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Abstract

We consider multiple simple recourse (MSR) models, both continuous and integer
versions, which generalize the corresponding simple recourse (SR) models by allowing
for a refined penalty cost structure for individual shortages and surpluses.

It will be shown that (convex approximations of) such MSR models can be repre-
sented as explicitly specified continuous SR models, and thus can be solved efficiently
by existing algorithms.
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1 Introduction

Consider the two-stage linear recourse problem

min
x

cx + Q(x)

s.t. x ∈ X := {x ∈ R
n
+ : Ax = b},

whereQ(x) := Eω [v(ω − T x)] is theexpected valueor recoursefunction, andv(s) is the
value function of thesecond-stageproblem: fors ∈ R

m,

v(s) := min
y

qy

s.t. Wy = s

y ∈ Y.

Here,W is called therecourse matrix, q specifies the recourse unit cost parameters, andY

describes the feasible set ofrecourse actionsy by means of simple bounds and/or integral-
ity restrictions.

Such models arise as reformulations of models in which random parameters appear
in the constraintsT x = ω. Here, we consider only uncertainty in the right-hand side
parameter vectorω ∈ R

m, which is assumed to be a random vector whose distribution
is known. Forfirst-stage decisionsx ∈ R

n, Q(x) specifies the expected costs of optimal
recourse actions to compensate for deficienciesω − T x. For a general introduction to
recourse models, see e.g. the text books [1, 5, 13], the recent handbook [15], and the web
site [16].

∗This research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sci-
ences.
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This specification of the recourse model allows for a lot of flexibility: many choices
for the recourse structure(q,W, Y ) are possible. A well-known special case issimple
recourse, defined by the recourse structureW = (Im, −Im), with Im them × m identity
matrix,q = (q+, q−), andY = R

2m
+ , so thatv is given by

v(s) = min
y

q+y+ + q−y−

s.t. y+ − y− = s , s ∈ R
m.

y+, y− ∈ R
m
+

Using theseparabilityof the functionv, and under the usual assumption that the cost pa-
rameters satisfyq+ + q− ≥ 0 (component wise), it holdsv(s) =

∑m
i=1 vi(si), where each

functionvi is given in closed form:

vi(si) = q+
i (si)

+ + q−
i (si)

−,

with (u)+ := max{u, 0}, (u)− := max{−u, 0}, u ∈ R.
The interpretation of this recourse structure is thatlinear penalty costsare assigned

to both shortages and surpluses with respect to each constraint Tix = ωi , i = 1, . . . ,m,
individually.

Separability of the functionv is the key to very efficient algorithms [1, 5, 13], allowing
to solve simple recourse models of high dimensions. Indeed,for problems with hundreds
of random variables, as for example is the case in some engineering applications, a simple
recourse formulation is an attractive choice from a computational point of view.

On the other hand, in many applications linear penalty costsare not realistic or de-
sirable. In [6] Klein Haneveld proposed themultiple simple recoursemodel, which is a
generalization of the simple recourse model allowing forpiecewise linearconvex penalty
cost functions. Although attractive from a modeling point of view, this model has not been
used much in practice because no (efficient) algorithms wereavailable.

Below we will show that every multiple simple recourse modelcan be transformed to
an equivalent simple recourse model. Consequently, such models can be solved by existing
algorithms for simple recourse models.

Following the discussion on continuous multiple simple recourse models, we present
corresponding results for the integer version, which is obtained by settingY ⊂ Z

2m
+ instead

of Y ⊂ R
2m
+ . Properties and algorithms for simple integer recourse models are discussed

in [8, 9, 10, 12, 17].
Before going into technical details, we motivate our interest in multiple simple recourse

models by mentioning some applications which call for piecewise linear penalty cost func-
tions.

In an early computational paper, Dupačováet al. [3] discuss stochastic programming
models and solution techniques for a water management problem. For the recourse version
of their model, they advocate the use of piecewise linear penalty functions as approxi-
mations of more general convex functions. However, in the actual computations (one-
sided) simple recourse penalty functions are used, presumably to keep the computation
time within reasonable bounds.

