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1. Introduction

Stochastic programming addresses the problem of choosing an optimal decision in
the midst of an uncertain environment. The approach begins with a mathematical
programming model into which a probability distribution is incorporated to describe
the uncertain parameters present in the problem. When the probability distribution
involved is not concentrated at finitely many points, the problem is akin to a semi-
infinite program in that there are infinitely many constraints. Otherwise put, there are
cost functions and constraints involved which lie in infinite-dimensional spaces. As a
result, these problems can be difficult to solve.

A rich convex duality theory in stochastic programming exists, cf. [3, 9, 11, 10],
which can be used to analyze and characterize optimality for a broad class of problems,
in which certain functions governing the constraints of the problem are assumed to lie
in £,

While it is often desirable to obtain strong duality results with Lagrange multipliers
in infinite-dimensional spaces such as £', to achieve this it must usually be assumed
either that the constraint sets are bounded, cf. [9], or that the problem satisfies a strict
feasibility condition along with a property known as relatively complete recourse, cf. [10].
Due to their restrictiveness, neither of these requirements is very satisfying.

In a development completely separate from stochastic programming, the mathemati-
cal finance literature exploits convex duality to obtain the equivalence of “no arbitrage”
conditions on a market with the existence of an equivalent martingale measure for the
market price process, cf. [14, 2|, which can then be used to price financial derivatives.
These problems generally possess unbounded constraints, and do not satisfy the prop-
erty of relatively complete recourse, yet miraculously (to the stochastic programmer) do
yield dual variables in £' (these turn out to be the Radon-Nikodym derivatives of the
aforementioned martingale measures).

It turns out that the assumptions at the heart of this mathematical finance theory,
the no arbitrage-type conditions, impose a special property on the problem which al-
lows strong duality results without the usual assumptions of bounded constraint sets
or relatively complete recourse present in the stochastic programming literature. Up to
now, the ability to frame these duality theorems from mathematical finance, and their
variants, in a stochastic programming setting has been hampered due to the absence in
the stochastic programming literature of a duality theory on infinite-dimensional spaces
general enough to encompass these problems. This paper serves to identify the pre-
cise property that allows strong duality results in an infinite-dimensional setting, and
to generalize the duality results accordingly for stochastic programs which do not in-



clude explicit recourse decisions, though this will be generalized in a subsequent paper
that deals with multistage problems. The goal is to add to the existing stochastic pro-
gramming theory so that it may now encompass these important problems arising in
mathematical finance, as well as in other application areas.

The main problems we concern ourselves with have the form

minimize fio(x) + E{foo (&, )}
so that fu(z) <0, i=1,....my, x€C (P)
fQZ(g,fL.)SO P—a.s., izl,...,mg,

where C' C IR" is a closed, convex set, fi; : IR" — IR are convex functions for ¢ =
0,...,my, fo; : ZxX IR" — IR are convex in x € IR" for fixed £ € Z fori =0,...,ms, and
(2, F, P) is a probability space with F P-complete. For each x € IR", it’s assumed that
foi(r,x) € LYE, F, P;IR), i.e. fo(-,x) is P-summable, i = 1,...,ms. The associated
dual problem is derived from the Lagrangian L : IR" x [R™ x L>(=, F, P; R™)] — IR,
given by

fro(x) + E{f0(&2)} + 34 fri(z)y:

)+ E{feu(& x)2(€)} ifreC,y>0,z2>0 P-as.,
L(z,y,z) = oo ifz ¢ C,
—00 otherwise.

The dual problem is then
maximize g(y,z) so that y >0, z € LZ(E, F, P; IR™), (D)

where
g(y,z) :==inf {L(x,y,2) | x € C}.

It is always true that for this pair of primal and dual problems, one has the inequality,

inf P > supD.

Our goal is to obtain duality results of the form inf P = supD, and in particular the
existence of dual multipliers, i.e. solutions to D; this type of strong duality with existence
of dual multipliers we express for convenience as inf P = max D. It is useful to also define
the feasibility sets for P. The set of first stage feasible points is given by

Ky ={zeclC| filz) <0,i=1,...,m},
and the set of recourse feasible constraints, or induced constraints, is given by
Ky:={x e R"| f(&x) <0P-as.,i=1,...,my}. (1)
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The problem P is said to be strictly feasible if there exists € > 0, x € C' with fi;(z) < —¢,
i=1,...,mq, and fo (&, x) < —g, i =1,...,mo. It is said to have relatively complete
recourse if K; C Ky. In other words, the recourse constraints do not impose any further
constraints on the decision than were already present in the first stage. Relatively
complete recourse is a type of constraint qualification that was used along with the strict
feasibility of P to invoke the duality theorems which currently comprise the theoretical
stochastic programming literature, brought about in the latter half of the 1970’s by
Eisner and Olsen [3] and Rockafellar and Wets [10, 8, 12]. The approach here forgoes
both strict feasibility and relatively complete recourse for a constraint qualification of a
different nature. The problem P is said to have direction-free feasibility if it is feasible
and the recession cone of K7 N Ko,

(KiNK))* :={veR"|x+ e K NK, forall A\ >0,z € K; N Ky},

is a subspace of IR". Direction-free feasibility is the key property which yields the duality
results of the form inf P = supD in the sections to follow, and in particular it is the
property paralleling no arbitrage type conditions that drives the mathematical finance
results in the last section.

A function f : R™ — IR is said to be calm from below at @ if f(i) is finite and there
is a Kk > 0 and a neighborhood V' of u such that for all u € V,

f(u) = f(u) = klu—al. (2)

Calmness of a certain finite-dimensional optimal value function will yield the existence
of solutions to D as well as the existence of solutions to certain finite-dimensional dual
problems. A simplified version of the main theorem may now be stated. Here, []* =
max|-, 0].

Theorem 1.1. Suppose the problem P has direction-free feasibility. Then infP =
supD. If the finite-dimensional optimal value function ¢ : R™ x IR™ — IR given by

fio(@) + E{fo (& 2)} ifxeC, fulz) <wuy,i=1,...,my,
QO(’LL,U) = H%f fE[f?z(gax)]—'_P(dg) S U2, 1= 17 ceey, Mo,
400 otherwise,

is calm from below at 0, then inf P = maxD.

Compare this with the two duality theorems given below, from Rockafellar and Wets
9, 10]. In each of these theorems, it is assumed that the constraint functions lie in £
instead of £, and the dual variable z is taken in £! instead of £*.

Theorem 1.2. Suppose C' is bounded. Then minP = sup D.



Theorem 1.3. Suppose the problem P is strictly feasible and satisfies relatively com-
plete recourse. Then inf P = maxD.

The motivation for moving away from bounded constraint sets and relatively com-
plete recourse towards other forms of constraint qualifications is that many problems
have emerged, especially in recent years related to finance applications, that do not pos-
sess the property of relatively complete recourse, or even strict feasibility. Sometimes,
actually in rare instances, it is possible to determine the induced constraint set K, ex-
plicitly in the form of deterministic constraints which can then be added to the original
problem. But this is not generally the case for applications in finance as will be seen in
67, as well as for many other emergent problems. Also, allowing the constraint functions
in P to lie in £! instead of £> opens up many heretofore unexplored possibilities in
theoretical and applied stochastic programming.

Prior to now, in the setting of possibly unbounded constraint sets, the best one
was able to achieve without the assumption of relatively complete recourse is a duality
theorem in an extended sense, in which the infinite-dimensional dual multipliers lie in the
dual of £>*(Z, F, P; IR™) and thus have undesirable esoteric characteristics associated
with the singular components of elements of that space, cf. [11].

The theorems presented here are the culmination of an analysis of the theory of
mathematical finance, in particular the state-of-the-art papers by Delbaen and Schacher-
mayer [2] and Schachermayer [14]. In those papers, variants of a classical theorem
referred to as “the fundamental theorem of asset pricing” equate no arbitrage-type con-
ditions with the existence of what is known in the literature as an “equivalent martingale
measure.” The no arbitrage-type conditions amount to special types of constraint qual-
ifications which may be generalized to the stochastic programming setting in the form
of direction-free feasibility. The equivalence of no arbitrage and the existence of an
equivalent martingale measure then translates in the stochastic programming setting to
a duality theorem which implies the existence of an £°(=, F, P; IR™?) solution to D. In
a precursor to this work, King [5] considers the fundamental theorem of asset pricing in
an optimization setting on a finite probability space.

Section 2 presents the equivalent finite-dimensional problems which come into play
as an intermediate step. Section 3 contains a review of basic duality theory and opti-
mization, and other necessary foundations for the theory. A new result which exploits
direction-free feasibility for deterministic problems is presented in §4. A duality theory
in which the dual problem is finite-dimensional is established in §5. The main result
1.1 is restated and proved in Section 6. In Section 7, the results of the preceding sec-
tions are applied to derive a variant of the fundamental theorem of asset pricing in a
stochastic programming setting. Only a simple one-stage problem is considered. For



the full multi-stage arbitrage pricing theory in an £*" stochastic programming duality
setting, consult King and Korf [6]. As already noted, this paper is a precursor to one
which will address multistage stochastic programming problems.

2. The deterministic equivalent problems

In this section, we derive a class of finite-dimensional problems equivalent to P. Let
G be the set of all finite partitions of =. A finite partition S of = is a collection of
F-measurable sets, S C F, of positive measure satisfying

U A= E, Al N A2 = @ for all Al, AQ € S, |S| finite.

AeS

For an integrable random variable, X : = — IR, let F{X|A} denote the conditional
expectation of X with respect to the o-field generated by S evaluated at A € S, i.e.

B{X[4} = 55 [ (O PGS,

For § € G, define the set
Ky ={z e R"| B{f;(£2)|A} <0, A€ S, i=1,... ma}.

We have the following theorem equating K, in (1) and K.
Theorem 2.1. For all S € G, K5 = K.

Proof. Fix an § € G. Let © € K. Then for all z € R", fy;(£,2) < 0 almost surely.
Thus f5;(£,x) = 0 almost surely. This implies that for any A € S, [, f5: (&, 2)P(d€) <
0, which yields K, C K35. For the other direction, let z € K5. For all A € S,

Ju fi (€, 2)P(d€) < 0,i=1,...,my. Thus

Laienro =% [ fie.n) P <

Equivalently, P(fo(&,2) > 0) = 0, i.e. fy;(§,2) < 0 almost surely. This shows that
K$ C K,, whereby K5 = K. O

This leads to the ability to express P equivalently as a finite-dimensional optimization
problem for each choice of S € G.

minimize  fio(x) + Fao(x)
subject to fui(x) <0, i=1,...,my, z€C, (Ps)
Flx) <0, i=1,...,my AES,
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where
Fao(a) = B{fu(6,2)} = [ fon(€ 2)P(d€) and F(x) = B{f5(6,)|A}.

We can analyze these constraints in terms of what it would mean to perturb them
slightly. A perturbation of the constraint

E{fi(€ 2)|A} <0 — BE{f;(§2)|A} <¢ (2)

means that the average value of fy; (-, x) on A is less than or equal to ¢, i.e. fy;(-, z) could
take on values larger than € on A but still satisfy this constraint in the average. Thus,
this is a more relaxed perturbation than a direct perturbation on the original constraints
(f2i(&,x) < e P-as.). Note also that if ¢ < 0 in (2), the problem becomes infeasible.
Further remarks about the interpretation of the (second-stage) dual variables as a price
system associated with perturbations of the form (2) can be found at the end of §5.

3. Finite-dimensional duality and optimization

This section reviews some of the requisite concepts from finite-dimensional convex
duality and optimization. Rather than give all of the proofs of these basic results, the
necessary references are provided so that the reader may piece together the proofs if
wished. We begin with the finite-dimensional (deterministic) problem

minimize fo(x) so that x € C, fi(x) <0,i=1,...,m (Pa)

for a convex, Isc function fy : IR" — IR, a closed convex set C' C IR", and finite convex
functions f; : R" — IR, i =1,...,m. Define the feasible set by

Kd:{l‘EC| fz(l‘) SO,ZZI,,m}
The optimal value function @g: IR™ — IR is given by
pa(u) :=1inf {fo(z) | 2 € C, fi(z) <wyi=1,...,m}.

Theorem 3.1. The optimal value function ¢, is convex. If K, is bounded and Py is
feasible, then ¢4(0) is finite and @, is Isc.

Proof. The convexity of ¢4 follows from [13, Proposition 2.22(a)]. For each @, € > 0,
a € IR, the set of pairs (x, u) satisfying |[u—a| < ¢, fo(z) < o,z € C, and fi(z) < w;, i =
1,...,mis bounded whenever Ky is, cf. [13, Theorem 3.5, Exercise 3.24]. Thus applying
Theorem 1.19 in [13] yields the lower semi-continuity of ¢4, and since 0 € dom ¢, by the
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feasibility of P, the solution set is compact by [13, Theorem 1.19]. Hence ¢4(0) must
be finite. O

The Lagrangian Ly : IR" x IR™ — IR for Py is given by

Ly(z,y) := 4 +o0 ifegC,
—00 otherwise,

and the dual problem is given by
maximize ¢(y) subject to y > 0, (Dq)
where
g(y) = inf Lq(z,y).
Theorem 3.2. If P, is feasible and K, is bounded then min P; = sup Dy.

Proof. This follows from the convexity and lower semicontinuity of ¢,. Observe that
sup g(y) = liminf gq(u) = ¢4(0),
yERm u—0

where the first equality can be taken from [7, Theorem 7], for example, utilizing the

convexity of 4. Since ¢4(0) = inf Py, the result follows. O

In order to obtain the existence of dual multipliers, one can appeal to the constraint
qualification of ‘calmness’ of the optimal value function. We state the definition below.

Definition 3.3 [13]. A function f : IR™ — IR is calm at @ from below with modulus
k € R, =[0,00) if f(u) is finite and on some neighborhood V' of @ one has

f(u) > f(a) — klu — u| when u € V.
Theorem 3.4. Suppose that P, is feasible, Ky is bounded, and the value function py
for Py is calm from below at 0. Then minP; = max Dy.

Proof. This straightforwardly combines Proposition 10.47 of [13] (calmness as a con-
straint qualification) with Theorem 11.39(d) of [13], along with Theorem 3.1 above. O

For the convex function, ¢, we define the subgradient dp, : IR™ — IR™ at @ by

Opa(ti) = {v | a(u) = pa(@) + (v,u — W)}
The subderivative of ¢4 at @ in the direction u € IR™ (equivalent to the directional
derivative in this convex case) is given by

dipa(@) (u) = b{% pa(t + “i) — Wd(ﬂ).

We next give some pertinent properties to be used in interpreting these duality results.
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Theorem 3.5. Suppose that P, is feasible and K, is bounded. Then
(a) argmax Dy, = —0pq(0),
(b) dea(0)(u) = sup{(v,u) | v € Ba(0)}.
Proof. The feasibility of P; and boundedness of K imply that ¢4 is a proper, convex,

Isc function. (a) follows from [7, Theorem 16], employing the fact that min P, = sup Dy
from Theorem 3.2. (b) follows from Theorem 8.30 in [13]. O

These two results indicate in particular that dual multipliers serve as a ‘price system’
that can be interpreted as measuring the cost of perturbations in the constraints in a
given direction u, through 3.5 (b). We conclude this section by interpreting calmness
from below in terms of subgradients and subderivatives.

Theorem 3.6. If P, is feasible and K, is bounded, then the following are equivalent.
(a) @q is calm from below at 0,
(b) 9¢q(0) # 0,
(c) dpg(0)(u) > —oo for any direction wu.
Proof. This follows from 3.1 above and Proposition 8.32 of [13]. The equivalence be-
tween (b) and (c) is also clear from Theorem 3.5 (b). O

From this theorem, the full meaning of calmness comes to light. A problem for which
g4 is calm from below at 0 is one in which a small shift in the constraints can produce a
proportionally unbounded downward shift in the infimum, cf. [1]. We see that calmness
from below at 0 is precisely the property that is necessary and sufficient to obtain the
existence of subgradients to ¢, at 0, or equivalently the existence of optimal multipliers.

4. Direction-free feasibility

In this section, we consider finite-dimensional (deterministic) convex optimization
problems of the form

minimize fo(x) so that x € C, fi(x) <0,i=1,...,m (Pa)

for a closed convex set C' C IR", and finite convex functions f; : IR" — IR,i=0,1,...,m.
Let’s denote the feasible set of Py by

Ky={reC| fi(r) <0,i=1,...,m}.

The recession cone of a set D C IR" is the set of ‘directions’ contained in D, given
by
D*:={veR"| z+XveDforal A >0,z € D}.
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Figure 1: Recession cones of constraint sets. Right: direction-free feasibility.

In the proofs to follow we will use the easily verified fact that for a nonempty feasible
set K4, and any nonempty ‘perturbed’ set

Ky ={zel]| filzx) <a;,i=1,...,m},

a; € R, i =1,...,m, it is always true that K3° = K, cf. [13, Chapter 3].

Definition 4.1. A convex optimization problem P, has direction-free feasibility if it is
feasible, and KJ° is a subspace S of IR".

Note that in particular, a problem P, in which the feasible set K, is nonempty and
bounded (equivalently K3° = {0}) as in Theorem 3.2 satisfies direction-free feasibility.
The property of direction-free feasibility is a generalization of feasibility with level-
boundedness on C'.

Theorem 4.2. A convex optimization problem P, has direction-free feasibility if and
only if it is feasible and there exists a subspace S of IR" and a linear projection operator
onto S*t, prig. : R"™ — IR" such that S C C*, max; fi|perJ_C’ is level-bounded on
prjg. C, and for x € C, f;(x) = fi(prjgr x), i =1,...,m. In that case, K* = S.

Proof. Let’s first suppose Py is feasible and that we have a subspace S of IR" with
S C C*, a linear projection operator prjg. onto S+ with max; fi|prst ¢ level-bounded
on prijgy C and f;(z) = fi(prjgr ) on C. We show that for K, := {z € C'| fi(x) <0, 1=
1,...,m}, K3 = S, which will imply that KJ° is a subspace. Let v € KJ°, which means
that for any x € C satisfying f;(z) < 0 for i =1,...,m, it follows that x + \v € C' and



filz + Av) <0 for all A > 0. Now, for fixed A > 0, f;(x + Av) = fi(prjgr z + Aprojg. v).
Since max; fi|prj5LC is level-bounded on prjq. C, it follows that prjg. v = 0, i.e., v €
ker(prjgi) = S. On the other hand for v € S, v € C* since S C C*°, so that z+ v € C.
Also, fi(z + Av) = fi(prjgi(z + Av)) = fi(prigs z) = fi(z) < 0.

For the opposite direction, suppose that P; has direction-free feasibility. Direction-
free feasibility implies that K3° is a subspace, let’s call it S. Let prjg. : IR" — IR" be the
projection mapping onto S+. Since S is the space of directions of unboundedness of Ky,
it follows that S+ has no directions of unboundedness of K, in other words max; f; |prjs e
is level-bounded. What remains is to show that for i =1,...,m, fi(z) = fi(prjsL x) on
C. Fix an x € C, and let prjo. z € S and 2° € S be the unique decomposition of z,
i.e.

x = projg. « + 2°, where 2° = 2 — prjq. .
Then f;(z) = f;(prjgL x+2°). It thus suffices to show that f; is constant along directions
inS. Fixxz € C'and let 79 € S. Recall that S = K3°, i.e. the directions of unboundedness
in K. Suppose that f;(x) =: a4, i =1,...,m. Then,
re{r el filr) <ajyi=1,...,m}.

On the other hand, f;(x+xy) < «; since 2o € S = K3°, which implies f;(z+x¢) < fi(z).
A similar argument works for the reverse inequality: let f;(z + xy) =: 5; and note that
—1g € S = K, so that fi(v) = fi(x + 20 — m) < B;, whereby fi(z) < fi(x + ).
Thus we have established that f;(z) = fi(x + o), i = 1,...,m, i.e. f; is constant along
directions in S as claimed. Therefore f;(x) = fi(prigL = + z°) = fi(prjsL T). m

The method to be employed to derive duality results for problems with direction-free
feasibility relies on passing to a ‘projected’ problem whose feasible set is bounded. Let’s
consider the modified problem given by

minimize Fy(z) so that = € prjg. C, fi(z) <0,i=1,...,m (Py)
where F, : IR" — IR is defined by
Fo(z) := inf { fo(z") | prig. 2’ = z}.
Note that Fy(z) = oo if x ¢ S*. The feasible set for P/ is given by
K, :={zeprje. C| fi(x) <0,i=1,...,m}.
Lemma 4.3. Fj is Isc, convex and satisfies Fy|g1 < oo.

Proof. The convexity of Fj follows from the joint convexity of the function 1 : IR™ X
IR™ — IR given by
n . [ folz') ifprjgLa’ =z,
Pl o) = { +o0o  otherwise,
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and the fact that Fy(z) = inf,s ¢(z,2"), cf. [7, Theorem 1]. Fpy|gr < oo by virtue of the
fact that fy < oo. The lower semicontinuity of Fy then follows by observing that Fg,
because it is convex, must be either identically —oco on S+ or finite and continuous on
S*+. This combined with the fact that Fy(z) = oo for z & S+ implies that Fy is Isc. 0O

Lemma 4.4. Suppose P, has direction-free feasibility. Then K|, is nonempty and
bounded, and inf Py = inf P).

First, observe that prjg. C = C'N S*: Recall that under direction-free feasibility,
S C C* (Theorem 4.2). For z € C'N S+, it follows trivially that x € prjg. C. For
r € prjg. C, we have z € S+ and there exists a y € C, with y = z + 2°, for an
2% € S € C™. Since S is a subspace, —2° € C* also. Thus z = y — 2° € C. We have
shown z € C' N S+, hence prig. C = C' N S*. From this it follows that K, = K, N S*.
This implies that K, is bounded, because S+ contains no directions of unboundedness
of K4 (equivalently, K3° = S).

To show that K, is nonempty, since K, is nonempty by direction-free feasibility, it
suffices to establish the equation, K, = prje. K4. Let x € K. Then x € K4 N S,
so that trivially x € prjg. K4. On the other hand, for z € prjq. K4, we have that
x € St and there exists y € Ky with y = 2 + 2%, 2 € S = K5°. Since S is a subspace,
—1% € K, whereby x = y — 2° € K;. We have shown = € K, N S+ = K, thus
establishing K|, = prjq. K4, and subsequently that K, is nonempty.

Based on the above relationships, it is easy to show that inf P; = inf P}:

infP;, = inf{fo(x)| z € Ky}

inf {fo(z +y)| v € K}, y € S}
inf {Fo(z) | z € K[}

= infP),

which completes the proof. |

We can now state the duality theorem relying on direction-free feasiblity. The dual
problem for P, is given by

maximize ¢(y) so that y >0, (Dy)

where
g(y) = inf L(z,y),
for L : IR" x IR™ — IR defined as in §3 with the usual inner product on IR™:

foz) + 3 filx)y; ifxeC,y>0
L(z,y) = ¢ +oo ifov ¢ C,
—00 ifreC,y#0.
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Also recall the value function for Py, ¢ : IR™ — IR given by
o(u) :==inf{fo(x) | z € C, filx) <wu;i=1,...,m}.

Theorem 4.5. Suppose P, has direction-free feasibility. Then inf P; = sup Dy. If the
value function ¢ is calm from below at 0, then inf P; = max Dy.

Proof. This applies Theorem 3.2 to the problem P} utilizing Lemma 4.3 and the fact
that inf P; = inf P}, from Lemma 4.4. The dual problem for P} is precisely Dy, as shown
through writing down the Lagrangian for P},

Fo(z) + % filr)ys if o € prjg. C, y >0,
Ll(l‘a y) =4 t00 if z ¢ peri Oa
—00 itz eprjigt C,y 20,

and noting that
infyepe L'(z,y) = infyeqr L'(z,y)
= infyep L(z,y).
Thus,
inf Py = inf P, = sup D), = sup Dy,

as claimed.
Now suppose that ¢ is calm from below at 0. The value function for P/, ¢’ : R™ — IR
is given by
o' (u) :={Fy(z) | ® € prig. C, fi(x) <w;yi=1,...,m},

which is, by the definition of Fp, easily seen to be equal to ¢. Thus ¢’ is calm from
below at 0, and because there also exists a solution to the problem P}, we may apply
Theorem 3.4 to obtain the existence of a solution to D). Hence, a solution exists for Dy,
since Dy and D), are identical. m

5. Finite-dimensional duality theorems in stochastic programming

From §2, for an § € G, P may be expressed equivalently as a deterministic convex
optimization problem given by

minimize fro(z) + Fy(x)
so that fi(z) <0, i=1,...,my;, x€C, (Ps)
F{z) <0, i=1,...,my, A€S,

where
Fyo(x) := E{fy(& x)} and F{:(x) = E{f}: (& x)|A}.
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This puts us back in the finite-dimensional deterministic framework of §3.
In keeping with §1 and §3, foran § € G, the finite-dimensional optimal value function
os : R™ x R™S! — IR for P is given by

ps(u,v) = inf{fio(2) + Fo(z)| 2 € C, fra(z) <0, i=1,...,my,
Fii(x) <0,i=1,...,my, A€ S}

Now let’s consider the finite dimensional dual problem for P given by
maximize ¢(y, z) subject to y >0, z >0, (Ds)

where
g(ya Z) = :L‘lenlgn LS(‘Ta Y, Z)a

and Lg : R" x R™ x IR™!S! — IR is given by
fro(z) + Fao(z) + X2 vifri(2)

Ls(z,y, 2) == + Y s 7 Fat(2) ifreC,y>0,2>0,
7 +o0 if v & C,
—00 otherwise.

We have the following duality theorem relating P and Dsg.
Theorem 5.1. Suppose P is feasible and K is bounded. Then minP = sup Ds.

Proof. The problems P and Pgs are equivalent from Theorem 2.1. Notice that Ps and
Dgs are primal and dual problems in the finite-dimensional setting of §3. Thus, the result
follows from Theorem 3.2. O

We next concentrate on the existence of dual solutions to Dg, which relies on the
property of calmness defined in §3. The existence of dual solutions in Ds may be reduced
to the question of calmness from below at (0, 0) of any of the finite-dimensional optimal
value functions for P.

Theorem 5.2. For fixed S € G, suppose P is feasible, K is bounded and the finite-
dimensional optimal value function ¢g is calm from below at (0,0). Then minP =
max Dg.

Proof. This applies Theorem 3.4 to Ps and Dgs to obtain the existence of a dual solution
for Ds. Theorem 5.1 and the equivalence of P and Pgs in Theorem 2.1 then imply that
min P = maxDg. O

Thus we have managed to bypass the usual Slater conditions to obtain existence of
dual multipliers for this class of stochastic programs. The next theorem relates calmness
from below to subgradients and subderivatives as in 3.6.
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Theorem 5.3. If P is feasible and K is bounded, then for an § € G, ¢s is calm
from below at (0,0) if and only if dps(0,0) # (. Additionally, this is equivalent to
dips(0,0)(u,v) > —oc for all directions (u,v) € R™ x R™!S

Proof. This applies Theorem 3.6 under the equivalence of P and Ps in 2.1. O

Remark. Because the dual multipliers may be interpreted economically as a price sys-
tem for perturbations in the constraints (see Theorem 3.5 and the comments that follow
it), the ‘second-stage’ dual multipliers zZ should be interpreted with respect to the spe-
cific constraints (choice of §) considered. Thus, from the remark at the end of §2, we
would have an infinite cost (dgs(0,0)(0,v) = +o00) if any component of v is negative,
whereas for v > 0, dps(0,0)(0,v) serves as a measure of the marginal cost that would
be incurred for perturbations of fy; in the average over sets A € §. Using this scheme,
one could conceive of analyzing the sensitivity of the problem under various choices of
finite partitions S € G.

But let’s go further now and derive similar results when the problem does not have
bounded constraint sets, using the notion of direction-free feasibility developed in §4.
Theorems 5.4, 5.5, and 5.6, parallel Theorems 5.1, 5.2, and 5.3 above. We will say that
P has direction-free feasibility if Ps does for some partition S € G (hence for all such
partitions).

Theorem 5.4. Suppose P has direction-free feasibility. Then inf P = sup Ds.

Proof. By forming the finite-dimensional problem, Ps, we put ourselves in the frame-
work of §4. In fact, applying Theorem 4.5 to Ps yields the desired result. O

Theorem 5.5. Suppose P has direction-free feasibility. For fixed S € G, suppose
the finite-dimensional optimal value function ps is calm from below at (0,0). Then
inf P = max Dg.

Proof. The proof again relies on applying Theorem 4.5 to Ps, through the equivalence
of P and Pgs in 2.1, and the fact that Ps and Dg are primal and dual problems as in §4.
O

Theorem 5.6. Suppose P has direction-free feasibility. Then, for an § € G, s is
calm from below at (0,0) if and only if dps(0,0) # (. Additionally, this is equivalent to
dps(0,0)(u, v) > —oo for all directions (u,v) € R™ x IR™I5!.

Proof. From the proof of Theorem 4.5, ¢y = @5, where ¢ is the optimal value function
for the finite-dimensional optimization problem Pj%, which has a bounded constraint set.
This puts us in the framework of Theorem 3.6, and the proof is immediate. O
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6. Infinite-dimensional stochastic programming duality theorems

We are now prepared to extend these results to the setting of stochastic programming
problems with infinite-dimensional dual problems.

The dual problem to P that we consider is derived from the Lagrangian L : R" X
[R™ x L(Z,F, P; IR™)] — IR,

fro(x) + E{f2(&,2)} + X fri(z)yi

)2 E{fu(& x)z(€)} ifreC,y>0,2>0 P-as.,
L(l’,y,Z) T +OO lfoC,
—00 otherwise.

(3)

The dual problem is given by
maximize ¢(y,z) so that y >0, z > 0 P-a.s., (D)
where
9(y,2) ==inf{L(z,y,2) | v € C}.

We have the following duality theorem relating, for a given partition S € G, the
problems P, Ps, D, and Ds.

Theorem 6.1. Suppose P has direction-free feasibility. Then
inf P = inf Ps = sup Ds = sup D.

If Ds has an optimal solution, then so does D.

Proof. P and Pgs are just different ways of writing the same problem, so inf P = inf Pg
is trivial. The equality, inf Ps = sup Ds is a direct application of Theorem 4.5. To show
that sup Ds = sup D, first notice that for

AN:={ e L%E,F,P;R)| \€[0,1] P-as.},

which is weak® compact in L>*(Z, F, P; IR) by the Banach-Alaoglu Theorem, we may
rewrite [y; as

Fou(z) = max/E)\(f)fzi(g,x)P(dg), i=1,...,m.

AEA

This is a straightforward interchange between integration and maximization, as permit-
ted when the maximization is taken over a decomposable space such as L>(Z, F, P; IR):
for fixed z, 4, let h : = x IR — IR be defined by

(g ) o= { M) in € 0.1

00 otherwise.
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h is a normal (usc) integrand (upper semicontinuous in 7 for fixed £, and jointly mea-
surable with respect to F ® B, where B denotes the Borel field on IR), and thus by [13,
Theorem 14.60],

maxyea Jz A(€) f2i(§, ) P(dE) = maxyec [z h(E, A(§))P(dE)
J=max,cg h(§,n)P(df)

= Jz maXpe[o,i] ani(gax)P(dg)
= J= f5i (& ) P(dE).

Through this expression for Fy;, i = 1,...,msq, we derive the expression for L'

/ _
L'(z,y. () = max L(z,y,Co A),
where ( o A represents the componentwise vector of products (;\;. Recall

fro(@) + E{f2(&,2)} + X7 fri(z)yi

m2 GE{ o (€, x) )\ if C,y>0,(>0P-as.,
L(z,y,C o)) = iozozz_lc {f2(& 2)Ni(€)} ifﬁ ; . Yy ¢ a.s
—00 otherwise.

The weak* compactness of A along with the weak™ upper semicontinuity and concavity
of L in A and the convexity of L in x allows the interchange

ipf wmax, L@,y,C o X) = max inf, L(w,y, o),
see for example the minimax theorems in [4, 15]. Thus through identification of ¢ o A
with z, we obtain

supDs = sup,, %nfx L'(x,y,()

sup, ¢ inf, maxyeame L(z,y, o N)
sup,  maxyepms infy L(x,y,( o A)
sup, , infy L(z,y, 2)

= supD.

This argument also implies that attainment of an optimal solution in Dg implies attain-

ment in D, since a solution (7, () for Ds and the weak* compactness of A would yield a
solution (7, o \) for D. m|

We next concentrate on the existence of dual solutions to D. The next theorem
relies on the property of calmness defined in §1. Here, the existence of dual solutions for
P may be reduced to the question of calmness of the finite-dimensional optimal value
function for Ps for any S € G.
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Theorem 6.2. Suppose P has direction-free feasibility and the value function for Ps,

fio(z) + Fyo(x) ifz € C, fri(r) <wuy,i=1,...,my,
o(u) == ir%f Fo(z) <wug,i=1,...,ma,
400 otherwise,

is calm from below at 0 for any S € G. Then inf P = maxD.

Proof. This applies 6.1 to obtain the string of equalities, inf P = inf Ps = sup Ds =
supD. Applying the latter part of 4.5 to Ps and Ds yields the existence of a dual
solution for Ds. Theorem 6.1 then implies that there exists a solution to D as well. O

7. The fundamental theorem of asset pricing

The following problem comes from the mathematical finance literature. It has been
simplified here to a one-stage setting. Let Z, € ZRJJFJr1 and Zr € EL(E,]—",P;B‘”I)
denote vectors of asset prices, where (=, F, P) is an underlying probability space assumed
to be P-complete. For simplicity it is assumed that the first asset Z? is riskless, and
equal to one (otherwise one could normalize the price vectors accordingly), for t =0, T'.
A contingent claim is a contract to pay Fr € LY(Z,F, P; IR) in the future (at time T),
where it is assumed that P(Fr > 0) > 0, i.e. at least some events will yield a positive
payout. (A futures contract is an example of a contingent claim which could have both
positive and negative payouts.) The writer of the claim offers it at some price Fy € IR,.
The writer has two goals: one is to find a fair price Fj for the contingent claim given that
he can invest his receipts in the market, and the second is to optimize his portfolio of
investments once this price is fixed. We will concentrate on the second of these problems,
although they are intimately tied together.

