
The stochastic single node service provision

problem�

Shane Dyey

Email� s�dye�mang�canterbury�ac�nz

Leen Stougiez

Email� leen�win�tue�nl

Asgeir Tomasgardx

Email� Asgeir�Tomasgard�indman�sintef�no

November ��� ����

Abstract

The service provision problem described in this paper comes from an application
of distributed processing in telecommunications networks� The objective is to
maximize a service provider�s pro�t from o�ering computational based services
to customers� The service provider has limited capacity and must choose from
a set of software applications those he would like to o�er� This can be done
dynamically taking into consideration that demand for the di�erent services
is uncertain� The problem is examined in the framework of stochastic integer
programming�
Approximations and complexity are examined for the case when demand is

described by a discrete probability distribution� For the deterministic coun�
terpart a fully polynomial approximation scheme is known ���� We show that
introduction of stochasticity makes the problem strongly NP�hard� implying
that the existence of such a scheme for the stochastic problem is highly unlikely�
For the general case a heuristic with a worst�case performance ratio that in�
creases in the number of scenarios is presented� Restricting the class of problem
instances in a way that many reasonable practical problem instances will satisfy�
allows for the derivation of a heuristic with a constant worst�case performance
ratio� These worst�case results are the �rst results for stochastic programming
problems that the authors are aware of in a direction that is classical in the �eld
of combinatorial optimization�
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� Introduction

The service provision problem discussed in this paper comes from an applica�
tion in telecommunications� It considers how to install di�erent processing based
services on a set of computer nodes in a network with distributed processing
capabilities� The computers typically have limited resources such as memory�
processing capacity and storage capacity� All the services are built from a
set of subservices� The subservices are software applications� which run in a
distributed manner in the network� The service provider must decide how to al�
locate computational resources to a set of subservices in order to meet customer
demand for services� Because the resources are limited� it may be necessary to
reject some customers� It is assumed that the service provider tries to maximize
his pro�t�
From the prognosis that the problem of allocating node resources will be im�

portant in near future �as one can already see for the Internet� the authors were
asked by the industrial �nancial contributor to examine the situation where
transportation does not play a role� Further� because of the distributed pro�
cessing capabilities of the network� it is possible to consider subservice demand
independently of which service generated it�
Demand for services is dynamic and uncertain� At various times the demand

for a single service peaks� a�ecting the demand for all subservices used by the
service� Before the peak actually occurs� deviations from the normal demand
patterns for subservices can be observed� These deviations can be used as a
signal indicating that a peak is about to occur� The signals can be ambiguous
but point to a limited number of possible services that might peak� For any
possible signal a few scenarios often give su
cient description of the situation
that is about to occur in terms of subservice demand�
The subservices typically take time and resouces for start�up and shutdown�

The con�guation of subservices can not react to changes in demand instanta�
neously� When the signal gives just enough time to re�con�gure the network
before the peak occurs� a two�stage decision situation naturally emerges� In
the �rst stage the decision is which subservices to install given only probabilis�
tic information on demand for subservices� During the set�up time uncertainty
resolves itself� The only possible recourse action in the second�stage concerns
what demand should be met using the subservices installed in the �rst stage�
The available capacity is restricted by the �rst stage decision� More information
on the model can be found in Tomasgard et al �	���
This paper considers a variant of the problem with only one node on which to

install subservices� and a single constraining resource� This is typically the sit�
uation a service provider faces when he rents capacity from a network provider�
The service provider does not take into consideration whether the capacity he
has rented is located on one or several computing nodes� He uses it as if it were
one continuous block of capacity� The network provider on the other hand is
free to replicate and move the various service providers� subservices on all the
nodes he manages� For a further discussion of the roles in the network and a

�



discussion around distribution see ��� 	���
Here the underlying decision process is brie�y described�
Demand is treated in terms of the limited resource used by the subservices�

Let n be the number of subservices and s the resource capacity of the single
node� qj is the pro�t obtained from allocating one resource unit to meeting
demand for subservice� j� In addition� each subservice uses a �xed amount of
capacity just to be available� independent of the demand met� This installation
requirement is denoted by rj for subservice j� Subservice demand is uncertain
and described by the probability space ��� �� ��� Let � � � be a realization of
the demand� where �j is the demand for subservice j for this random outcome�
The �rst stage decision variables zj indicate whether subservice j is installed�

in which case zj � 	� or not� indicated by zj � �� j � 	� � � � � n�
The objective of the �rst stage is to maximise expected pro�t� subject to a

capacity constraint�

max E� �Q�z� ���

s�t�

nX
j��

rjzj � s

zj � f�� 	g j � 	� � � � � n�

�	�

where Q�z� �� is the second�stage cost for �rst stage decision z and demand ��
This is the optimal objective value of the second�stage linear program� where
z and � act as parameters� The second�stage variables xj denote the resource
used to meet demand for subservice j� The objective of the second stage is
to maximise pro�t� There are two constraints� The capacity constraint ensures
that node capacity is not exceeded� The demand constraint ensures that demand
is only met for subservices that have been installed�

Q�z� �� � max

nX
j��

qjxj

s�t�
nX
j��

xj � s�
nX
j��

rjzj

xj � �jzj j � 	� � � � � n�
xj � � j � 	� � � � � n�

���

When the node capacity� the installation requirements� and demands are inte�
gral� the x variables will automatically be integral�
When uncertain demand for subservices is described by a discrete distribu�

tion a deterministic equivalent ��� can be formulated� as discussed in �	���
The probability distribution of uncertain demand is described in stochastic

programming terminology in terms of scenarios ���� Denote by m the number of
demand scenarios and by pk the probability of scenario k occurring� A scenario
can be viewed as a vector of demands with an assigned probability� Then� �jk
is demand for the resource generated by subservice j in scenario k�
The second�stage variables become xjk � denoting the resource allocated to

subservice j in scenario k�
The deterministic equivalent of the stochastic single node service provision
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problem �SSNP� will be a linear mixed integer programming model �MIP� ����

max

mX
k��

pk

nX
j��

qjxjk

s�t�
nX
j��

�rjzj � xjk� � s k � 	� � � � �m�

�jkzj � xjk � � j � 	� � � � � n� k � 	� � � � �m�
zj � f�� 	g� xjk � � j � 	� � � � � n� k � 	� � � � �m�

���

In the remainder of this paper the expected demand for subservice j will be
written in the following manner

Ek��jk � �

mX
k��

pk�jk�

diverging slightly from customary notation for expectations in probability theory
literature�
The mathematical program of interest is a stochastic integer program� As

stated� the integrality is purely in the �rst stage� When the input data is in�
tegral� the second stage is naturally integer and the problem may be classi�ed
as having an integer second stage� From the stand point of stochastic integer
programming� the formulation is interesting in and of itself� Our analysis high�
lights an interesting result� When the number of scenarios allowed is �xed� the
problem may be solved in pseudo�polynomial time� However� for an arbitrary
number of scenarios� the formulation is strongly NP�hard� For this problem� the
better the description of uncertainty� the more di
cult the problem becomes�
This suggests that algorithms for general stochastic integer programming� or
those that rely on the uncertainty structure� are unlikely to be �scalable��
To facilitate the exposition the assumption is made that no demand is higher

than the node capacity minus the corresponding installation requirement� This
can� if necessary� be ensured by preprocessing�

Assumption � For any subservice j in any scenario k� the support of �jk is
in the interval ��� s� rj ��

A consequence of this is that for any subservice the pro�t of meeting its
expected demand is no greater than the optimal pro�t of the overall problem�
Let �OPT be the optimal value of ���� Then Assumption 	 ensures that

�OPT � qjEk��jk �� j � 	� � � � � n� ���

Feasibility of the deterministic service provision problem with multiple nodes
and the requirement that all demand must be met is strongly NP�complete� ����
When demand is deterministic and pro�t is maximized� Dye et al ��� show that
the single node problem is NP�hard and has a fully�polynomial time approxi�
mation scheme� In the same paper it is shown that the multiple node problem
is strongly NP�hard and that there exists no fully polynomial approximation
scheme even when the number of nodes is �xed� The analysis turned out to
have many similarities with the well known knapsack problem ���� The results
do not follow straightforwardly from the deterministic counterparts of the prob�
lem�
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We show in Section � that �SSNP� is strongly NP�hard� whereas as noted
above the deterministic counterpart admits a fully polynomial approximation
scheme� This is remarkable since the integer variables appear only in the �rst
stage of the two�stage stochastic programming problem� When the number
of scenarios is �xed the problem can be solved in pseudo�polynomial time by
dynamic programming�
When the number of scenarios is considered as part of the input� there is