In [11] we proposed models for optimizing electricity distribution in the Netherlands.
One of the problems considered is the daily planning of the power supply to be obtained
from so-called small generators (e.g. green houses and hospitals), in addition to the usual
supply from power plants. Each contract between the distributor and such a small generator
also specifies lower and upper bounds for the total supply in agiven year. To model these
bounds, as well as the desire of the management to reserve some flexibility for future
decisions, we used multiple simple penalty functions, assigning relatively small unit costs
to prospective deviations from the average of lower and upper bounds.

In [2] we described a (preliminary version of) a recourse model for the Asset Liability
Management problem for pension funds. One of the novel aspects of this model is that
we explicitly consider the stability of contribution rates. This is implemented by assigning
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penalty costs to changes in this rate from one period to the next, if they exceed a certain
amount. Both the unit penalty cost and the threshold value may be different for decreases
and increases.

2 Multiple simple recourse

To set the stage for our results on multiple simple recourse models, we first review some
well-known properties of the simple recourse expected value function and related functions.

2.1 Simple recourse functions

As stated in the introduction, the simple recourse value functionv is separable, so that the
expected value functionQ is separable in thetender variablesz := T x:

Q(x) =

m
∑

i=1

Qi(zi),

where, assuming thatq+ + q− ≥ 0, it holds

Qi(zi) := q+
i Eωi

[

(ωi − zi)
+
]

+ q−
i Eωi

[

(ωi − zi)
−
]

, zi ∈ R, (1)

which is finite if and only ifEωi
[|ωi |] is finite, which we assume from now on.

Since each of these functionsQi : R 7→ R has the same structure, we analyze the
functionQ by studying the generic function

Q(x) := Eω [v(ω − x)] , x ∈ R,

whereω is a one-dimensional random variable, with cumulative distribution function (cdf)
denoted byF and mean valueµ.

Forx ∈ R, we define

G(x) := Eω

[

(ω − x)+
]

and H(x) := Eω

[

(ω − x)−
]

,

called theexpected surplus functionand theexpected shortage function, respectively, so
that Q(x) = q+G(x) + q−H(x). Hence, properties of the functionQ follow trivially
from properties of the functionsG andH , which are easily derived using the following
well-known formulae. Forx ∈ R,

G(x) =

∫ ∞

x

(

1 − F(t)
)

dt and H(x) =

∫ x

−∞

F(t)dt. (2)

In particular, in the next section we will use the following properties.

Lemma 2.1 (i) The simple recourse expected value functionQ is finite, convex, and
Lipschitz continuous onR.

(ii) The right derivative ofQ equalsQ′
+(x) = q+

(

F(x) − 1
)

+ q−F(x), x ∈ R.

(iii) The asymptotes ofQ are given by−q+(x − µ) asx → −∞, andq−(x − µ) as
x → ∞.
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Figure 2.1: Example of a multiple simple recourse value function (m = 1, K = 3).

2.2 Multiple simple recourse functions

The recourse structure of the multiple simple recourse (MSR) model is chosen such that
its value functionv assigns piecewise linear penalty costs to individual shortages and sur-
pluses. Like in the simple recourse case, the value functionis separable. To avoid unnec-
essary notational burden, we restrict the detailed presentation to the one-dimensional case.
For s ∈ R,

v(s) := min
y≥0

K
∑

k=1

(

q+
k y+

k + q−
k y−

k

)

s.t.
K

∑

k=1

y+
k −

K
∑

k=1

y−
k = s

y+
k ≤ uk − uk−1,

y−
k ≤ lk − lk−1,

k = 1, . . . ,K − 1

with u0 = l0 = 0 and

0 ≤ q+
1 ≤ . . . ≤ q+

K−1 ≤ q+
K

0 ≤ u1 ≤ . . . ≤ uK−1

0 ≤ q−
1 ≤ . . . ≤ q−

K−1 ≤ q−
K

0 ≤ l1 ≤ . . . ