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Abstract

The service provision problem described in this paper comes from an application
of distributed processing in telecommunications networks. The objective is to
maximize a service provider’s profit from offering computational based services
to customers. The service provider has limited capacity and must choose from
a set of software applications those he would like to offer. This can be done
dynamically taking into consideration that demand for the different services
is uncertain. The problem is examined in the framework of stochastic integer
programming.

Approximations and complexity are examined for the case when demand is
described by a discrete probability distribution. For the deterministic coun-
terpart a fully polynomial approximation scheme is known [2]. We show that
introduction of stochasticity makes the problem strongly NP-hard, implying
that the existence of such a scheme for the stochastic problem is highly unlikely.
For the general case a heuristic with a worst-case performance ratio that in-
creases in the number of scenarios is presented. Restricting the class of problem
instances in a way that many reasonable practical problem instances will satisfy,
allows for the derivation of a heuristic with a constant worst-case performance
ratio. These worst-case results are the first results for stochastic programming
problems that the authors are aware of in a direction that is classical in the field
of combinatorial optimization.
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1 Introduction

The service provision problem discussed in this paper comes from an applica-
tion in telecommunications. It considers how to install different processing based
services on a set of computer nodes in a network with distributed processing
capabilities. The computers typically have limited resources such as memory,
processing capacity and storage capacity. All the services are built from a
set of subservices. The subservices are software applications, which run in a
distributed manner in the network. The service provider must decide how to al-
locate computational resources to a set of subservices in order to meet customer
demand for services. Because the resources are limited, it may be necessary to
reject some customers. It is assumed that the service provider tries to maximize
his profit.

From the prognosis that the problem of allocating node resources will be im-
portant in near future (as one can already see for the Internet) the authors were
asked by the industrial financial contributor to examine the situation where
transportation does not play a role. Further, because of the distributed pro-
cessing capabilities of the network, it is possible to consider subservice demand
independently of which service generated it.

Demand for services is dynamic and uncertain. At various times the demand
for a single service peaks, affecting the demand for all subservices used by the
service. Before the peak actually occurs, deviations from the normal demand
patterns for subservices can be observed. These deviations can be used as a
signal indicating that a peak is about to occur. The signals can be ambiguous
but point to a limited number of possible services that might peak. For any
possible signal a few scenarios often give sufficient description of the situation
that is about to occur in terms of subservice demand.

The subservices typically take time and resouces for start-up and shutdown.
The configuation of subservices can not react to changes in demand instanta-
neously. When the signal gives just enough time to re-configure the network
before the peak occurs, a two-stage decision situation naturally emerges. In
the first stage the decision is which subservices to install given only probabilis-
tic information on demand for subservices. During the set-up time uncertainty
resolves itself. The only possible recourse action in the second-stage concerns
what demand should be met using the subservices installed in the first stage.
The available capacity is restricted by the first stage decision. More information
on the model can be found in Tomasgard et al [10].

This paper considers a variant of the problem with only one node on which to
install subservices, and a single constraining resource. This is typically the sit-
uation a service provider faces when he rents capacity from a network provider.
The service provider does not take into consideration whether the capacity he
has rented is located on one or several computing nodes. He uses it as if it were
one continuous block of capacity. The network provider on the other hand is
free to replicate and move the various service providers’ subservices on all the
nodes he manages. For a further discussion of the roles in the network and a



discussion around distribution see [9, 10].

Here the underlying decision process is briefly described.

Demand is treated in terms of the limited resource used by the subservices.
Let n be the number of subservices and s the resource capacity of the single
node. g¢; is the profit obtained from allocating one resource unit to meeting
demand for subservice, j. In addition, each subservice uses a fixed amount of
capacity just to be available, independent of the demand met. This installation
requirement is denoted by r; for subservice j. Subservice demand is uncertain
and described by the probability space (A, o, u). Let § € A be a realization of
the demand, where §; is the demand for subservice j for this random outcome.

The first stage decision variables z; indicate whether subservice j is installed,
in which case z; = 1, or not, indicated by z; =0, 7 =1,...,n.

The objective of the first stage is to maximise expected profit, subject to a
capacity constraint.

max FEa [Q(z,0)]

s.t. erzj <s (1)
Jj=1
sz{O,l} j=1,...,n.

where Q(z,9) is the second-stage cost for first stage decision z and demand 4.
This is the optimal objective value of the second-stage linear program, where
z and ¢ act as parameters. The second-stage variables x; denote the resource
used to meet demand for subservice 5. The objective of the second stage is
to maximise profit. There are two constraints. The capacity constraint ensures
that node capacity is not exceeded. The demand constraint ensures that demand
is only met for subservices that have been installed.

Q(z,0) =max Y gz
j=1

n n
s.t. Zajj <s5-— erzj (2)
j=1 j=1
ZIZj < (Sij ] 1, ,n,
z; >0 j=1...,n

When the node capacity, the installation requirements, and demands are inte-
gral, the = variables will automatically be integral.

When uncertain demand for subservices is described by a discrete distribu-
tion a deterministic equivalent [5] can be formulated, as discussed in [10].

The probability distribution of uncertain demand is described in stochastic
programming terminology in terms of scenarios [5]. Denote by m the number of
demand scenarios and by py the probability of scenario k occurring. A scenario
can be viewed as a vector of demands with an assigned probability. Then, §;i
is demand for the resource generated by subservice j in scenario k.

The second-stage variables become z;, denoting the resource allocated to
subservice j in scenario k.

The deterministic equivalent of the stochastic single node service provision



problem (SSNP) will be a linear mixed integer programming model (MIP) [7].

max Zpkzq]'l‘jk
k=1 j=1
n
s.t. Z(rjzj +z)<s k=1,...,m, (3)
j=1
(5ij]' —Z‘jkzo j:l,...,n, k:l,...,m,
ZjE{O,l},CUjk >0 j=1...,n, k=1,...,m.

In the remainder of this paper the expected demand for subservice j will be
written in the following manner

Eil6k] =) prdjr,
k=1

diverging slightly from customary notation for expectations in probability theory
literature.

The mathematical program of interest is a stochastic integer program. As
stated, the integrality is purely in the first stage. When the input data is in-
tegral, the second stage is naturally integer and the problem may be classified
as having an integer second stage. From the stand point of stochastic integer
programming, the formulation is interesting in and of itself. Our analysis high-
lights an interesting result. When the number of scenarios allowed is fixed, the
problem may be solved in pseudo-polynomial time. However, for an arbitrary
number of scenarios, the formulation is strongly NP-hard. For this problem, the
better the description of uncertainty, the more difficult the problem becomes.
This suggests that algorithms for general stochastic integer programming, or
those that rely on the uncertainty structure, are unlikely to be “scalable”.

To facilitate the exposition the assumption is made that no demand is higher
than the node capacity minus the corresponding installation requirement. This
can, if necessary, be ensured by preprocessing.

Assumption 1 For any subservice j in any scenario k, the support of 01 1is
in the interval [0,s — r;].

A consequence of this is that for any subservice the profit of meeting its
expected demand is no greater than the optimal profit of the overall problem.
Let 7°PT be the optimal value of (3). Then Assumption 1 ensures that

WOPT 2 qJEk[(s]k]a .7 = 17"'7”' (4)

Feasibility of the deterministic service provision problem with multiple nodes
and the requirement that all demand must be met is strongly NP-complete, [3].
When demand is deterministic and profit is maximized, Dye et al [2] show that
the single node problem is NP-hard and has a fully-polynomial time approxi-
mation scheme. In the same paper it is shown that the multiple node problem
is strongly NP-hard and that there exists no fully polynomial approximation
scheme even when the number of nodes is fixed. The analysis turned out to
have many similarities with the well known knapsack problem [6]. The results
do not follow straightforwardly from the deterministic counterparts of the prob-
lem.



We show in Section 4 that (SSNP) is strongly NP-hard, whereas as noted
above the deterministic counterpart admits a fully polynomial approximation
scheme. This is remarkable since the integer variables appear only in the first
stage of the two-stage stochastic programming problem. When the number
of scenarios is fixed the problem can be solved in pseudo-polynomial time by
dynamic programming.

When the number of scenarios is considered as part of the input, there is
little hope to find efficient algorithms that solve the problem to optimality or
fully polynomial time approximation schemes. It is still possible to find good
approximations. This is the motivation behind investigating the LP relaxation.
The LP relaxation is discussed in Section 2 together with an approximation
method directly based on the LP results. A worst case bound increasing in the
number of scenarios is given. In Section 3, for a slightly restricted problem class
(to which many reasonable practical problem instances belong) the bound on
the ratio between the LP solution value and the optimal integer one is tightened
and a constant bound approximation method based on the proof is presented.
These are the first worst-case performance results known by the authors for
approximation of stochastic integer programming problems.

2 The LP bound and a heuristic

The LP relaxation of (SSNP) replaces the requirement z; € {0,1} in (3) by
0 <z <1lforj=1,...,n. This section describes an optimal basis for the
LP relaxation of (SSNP) and uses it to give an upper bound on the ratio of
the LP versus the optimal solution. A heuristic based on the bound is given
subsequently in Subsection 2.2.

2.1 The LP bound

Relaxing the integrality constraints, consider the resulting LP. The following
theorem bounds the number of fractional variables in an optimal LP solution.
A variable z; is fractional if 0 < z; < 1, and a variable zj; is fractional if
0 < zji < 0j1z;. Note that if z; < 1, then it is possible to have 0 < x; < d;i
without x;; being fractional, as long as it is equal to d;2;.

Theorem 1 Any basic optimal solution to the LP relaxation of (SSNP) with
m scenarios has at most m fractional z and x variables.

Proof Let (2'F 2™) be an optimal basic solution to the LP relaxation of
(SSNP). Define the reduced problem to be the instance with problem data cor-
responding to the original, with the exception that subservices for which z;fp =0
are removed. The corresponding optimal solution of the reduced problem has
the same number of fractional z and z variables. This means the only instances
to consider have an LP relaxation with a basic optimal solution, (2™F, z"F), for
which 2P > 0.

Introducing slacks ¢; for the capacity constraints and wuj; for the demand

constraints, results in the following reformulation of the LP relaxation.

max Z Zkaj-Tjk ()

Jj=1k=1



s.t.

n n
erzj-i—Z:Ujk-{—tk = s k=1,...,m, (6)
j=1 j=1

(Sijj—l‘jk—Ujk =0 j:l,...,n,k:l,...,m, (7)
OSZ]'S]., l‘jk,Ujk,tk > 0 j:l,...,n,k:l,...,m. (8)

This LP has m+nm functional constraints, so that at any basic solution at most
m 4 nm variables will lie strictly between their bounds. Let (t“F ul'F zMP 21F)
be a basic optimal solution to the above for which 2*F > 0. Now, count the
number of variables lying strictly between their bounds.

Since z* > 0, j = 1,...,n, Constraints (7) imply that at least one of z;’
or u;f,f will be positive for each pair (j,k), j = 1,...,n, k = 1,...,m. This
accounts for at least mm variables strictly between their bounds. Define the
following sets

F={jlz" <1},
U={(,k) |z} >0and uly >0}

and

T={k|t:F >0}.
Notice that U is exactly the set of indices for which x?,f are fractional because
they are positive but not equal to §;,2}".

The number of fractional Y and 2 is | F|+|U/| and the number of variables
lying strictly between their bounds is |F| + |7 |+ |U| 4+ nm. From the above this
is no greater than m + nm, implying |F| + |T| + |U| < m. 0

Thus, if (2MF, 25'F) is a basic optimal solution to the LP relaxation write its

optimal value, 7'F, as

m m
P Y S et 3 ma ®

JEW k=1 JEF k=1

where W = {j|z}¥ = 1} and F = {j|0 < 2j* < 1}

In particular, || < min{m,n}. Under Assumption 1, the above theorem
provides an immediate bound for the optimal value of the LP relaxation in terms
of the optimal solution value 7°FT of (SSNP).

OPT

Corrollary 1 If 7 is the optimal solution value of an instance of (SSNP)

and "% is the optimal value of the LP relazation, 7" < min{m + 1,n}xCFT,
Proof
m m
P < N gy + a5 Y prdji (10)
JEW k=1 JEF k=1
< qOPT L Zﬂ_OPT
JEF
< (min{m,n} +1)x°FT



Notice that > jew > he . Pk qjarzf,f is the value of an integer feasible solution and
is therefore no greater than 7°FT. To obtain the second inequality is then a
matter of applying (4). The last inequality is implied by |F| < min{m,n},
which is a direct consequence of Theorem 1. Finally, note that if |F| = n,
W = 0 so that (10) implies 7™ < naOFT, 0

We have no example that shows tightness of this bound. The worst example
we found so far has a ratio 7-F /7OFT = 4.

2.2 The LP round-down heuristic

This section investigates a heuristic which amounts to rounding down the opti-
mal solution of the LP relaxation of (SSNP). The worst-case performance ratio
analysis is related to the analysis for the greedy heuristic of the knapsack prob-
lem [6, Subsection 2.4]. In the deterministic case the knapsack LP solution can
be found in O(n) time by a median finding algorithm using the price per unit
criterion [2]. Here a similar approach is not known.

The previous section showed that any optimal LP solution of an m-scenario
problem will have at most m subservices for which the 2}"-values are fractional.
All remaining z are 0 or 1. This motivates the following LP round-down heuris-
tic, which we call LPR: Install each subservice j for which z;fp = 1 and no
others, that is install all j € W. Afterwards the remaining capacity is allocated
to serve demand of the installed subservices in a greedy manner, starting with
the subservices with the highest g;. Assume for simplicity that the subservices
are sorted by non-increasing g;. Then there will be a critical subservice j; in
each scenario k for which x?,f = 5jkz;fp,j < jr and x?,f =0, > jr. Let
(z"PR 2IPR) be the heuristic solution and 7"P® the solution value.
Proposition 1 A lower bound for the LP round-down heuristic (LPR) value
s to allocate only the amount indicated by the LP solution to each installed
subservice

alPR >y ipkqu?-;f-

JEW k=1

Proof In the LPR heuristic all the space allocated to subservices 7 € F in
the LP is free, as these subservices are not installed. This free capacity can
potentially be used to meet demand for subservices j € W. So zj7® > 2", Vj €
W, Vk. O

LPR can for some instances of the problem be arbitrarily bad, because a
better solution with an arbitrarily higher value may be to install one of the
fractional subservices. The heuristic is now modified into a heuristic that we
call |[LP| to avoid this problem. If the value of installing the best of the services
j € F is higher than the value of installing all subservices j € W then do that
instead. Let 7-P] be the optimal value of this heuristic. Then

7lPPL = max{x"P® max q; Ex[0;1]}-

JEF

Theorem 2 The modified LP round-down heuristic |LP| has a worst case per-
formance ratio of

7OPT /7 MP1 < min{m + 1,n},



and this ratio is tight.

Proof

m m
PO < A=) D mae YD pagai
JEW k=1 JEF k=1
< AR g B,
JEF
< Pl 4| AP < (min{m, n} + 1)x P

Again, the case where |F| = n tightens the bound to min{m + 1,n}x Pl

A tight example is given here. The problem has v + 1 subservices and v
scenarios, v > 2. Let g =v—¢€,r; =€, j=1,...,v, uy1 =v/e and ry41 =0
where 0 < € < 1. The node size is s = 1 + ve and all scenarios are equally
likely. Demand is defined to be constant over all scenarios for subservice v + 1,
dvt1r = €/v, k = 1,...,v. For all other subservices j = 1,...,v demand is
present only in scenario j, with 6;; =1 and d;, = 0 when j # k.

The optimal solution is to install all subservices. Demand for subservice v+1
is always met completely, while in scenarios j = 1,...,v the optimal solution
has w%PT =1— +. The profit from this is aOPT =14 v -2+ %

The optimal LP solution, (z;f),a:?,f) is z{j_fl =1, a:{jflk = €¢/v, Vk, x?}) =

LP _ l+ve—¢ . LP _ . . . _ .
= e Vi ag, =0,k # j. This solution has m = v fractional z-values

and no fractional z-values. The modified LP round-down solution value 7" is
the maximum of installing one of the fractional subservices or subservice v + 1:
PPl = max{1, L(v—€)} = 1. As € gets arbitrarily small,

z

2
7OPT /rllPl =1 4 — 26+ <
v

gets arbitrarily close to v + 1 where v is the number of scenarios and v + 1 is
the number of subservices. O

Notice that the given bound on the performance ratio holds for any possi-
ble discrete distribution defined in terms of scenarios. It is increasing in the
number of scenarios and if the number of scenarios is greater than the number
of subservices the bound is even linear in the number of subservices, which, in
general, is not a very favourable situation. For the considered application with
a limited number of scenarios, it may still be useful. Yet, it would be better to
have a constant performance ratio. Next, the bound on the LP ratio is tightened
for a class of problem instances and a heuristic with a constant bound for this
problem class is defined.

3 A constant bound

The results from Section 2 depend on the demand probability distribution in
a fundamental way. It is directly dependent on the number of realizations
the random variables may take. This section shows that for a class of service
provision problems it is possible to find a worst-case ratio that is independent
of the discrete demand distribution.



The class of problems examined are those for which it is feasible (but not
necessarily optimal) to install all subservices concurrently. That is, the sum of
the installation requirements is less than the node capacity. This assumption
is reasonable in many cases for the problem setting. In order to facilitate the
exposition, the node capacity is scaled to 1; s = 1. In this setting the class of
problems has

dorp < (11)
j=1

In Section 2 the bound was obtained by considering each fractional subservice
individually. In this section the bound is improved by considering sets of these
subservices together. The important aspect here is the trade-off between the
number of sets and the capacity used by the installation requirements of the
subservices in each set.

3.1 The LP ratio

Let (2P, 2"F) be a basic optimal LP relaxation solution. Let ¢ be the number
of fractional z;fp and assume that £,, of these subservices have r; < w for some
0 < w < 1 to be chosen later. These subservices will be installed in groups
while those with 7; > w will be installed separately as before. Again, let )V be
the set of subservices with z;fp = 1. Without loss of generality let 0 < z;fp <1
andr; <w forj=1,...,0, and 0 < z;¥ < land r; >w for j =Ly +1,..., L
Write the optimal LP value as

P =P + P 4+ b (12)
where
LP LP
Ty = Z QjEk[l”jk ];
JEW
Lo
P =Y B,
j=1
and

14
P = Y ¢Ba]
J=lut1
Feasible solutions generated from the LP solution will be used to bound
parts of (12). From Section 2

ﬂ_OPT > ﬂ_LPR > ﬂ_(I)‘P- (13)

Next 71 is bound. First, define Z§:1 r;z¥F = A and note that Eﬁil ahy <
1— A for each k = 1,...,m. Integer feasible solutions are generated for which
the capacity used by the r;’s of the installed subservices is close to some constant

. First partition the set {1,...,¢,} into I subsets, {S;}!_,, where

Yo <B+w  di=1,...,1

JES;



and
»ormp>p  i=1,...,I-1 (14)
JES;:
Notice that the last bound is not required for S;. The LP relaxation had at
most 1 — A units of capacity available for the z variables. Installing only the
subservices in one of the sets S; will leave at least 1 — § — w units of capacity
available. The z-variable values from the LP relaxation solution corresponding
to subservices in S; may be scaled down, if necessary, to use a total of no more
than 1 — 8 — w units of capacity in each scenario.
For each i = 1,...,I generate the integer feasible solution (z for
which zJH =1forj € S;, and ZJH =0forallj ¢S, Set wﬁ = yaly for j € S,
k=1,...,n and xﬁg = 0 for all other jk with

Hi,l-Hi)

1-8—w

if > A
v = 1—A ! ﬂ Twz2 ’ (15)
1 otherwise.
Now the objective value of the solution (zi zf) is
=" Bl =) g Bl
JES;: JES;:
and it follows that
! 1< I
P = Z Z quk[x?,f] == ZWH" < —gOPT (16)
i=1 j€S; 7= v

Observe, that the size of I may be bound using (14) with the following con-
struction.

n Lo I
1> >3 r=3 % r>(I-1)B. (17)
j=1 j=1 i=1 jES;
This means that I <14 1/ leading to the following bound
1
P < p+1 7OFT, (18)
By

where v is given by (15).

For bounding 7%¥ consider installing each subservice j = £, + 1,...,¢ in-
dividually. Note that from the definition of A, and since r; > w for j =
by +1,...,¢L,

¢ ¢ ¢
_ LP LP LP
A—Z’I‘JZJ > Z rizi 2w Z;
=1 j=tu+1 J=lut1
Thus,
¢
A
PO
) w
Jj=tw+1

The solution obtained by installing just subservice j from among subservices
l, +1,...,0 has an objective value of no more than g¢; Ej[0;%].

10



From the demand constraint it follows that Ej [x;f] < Ej [6jk]z;fp. By As-
sumption 1, this leads to the following bound.

L

o= Y B[]
j=ly+1
¢
<D0 aBlle”
=1
: A
< OPT Lp - 4 _oPT
< 7 Z Zj <o (19)
j=ly+1
Combining (13), (18), and (19) gives
1 A
P < <1 + prl + —> 7OFT (20)
py w

where v is given by (15) and w, 8 € (0,1) may be chosen with w + 8 < 1. This
leads to the following theorem.

Theorem 3 Under the assumption that Z;;l r; <1

7P < (5 + 2v/3)7OFT.

Proof The choice of w and 3 is based on the value of A in (20), which depends

on the LP solution. When A4 < 1 take w =1—%v/3 and 8= -3 + £/3 and
when A > 1 take w = 8 = L A. For both cases w + 3 > A so that y = 1*153—;”.
For the former case the bound (20) leads to

2(1+3)(1— A) A o
<1+ Y + _%\/3>in

= (1 +(1+V3)2(1—A) +4(1+ %\/§)A> 7OFT = (5 4+ 2v/3)7°FT

7_‘,LP

INA

while in the latter case (20) leads to the bound
P < <4 + %) 7OPT < 87O0PT < (5 + 2v/3)xOFT,

O
Notice that we stated the theorem for the node capacity s being equal to 1.
However, it is easy to see that the theorem holds for any value of s since scaling
the problem so that s = 1 leaves the ratio unchanged.
We can show that in case A < % there is no better choice of w and 3 in this
analysis. In case A > % a better choice of w and B seems possible though, so
that in that case the analysis could lead to a slightly better constant bound.

3.2 A round and partition heuristic with constant worst-
case ratio

Based on the previous LP bound a round and partition heuristic (RP) is devel-
oped with a worst case performance ratio bounded above by 5 + 2v/3.

11



Consider the class of heuristics that, given S C {1,...,m}, produce the
solution (27, z°) with objective value 7, by setting ZJS =1lifjeSor ZJS =0
if j ¢ S and choosing z° to maximize the LP created by fixing z to 2° in
(SSNP). Guided by the previous section, we will generate many such solutions
by partitioning the set of services.

The two constants w and (3 of the previous subsection are chosen as in
Theorem 3. That is, when A < % choose w =1 — %\/3 and = —% + % 3 and
when A > 1 choose w = 8 = 1 A. Regarding the remark following Theorem 3
in the previous subsection in case A > % also here better choices of w and (3
seem possible.

Let (27, 2"F) be a basic optimal LP relaxation solution with the optimal
solution value given by (12). From this solution we generate a partition

{W,Z,B,Ty,..., Tk} for some K of {1,...,m}.

o W= {jlzf" =1}
o Z={jlzf" =0};
o B={jl0<zI"<1,r;>w}

The remaining subservices with szP > 0 and r; < w are partitioned into
the sets 71, ..., Tk in the following way. Consider these subservices in arbitrary
order. Start by filling the set 7; with the first subservices until addition of the
next subservice will raise the sum of the installation requirements above w + .
That subservice will be the first one to go into the set 7;. Continue in the same
way filling the set 72 and so on until the last set Tk is constituted by the last
few items. Thus, the sets Tq, ..., Tk have the properties

o Y rieBB+uwfori=1,... ,K-1
JET:;

© D m<ftw
JETK

The partition generation takes O(m) time once the LP solution is known.

The round and partition heuristic then chooses a solution (z°,z°) where S
is: W, one of the sets 7;, or a single element of B. That is, the round and
partition heuristic solution, (2RF, zRF), is given by

(2RF 2PRP) = argmax { 7% | S € {W,Th,..., Tk} U U {{]}}
jEB
Let 7% be the solution value of the round and partition heuristic.

Theorem 4 The round and partition heuristic has a worst case performance

ratio o
! 7OPT/rBP < (5 4 2v/3).

12



Proof This follows almost immediately from the proof of the bound for the
LP-relaxation in Section 3.1 taking the {S;}/_, as {73} ,. The w and 3 values
used above are the same as in the proof.

Notice that 7" = 7"FR and for any j € B nl/} = ¢; FE[0;1]. Also, for each
i€{l,...,K} nTi = zHi_ With this, from the definition of the heuristic,

P > atP P > aHiyi=1,. K and 7R > ¢;Ep[0;1],V] € B.

From this 7°FT may be replaced by 7%F in (16) and (19). Following this
through to the proof of the LP bound in Theorem 3 gives

7OPT < 7LP < (5 4 2¢/3)7RP,

O

It should be remarked that the derived bound might not be tight. The

tightest bound discovered by the authors, from any instance, has a performance
ratio of 2.

4 Computational complexity

This section gives evidence that the above results are interesting in the sense
that one cannot hope to arrive at the optimal solution of (SSNP) in polynomial
time. As indicated in the introduction the deterministic counterpart of the
problem admits a fully polynomial approximation scheme for its solution. Here
we show that this is unlikely to be achievable for (SSNP) by proving that it is
strongly NP-hard.

Theorem 5 The stochastic single node service provision problem is strongly
NP-hard.

Proof The natural recognition version of this problem obtained by introduc-
ing a number and asking if there is a feasible solution giving profit at least
that number is obviously in NP, since the representation of the probabilistic
input in scenarios allows the formulation of a deterministic equivalent mixed-
integer programming problem. To see that the recognition version is strongly
NP-Complete consider a reduction from the well-known strongly NP-Complete
vertex cover problem (see [4]):

Given a graph G = (V, E) with |V| vertices and |E| edges and a
constant K, does there exist a subset V' of the vertices, such that

each edge in F is incident to at least one vertex in V', and such that
V' < K?

For every vertex j € V introduce a subservice j with installation requirement
a = ﬁ For every edge introduce a scenario with demand 1 for the two
subservices incident to it and demand 0 for all other subservices. Let ¢; =
|E| Vj € V, and let all scenarios have a probability Ilfl of occurring. Then the
expected profit from meeting one unit of demand in a single scenario is 1. Take
Ko + 1 as capacity of the node in (SSNP). The question is whether there is a
solution to this instance of (SSNP) with total expected profit at least |E|.
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This transformation is obviously polynomial. In case there exists a vertex
cover of size at most K then there is a service provision with total expected
profit at least |E|. Install the subservices corresponding to the vertices in the
vertex cover. Then for each scenario (edge) at least one of the subservices
with demand 1 is installed. The total capacity used by the installation of the
subservices is at most K« leaving at least capacity 1 to fill with the demands
for each scenario.

The other direction is a bit more complicated. Suppose there does not exist
a vertex cover of size K or less. Then installing all subservices corresponding to
a vertex cover would use node capacity strictly greater than K« leaving strictly
less than 1 for meeting demand in each of the |E| scenarios, making a total
expected profit of at least |E| unattainable. Installing any set of subservices of
size L < K would leave (K — L)a + 1 node capacity for meeting demand in
each scenario. However, at least one edge will remain uncovered, implying that
there is at least one scenario in which both subservices with a positive demand
are not installed. With at most |E| — 1 scenarios the expected profit will be at
most (||~ 1)(K ~ L)a+1) < (|E] - 1)(Ka+1) = (Bl - 1) (s +1) < |E|. g

In case the number of scenarios is fixed a dynamic programming algorithm
shows that the problem can be solved in pseudo-polynomial time. We argued in
the introduction that this problem is not only of academic interest, but reflects a
plausible real-world situation. For this it is assumed that all problem parameters
are integers.

Theorem 6 The stochastic single node service provision problem with o fixed
number of scenarios can be solved in pseudo-polynomial time.

Proof Consider the following DP that has the subservices as its stages. A
state, S € Z, gives the capacity used in each scenario. Define f;(S) as the
maximum profit that can be achieved from scenario capacities S = (S, ..., Sm)
using the subservices 1, ..., 7. Each S; may take a value between 0 and s so there
are at most (s+1)™ states per stage. There are two types of transitions in every
stage, either the subservice is not installed, or it is installed and some demand
is met. There are fewer than s + 1 possible choices concerning the demand to
meet in each scenario, and overall there are then fewer than (s + 1)™ different
feasible decisions in a state. The initial settings are

0 if0<S;<s, Vi=1,....,m
—00 otherwise.

fo(8) =

The recurrence is given by

fj(Sl,...,Sm) = 0<I£ea<)%jk{fj_1(51 —Trj —ml,...,Sm — Ty —Cﬂm)

m
+q; Zpkfﬂk,
k=1

fj1(51,-..,5m)}.

From each state there are at most (s + 1)™ + 1 possible transitions, at each
stage there are at most (s + 1)™ states and there are n stages. The running
time of the DP is therefore at most O(ns®™), which implies the theorem.
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Thus, the conclusion is that the problem with a fixed number of scenarios is
not strongly NP-hard. This suggests also the existence of a polynomial approx-
imation scheme for the problem, a nice subject for future investigations. That
this subclass of problems is still NP-hard is implied by the NP-hardness of the
deterministic counterpart of the problem which has been proved in [2].

5 Conclusions

This paper considered a service provision problem on a distributed processing
telecommunication network, under uncertain demand for the services. It was
shown that the natural stochastic integer programming model is strongly NP-
hard. It is worthwhile to stress this as its deterministic counterpart having
the same number of binary decision variables is weakly NP-hard. Thus, the
complexity of the problem increases by introducing stochasticity, even if it only
means adding continuous decision variables for each scenario of the problem.
This suggests that algorithms for general stocastic integer programming are
unlikely to be “scalable”.

Because of the strong NP-hardness, approximation algorithms were studied
for this problem. A first algorithm based on the LP relaxation of the deter-
ministic equivalent of the stochastic problem has worst-case performance ratio
equal to the minimum of the number of services and the number of scenar-
ios that describe the stochastic demand plus one. The second algorithm has a
constant worst-case performance ratio for a more restricted class of problems.
The assumption defining this subclass is, however, satisfied for many reasonable
practical problem situations.

Moreover, the variable bound on the performance ratio of the first algo-
rithm is not as bad as it may seem at first sight because (as indicated in the
introduction) the number of scenarios may actually be small in our telecommu-
nication application. In a situation with a small number of scenarios one might
alternatively think of using the dynamic programming formulation of Section 4.
However, it should be noted that if precision is required and the resource capac-
ity and the resource requirements are large then the pseudo-polynomial nature
of the method leads to excessive computation times.
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