little hope to �nd e
cient algorithms that solve the problem to optimality or
fully polynomial time approximation schemes� It is still possible to �nd good
approximations� This is the motivation behind investigating the LP relaxation�
The LP relaxation is discussed in Section � together with an approximation
method directly based on the LP results� A worst case bound increasing in the
number of scenarios is given� In Section �� for a slightly restricted problem class
�to which many reasonable practical problem instances belong� the bound on
the ratio between the LP solution value and the optimal integer one is tightened
and a constant bound approximation method based on the proof is presented�
These are the �rst worst�case performance results known by the authors for
approximation of stochastic integer programming problems�

� The LP bound and a heuristic

The LP relaxation of �SSNP� replaces the requirement zj � f�� 	g in ��� by
� � zj � 	 for j � 	� � � � � n� This section describes an optimal basis for the
LP relaxation of �SSNP� and uses it to give an upper bound on the ratio of
the LP versus the optimal solution� A heuristic based on the bound is given
subsequently in Subsection ����

��� The LP bound

Relaxing the integrality constraints� consider the resulting LP� The following
theorem bounds the number of fractional variables in an optimal LP solution�
A variable zj is fractional if � � zj � 	� and a variable xjk is fractional if
� � xjk � �jkzj � Note that if zj � 	� then it is possible to have � � xj � �jk
without xjk being fractional� as long as it is equal to �jkzjk�

Theorem � Any basic optimal solution to the LP relaxation of �SSNP� with
m scenarios has at most m fractional z and x variables�

Proof Let �zLP� xLP� be an optimal basic solution to the LP relaxation of
�SSNP�� De�ne the reduced problem to be the instance with problem data cor�
responding to the original� with the exception that subservices for which zLPj � �
are removed� The corresponding optimal solution of the reduced problem has
the same number of fractional x and z variables� This means the only instances
to consider have an LP relaxation with a basic optimal solution� �zLP� xLP�� for
which zLP � ��
Introducing slacks tk for the capacity constraints and ujk for the demand

constraints� results in the following reformulation of the LP relaxation�

max

nX
j��

mX
k��

pkqjxjk ���
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s�t�

nX
j��

rjzj �

nX
j��

xjk � tk � s k � 	� � � � �m� ���

�jkzj � xjk � ujk � � j � 	� � � � � n� k � 	� � � � �m� ���

� � zj � 	� xjk � ujk� tk � � j � 	� � � � � n� k � 	� � � � �m� ���

This LP hasm�nm functional constraints� so that at any basic solution at most
m�nm variables will lie strictly between their bounds� Let �tLP� uLP� xLP� zLP�
be a basic optimal solution to the above for which zLP � �� Now� count the
number of variables lying strictly between their bounds�
Since zLPj � �� j � 	� � � � � n� Constraints ��� imply that at least one of xLPjk

or uLPjk will be positive for each pair �j� k�� j � 	� � � � � n� k � 	� � � � �m� This
accounts for at least nm variables strictly between their bounds� De�ne the
following sets

F � f j j zLPj � 	 g�
U � f �j� k� j xLPjk � � and uLPjk � � g

and
T � f k j tLPk � � g�

Notice that U is exactly the set of indices for which xLPjk are fractional because
they are positive but not equal to �jkz

LP
j �

The number of fractional zLP and xLP is jFj�jUj and the number of variables
lying strictly between their bounds is jFj� jT j� jUj�nm� From the above this
is no greater than m� nm� implying jFj� jT j� jUj � m�

Thus� if �zLP� xLP� is a basic optimal solution to the LP relaxation write its
optimal value� �LP� as

�LP �
X
j�W

mX
k��

pkqjx
LP
jk �

X
j�F

mX
k��

pkqjx
LP
jk ���

where W � fjjzLPj � 	g and F � fjj� � zLPj � 	g
In particular� jFj � minfm�ng� Under Assumption 	� the above theorem

provides an immediate bound for the optimal value of the LP relaxation in terms
of the optimal solution value �OPT of �SSNP��

Corrollary � If �OPT is the optimal solution value of an instance of �SSNP�
and �LP is the optimal value of the LP relaxation� �LP � minfm� 	� ng�OPT�

Proof

�LP �
X
j�W

mX
k��

pkqjx
LP
jk �

X
j�F

qj

mX
k��

pk�jk �	��

� �OPT �
X
j�F

�OPT

� �minfm�ng� 	��OPT
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Notice that
P

j�W

Pm
k�� pkqjx

LP
jk is the value of an integer feasible solution and

is therefore no greater than �OPT� To obtain the second inequality is then a
matter of applying ���� The last inequality is implied by jFj � minfm�ng�
which is a direct consequence of Theorem 	� Finally� note that if jFj � n�
W � � so that �	�� implies �LP � n�OPT�

We have no example that shows tightness of this bound� The worst example
we found so far has a ratio �LP��OPT � ��

��� The LP round�down heuristic

This section investigates a heuristic which amounts to rounding down the opti�
mal solution of the LP relaxation of �SSNP�� The worst�case performance ratio
analysis is related to the analysis for the greedy heuristic of the knapsack prob�
lem ��� Subsection ����� In the deterministic case the knapsack LP solution can
be found in O�n� time by a median �nding algorithm using the price per unit
criterion ���� Here a similar approach is not known�
The previous section showed that any optimal LP solution of an m�scenario

problem will have at most m subservices for which the zLPj �values are fractional�
All remaining z are � or 	� This motivates the following LP round�down heuris�
tic� which we call LPR� Install each subservice j for which zLPj � 	 and no
others� that is install all j � W � Afterwards the remaining capacity is allocated
to serve demand of the installed subservices in a greedy manner� starting with
the subservices with the highest qj � Assume for simplicity that the subservices
are sorted by non�increasing qj � Then there will be a critical subservice jk in
each scenario k for which xLPjk � �jkz

LP
j � j � jk and xLPjk � �� j � jk� Let

�zLPR� xLPR� be the heuristic solution and �LPR the solution value�

Proposition � A lower bound for the LP round�down heuristic �LPR� value
is to allocate only the amount indicated by the LP solution to each installed
subservice

�LPR �
X
j�W

mX
k��

pkqjx
LP
jk �

Proof In the LPR heuristic all the space allocated to subservices j � F in
the LP is free� as these subservices are not installed� This free capacity can
potentially be used to meet demand for subservices j � W � So xLPRjk � xLPjk ��j �
W � �k�
LPR can for some instances of the problem be arbitrarily bad� because a

better solution with an arbitrarily higher value may be to install one of the
fractional subservices� The heuristic is now modi�ed into a heuristic that we
call bLPc to avoid this problem� If the value of installing the best of the services
j � F is higher than the value of installing all subservices j � W then do that
instead� Let �bLPc be the optimal value of this heuristic� Then

�bLPc � maxf�LPR�max
j�F

qjEk��jk �g�

Theorem � The modi�ed LP round�down heuristic bLPc has a worst case per�
formance ratio of

�OPT��bLPc � minfm� 	� ng�
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and this ratio is tight�

Proof

�OPT � �LP �
X
j�W

mX
k��

pkqjx
LP
jk �

X
j�F

mX
k��

pkqjx
LP
jk �

� �LPR �
X
j�F

qjEk��jk ��

� �bLPc � jFj�bLPc � �minfm�ng� 	��bLPc�

Again� the case where jFj � n tightens the bound to minfm� 	� ng�bLPc�
A tight example is given here� The problem has v � 	 subservices and v

scenarios� v � �� Let qj � v � 	� rj � 	� j � 	� � � � � v� qv�� � v�	 and rv�� � �
where � � 	 � 	� The node size is s � 	 � v	 and all scenarios are equally
likely� Demand is de�ned to be constant over all scenarios for subservice v � 	�
�v��k � 	�v� k � 	� � � � � v� For all other subservices j � 	� � � � � v demand is
present only in scenario j� with �jj � 	 and �jk � � when j �� k�
The optimal solution is to install all subservices� Demand for subservice v�	

