left(\frac{u + \omega}{2} - \frac{\omega'}{2}\right)
\]

\[
y = i\left\{\varphi\left(\frac{u + \omega}{2} - \frac{\omega}{2}\right) - \varphi\left(\frac{u - \omega}{2} - \frac{\omega}{2}\right) \right\} - i\left\{\varphi\left(\frac{u - \omega + \omega'}{2}\right) - \varphi\left(\frac{u + \omega + \omega'}{2}\right) \right\}.
\]

Wendet man nun die für \(e_3 = 0 \) geltenden Formeln an:

\[
\varphi\left(\frac{u + \omega}{2} + \frac{\omega'}{2}\right) = \frac{-e_3^2}{\varphi\left(\frac{u - \omega}{2} - \frac{\omega'}{2}\right)}
\]

\[
\varphi\left(\frac{u - \omega}{2} + \frac{\omega'}{2}\right) = e_3 + \frac{2e_3^2}{\varphi\left(\frac{u - \omega}{2} - \frac{\omega'}{2}\right) - e_3}
\]

\[
\varphi\left(\frac{u + \omega}{2} - \frac{\omega'}{2}\right) = e_3 - \frac{2e_3 \varphi\left(\frac{u - \omega}{2} - \frac{\omega'}{2}\right)}{e_3 + \varphi\left(\frac{u - \omega}{2} - \frac{\omega'}{2}\right)}.
\]
so wird
\[x + iy = 2 \left[\varphi \left(u - \frac{\omega}{2} - \frac{\nu'}{2} \right) - \varphi \left(u + \frac{\omega}{2} + \frac{\nu'}{2} \right) \right] \]
\[= 2 \frac{\varphi'(u - \frac{\omega}{2} - \frac{\nu'}{2}) - \nu'_3}{\varphi(u - \frac{\omega}{2} - \frac{\nu'}{2})} \]
\[x - iy = 2 \left[\varphi \left(u - \frac{\omega}{2} + \frac{\nu'}{2} \right) - \varphi \left(u + \frac{\omega}{2} - \frac{\nu'}{2} \right) \right] \]
\[= 4 \nu'_3 \frac{\varphi'(u - \frac{\omega}{2} - \frac{\nu'}{2}) + \nu'_2}{\varphi'(u - \frac{\omega}{2} - \frac{\nu'}{2}) - \nu'_2}, \]

woraus sich ergibt:
\[(x^2 + y^2)^2 = 32 \nu'_3 (x^2 - y^2), \]
welches die Gleichung der gewöhnlichen Lemniskate ist.

§ 3.

Als zweites Beispiel führen wir den Fall an, wo die elliptischen Functionen, welche die Coordinaten der Curve darstellen, an 6 Stellen je von der ersten Ordnung endlich werden.

Man kann dann setzen:
\[x = A \frac{\sigma'}{\sigma} (u - a_1) + A' \frac{\sigma'}{\sigma} (u - a_2) + A_1 \frac{\sigma'}{\sigma} (u - a_3) \]
\[+ A'_1 \frac{\sigma'}{\sigma} (u - a_4) + A_2 \frac{\sigma'}{\sigma} (u - a_5) + A'_2 \frac{\sigma'}{\sigma} (u - a_6) \]
\[y = i \frac{A}{\sigma} (u - a_1) - i \frac{A'}{\sigma'} (u - a_2) + i A_1 \frac{\sigma'}{\sigma} (u - a_3) \]
\[- i A'_1 \frac{\sigma'}{\sigma} (u - a_4) + i A_2 \frac{\sigma'}{\sigma} (u - a_5) - i A'_2 \frac{\sigma'}{\sigma} (u - a_6), \]
wo die Größen
\[A', A'_1, A'_2, a_2, a_4, a_6 \]
den Größen
\[A, A_1, A_2, a_1, a_3, a_5 \]
conjuguirt sind.
Damit α eine elliptische Function sei, wird ausserdem erforderlich, dass

$$A + A' + A_1 + A'_1 + A_2 + A_2' = 0$$

ist, d. h. dass die Summe der reellen Theile der Grössen A, A_1, A_2 verschwinden.

Die dieselbe Bedingung für γ, nämlich:

$$A - A' + A_1 - A'_1 + A_2 - A_2' = 0$$

zeigt, dass auch die Summe der imaginären Theile der Grössen A, A_1, A_2 verschwinden muss, woraus dann

$$A + A_1 + A_2 = 0$$

und damit

$$A' + A'_1 + A_2' = 0$$

folgt.

Entwickelt man nun den Ausdruck $\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2$ nach Potenzen von $(u - a_1), (u - a_3), (u - a_5)$ und setzt die Coeffizienten der entstehenden negativen Potenzen gleich Null, so erhält man die Bedingungsgleichungen:

$$A' \varphi (a_1 - a_2) + A'_1 \varphi (a_1 - a_4) + A_2 \varphi (a_1 - a_6) = 0$$
$$A' \varphi (a_3 - a_2) + A'_1 \varphi (a_3 - a_4) + A_2 \varphi (a_3 - a_6) = 0$$
$$A' \varphi (a_5 - a_2) + A'_1 \varphi (a_5 - a_4) + A_2 \varphi (a_5 - a_6) = 0$$
$$A' \varphi' (a_1 - a_2) + A'_1 \varphi' (a_1 - a_4) + A_2 \varphi' (a_1 - a_6) = 0$$
$$A' \varphi' (a_3 - a_2) + A'_1 \varphi' (a_3 - a_4) + A_2 \varphi' (a_3 - a_6) = 0$$
$$A' \varphi' (a_5 - a_2) + A'_1 \varphi' (a_5 - a_4) + A_2 \varphi' (a_5 - a_6) = 0.$$

Diese Gleichungen werden erfüllt sein, wenn eine elliptische Function existirt, die an den Stellen a_2, a_4, a_6 unendlich und an den Stellen a_1, a_3, a_5 Null je von der zweiten Ordnung wird und sich zugleich auf die Form

$$B \varphi (u - a_2) + B_1 \varphi (u - a_4) + B_2 \varphi (u - a_6)$$

bringen lässt, wo $B + B_1 + B_2 = 0$ ist.

Diese Funktion sei:

$$C \cdot \varphi (u) = \frac{\sigma^2 (u - a_1) \sigma^2 (u - a_3) \sigma^2 (u - a_5)}{\sigma^2 (u - a_2) \sigma^2 (u - a_4) \sigma^2 (u - a_6)},$$

wobei wir annehmen, dass $a_1 + a_3 + a_5 = a_2 + a_4 + a_6$ ist.
Die Entwicklung dieser Funktion für die Umgebung von a_2 ist:

$$\frac{\vartheta^2(\alpha_2-a_1) \vartheta^2(\alpha_2-a_2) \vartheta^2(\alpha_2-a_5)}{\vartheta^2(\alpha_2-a_3) \vartheta^2(\alpha_2-a_4) \vartheta^2(\alpha_2-a_6)} \cdot \left[\frac{1}{(u-a_2)^2} + 2 \left\{ \frac{\vartheta'(\alpha_2-a_1)}{\vartheta(\alpha_2-a_1)} + \frac{\vartheta'(\alpha_2-a_3)}{\vartheta(\alpha_2-a_3)} + \frac{\vartheta'(\alpha_2-a_5)}{\vartheta(\alpha_2-a_5)} \right\} \frac{1}{u-a_2} + \cdots \right].$$

Stellt man ebenso die Entwicklung für die Umgebungen von a_4 und a_6 auf, so erhält man:

$$B = \frac{\vartheta^2(\alpha_2-a_1) \vartheta^2(\alpha_2-a_3) \vartheta^2(\alpha_2-a_5)}{\vartheta^2(\alpha_2-a_4) \vartheta^2(\alpha_2-a_6)}$$

$$B_1 = \frac{\vartheta^2(\alpha_2-a_1) \vartheta^2(\alpha_2-a_3) \vartheta^2(\alpha_2-a_5)}{\vartheta^2(\alpha_2-a_4) \vartheta^2(\alpha_2-a_6)}$$

$$B_2 = \frac{\vartheta^2(\alpha_2-a_1) \vartheta^2(\alpha_2-a_3) \vartheta^2(\alpha_2-a_5)}{\vartheta^2(\alpha_2-a_4) \vartheta^2(\alpha_2-a_6)}.$$

Die auftretende additive Konstante wird dann:

$$K = -B \varphi(\alpha_3) - B_1 \varphi(\alpha_4) - B_2 \varphi(\alpha_5) + \frac{\vartheta^2(\alpha_1) \vartheta^2(\alpha_3) \vartheta^2(\alpha_5)}{\vartheta^2(\alpha_2) \vartheta^2(\alpha_4) \vartheta^2(\alpha_6)},$$

und man hat außer den Gleichungen I noch den beiden

$$B + B_1 + B_2 = 0$$

$$K = 0$$

zu genügen.

Damit $B + B_1 + B_2 = 0$ sei, ist klar, dass es eine Größe M geben muss, so dass

$$B = M \varepsilon^\alpha$$

$$B_1 = M \varepsilon^\beta$$

$$B_2 = M \varepsilon^\gamma,$$
wo ε eine Wurzel der Gleichung $\varepsilon^2 = 1$ ist und $\alpha \beta \gamma$ die Zahlen $1, 2, 3$ in irgend welcher Reihenfolge bedeuten. Dies leistet die folgende Bestimmung der Grössen a:

\[
\begin{align*}
 a_1 &= \frac{2 \omega}{3} \\
 a_3 &= -\frac{2 \omega}{3} + \frac{2 \omega'}{3} \\
 a_5 &= -\frac{2 \omega'}{3} \\
 a_2 &= \frac{2 \omega'}{3} \\
 a_4 &= -\frac{2 \omega'}{3} + \frac{2 \omega}{3} \\
 a_6 &= -\frac{2 \omega}{3}
\end{align*}
\]

Man erhält nämlich:

\[
B = \frac{\sigma^2 \left(\frac{2 \omega'}{3} - \frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega'}{3} \right)}{\sigma^4 \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right)} e^{8 \eta \frac{\omega}{3}}
\]

\[
B_1 = \frac{\sigma^2 \left(\frac{2 \omega'}{3} - \frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right)}{\sigma^4 \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right)} e^{4 \eta \frac{\omega}{3} + 4 \eta \frac{\omega'}{3}}
\]

\[
B_2 = \frac{\sigma^2 \left(\frac{2 \omega'}{3} - \frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right)}{\sigma^4 \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right)} e^{8 \eta \frac{\omega'}{3}}
\]

Setzt man daher:

\[
M = \frac{\sigma^2 \left(\frac{2 \omega'}{3} - \frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right)}{\sigma^4 \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right)} e^{4 \eta \frac{\omega}{3} + 4 \eta \frac{\omega'}{3}}
\]

so folgt, da $4 \eta \omega - 4 \eta \omega' = 2 \pi i$

\[
B = M \varepsilon \quad B_1 = M \quad B_2 = M \varepsilon^2.
\]

Bei dieser Bestimmung der Grössen α reduzieren sich die Gleichungen I auf eine einzige, der man die Form geben kann:

\[
\frac{\varphi' \left(\frac{2 \omega'}{3} \right) + \varphi' \left(\frac{2 \omega}{3} \right)}{\varphi \left(\frac{2 \omega'}{3} \right) - \varphi \left(\frac{2 \omega}{3} \right)} = 0.
\]

a)
Hieraus lässt sich der Modul bestimmen. Es folgt zunächst:

\[\varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) + \varphi \left(\frac{2 \omega}{3} \right) + \varphi \left(\frac{2 \omega'}{3} \right) = 0. \]

b)

Man hat aber allgemein *):

\[\varphi^4 \left(\frac{2 \tilde{\omega}}{3} \right) - \frac{g_2}{2} \varphi^2 \left(\frac{2 \tilde{\omega}}{3} \right) - g_3 \varphi \left(\frac{2 \tilde{\omega}}{3} \right) - \frac{g_2^2}{48} = 0, \]

e)

wo \(\tilde{\omega} \) die 4 Werthe \(\omega \), \(\omega' \), \(\omega + \omega' \) und \(\omega - \omega' \) annimmt. Man sieht daraus, dass

\[\varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) + \varphi \left(\frac{2 \omega}{3} \right) + \varphi \left(\frac{2 \omega'}{3} \right) + \varphi \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) = 0 \]

ist. Soll daher die Relation b) bestehen, so muss \(\varphi \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) \)

und damit \(g_2 \) gleich Null sein.

Es ist aber:

\[\frac{g_3^2}{g_2^2} = \frac{(1 + k)^3 (k - 2) (2k - 1)^2}{9 \cdot 12 \cdot (k^2 - k + 1)^3}. \]

Soll daher \(g_2 \) = 0 sein, so muss \(k^2 - k + 1 \) verschwinden, d. h. es ist \(k = -\varepsilon \) oder \(= -\varepsilon^2 \), was auf dasselbe hinauskommt.

Es erübrigt noch zu zeigen, dass auch die additive Constante verschwindet. Dieselbe ist:

\[K = -B \varphi \left(\frac{2 \omega'}{3} \right) - B_1 \varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) - B_2 \varphi \left(\frac{2 \omega}{3} \right) \]

\[+ \frac{\sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(-\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) \sigma^2 \left(\frac{2 \omega'}{3} \right)}{\sigma^2 \left(\frac{2 \omega'}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right)} \]

\[= -M \left\{ \varepsilon \varphi \left(\frac{2 \omega'}{3} \right) + \varphi \left(\frac{2 \omega}{2} - \frac{2 \omega'}{3} \right) + \varepsilon^2 \varphi \left(\frac{2 \omega}{3} \right) \right\} + 1. \]

*) Siehe F. Müller, Diss. inaup. De transformatione functionum ellipticarum Seite 12.
Man erhält aber aus c)

\[\varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) = \sqrt[3]{g_3} \]
\[\varphi \left(\frac{2 \omega}{3} \right) = \varepsilon \sqrt[3]{g_3} \]
\[\varphi \left(\frac{2 \omega'}{3} \right) = \varepsilon^2 \sqrt[3]{g_3} \]

daher

\[K = -3 \, M \sqrt[3]{g_3} + 1. \]

Man hat ferner:

\[\varphi \left(\frac{2 \omega}{3} \right) - \varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) = -\frac{\sigma \left(\frac{2 \omega'}{3} \right) \sigma \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) \varepsilon^{2 \eta \left(\frac{\omega}{3} - \frac{2 \omega'}{3} \right)}}{\sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right)} \]
\[\varphi \left(\frac{2 \omega'}{3} \right) - \varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) = -\frac{\sigma \left(\frac{2 \omega}{3} \right) \sigma \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) \varepsilon^{2 \eta \left(\frac{\omega}{3} - \frac{2 \omega'}{3} \right)}}{\sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega'}{3} - \frac{2 \omega}{3} \right)} \]
\[\varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) - \varphi \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) = \frac{\sigma \left(\frac{2 \omega'}{3} \right) \sigma \left(\frac{2 \omega}{3} \right) \varepsilon^{2 \eta \frac{\omega'}{3} + 2 \eta \frac{\omega}{3}}}{\sigma^2 \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) \sigma^2 \left(\frac{2 \omega'}{3} + \frac{2 \omega}{3} \right)}. \]

Aus den Gleichungen d) folgt:

\[\varphi \left(\frac{2 \omega}{3} \right) - \varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) = -i \sqrt[3]{3} \, \varepsilon^2 \, \sqrt[3]{g_3} \]
\[\varphi \left(\frac{2 \omega'}{3} \right) - \varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) = i \sqrt[3]{3} \, \varepsilon \, \sqrt[3]{g_3} \]
\[\varphi \left(\frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) - \varphi \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right) = \sqrt[3]{g_3}. \]

Dividirt man nun die dritte der Gleichungen e) durch das Produkt der beiden ersten, so erhält man:

\[\]
\[
\frac{\sigma^2 \left(\frac{2 \omega'}{3} - \frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega}{3} \right) \sigma^2 \left(\frac{2 \omega'}{3} \right)}{\sigma^4 \left(\frac{2 \omega}{3} + \frac{2 \omega'}{3} \right)} \cdot \frac{4 \gamma' \omega}{3} + 4 \gamma' \frac{\omega'}{3} \epsilon^2 \left(\frac{\omega'}{3} + \frac{\omega}{3} \right) = \frac{1}{3 \sqrt{g_3}} = M,
\]

woraus folgt, dass \(K = 0 \) ist.

Es ergibt sich nun:

\[A' : A'_1 : A'_2 = \epsilon : 1 : \epsilon^3 \]

und da der Proportionalitätsfaktor \(M \) reell ist, so kann man ihn vernachlässigen.

Man erhält dann:

\[
x = \epsilon^2 \frac{\sigma}{\sigma} \left(u - \frac{2 \omega}{3} \right) + \epsilon \frac{\sigma'}{\sigma} \left(u - \frac{2 \omega'}{3} \right) + \frac{\sigma'}{\sigma} \left(u + \frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) + \frac{\sigma'}{\sigma} \left(u + \frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) + \epsilon^2 \frac{\sigma'}{\sigma} \left(u + \frac{2 \omega}{3} - \frac{2 \omega'}{3} \right)
\]

\[
y = i \epsilon^2 \frac{\sigma}{\sigma} \left(u - \frac{2 \omega}{3} \right) - i \epsilon \frac{\sigma'}{\sigma} \left(u - \frac{2 \omega'}{3} \right) + i \frac{\sigma'}{\sigma} \left(u + \frac{2 \omega}{3} - \frac{2 \omega'}{3} \right) - i \frac{\sigma'}{\sigma} \left(u + \frac{2 \omega}{3} - \frac{2 \omega'}{3} \right).
\]

(Vgl. Kiepert, Diss. inaug. De curvis etc. Seite 20, sowie dessen Abhandlung Ueber Curven etc. Borchardt's Journal Band 79.)

Die Gleichung der Curve ist:

\[r^3 - 2 y \left(y'^2 - 3 x^2 \right) = 0 \]

oder

\[r^3 = \cos 3 \varphi. \]
Zweiter Theil.

§ 1.

Wir wenden uns zu den Raumkurven mit der verlangten Eigenschaft und betrachten zuerst wieder den Fall, wo jede der die Coordinaten darstellenden Functionen an vier Stellen je von der zweiten Ordnung unendlich wird.

Es sei also:

\[x = A \varphi (u - \alpha_1) + A' \varphi (u - \alpha_3) + A_i \varphi (u - \alpha_2) + A_i' \varphi (u - \alpha_4) \]
\[y = B \varphi (u - \alpha_1) + B' \varphi (u - \alpha_3) + B_i \varphi (u - \alpha_2) + B_i' \varphi (u - \alpha_4) \]
\[z = C \varphi (u - \alpha_1) + C' \varphi (u - \alpha_3) + C_i \varphi (u - \alpha_2) + C_i' \varphi (u - \alpha_4) \]

wo die Grössen

\[A', A_1', B', B_1', C', C_1', \alpha_2, \alpha_4 \]

den Grössen

\[A, A_1, B, B_1, C, C_1, \alpha_1, \alpha_3 \]

conjuguirt sind.

Stellt man die Bedingungen auf, unter welchen der Ausdruck

\[\left(\frac{dx}{du} \right)^2 + \left(\frac{dy}{du} \right)^2 + \left(\frac{dz}{du} \right)^2 \]

an keiner Stelle unendlich wird, so erhält man:

\[A^2 + B^2 + C^2 = 0 \]
\[A_i^2 + B_i^2 + C_i^2 = 0 \] \{ I. \}
\[(A A' + B B' + C C') \varphi'(\alpha_1 - \alpha_3) + (A A_i + B B_i + C C_i) \varphi'(\alpha_1 - \alpha_2) + (A_i A_i' + B_i B_i' + C_i C_i') \varphi'(\alpha_1 - \alpha_4) = 0 \]
\[(A_i A_i' + B_i B_i' + C_i C_i') \varphi'(\alpha_3 - \alpha_1) + (A_i A_i' + B_i B_i' + C_i C_i') \varphi'(\alpha_3 - \alpha_2) + (A_i A_i' + B_i B_i' + C_i C_i') \varphi'(\alpha_3 - \alpha_4) = 0 \] \{ II. \}

sowie ein System III und IV, welches aus II dadurch hervorgeht, dass man an Stelle der Function \(\varphi' \) setzt \(\varphi'' \) und \(\varphi''' \).