The writer’s portfolio optimization problem is to choose a portfolio of investments,
# € R’ to maximize his or her expected terminal wealth, given the ability to invest
Fy, and the obligation to pay out Fr. One could also include a utility function in the
formulation but that has been omitted here, for simplicity. We write the writer’s problem
(as a minimization problem in keeping with the preceding sections) as

minimize —E{Zr -0}
subject to Zy-0 < Fy (Pr)
Zr-0 > Fr P-as.

and assume that the price Fj and the payout Fr are such that Py is feasible.
No arbitrage conditions on the market mean loosely that one cannot generate positive
wealth from nothing. One form of this is to say that the market admits no free lunches.
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A free lunch is a portfolio such that

Zy-0 < 0
Zr-# > 0 P-as.
P(Zr-0>0) > 0.

Under the first two inequalities, this last condition may be equivalently stated as
E{Zr-0} > 0.

The fundamental theorem of asset pricing states that there are no free lunches if and only
if there exists an equivalent martingale measure for the price process (such a measure is
then used to price contingent claims; the ‘fair price’ is the expected value of Fr under
the equivalent martingale measure). An equivalent martingale measure is a probability
measure () ~ P (which means P(E) = 0 if and only if Q(E) = 0), such that the market
price process is a martingale under Q:

Eolzr} = [ Zr(©)QUdE) = 7.

In a duality framework, one can think of these measures () as Radon-Nikodym deriva-
tives of dual variables that lie, say, in £'. However, the usual duality theory for stochastic
programs [9, 10] does not encompass this problem. Note that P; does not satisfy rela-

_66>, Zp-0 = —¢ # Fr P-as.. It also does not

have a bounded feasibility set. Thus in the ‘usual’ stochastic programming setting, the

tively complete recourse since for 6 = (

best one can obtain is a dual problem whose variables lie in the dual of £, cf. [11, 6].
In fact, this would yield finitely additive measures as dual multipliers, which does in
itself have some interesting significance. But the goal here is to take the first steps to
reproduce some of the mathematical finance results in a stochastic programming setting.
The approach is to obtain the desired duality result through Theorem 6.1.

Lemma 7.1. If the market admits no free lunches, then Py has direction-free feasibility.

Proof. Suppose that the market admits no free lunches. Then there is no # such that

Zy-0 < 0
Zr-0 > 0 P-as.
E{Zr-0} > 0.

Let
Kf = {96BJ+1| ZOHS FO; ZT'90 > FTP—a.s.},

18



i.e. the feasible set for Py. If it can be shown that K3° is a subspace of R’ then Py
has direction-free feasibility. First observe that

K;O:{HERJ+1|Z()'9§0, ZT'Q()EOP—H,.S.}.

Let 6 € K7°. Tt suffices to show that e K73°. Since there are no free lunches, it must

be true that E{ZT-é} = 0, and hence that Zr-0 = 0 P-a.s.. Tt is also true that Z,-0 = 0,

because if Zy -0 = —¢ < 0, then 0 := 0+ <%> is a free lunch, a contradiction. Thus

Zp-(=0) =0and Zy - (=) =0, i.e. —0 € K. This implies that K7° is a subspace of
IR7*!'. Thus, if the market admits no free lunches, then P; has direction-free feasibility.
O

The theorem that follows is the simplified version of the fundamental theorem of
asset pricing in a stochastic programming setting.

Theorem 7.2. The following are equivalent:
(a) Py is bounded
(b) Dy is feasible
(c) The market admits no free lunches
(d) There exists an equivalent martingale measure for the market price process.

Proof. (a) <= (c) is readily apparent. (b) <= (d) comes from examing the
dual problem:
maximize Fyyg — E{Frzr}
subject to  E{Zp(1+z2r)} = Zoyo (Dy)
Yo >0, 20 > 0P-as.
Here, feasibility of the dual is equivalent to the price process being a martingale under
some measure ) equivalent to P (Q ~ P) given by

Q(E) = [ (1+2r(€)) /1P (de)

for such a feasible point (yo, 2r) € Ry x LY (Z, F, P; IR).

(b) == (a) since it is always true that inf Py > sup D; and D; feasible implies
supDy > —oo which in turn implies inf Py > —oo, i.e. Py is bounded. The main
part of the proof is in showing that (a) == (b). This will certainly be true if we
can show that inf Py = supD;. If (a) holds, since (a) == (c), by Lemma 7.1 Py
has direction-free feasibility. Theorem 6.1 then implies inf Py = supD;. Py bounded
means inf Py > —oo. Thus, supD; > —oo, which means that Dy is feasible. Thus
(a) = (b). O
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This theorem is a very simplified version of the typical models appearing in the
mathematical finance literature. Its significance lies in setting up a duality theory in a
stochastic programming setting which may in principle be extended to cover multi-stage,
and even possible continuous time models in a future development. It is noteworthy that
one obtains the existence of an equivalent martingale measure whose Radon-Nikodym
derivative is in £* as opposed to L!. Moreover, the geometric consequence of the
no free lunch condition (direction-free feasibility) provides a weaker condition than no
free lunch, that if satisfied will yield (along with the boundedness of the problem) the
existence of an equivalent martingale measure. This opens up the possibility to consider
problems which may have additional types of variables and constraints, where no free
lunch conditions may fail (or not even make sense), but direction-free feasibility still has
meaning and could still be established.
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