is always met completely� while in scenarios j � 	� � � � � v the optimal solution

has xOPTjj � 	� �
v
� The pro�t from this is �OPT � 	 � v � �	� ��

v
�

The optimal LP solution� �zLPjk � x
LP
jk � is z

LP
v�� � 	� x

LP
v��k � 	�v� �k� xLPjj �

zLPj �
��v�� �

v

��v�
� �j� xLPjk � �� k �� j� This solution has m � v fractional z�values

and no fractional x�values� The modi�ed LP round�down solution value �bLPc is
the maximum of installing one of the fractional subservices or subservice v�	�
�bLPc � maxf	� �

v
�v � 	�g � 	� As 	 gets arbitrarily small�

�OPT��bLPc � 	 � v � �	� 	�

v

gets arbitrarily close to v � 	 where v is the number of scenarios and v � 	 is
the number of subservices�

Notice that the given bound on the performance ratio holds for any possi�
ble discrete distribution de�ned in terms of scenarios� It is increasing in the
number of scenarios and if the number of scenarios is greater than the number
of subservices the bound is even linear in the number of subservices� which� in
general� is not a very favourable situation� For the considered application with
a limited number of scenarios� it may still be useful� Yet� it would be better to
have a constant performance ratio� Next� the bound on the LP ratio is tightened
for a class of problem instances and a heuristic with a constant bound for this
problem class is de�ned�

� A constant bound

The results from Section � depend on the demand probability distribution in
a fundamental way� It is directly dependent on the number of realizations
the random variables may take� This section shows that for a class of service
provision problems it is possible to �nd a worst�case ratio that is independent
of the discrete demand distribution�
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The class of problems examined are those for which it is feasible �but not
necessarily optimal� to install all subservices concurrently� That is� the sum of
the installation requirements is less than the node capacity� This assumption
is reasonable in many cases for the problem setting� In order to facilitate the
exposition� the node capacity is scaled to 	
 s � 	� In this setting the class of
problems has

nX
j��

rj � 	� �		�

In Section � the bound was obtained by considering each fractional subservice
individually� In this section the bound is improved by considering sets of these
subservices together� The important aspect here is the trade�o� between the
number of sets and the capacity used by the installation requirements of the
subservices in each set�

��� The LP ratio

Let �zLP� xLP� be a basic optimal LP relaxation solution� Let 
 be the number
of fractional zLPj and assume that 
w of these subservices have rj � w for some
� � w � 	 to be chosen later� These subservices will be installed in groups
while those with rj � w will be installed separately as before� Again� let W be
the set of subservices with zLPj � 	� Without loss of generality let � � zLPj � 	

and rj � w for j � 	� � � � � 
w and � � zLPj � 	 and rj � w for j � 
w � 	� � � � � 
�
Write the optimal LP value as

�LP � �LP� � �LP� � �LP� �	��

where
�LP� �

X
j�W

qjEk �x
LP
jk ��

�LP� �

�wX
j��

qjEk�x
LP
jk ��

and

�LP� �

�X
j��w��

qjEk�x
LP
jk ��

Feasible solutions generated from the LP solution will be used to bound
parts of �	��� From Section �

�OPT � �LPR � �LP� � �	��

Next �LP� is bound� First� de�ne
P�

j�� rjz
LP
j � A and note that

P�w
j�� x

LP
jk �

	� A for each k � 	� � � � �m� Integer feasible solutions are generated for which
the capacity used by the rj �s of the installed subservices is close to some constant
�� First partition the set f	� � � � � 
wg into I subsets� fSigIi��� whereX

j�Si

rj � � � w i � 	� � � � � I

�



and X
j�Si

rj � � i � 	� � � � � I � 	� �	��

Notice that the last bound is not required for SI � The LP relaxation had at
most 	 � A units of capacity available for the x variables� Installing only the
subservices in one of the sets Si will leave at least 	� � � w units of capacity
available� The x�variable values from the LP relaxation solution corresponding
to subservices in Si may be scaled down� if necessary� to use a total of no more
than 	� � � w units of capacity in each scenario�
For each i � 	� � � � � I generate the integer feasible solution �zHi � xHi� for

which zHi

j � 	 for j � Si� and z
Hi

j � � for all j �� Si� Set x
Hi

jk � �xLPjk for j � Si�

k � 	� � � � � n and xHi

jk � � for all other jk with

� �

��
�
	� � � w

	�A
if � � w � A�

	 otherwise�
�	��

Now the objective value of the solution �zHi � xHi � is

�Hi �
X
j�Si

qjEk�x
Hi

jk � � �
X
j�Si

qjEk�x
LP
jk �

and it follows that

�LP� �

IX
i��

X
j�Si

qjEk�x
LP
jk � �

	

�

IX
i��

�Hi � I

�
�OPT �	��

Observe� that the size of I may be bound using �	�� with the following con�
struction�

	 �
nX
j��

rj �
�wX
j��

rj �

IX
i��

X
j�Si

rj � �I � 	��� �	��

This means that I � 	 � 	�� leading to the following bound

�LP� � � � 	

��
�OPT� �	��

where � is given by �	���
For bounding �LP� consider installing each subservice j � 
w � 	� � � � � 
 in�

dividually� Note that from the de�nition of A� and since rj � w for j �

w � 	� � � � � 
�

A �

�X
j��

rjz
LP
j �

�X
j��w��

rjz
LP
j � w

�X
j��w��

zLPj

Thus�
�X

j��w��

zLPj � A

w
�

The solution obtained by installing just subservice j from among subservices

w � 	� � � � � 
 has an objective value of no more than qjEk��jk ��

	�



From the demand constraint it follows that Ek�x
LP
jk � � Ek��jk �z

LP
j � By As�

sumption 	� this leads to the following bound�

�LP� �

�X
j��w��

qjEk�x
LP
jk �

�
�X

j��w��

qjEk��jk �z
LP
j

� �OPT
�X

j��w��

zLPj � A

w
�OPT �	��

Combining �	��� �	��� and �	�� gives

�LP �
�
	 �

� � 	

��
�
A

w

�
�OPT ����

where � is given by �	�� and w� � � ��� 	� may be chosen with w � � � 	� This
leads to the following theorem�

Theorem � Under the assumption that
Pn

j�� rj � 	

�LP � �� � �
p
���OPT�

Proof The choice of w and � is based on the value of A in ����� which depends
on the LP solution� When A � �

�
take w � 	 � �

�

p
� and � � � �

�
� �

�

p
� and

when A � �

�
take w � � � �

�
A� For both cases w � � � A so that � � ����w

��A �
For the former case the bound ���� leads to

�LP �
�
	 �

��	 �
p
���	�A�

�	 �p� �
A

	� �
�

p
�

�
�OPT

�

�
	 � �	 �

p
����	�A� � ��	 �

	

�

p
��A

�
�OPT � �� � �

p
���OPT

while in the latter case ���� leads to the bound

�LP �
�
� �

�

A

�
�OPT � ��OPT � �� � �

p
���OPT�

Notice that we stated the theorem for the node capacity s being equal to 	�
However� it is easy to see that the theorem holds for any value of s since scaling
the problem so that s � 	 leaves the ratio unchanged�
We can show that in case A � �

�
there is no better choice of w and � in this

analysis� In case A � �
�
a better choice of w and � seems possible though� so

that in that case the analysis could lead to a slightly better constant bound�

��� A round and partition heuristic with constant worst�

case ratio

Based on the previous LP bound a round and partition heuristic �RP� is devel�
oped with a worst case performance ratio bounded above by � � �

p
��

		



Consider the class of heuristics that� given S � f	� � � � �mg� produce the
solution �zS � xS� with objective value �S � by setting zSj � 	 if j � S or zSj � �

if j �� S and choosing xS to maximize the LP created by �xing z to zS in
�SSNP�� Guided by the previous section� we will generate many such solutions
by partitioning the set of services�
The two constants w and � of the previous subsection are chosen as in

Theorem �� That is� when A � �
�
choose w � 	� �

�

p
� and � � � �

�
� �

�

p
� and

when A � �

�
choose w � � � �

�
A� Regarding the remark following Theorem �

in the previous subsection in case A � �
�
also here better choices of w and �

seem possible�
Let �zLP� xLP� be a basic optimal LP relaxation solution with the optimal

solution value given by �	��� From this solution we generate a partition
fW�Z�B� T�� � � � � TKg for some K of f	� � � � �mg�

� W � fjjzLPj � 	g 


� Z � fjjzLPj � �g 


� B � fjj� � zLPj � 	� rj � wg�

The remaining subservices with zLPj � � and rj � w are partitioned into
the sets T�� � � � � TK in the following way� Consider these subservices in arbitrary
order� Start by �lling the set T� with the �rst subservices until addition of the
next subservice will raise the sum of the installation requirements above w� ��
That subservice will be the �rst one to go into the set T�� Continue in the same
way �lling the set T� and so on until the last set TK is constituted by the last
few items� Thus� the sets T�� � � � � TK have the properties

�
X
j�Ti

rj � ��� � � w� for i � 	� � � � �K � 	

�
X
j�TK

rj � � � w

The partition generation takes O�m� time once the LP solution is known�
The round and partition heuristic then chooses a solution �xS � zS� where S

is� W � one of the sets Ti� or a single element of B� That is� the round and
partition heuristic solution� �zRP� xRP�� is given by

�zRP� xRP� � argmax

��
��S j S � fW�T�� � � � � TKg 	

�
j�B

�
fjg
	
�
� �

Let �RP be the solution value of the round and partition heuristic�

Theorem � The round and partition heuristic has a worst case performance
ratio of

�OPT��RP � �� � �
p
���

	�



Proof This follows almost immediately from the proof of the bound for the
LP�relaxation in Section ��	 taking the fSigIi�� as fTigKi��� The w and � values
used above are the same as in the proof�
Notice that �W � �LPR and for any j � B �fjg � qjEk��jk �� Also� for each

i � f	� � � � �Kg �Ti � �Hi � With this� from the de�nition of the heuristic�

�RP � �LP� � �RP � �Hi �i � 	� � � � �K and �RP � qjEk��jk ���j � B�

From this �OPT may be replaced by �RP in �	�� and �	��� Following this
through to the proof of the LP bound in Theorem � gives

�OPT � �LP � �� � �p���RP�

It should be remarked that the derived bound might not be tight� The
tightest bound discovered by the authors� from any instance� has a performance
ratio of ��

� Computational complexity

This section gives evidence that the above results are interesting in the sense
that one cannot hope to arrive at the optimal solution of �SSNP� in polynomial
time� As indicated in the introduction the deterministic counterpart of the
problem admits a fully polynomial approximation scheme for its solution� Here
we show that this is unlikely to be achievable for �SSNP� by proving that it is
strongly NP�hard�

Theorem � The stochastic single node service provision problem is strongly
NP�hard�

Proof The natural recognition version of this problem obtained by introduc�
ing a number and asking if there is a feasible solution giving pro�t at least
that number is obviously in NP� since the representation of the probabilistic
input in scenarios allows the formulation of a deterministic equivalent mixed�
integer programming problem� To see that the recognition version is strongly
NP�Complete consider a reduction from the well�known strongly NP�Complete
vertex cover problem �see �����

Given a graph G � �V�E� with jV j vertices and jEj edges and a
constant K� does there exist a subset V � of the vertices� such that
each edge in E is incident to at least one vertex in V �� and such that
jV �j � K�

For every vertex j � V introduce a subservice j with installation requirement

 � �

KjEj � For every edge introduce a scenario with demand 	 for the two

subservices incident to it and demand � for all other subservices� Let qj �
jEj �j � V � and let all scenarios have a probability �

jEj of occurring� Then the

expected pro�t from meeting one unit of demand in a single scenario is 	� Take
K
 � 	 as capacity of the node in �SSNP�� The question is whether there is a
solution to this instance of �SSNP� with total expected pro�t at least jEj�

	�



This transformation is obviously polynomial� In case there exists a vertex
cover of size at most K then there is a service provision with total expected
pro�t at least jEj� Install the subservices corresponding to the vertices in the
vertex cover� Then for each scenario �edge� at least one of the subservices
with demand 	 is installed� The total capacity used by the installation of the
subservices is at most K
 leaving at least capacity 	 to �ll with the demands
for each scenario�
The other direction is a bit more complicated� Suppose there does not exist

a vertex cover of size K or less� Then installing all subservices corresponding to
a vertex cover would use node capacity strictly greater than K
 leaving strictly
less than 	 for meeting demand in each of the jEj scenarios� making a total
expected pro�t of at least jEj unattainable� Installing any set of subservices of
size L � K would leave �K � L�
 � 	 node capacity for meeting demand in
each scenario� However� at least one edge will remain uncovered� implying that
there is at least one scenario in which both subservices with a positive demand
are not installed� With at most jEj � 	 scenarios the expected pro�t will be at
most �jEj� 	���K �L�
�	� � �jEj� 	��K
�	� � �jEj� 	�� �

jEj �	� � jEj�
In case the number of scenarios is �xed a dynamic programming algorithm

shows that the problem can be solved in pseudo�polynomial time� We argued in
the introduction that this problem is not only of academic interest� but re�ects a
plausible real�world situation� For this it is assumed that all problem parameters
are integers�

Theorem � The stochastic single node service provision problem with a �xed
number of scenarios can be solved in pseudo�polynomial time�

Proof Consider the following DP that has the subservices as its stages� A
state� S � Zm�� gives the capacity used in each scenario� De�ne fj�S� as the
maximum pro�t that can be achieved from scenario capacities S � �S�� ���� Sm�
using the subservices 	� ���� j� Each Sk may take a value between � and s so there
are at most �s�	�m states per stage� There are two types of transitions in every
stage� either the subservice is not installed� or it is installed and some demand
is met� There are fewer than s � 	 possible choices concerning the demand to
meet in each scenario� and overall there are then fewer than �s � 	�m di�erent
feasible decisions in a state� The initial settings are

f��S� �

�
� if � � Si � s� �i � 	� � � � �m

�
 otherwise�

The recurrence is given by

fj�S�� � � � � Sm� � max
��xk��jk

�
fj���S� � rj � x�� � � � � Sm � rj � xm�

� qj

mX
k��

pkxk�

fj���S�� � � � � Sm�

	
�

From each state there are at most �s�	�m � 	 possible transitions� at each
stage there are at most �s � 	�m states and there are n stages� The running
time of the DP is therefore at most O�ns�m�� which implies the theorem�

	�



Thus� the conclusion is that the problem with a �xed number of scenarios is
not strongly NP�hard� This suggests also the existence of a polynomial approx�
imation scheme for the problem� a nice subject for future investigations� That
this subclass of problems is still NP�hard is implied by the NP�hardness of the
deterministic counterpart of the problem which has been proved in ����

� Conclusions

This paper considered a service provision problem on a distributed processing
telecommunication network� under uncertain demand for the services� It was
shown that the natural stochastic integer programming model is strongly NP�
hard� It is worthwhile to stress this as its deterministic counterpart having
the same number of binary decision variables is weakly NP�hard� Thus� the
complexity of the problem increases by introducing stochasticity� even if it only
means adding continuous decision variables for each scenario of the problem�
This suggests that algorithms for general stocastic integer programming are
unlikely to be �scalable��
Because of the strong NP�hardness� approximation algorithms were studied

for this problem� A �rst algorithm based on the LP relaxation of the deter�
ministic equivalent of the stochastic problem has worst�case performance ratio
equal to the minimum of the number of services and the number of scenar�
ios that describe the stochastic demand plus one� The second algorithm has a
constant worst�case performance ratio for a more restricted class of problems�
The assumption de�ning this subclass is� however� satis�ed for many reasonable
practical problem situations�
Moreover� the variable bound on the performance ratio of the �rst algo�

rithm is not as bad as it may seem at �rst sight because �as indicated in the
introduction� the number of scenarios may actually be small in our telecommu�
nication application� In a situation with a small number of scenarios one might
alternatively think of using the dynamic programming formulation of Section ��
However� it should be noted that if precision is required and the resource capac�
ity and the resource requirements are large then the pseudo�polynomial nature
of the method leads to excessive computation times�
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