Diese Gleichungen nehmen offenbar die einfachste Form an, wenn wir setzen:
\[a_1 = \frac{\omega}{2} - \frac{\omega'}{2} \quad a_2 = \frac{\omega}{2} + \frac{\omega'}{2} \]
\[a_3 = -\frac{\omega}{2} + \frac{\omega'}{2} \quad a_4 = -\frac{\omega}{2} - \frac{\omega'}{2}, \]

so dass
\[a_1 - a_3 = -(a_3 - a_4) = -\omega' \]
\[a_1 - a_3 = \omega - \omega' \]
\[a_1 - a_4 = -(a_3 - a_2) = \omega. \]

Jetzt fallen die Gleichungen II und IV fort und es bleiben:

\[
\begin{align*}
A^2 + B^2 + C^2 &= 0 \quad (\text{I}) \\
A_1^2 + B_1^2 + C_1^2 &= 0
\end{align*}
\]

\[
\begin{align*}
(AA' + BB' + CC')\varphi''(\omega') + (AA_1 + BB_1 + CC_1)\varphi''(\omega + \omega') \\
+ (A A_1' + B B_1' + C C_1') \varphi''(\omega) &= 0 \quad (\text{II})
\end{align*}
\]

\[
\begin{align*}
(A_1 A + B_1 B + C_1 C)\varphi''(\omega + \omega') + (A_1 A_1' + B_1 B_1' + C_1 C_1') \varphi''(\omega) \\
+ (A_1 A_1' + B_1 B_1' + C_1 C_1') \varphi''(\omega) &= 0
\end{align*}
\]

Es sei nun:

\[
\begin{align*}
A &= r e^{i\alpha} & A_1 &= r_1 e^{i\alpha_1} \\
B &= q e^{i\beta} & B_1 &= q_1 e^{i\beta_1} \\
C &= \tau e^{i\gamma} & C_1 &= \tau_1 e^{i\gamma_1}
\end{align*}
\]

Setzt man mit \(f \) irgend eine Funktion bezeichnend:

\[f(r r_1 \alpha \alpha_1) + f(q q_1 \beta \beta_1) + f(\tau \tau_1 \gamma \gamma_1) = \Sigma f(r r_1 \alpha \alpha_1), \]

so gehen obige Bedingungsgleichungen, wenn man ihre reellen und imaginären Bestandteile gleich Null setzt, in die folgenden über:

I.
\[
\begin{align*}
\Sigma r^2 \cos 2\alpha &= 0 \\
\Sigma r^2 \sin 2\alpha &= 0 \\
\Sigma r_1^2 \cos 2\alpha_1 &= 0 \\
\Sigma r^2 \sin 2\alpha_1 &= 0
\end{align*}
\]

II.
\[
\begin{align*}
\varphi''(\omega') \cdot \Sigma r^2 + \varphi''(\omega + \omega') \Sigma rr_1 \cos (\alpha + \alpha_1) + \varphi''(\omega) \Sigma rr_1 \cos (\alpha - \alpha_1) &= 0 \\
\varphi''(\omega + \omega') \Sigma rr_1 \sin (\alpha + \alpha_1) + \varphi''(\omega) \Sigma rr_1 \sin (\alpha - \alpha_1) &= 0 \\
\varphi''(\omega') \Sigma r_1^2 + \varphi''(\omega + \omega') \Sigma rr_1 \cos (\alpha + \alpha_1) + \varphi''(\omega) \Sigma rr_1 \cos (\alpha - \alpha_1) &= 0 \\
\varphi''(\omega + \omega') \Sigma rr_1 \sin (\alpha + \alpha_1) + \varphi''(\omega) \Sigma rr_1 \sin (\alpha - \alpha_1) &= 0.
\end{align*}
\]
Aus der Vergleichung dieser Relationen ergibt sich, dass man das System II ersetzen kann durch das folgende:

\[\begin{align*}
\Sigma r^2 \cdot \varphi''(\omega') + \varphi''(\omega + \omega') \Sigma r r_1 \cos (\alpha + \alpha_i) \\
+ \varphi''(\omega) \Sigma r r_1 \cos (\alpha - \alpha_i) &= 0 \quad 1) \\
\Sigma r^2 &= \Sigma r_i^2 \quad 2) \\
\Sigma r r_1 \sin \alpha \cos \alpha_i &= 0 \quad 3) \\
\Sigma r r_1 \cos \alpha \sin \alpha_i &= 0 \quad 4)
\end{align*} \]

Dies sind 8 Gleichungen zwischen 12 Unbekannten. Eine der Größen \(r_0 r_1 \), \(r_i q_i \), \(v_i \) kann man von vornherein beliebig annehmen, dann bleiben noch der Modul sowie drei Constante als unbestimmt übrig. Diese drei Constante beziehen sich aber lediglich auf die Drehung des der Curve zu Grunde gelegten Coordinatensystems, sodass man es trotz der nicht völlig bestimnten Coefficienten nur mit einer einzigen Curve zu thun hat.

\[\S. \ 2. \]

Bevor wir den Beweis dieser Behauptung führen, wollen wir die Bedingung aufstellen, unter der wir eine sphärische Curve erhalten.

Die Gleichung der Kugel sei:

\[(x - a)^2 + (y - b)^2 + (z - c)^2 = R^2. \]

Es muss daher der Ausdruck

\[x^2 - 2ax + y^2 - 2by + z^2 - 2cz \]

constant sein, d. h. keine Unendlichkeitsstellen besitzen, und zugleich müssen sich die Größen \(a \), \(b \), \(c \) als reelle Grössen bestimmen lassen.

Entwickelt man nun obigen Ausdruck nach Potenzen von \((u - a_i) \) und \((u - a_s) \) und setzt die Coefficienten der entstehenden negativen Potenzen gleich Null, so kommen zu den Bedingungsgleichungen des vorigen Paragraphen noch die folgenden hinzu:
\[(A A' + B B' + C C') e_3 + (A A_4 + B B_1 + C C_1) e_2 + (A A_1' + B B_1' + C C_1') e_1 - a A - b B - c C = 0\]

\[(A A_1 + B B_1 + C C_1)e_3 + (A_1 A' + B_1 B' + C_1 C') e_1 + A_1 A_1' + B_1 B_1' + C_1 C_1' e_3 - a A_1 - b B_1 - c C_1 = 0.\]

Setzt man wieder die reellen und imaginären Bestandtheile gleich Null, so kann man die resultirenden Gleichungen so schreiben:

\[e_3 \Sigma r^2 + e_2 \Sigma r r_1 \cos (\alpha + \alpha_i) + e_1 \Sigma r r_1 \cos (\alpha - \alpha_i) - a r \cos \alpha - b \rho \cos \beta - c \tau \cos \gamma = 0\]

\[a(r \cos \alpha - r_1 \cos \alpha_i) + b(\rho \cos \beta - \rho_1 \cos \beta_i) + c(\tau \cos \gamma - \tau_1 \cos \gamma_i) = 0\]

\[a r \sin \alpha + b \rho \sin \beta + c \tau \sin \gamma = 0\]

\[a r_1 \sin \alpha_i + b \rho_1 \sin \beta_i + c \tau_1 \sin \gamma_i = 0.\]

Damit diese Gleichungen zur Bestimmung von \(a, b, c\) dienen, ist nothwendig und hinreichend, dass

\[
\begin{vmatrix}
(r \cos \alpha - r_1 \cos \alpha_i) & (\rho \cos \beta - \rho_1 \cos \beta_i) & (\tau \cos \gamma - \tau_1 \cos \gamma_i) \\
r \sin \alpha & \rho \sin \beta & \tau \sin \gamma \\
r_1 \sin \alpha_i & \rho_1 \sin \beta_i & \tau_1 \sin \gamma_i
\end{vmatrix} = 0
\]

sei.

Um den Radius der Kugel zu berechnen, haben wir die constanten Glieder in den Entwicklungen von \(x - a, y - b, z - c\) nach Potenzen von \(u\), die wir mit \([x - a], [y - b], [z - c]\) bezeichnen wollen, aufzusuchen.

Man hat:

\[\begin{align*}
[x - a] &= A \varphi (a_1) + A' \varphi (a_2) + A_1 \varphi (a_3) + A_1' \varphi (a_4) - a \\
&= (A + A_1) \varphi \left(\frac{\omega - \omega'}{2}\right) + (A + A_1') \varphi \left(\frac{\omega + \omega'}{2}\right) - a.
\end{align*}\]

Nun sind \(\varphi \left(\frac{\omega - \omega'}{2}\right)\) und \(\varphi \left(\frac{\omega + \omega'}{2}\right)\) die Wurzeln der Gleichung:

\[\lambda^2 - 2 \varepsilon_1 \lambda + \frac{G^2}{4} - 2 \varepsilon_2^2 = 0.\]
Daher
\[\varphi \left(\frac{\omega + \omega'}{2} \right) = e_2 + \sqrt{3e_2^2 - \frac{g_2}{4}} \]
\[\varphi \left(\frac{\omega - \omega'}{2} \right) = e_2 - \sqrt{3e_2^2 - \frac{g_2}{4}} , \]
sodass
\[[x - a] = (A + A_1 + A' + A'_1) e_2 + (A' + A'_1 - A - A_1) \sqrt{3e_2^2 - \frac{g_2}{4}} - a \]
\[[y - b] = (B + B_1 + B' + B'_1) e_2 + (B' + B'_1 - B - B_1) \sqrt{3e_2^2 - \frac{g_2}{4}} - b \]
\[[z - c] = (C + C_1 + C' + C'_1) e_2 + (C' + C'_1 - C - C_1) \sqrt{3e_2^2 - \frac{g_2}{4}} - c \]
\[R = \sqrt{[x - a]^2 + [y - b]^2 + [z - c]^2} . \]

§ 3.

Um nun die Bedingungsgleichungen des § 2 allgemein aufzulösen, geben wir den Constanten \(A \) \(A_1 \) \(B \) ... die Formen:

\[A = \alpha + \alpha i \quad A_1 = \alpha_1 + \alpha_1 i \]
\[B = \beta + \beta i \quad B_1 = \beta_1 + \beta_1 i \]
\[C = \gamma + \gamma i \quad C_1 = \gamma_1 + \gamma_1 i . \]

Die Gleichungen I sowie III 2) ... 4) gehen dann in die folgenden über:

1) \(\alpha^2 + \beta^2 + \gamma^2 = \alpha^2 + \beta^2 + \gamma^2 \)
2) \(\alpha_i^2 + \beta_i^2 + \gamma_i^2 = \alpha_i^2 + \beta_i^2 + \gamma_i^2 \)
3) \(\alpha \alpha + \beta \beta + \gamma \gamma = 0 \)
4) \(\alpha_1 \alpha_1 + \beta_1 \beta_1 + \gamma_1 \gamma_1 = 0 \)
5) \(\alpha^2 + \alpha^2 + \beta^2 + \gamma^2 = \alpha^2 + \alpha^2 + \beta^2 + \gamma^2 \)
6) \(\alpha \alpha_1 + \beta \beta_1 + \gamma \gamma_1 = 0 \)
7) \(\alpha \alpha_1 + \beta \beta_1 + \gamma \gamma_1 = 0 . \)

Aus den Gleichungen 1) 2) u. 5) folgt:
8) \(\alpha^2 + \beta^2 + \gamma^2 = \alpha_i^2 + \beta_i^2 + \gamma_i^2 = \alpha^2 + \beta^2 + \gamma^2 = \alpha_i^2 + \beta_i^2 + \gamma_i^2 . \)
Aus den Gleichungen 3) 4) 6) 7) erhält man, wenn \(\lambda \) \(\mu \) zwei Proportionalitätsfaktoren bezeichnen:

\[
\begin{align*}
\alpha &= \lambda (c_i b - c b_i) & \alpha_i &= \mu (c_i b - c b_i) \\
\beta &= \lambda (a_i c - a c_i) & \beta_i &= \mu (a_i c - a c_i) \\
\gamma &= \lambda (b_i a - b a_i) & \gamma_i &= \mu (b_i a - a_i b).
\end{align*}
\]

Aus 8) folgt dann:

\[
\lambda^2 = \mu^2 \quad \mu = \varepsilon \lambda, \text{ wo } \varepsilon = \pm 1,
\]

sowie

\[
\lambda^2 = \frac{a^2 + b^2 + c^2}{(c, b - c b_i)^2 + (a_i c - a c_i)^2 + (b_i a - a_i b)^2}.
\]

Die Gleichung III 1) liefert dann:

\[
\frac{a a_i + b b_i + c c_i}{a^2 + b^2 + c^2} = \frac{\varepsilon \left[\varphi'' (\omega + \omega') - \varphi'' (\omega - \omega) \right] - 2 \varphi'' \omega'}{\varphi'' (\omega + \omega') + \varphi'' \omega}.
\]

Da \(a^2 + b^2 + c^2 = a_i^2 + b_i^2 + c_i^2 \), so kann man setzen:

\[
\begin{align*}
a &= \tau \cos \mu & a_i &= \tau \cos \mu_i \\
b &= \tau \cos \mu' & b_i &= \tau \cos \mu_i' \\
c &= \tau \cos \mu'' & c_i &= \tau \cos \mu''_i,
\end{align*}
\]

wo

\[
\cos^2 \mu + \cos^2 \mu' + \cos^2 \mu'' = \cos^2 \mu_i + \cos^2 \mu_i' + \cos^2 \mu''_i = 1.
\]

Es wird dann:

\[
\frac{a a_i + b b_i + c c_i}{\tau^2 (\cos \mu \cos \mu_i + \cos \mu' \cos \mu_i' + \cos \mu'' \cos \mu''_i)} = \tau^2 \cos \psi,
\]

somit

\[
\cos \psi = \frac{\varepsilon \left[\varphi'' (\omega + \omega') - \varphi'' (\omega - \omega) \right] - 2 \varphi'' \omega'}{\varphi'' (\omega + \omega') + \varphi'' \omega}.
\]

Damit der absolute Betrag des rechts stehenden Ausdrucks nicht größer wie 1 sei, hat man \(\varepsilon = -1 \) und das Quadrat des Moduls \(-k \) kleiner als \(\frac{1}{2} \) zu nehmen.

Man hat nämlich:

\[
k = \frac{e_2 - e_3}{e_1 - e_3}, \quad \varphi'' u = 6 \varphi^2 u - \frac{g_3}{2}.
\]
Drückt man nun die Grössen \(\frac{e_1}{e_3} \) und \(\frac{e_1}{e_2} \) durch \(k \) aus und setzt die so erhaltenen Werthe in die Ausdrücke für \(\frac{\varphi'' \omega'}{\varphi'' \omega} \) und \(\frac{\varphi''(\omega + \omega')}{\varphi'' \omega} \) ein, so wird:

\[
\frac{\varphi'' \omega'}{\varphi'' \omega} = \frac{k}{1 - k^2} \quad \frac{\varphi''(\omega + \omega')}{\varphi'' \omega} = -k
\]

und

\[
\cos \psi = \frac{1 - 2k - k^2}{(1 - k)^2} = 1 - \frac{2k^2}{(1 - k)^2}.
\]

Setzt man daher

\[
\cos \psi = \cos 2 \varphi,
\]

so ist

\[
\sin \varphi = \frac{k}{1 - k^2}.
\]

Die Bedingung, unter der wir eine sphärische Curve erhalten, wird:

\[
\begin{vmatrix}
\alpha - \alpha_1 & \beta - \beta_1 & \gamma - \gamma_1 \\
\alpha & \beta & \gamma \\
\alpha_1 & \beta_1 & \gamma_1
\end{vmatrix} = 0
\]

oder

\[
(\alpha - \alpha_1)(\beta \gamma_1 - \gamma \beta_1) - (\beta - \beta_1)(\alpha \gamma_1 - \gamma \alpha_1) + (\gamma - \gamma_1)(\alpha \beta_1 - \beta \alpha_1) = 0,
\]

welche Gleichung durch die Werthe von \(\alpha \beta \ldots \) identisch erfüllt wird.

Für die Coordinaten der Curve erhalten wir nun die Ausdrücke:

\[
x = \left\{ a + i \lambda \left(c_1 b - c b_1 \right) \right\} \varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right)
\]

\[
+ \left\{ a - i \lambda \left(c_1 b - c b_1 \right) \right\} \varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right)
\]

\[
+ \left\{ a_1 - i \lambda \left(c_1 b - c b_1 \right) \right\} \varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right)
\]

\[
+ \left\{ a_1 + i \lambda \left(c_1 b - c b_1 \right) \right\} \varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right)
\]
\[y = \left\{ b + i \lambda (a_1 c - a c_1) \right\} \varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right) \\
+ \left\{ b - i \lambda (a_1 c - a c_1) \right\} \varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right) \\
+ \left\{ b_1 - i \lambda (a_1 c - a c_1) \right\} \varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right) \\
+ \left\{ b_1 + i \lambda (a_1 c - a c_1) \right\} \varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right) \]

\[z = \left\{ c + i \lambda (b_1 a - b_1 b) \right\} \varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right) \\
+ \left\{ c - i \lambda (b_1 a - a_1 b) \right\} \varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right) \\
+ \left\{ c_1 - i \lambda (b_1 a - a_1 b) \right\} \varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right) \\
+ \left\{ c_1 + i \lambda (b_1 a - a_1 b) \right\} \varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right) \]

wo

\[\notag \lambda^2 = \frac{a^2 + b^2 + c^2}{(c_1 b - c b_1)^2 + (b_1 a - a_1 b)^2 + (a_1 c - a c_1)^2} \]
\[a^2 + b^2 + c^2 = a_1^2 + b_1^2 + c_1^2, \]
\[\frac{a a_1 + b b_1 + c c_1}{a^2 + b^2 + c^2} = 1 - \frac{2 k^2}{(1 - k)^2}. \]

§ 4.

Die noch beliebigen Constanten sollen jetzt zur Befriedigung der Bedingungen benutzt werden, unter denen wir eine Curve auf einem Cylinder zweiten Grades erhalten.

Sodann werden wir zeigen, dass die obigen Ausdrücke für \(xyz\) stets eine Curve darstellen, welche durch Coordinatentransformation in die so erhaltene spezielle Curve übergeht.

Die Gleichung des Cylinders darf drei Constanten enthalten, sie sei von der Form:
\[
\frac{x^9}{m^2} + \frac{(y-q)^9}{n^2} = 1
\]
oder
\[
x^3 + p y^3 - 2pqy = \text{Const.}
\]

\(p\) muss zunächst von 1 verschieden sein, ist \(p > 0\), so erhalten wir einen elliptischen, ist \(p < 0\) einen hyperbolischen Cylinder.

Wir haben nun die Bedingungen aufzusuchen, unter denen der Ausdruck
\[
x^3 + p y^3 - 2pqy
\]
constant ist, d. h. keine Unendlichkeitsstellen besitzt.

Entwickelt man diesen Ausdruck für die Umgebung von \(\alpha_1\) und \(\alpha_3\) und setzt die Coeffizienten der negativen Potenzen von \((u - \alpha_1)\) und \((u - \alpha_3)\) gleich Null, so erhält man:

1) \(A^3 + pB^3 = 0\)

2) \(A_1^3 + pB_1^3 = 0\)

3) \((A A' + p . B B') e_3 + (A A_1 + p . B B_1) e_2 + (A A_1 + p . B B_1) e_3 - p q B = 0\)

4) \((A_1 A_1' + p . B_1 B_1') e_3 + [A A_1 + p . B B_1] e_2 + (A_1 A_1' + p . B_1 B_1') e_3 - p q B_1 = 0\).

Giebt man den Grössen \(A B\) . . die im § 1 gewählten Formen, so lehrt die Diskussion dieser Bedingungsgleichungen, dass man sich auf die Fälle:

\[
\alpha = 0 \quad \alpha_1 = \pi \quad \text{oder} \quad \alpha = \frac{\pi}{2} \quad \alpha_1 = -\frac{\pi}{2}
\]
\[
\beta = 0 \quad \beta_1 = 0 \quad \beta = 0 \quad \beta_1 = 0
\]
\[
\gamma = \frac{\pi}{2} \quad \gamma_1 = -\frac{\pi}{2} \quad \gamma = 0 \quad \gamma_1 = \pi
\]
zu beschränken hat, von denen der zweite aus dem ersten durch Vertauschen von \(x\) und \(z\) hervorgeht. Wir legen den ersten zu Grunde.

Dabei wird:
\[
r = r_1, \quad q = q_1, \quad r = r_1.
\]
Die Gleichung zwischen x und y stellt einen hyperbolischen Cylindar dar, für den $q = -2q e_3$, $p = -\frac{r^2}{q^2}$, die Gleichung zwischen y und z einen elliptischen, für den $q = -2q e_1$, $p = \frac{r^2}{q^2}$ ist.

Da $r^2 + q^2 = \tau^2$, so kann man setzen:

$$r = \tau \sin \varphi, \quad q = \tau \cos \varphi.$$

Es wird dann:

$$\cos 2\varphi = \frac{1 - 2k - k^2}{(1 - k^2)}, \quad \sin \varphi = \frac{k}{1 - k^5}, \quad \cos \varphi = \frac{\sqrt{1 - 2k}}{1 - k};$$

k muss zwischen 0 und $\frac{1}{2}$ liegen, und für ein positives e_1 nimmt e_2 alle Werte von 0 bis $\frac{-e_1}{2}$, e_3 alle Werte von $-e_1$ bis $\frac{-e_1}{2}$ an.

Die Gleichung der Curve wird:

$$x = \tau \sin \varphi \left\{ \varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right) + \varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right) - \varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right) - \varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right) \right\}$$

$$y = \tau \cos \varphi \left\{ \varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right) + \varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right) + \varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right) + \varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right) \right\}$$

$$z = \tau i \left\{ \varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right) - \varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right) - \varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right) + \varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right) \right\}$$

Die Gleichung der Kugel ist:

$$x^2 + \left(y - 2\tau \frac{e_3 \sin^2 \varphi - e_1}{\cos \varphi} \right)^2 + z^2 = 4 \tau^2 \left[e_2 - e_3 + (e_1 - e_2) \sin^2 \varphi \right]^2.$$
die der Hyperbel:
\[
\frac{(y + 2 \tau \cos \varphi e_3)^2}{4 \tau^2 \cos^2 \varphi (e_1 - e_2)^2} - \frac{x^2}{4 \tau^2 \sin^2 \varphi (e_1 - e_2)^2} = 1,
\]
die der Ellipse:
\[
\frac{z^2}{4 \tau^2 (e_3 - e_3)^2} + \frac{(y + 2 \tau \cos \varphi e_1)^2}{4 \tau^2 \cos^2 \varphi (e_2 - e_3)^2} = 1.
\]

Kugel, Hyperbel und Ellipse schneiden die Y-Achse im Punkte
\[
y = 4 \tau e_2 \cos \varphi.
\]

Der Krümmungsradius der Hyperbel in diesem Punkte ist:
\[
e = \frac{2 \tau}{\cos \varphi} \left(e_1 - e_2 \right) \sin^2 \varphi,
\]
der der Ellipse:
\[
e' = \frac{2 \tau}{\cos \varphi} \cdot (e_2 - e_3),
\]
woraus folgt:
\[
e + e' = r.
\]

Daher berührt der hyperbolische Cylinder sowohl wie der elliptische die Kugel von innen.

Diese Curve ist von W. Roberts gefunden und von Herrn Kiepert „sphärische Lemniskate“ genannt (siehe dessen Diss. inaug. pars altera).

Setzt man:
\[
\tau = \frac{1}{(e_3 - e_3) V e_1 - e_2}
\]
und transformirt zu den Perioden \(\omega \) und \(\omega' \), so erhält man die Kiepert'sche Darstellung in der Form:
\[
x^2 = k \left(\frac{1}{e} + \frac{e_3 - e_3}{e^3} \right)
\]
\[
y^2 = (1 - k) \left(\frac{1}{e} + \frac{e_3 - e_3}{e^3} \right)
\]
\[
z^2 = \frac{-3 e_3}{e^2},
\]
wo \(e = \varrho u - e_3 \).
§. 5.

Eine jede Curve, welche aus letzterer durch rechtwinklige Coordinatentransformation hervorgeht, ist dargestellt durch die Gleichungen:

\[\xi = x \cos \mu + y \cos \nu + z \cos \varphi \]
\[\eta = x \cos \mu_1 + y \cos \nu_1 + z \cos \varphi_1 \]
\[\zeta = x \cos \mu_2 + y \cos \nu_2 + z \cos \varphi_2 \]

wo

\[\cos^2 \mu + \cos^2 \mu_1 + \cos^2 \mu_2 = 1 \]
\[\cos^2 \nu + \cos^2 \nu_1 + \cos^2 \nu_2 = 1 \]
\[\cos^2 \varphi + \cos^2 \varphi_1 + \cos^2 \varphi_2 = 1 \]

\[\cos \mu \cos \nu + \cos \mu_1 \cos \nu_1 + \cos \mu_2 \cos \nu_2 = 0 \]
\[\cos \mu \cos \varphi + \cos \mu_1 \cos \varphi_1 + \cos \mu_2 \cos \varphi_2 = 0 \]
\[\cos \nu \cos \varphi + \cos \nu_1 \cos \varphi_1 + \cos \nu_2 \cos \varphi_2 = 0 \]

Wir setzen zur Abkürzung:

\[\varphi \left(u - \frac{\omega}{2} + \frac{\omega'}{2} \right) = \varphi_1 \]
\[\varphi \left(u - \frac{\omega}{2} - \frac{\omega'}{2} \right) = \varphi_2 \]
\[\varphi \left(u + \frac{\omega}{2} - \frac{\omega'}{2} \right) = \varphi_3 \]
\[\varphi \left(u + \frac{\omega}{2} + \frac{\omega'}{2} \right) = \varphi_4 \]

Dann wird:

\[\frac{\xi}{\tau} = \varphi_1 \left\{ \sin \varphi \cos \mu + \cos \varphi \cos \nu + i \cos \varphi \right\} + \]
\[\varphi_2 \left\{ \sin \varphi \cos \mu + \cos \varphi \cos \nu - i \cos \varphi \right\} + \]
\[\varphi_3 \left\{ -\sin \varphi \cos \mu + \cos \varphi \cos \nu - i \cos \varphi \right\} + \]
\[\varphi_4 \left\{ -\sin \varphi \cos \mu + \cos \varphi \cos \nu + i \cos \varphi \right\} , \]

woraus man \(\frac{\eta}{\tau} \) und \(\frac{\zeta}{\tau} \) durch Substitution von \(\mu_1, \nu_1, \varphi_1 \) resp. \(\mu_2, \nu_2, \varphi_2 \) an Stelle von \(\mu, \nu, \varphi \) erhält.

Vergleicht man nun die Werthe von \(\xi, \eta, \zeta \) mit denen von \(x, y, z \) im §. 3, so ergiebt sich:
\[
\cos \mu = \frac{a - a_1}{2 \tau \sin \varphi} \quad \cos \mu_1 = \frac{b - b_1}{2 \tau \sin \varphi} \\
\cos \mu_2 = \frac{c - c_1}{2 \tau \sin \varphi} \quad \cos \nu = \frac{a + a_1}{2 \tau \cos \varphi} \\
\cos \nu_1 = \frac{b + b_1}{2 \tau \cos \varphi} \quad \cos \nu_2 = \frac{c + c_1}{2 \tau \cos \varphi} \\
\cos \varphi = \frac{\alpha}{\tau} \quad \cos \varphi_1 = \frac{\beta}{\tau} \quad \cos \varphi_2 = \frac{\gamma}{\tau}.
\]

Die Gleichung:
\[
\cos^2 \varphi + \cos^2 \varphi_1 + \cos^2 \varphi_2 = 1
\]

ist erfüllt, sobald
\[
\alpha^2 + \beta^2 + \gamma^2 = \tau^2
\]
gesetzt wird, was stets möglich ist.

Ferner wird:
\[
\cos^2 \mu + \cos^2 \mu_1 + \cos^2 \mu_2 = \frac{\tau^2 - (aa_1 + bb_1 + cc_1)}{2 \tau^2 \sin^2 \varphi}.
\]
Es ist aber:
\[
\frac{aa_1 + bb_1 + cc_1}{\tau^2} = \cos 2 \varphi,
\]
so dass
\[
\cos^2 \mu + \cos^2 \mu_1 + \cos^2 \mu_2 = 1.
\]

Ahnlich folgt:
\[
\cos^2 \nu + \cos^2 \nu_1 + \cos^2 \nu_2 = 1.
\]
Da:
\[
\alpha^2 + \beta^2 + \gamma^2 = \alpha_1^2 + \beta_1^2 + \gamma_1^2,
\]
so ist
\[
\cos \mu \cos \nu + \cos \mu_1 \cos \nu_1 + \cos \mu_2 \cos \nu_2 = 0.
\]
Da endlich:
\[
\alpha \alpha_1 + \beta \beta_1 + \gamma \gamma_1 = 0,
\]
sowie
\[
\alpha_1 \alpha + \beta_1 \beta_1 + \gamma_1 \gamma_1 = 0,
\]
so ist auch:
\[
\cos \mu \cos \varphi + \cos \mu_1 \cos \varphi_1 + \cos \mu_2 \cos \varphi_2 = 0 \quad \cos \nu \cos \varphi + \cos \nu_1 \cos \varphi_1 + \cos \nu_2 \cos \varphi_2 = 0.
\]
Es ist daher jede Curve, welche man durch Auflösung der Gleichungen I und II des §. 1 erhält, identisch mit der sphärischen Lemniskate.
Wir gehen dazu über, nachzuweisen, dass der von Serret gefundenen Schaar ebener Curven mit der verlangten Eigenschaft eine solche sphärischer Curven entspricht.

Nach Herrn Kiepert sind die Gleichungen der Serret'schen Curven enthalten in der Form:

\[
x + iy = \sum_{\nu = 1}^{m} c_{1,\nu} \frac{d^{2\nu} \log \sigma (u - a_{i})}{du^{2\nu}} + \sum_{\nu = 1}^{m} c_{2,\nu} \frac{d^{2\nu} \log \sigma (u - a_{3})}{du^{2\nu}}
\]

wo

\[
a_{1} = \frac{\omega}{2} - \frac{\omega'}{2}, \quad a_{3} = -\frac{\omega}{2} + \frac{\omega'}{2}.
\]

Dieser Ausdruck wird die grösste Anzahl von Constanten enthalten, wenn \(m = n\) gesetzt wird. Wir nehmen daher zu drei Coordinaten übergehend:

\[
x = A \varphi^{(2\nu)}(u - a_{i}) + A_{3} \varphi^{(2\nu - 2)}(u - a_{i}) + \cdots A_{2\nu} \varphi (u - a_{1}) + A' \varphi^{(2\nu)}(u - a_{3}) + A_{2} \varphi^{(2\nu - 2)}(u - a_{3}) + \cdots A_{2\nu} \varphi (u - a_{1}) + A_{4} \varphi^{(2\nu)}(u - a_{3}) + \cdots A_{2\nu+1} \varphi (u - a_{1}) + A'_{1} \varphi^{(2\nu)}(u - a_{4}) + A_{3} \varphi^{(2\nu - 2)}(u - a_{4}) + \cdots A'_{2\nu+1} \varphi (u - a_{1})
\]

und leiten daraus \(y\) und \(z\) durch Vertauschen von \(A\) mit \(B\) resp. \(C\) her.

Zur Vereinfachung sei:

\[
x = A \varphi^{(2\nu)}(u - a_{i}) + A_{3} \varphi^{(2\nu - 2)}(u - a_{i}) + \cdots A_{2\nu} \varphi (u - a_{1}) + f_{1}(u)
\]

\[
y = B \varphi^{(2\nu)}(u - a_{i}) + B_{3} \varphi^{(2\nu - 2)}(u - a_{i}) + \cdots B_{2\nu} \varphi (u - a_{1}) + \varphi (u)
\]

\[
z = C \varphi^{(2\nu)}(u - a_{i}) + C_{3} \varphi^{(2\nu - 2)}(u - a_{i}) + \cdots C_{2\nu} \varphi (u - a_{1}) + \varphi_{1}(u)
\]
Für \(u = a_1 \) verschwinden alle ungeraden Ableitungen von \(f \varphi \chi \), und für \(u = a_3 \) diejenigen von \(f_1 \varphi_1 \chi_1 \).

Man hat nun in der Nähe von \(a_1 \):

\[
\frac{dx}{du} = A_1 \phi^{(2\nu+1)}(u - a_1) + A_3 \phi^{(2\nu-1)}(u - a_1) + \cdots + A_{2\nu} \phi'(u - a_1) + f'(u)
\]

\[
= -\frac{(2\nu + 2)!}{(u - a_1)^{2\nu+3}} - \frac{2\nu!}{(u - a_1)^{2\nu+1}} + \cdots - \frac{2}{(u - a_1)^3} \cdot A_{2\nu}
\]

\[+ f''(a_1)(u - a_1) + f^{(4)}(a_1) \frac{(u - a_1)^3}{3!} + \cdots + \frac{f^{(2\nu+2)}(a_1)(u - a_1)^{2\nu+1}}{(2\nu+1)!} + \cdots
\]

\[+ \left(A_{2\nu} c_1' + A_{2\nu-2} c_1'' + \cdots + A_2 c_1^{(2\nu-1)} + A_1 c_1^{(2\nu+1)} \right)(u - a_1)
\]

\[+ \left(A_{2\nu} c_3' + A_{2\nu-2} c_3'' + \cdots + A_2 c_3^{(2\nu-1)} + A_1 c_3^{(2\nu+1)} \right)(u - a_1)^3
\]

\[+ \left(A_{2\nu} c_{2\nu+1}' + A_{2\nu-2} c_{2\nu+1}'' + \cdots + A_2 c_{2\nu+1}^{(2\nu-1)} + A_1 c_{2\nu+1}^{(2\nu+1)} \right)(u - a_1)^{2\nu+1}
\]

Ebenso für die Umgebung von \(a_3 \):

\[
\frac{dx}{du} = A_1 \phi^{(2\nu+1)}(u - a_3) + A_3 \phi^{(2\nu-1)}(u - a_3) + \cdots + A_{2\nu+1} \phi'(u - a_3) + f_1'(u)
\]

\[
= -\frac{(2\nu + 2)!}{(u - a_3)^{2\nu+3}} - \frac{2\nu!}{(u - a_3)^{2\nu+1}} + \cdots - \frac{2}{(u - a_3)^3} \cdot A_{2\nu+1}
\]

\[+ f_1''(a_3)(u - a_3) + f_1^{(4)}(a_3) \frac{(u - a_3)^3}{3!} + \cdots + \frac{f_1^{(2\nu+2)}(a_3)(u - a_3)^{2\nu+1}}{(2\nu+1)!} + \cdots
\]

\[+ \left(A_{2\nu+1} c_1' + A_{2\nu} c_1'' + \cdots + A_3 c_1^{(2\nu-1)} + A_1 c_1^{(2\nu+1)} \right)(u - a_3)
\]

\[+ \left(A_{2\nu+1} c_3' + A_{2\nu} c_3'' + \cdots + A_3 c_3^{(2\nu-1)} + A_1 c_3^{(2\nu+1)} \right)(u - a_3)^3
\]

\[+ \left(A_{2\nu+1} c_{2\nu+1}' + A_{2\nu} c_{2\nu+1}'' + \cdots + A_3 c_{2\nu+1}^{(2\nu-1)} + A_1 c_{2\nu+1}^{(2\nu+1)} \right)(u - a_3)^{2\nu+1}
\]

Hier ist:

\[\phi^{(2\nu+1)}(u) = -\frac{(2\nu + 2)!}{u^{2\nu+3}} + c_1^{(2\mu+1)} u + c_3^{(2\mu+1)} u^3 + \cdots
\]

gesetzt.
Einen Ausdruck von der Form:

\[F(A, f) + F(B, \varphi) + F(C, \chi) \]

wollen wir einfach mit \(\Sigma F(A, f) \) bezeichnen.

Entwickeln wir dann \(\left(\frac{dx}{du} \right)^2 + \left(\frac{dy}{du} \right)^2 + \left(\frac{dz}{du} \right)^2 \) zunächst in der Nähe von \(a_1 \) und setzen die Coeffizienten der negativen Potenzen von \((u - a_1) \) gleich Null, so sind die entstehenden Bedingungsgleichungen erfüllt, wenn:

\[
\begin{align*}
\sum A_1^2 &= 0, & \sum A_2^2 &= 0, \ldots & \sum A_{2\nu}^2 &= 0 \\
\sum A_1 A_2 &= 0, & \sum A_1 A_3 &= 0, \ldots & \sum A_{2\nu-2} A_{2\nu} &= 0 \\
\sum A_1 f''(a_1) &= 0 \\
\sum \left\{ \frac{(2\nu+2)!}{3} A f^{(4)}(a_1) + 2\nu! A_2 f''(a_1) \right\} &= 0 \\
\cdots
\end{align*}
\]

\[
\sum \left\{ \frac{(2\nu+2)!}{(2\nu-1)!} A \ddot{f}^{(2\nu+2)}(a_1) + \frac{2\nu!}{(2\nu-1)!} A_{2\nu} \ddot{f}^{(2\nu)}(a_1) + \cdots \right\} = 0.
\]

Setzt man nun:

\[
A_2 = \lambda_2 A, \quad A_4 = \lambda_4 A \ldots \quad A_{2\nu} = \lambda_{2\nu-1} A \\
B_2 = \lambda_2 B, \quad B_4 = \lambda_4 B \ldots \quad B_{2\nu} = \lambda_{2\nu-1} B \\
C_2 = \lambda_2 C, \quad C_4 = \lambda_4 C \ldots \quad C_{2\nu} = \lambda_{2\nu-1} C,
\]

so reduzieren sich obige Gleichungen auf folgende:

\[
\sum A_1^2 = 0, \quad \sum A_1 f''(a_1) = 0, \quad \sum A_1 f^{(4)}(a_1) = 0 \ldots \quad \sum A_1 \ddot{f}^{(2\nu+2)}(a_1) = 0.
\]

Nimmt man ebenso:

\[
A_3 = \mu_1 A_1, \quad A_5 = \mu_1 A_1 \ldots \quad A_{2\nu+1} = \mu_{2\nu-1} A_1 \\
B_3 = \mu_1 B_1, \quad B_5 = \mu_1 B_1 \ldots \quad B_{2\nu+1} = \mu_{2\nu-1} B_1 \\
C_3 = \mu_1 C_1, \quad C_5 = \mu_1 C_1 \ldots \quad C_{2\nu+1} = \mu_{2\nu-1} C_1,
\]

so liefert die Entwicklung für die Umgebung der Stelle \(a_2 \) die Gleichungen:

\[
\sum A_1^2 = 0, \quad \sum A_1 f''(a_2) = 0, \quad \sum A_1 f^{(4)}(a_2) = 0 \ldots \quad \sum A_1 \ddot{f}^{(2\nu+2)}(a_2) = 0.
\]
Wir erhalten also im Ganzen \((2\nu + 4)\) Gleichungen zwischen den \((2\nu + 6)\) Unbekannten:

\[
A B C \quad A_1 B_1 C_1 \quad \lambda \quad \lambda_{\nu - 1} \quad \mu \quad \mu_1 \cdots \quad \mu_{\nu - 1}.
\]

Es bleiben daher 2 komplexe oder 4 reelle Größen beliebig.

Die Bedingung, unter der wir eine sphärische Curve erhalten, ist wieder die, dass der Ausdruck:

\[
(x - a)^{\rho} + (y - b)^{\rho} + (z - c)^{\rho}
\]

constant sei, d. h. keine Unendlichkeitsstellen besitze.

Es ist nun in der Nähe von \(a_1:\)

\[
x - a = \frac{(2\nu + 1)! \ A}{(u - a_1)^{2\nu + 2}} + \frac{(2\nu - 1)! \ \lambda \ A}{(u - a_1)^{2\nu}} + \cdots \frac{\lambda_{\nu - 1} \ A}{(u - a_1)^{\nu}}
\]

\[+ f'(a_1) - a + f''(a_1) \frac{(u - a_1)^{\nu}}{2!} + \cdots f^{(2\nu)}(a_1) \frac{(u - a_1)^{2\nu}}{2\nu!} + \cdots
\]

Ebenso in der Umgebung von \(a_3:\)

\[
x - a = \frac{(2\nu + 1)! \ A_1}{(u - a_3)^{2\nu + 2}} + \frac{(2\nu - 1)! \ \mu \ A_1}{(u - a_3)^{2\nu}} + \cdots \frac{\mu_{\nu - 1} \ A_1}{(u - a_3)^{\nu}}
\]

\[+ f_1(a_3) - a + f_1''(a_3) \frac{(u - a_3)^{\nu}}{2!} + \cdots f_1^{(2\nu)}(a_3) \frac{(u - a_3)^{2\nu}}{2\nu!} + \cdots
\]

Es kommen somit zu den obigen Bedingungen noch die beiden hinzu:

\[
A \ [f'(a_1) - a] + B \ [\varphi'(a_1) - b] + C \ [\chi'(a_1) - c] = 0
\]

\[
A_1 \ [f_1'(a_3) - a] + B_1 \ [\varphi_1'(a_3) - b] + C_1 \ [\chi_1'(a_3) - c] = 0.
\]

Um hieraus \(abc\) als reelle Größen zu bestimmen, hat man diese Gleichungen in ihre reellen und imaginären Bestandtheile zu zerlegen, und man sieht dann, dass zur Lösung noch die Existenz einer weiteren Bedingung zwischen den Unbekannten erfordert wird.

Es ist also das Verhältniss der Anzahl der Unbekannten zu der der Gleichungen dasselbe wie bei der sphärischen Lemniskate.
Der Schaar der Serret'schen ebenen Curven entspricht daher eine Schaar sphärischer Curven, deren Bogenlänge ebenfalls ein elliptisches Integral erster Art ist.

§. 7.

Wir wollen als Beispiel dieser Auflösung den Fall $\nu = 1$ nehmen.

Sind λ' und μ' zu λ und μ conjugiert, so ist:

$$
\begin{align*}
x &= A \left(\varphi''(u-a_1) + \lambda \varphi(u-a_1) \right) + A' \left(\varphi''(u-a_2) + \lambda' \varphi(u-a_2) \right) \\
&+ A_1 \left(\varphi''(u-a_3) + \mu \varphi(u-a_3) \right) + A_1' \left(\varphi''(u-a_4) + \mu' \varphi(u-a_4) \right) \\
y &= B \left(\varphi''(u-a_1) + \lambda \varphi(u-a_1) \right) + B' \left(\varphi''(u-a_2) + \lambda' \varphi(u-a_2) \right) \\
&+ B_1 \left(\varphi''(u-a_3) + \mu \varphi(u-a_3) \right) + B_1' \left(\varphi''(u-a_4) + \mu' \varphi(u-a_4) \right) \\
z &= C \left(\varphi''(u-a_1) + \lambda \varphi(u-a_1) \right) + C' \left(\varphi''(u-a_2) + \lambda' \varphi(u-a_2) \right) \\
&+ C_1 \left(\varphi''(u-a_3) + \mu \varphi(u-a_3) \right) + C_1' \left(\varphi''(u-a_4) + \mu' \varphi(u-a_4) \right)
\end{align*}
$$

Hier werden die Bedingungsgleichungen:

$$
\sum A^2 = 0, \quad \sum A_1^2 = 0
$$

$$
\begin{align*}
\sum A A' \cdot \left\{ \varphi^{(4)} (\omega + \omega') + \lambda' \varphi'' (\omega') \right\} + \sum A A_1 \cdot \left\{ \varphi^{(4)} (\omega + \omega') + \mu \varphi'' (\omega + \omega') \right\} \\
+ \sum A_1 A_1' \cdot \left\{ \varphi^{(4)} \omega + \mu' \varphi'' (\omega') \right\} &= 0 \\
\sum A A_1 \cdot \left\{ \varphi^{(4)} (\omega + \omega') + \lambda \varphi'' (\omega + \omega') \right\} + \sum A_1 A' \cdot \left\{ \varphi^{(4)} \omega + \lambda' \varphi'' (\omega') \right\} \\
+ \sum A_1 A_1' \cdot \left\{ \varphi^{(4)} \omega' + \mu' \varphi'' (\omega') \right\} &= 0 \\
\sum A A' \cdot \left\{ \varphi^{(6)} (\omega + \omega') + \lambda' \varphi^{(4)} (\omega') \right\} + \sum A A_1 \cdot \left\{ \varphi^{(6)} (\omega + \omega') + \mu \varphi^{(4)} (\omega + \omega') \right\} \\
+ \sum A_1 A_1' \cdot \left\{ \varphi^{(6)} \omega + \mu' \varphi^{(4)} (\omega') \right\} &= 0 \\
\sum A A_1 \cdot \left\{ \varphi^{(6)} (\omega + \omega') + \lambda \varphi^{(4)} (\omega + \omega') \right\} + \sum A_1 A' \cdot \left\{ \varphi^{(6)} \omega + \lambda' \varphi^{(4)} (\omega') \right\} \\
+ \sum A_1 A_1' \cdot \left\{ \varphi^{(6)} \omega' + \mu' \varphi^{(4)} (\omega') \right\} &= 0.
\end{align*}
$$

a)
Wir nehmen an, \(\lambda \) und \(\mu \) seien reelle Größen und setzen unter \(r \) und \(r_1 \) ebenfalls reelle Größen, verstehtend:

\[
\begin{align*}
C &= i r \\
C_1 &= i r_1 \\
A &= r \cos \alpha \\
B &= r \sin \alpha \\
A_1 &= r_1 \cos \beta \\
B_1 &= r_1 \sin \beta.
\end{align*}
\]

Es sind dann die Gleichungen:

\[
\sum A^2 = 0, \quad \sum A_1^2 = 0
\]

erfüllt.

Ferner wird:

\[
\begin{align*}
\sum A A' &= 2 r^2, \quad \sum A_1 A = rr_1 \left[\cos (\alpha - \beta) - 1 \right] \\
\sum A A_1 &= rr_1 \left[\cos (\alpha - \beta) + 1 \right], \quad \sum A_1 A_1' = 2 r_1^2.
\end{align*}
\]

Daher enthalten die Gleichungen a) nur reelle Größen.

Nimmt man nun \(\lambda = \mu \), so folgt \(r^2 = r_1^2 \), und obige Gleichungen reduzieren sich auf die zwei:

\[
\begin{align*}
2 \left\{ \varphi^{(4)} \omega + \lambda \varphi'' \omega' \right\} + \varepsilon \left[\cos (\alpha - \beta) - 1 \right] \left\{ \varphi^{(4)} (\omega + \omega') + \lambda \varphi'' (\omega + \omega') \right\} \\
+ \varepsilon \left[\cos (\alpha - \beta) + 1 \right] \left\{ \varphi^{(4)} \omega + \lambda \varphi'' \omega \right\} = 0
\end{align*}
\]

\[
\begin{align*}
2 \left\{ \varphi^{(6)} \omega + \lambda \varphi^{(4)} \omega' \right\} + \varepsilon \left[\cos (\alpha - \beta) - 1 \right] \left\{ \varphi^{(6)} (\omega + \omega') + \lambda \varphi^{(4)} (\omega + \omega') \right\} \\
+ \varepsilon \left[\cos (\alpha - \beta) + 1 \right] \left\{ \varphi^{(6)} \omega + \lambda \varphi^{(4)} \omega \right\} = 0.
\end{align*}
\]

wo \(\varepsilon^2 = 1 \).

Hieraus folgt:

\[
\cos (\alpha - \beta) = \frac{\varphi^{(4)} (\omega + \omega') - \varphi^{(4)} \omega - 2 \varepsilon \varphi^{(4)} \omega' + \lambda \left\{ \varphi'' (\omega + \omega') - \varphi'' \omega - 2 \varepsilon \varphi'' \omega' \right\}}{\varphi^{(4)} (\omega + \omega') + \varphi^{(4)} \omega + \lambda \left\{ \varphi'' (\omega + \omega') + \varphi'' \omega \right\}}
\]

\[
= \frac{\varphi^{(6)} (\omega + \omega') - \varphi^{(6)} \omega - 2 \varepsilon \varphi^{(6)} \omega' + \lambda \left\{ \varphi^{(4)} (\omega + \omega') - \varphi^{(4)} \omega - 2 \varepsilon \varphi^{(4)} \omega' \right\}}{\varphi^{(6)} (\omega + \omega') + \varphi^{(6)} \omega + \lambda \left\{ \varphi^{(4)} (\omega + \omega') + \varphi^{(4)} \omega \right\}}
\]
Dies ist eine in λ quadratische Gleichung. Wir wollen ihre Coeffizienten als Funktionen von ε_i und dem Quadrat des Moduls k ausdrücken.

Man hat:

\[
\varphi'' \omega = \frac{18 \varepsilon_i^2 (1 - k)}{(k - 2)^3}
\]

\[
\varphi'' (\omega + \omega') = \frac{18 \varepsilon_i^2 (k^2 - k)}{(k - 2)^3}
\]

\[
\varphi'' \omega' = \frac{18 \varepsilon_i^2 k}{(k - 2)^3}
\]

\[
\varphi^{(4)} \omega = \frac{12 \cdot 18 \varepsilon_i^3 (- k^3 + 3 k^2 - 2)}{(k - 2)^3}
\]

\[
\varphi^{(4)} (\omega + \omega') = \frac{12 \cdot 18 \varepsilon_i^3 (- 2 k^3 + 3 k^2 - k)}{(k - 2)^3}
\]

\[
\varphi^{(4)} \omega' = \frac{12 \cdot 18 \varepsilon_i^3 (k^2 + k)}{(k - 2)^3}
\]

\[
\varphi^{(6)} \omega = \frac{9 \cdot 144 \varepsilon_i^4 (- 2 k^3 + 19 k^2 - 34 k + 17)}{(k - 2)^4}
\]

\[
\varphi^{(6)} (\omega + \omega') = \frac{9 \cdot 144 \varepsilon_i^4 (17 k^4 - 34 k^3 + 19 k^2 - 2 k)}{(k - 2)^4}
\]

\[
\varphi^{(6)} \omega' = \frac{9 \cdot 144 \varepsilon_i^4 (2 k^3 + 13 k^2 + 2 k)}{(k - 2)^4}
\]

In den beiden Ausdrücken für $\cos (\alpha - \beta)$ nehmen wir $\varepsilon = -1$.

Es wird dann:

\[
\varphi'' (\omega + \omega') - \varphi'' \omega + 2 \varphi'' \omega' = \frac{18 \varepsilon_i^2 (k^2 + 2 k - 1)}{(k - 2)^3}
\]

\[
\varphi^{(4)} (\omega + \omega') - \varphi^{(4)} \omega + 2 \varphi^{(4)} \omega' = \frac{24 \cdot 18 \varepsilon_i^3 (- k^3 + 3 k^2 - k + 1)}{(k - 2)^3}
\]

\[
\varphi^{(6)} (\omega + \omega') - \varphi^{(6)} \omega + 2 \varphi^{(6)} \omega' =
\]

\[
= \frac{9 \cdot 144 \varepsilon_i^4 \left\{17 k^4 - 28 k^3 + 26 k^2 + 36 k - 17\right\}}{(k - 2)^4}
\]
\[\varphi'' (\omega + \omega') + \varphi'' \omega = \frac{18 \epsilon_i^2 (1 - k)^2}{(k - 2)^2} \]
\[\varphi^{(4)} (\omega + \omega') + \varphi^{(4)} \omega = \frac{18 \cdot 24 \epsilon_i^3 (-k^3 + k^3 + k - 1)}{(k - 2)^3} \]
\[= -24 \cdot 18 \cdot \epsilon_i^3 (1 - k)^2 (1 + k) \]
\[\varphi^{(6)} (\omega + \omega') + \varphi^{(6)} \omega = \frac{9 \cdot 44 \cdot \epsilon_i^4 (1 - k)^2 (17 k^3 - 2k + 17)}{(k - 2)^4} \]

Man setze:
\[\lambda = \frac{3 \epsilon_i \lambda_i}{k - 2} \]
so erhält man durch eine einfache Rechnung:
\[\lambda_i = \frac{5 (2k - 1) \pm 9 \sqrt{4k^3 - 4k + 9}}{2} \]
somit:
\[\lambda = \frac{3 \epsilon_i \left[5 (2k - 1) \pm 9 \sqrt{4k^3 - 4k + 9} \right]}{2 (k - 2)} \]
sodass in der That \(\lambda \) reell ist.

Es wird dann:
\[\cos (\alpha - \beta) = \]
\[= \frac{-2k^3 + 21k^3 - 12k + 7 \pm 3 \sqrt{4k^3 - 4k + 9} \{k^3 + 2k - 1\}}{\left\{-2k - 7 \pm 3 \sqrt{4k^3 - 4k + 9}\right\} \{1-k\}^2} \]

worin man die Wurzel negativ zu nehmen hat, damit der Quotient für Werthe von \(k \), die nicht zu nahe an 1 liegen, einen echten Bruch darstellt.

Die Gleichungen zur Bestimmung der Coordinaten \(a \, b \, c \) des Kugel-Mittelpunktes werden jetzt:
\[r \{2(\varphi'' \omega + \lambda e_3) - [\cos(\alpha - \beta) - 1] [\varphi''(\omega + \omega') + \lambda e_3] - [\cos(\alpha - \beta) + 1] (\varphi'' \omega + \lambda e_3)\} \]
\[= a \cos \alpha - b \sin \alpha - ic = 0 \]
\[r \{2(\varphi'' \omega + \lambda e_3) - [\cos(\alpha - \beta) - 1] [\varphi''(\omega + \omega') + \lambda e_3] - [\cos(\alpha - \beta) + 1] (\varphi'' \omega + \lambda e_3)\} \]
\[= a \cos \beta + b \sin \beta + ic = 0. \]
Setzt man nun:
\[\alpha = c = 0, \quad \beta = -\alpha, \]
so erhält man:
\[b = r \frac{2 (\varphi'' \omega' + \lambda e_3) + 2 \sin^2 \alpha \left[\varphi'' (\omega + \omega') + \lambda e_1 \right] - 2 \cos^2 \alpha (\varphi'' \omega + \lambda e_1)}{\sin \alpha}. \]

Der Kugel-Mittelpunkt liegt daher auf der Y-Achse im Abstand \(b \) vom Anfangspunkt der Coordinaten.

Schluss.

§. 8.

Über einen Zusammenhang zwischen sphärischen Raumcurven mit der verlangten Eigenschaft und Minimalflächen.

Es mögen die analytischen Functionen \(x, y, z \) die Coordinaten einer Curve im Raum, \(X Y Z \) die Cosinus der Winkel bezeichnen, welche eine bestimmte ihrer Normalen mit den Coordinaten-Achsen einschliesst.

Stellt man dann die Ausdrücke
\[\xi = x - i \int \{ Y \, dz - Z \, dy \}, \]
\[\eta = y - i \int \{ Z \, dx - X \, dz \}, \]
\[\zeta = z - i \int \{ X \, dy - Y \, dx \}, \]
her, so repräsentiren die Gleichungen
\[x' = \Re (\xi), \quad y' = \Re (\eta), \quad z' = \Re (\zeta), \]
— worin das vorgesetzte \(\Re \) bedeutet, dass der reelle Theil der nachfolgenden, für ein complexes Argument entstehenden com-
plexen Grösse gewonnen werden soll —, eine Minimalfläche, welche durch die Curve \(xyz\) hindurchgeht, und deren Normale längs derselben die Richtungscosinus \(XYZ\) hat*).

Unter \(xyz\) wollen wir nun 3 Functionen einer Grösse \(t\) verstehen, die den Gleichungen
\[
\begin{align*}
\left(\frac{dx}{dt} \right)^2 &+ \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2 = 1 \\
\left(\frac{d^2 x}{dt^2} \right)^2 &+ \left(\frac{d^2 y}{dt^2} \right)^2 + \left(\frac{d^2 z}{dt^2} \right)^2 = K
\end{align*}
\]
genügen, wo \(K\) eine Constante ist, und die Variabele \(t\) die Bedeutung des Bogens der Curve hat. \(XYZ\) sollen die Richtungscosinus der Binormale der Curve bedeuten. Bezeichnet man dann mit \(a b c\) die Winkel der Hauptnormale mit den Achsen, so ist:
\[
\begin{align*}
\cos a &= Y \frac{dz}{dt} - Z \frac{dy}{dt} \\
\cos b &= Z \frac{dx}{dt} - X \frac{dz}{dt} \\
\cos c &= X \frac{dy}{dt} - Y \frac{dx}{dt}
\end{align*}
\]
Es wird daher:
\[
\begin{align*}
\xi &= x - i \int \cos a \, dt \\
\eta &= y - i \int \cos b \, dt \\
\zeta &= z - i \int \cos c \, dt.
\end{align*}
\]

Ist \(d\xi\) der Contingenzwinkel zweier benachbarter Tangenten, so hat man \(d\xi = \sqrt{K} \, dt\); da aber, wenn \(a b c\) die Winkel der Tangente mit den Achsen sind:
\[
\begin{align*}
d \cos a &= \cos a \, dz \\
d \cos b &= \cos b \, dz \\
d \cos c &= \cos c \, dz,
\end{align*}
\]

*) Siehe H. A. Schwarz, Miscellen aus dem Gebiet der Minimalflächen.
so folgt:

\[\xi = x - i \int \frac{d \cos \alpha}{\sqrt{K}} \]

\[\eta = y - i \int \frac{d \cos \beta}{\sqrt{K}} \]

\[\zeta = z - i \int \frac{d \cos \gamma}{\sqrt{K}} \]

oder unter Vernachlässigung der Integrationsconstanten:

\[\xi = x - i \frac{1}{\sqrt{K}} \frac{dx}{dt} \]

\[\eta = y - i \frac{1}{\sqrt{K}} \frac{dy}{dt} \]

\[\zeta = z - i \frac{1}{\sqrt{K}} \frac{dz}{dt} \]

2).

Den Gleichungen 1) kann man nun auf folgende Weise genügen. Es seien die drei eindeutigen elliptischen Functionen \(\varphi_1(u) \), \(\varphi_2(u) \), \(\varphi_3(u) \) die Coordinaten einer sphärischen Curve, deren Bogen ein elliptisches Integral erster Art ist, sodass:

\[\varphi_1(u)^2 + \varphi_2(u)^2 + \varphi_3(u)^2 = 1 \]

\[\left(\frac{d \varphi_1(u)}{du} \right)^2 + \left(\frac{d \varphi_2(u)}{du} \right)^2 + \left(\frac{d \varphi_3(u)}{du} \right)^2 = K. \]

Setzt man nun:

\[x = \int \varphi_1(u) \, du, \quad y = \int \varphi_2(u) \, du, \quad z = \int \varphi_3(u) \, du, \]

so sind die Gleichungen 1) erfüllt und die Gleichungen 2) werden:

\[\xi = \int \varphi_1(u) \, du - \frac{i}{\sqrt{K}} \varphi_1(u) \]

\[\eta = \int \varphi_2(u) \, du - \frac{i}{\sqrt{K}} \varphi_2(u) \]

\[\zeta = \int \varphi_3(u) \, du - \frac{i}{\sqrt{K}} \varphi_3(u). \]
Die Ausdrücke

\[x' = R(\xi), \quad y' = R(\eta), \quad z' = R(\zeta) \]

stellen dann eine Minimalfläche dar, welche durch die Curve \(xyz \) hindurchgeht, und deren Normale längs dieser mit der Binormale der Curve zusammenfällt; oder, was dasselbe ist: in jedem Punkt der Curve ist die Tangential-Ebene der Fläche identisch mit der Oskulations-Ebene der Curve, d. h. aber, die Curve \(xyz \) ist eine Asymptotenlinie der Fläche.
THESEN.

I.
Das Additionstheorem ist ein Princip von ebenso allgemeiner Bedeutung, wie der Taylor'sche Lehrrsatz.

II.
Es ist zu wünschen, dass die Theorie der geradlinigen Strahlensysteme in den Cyklus der gewöhnlichen Universitätsvorlesungen aufgenommen wird.

III.
Die Schopenhauer'sche Moralphilosophie ist der Kantischen vorzuziehen.

VITA.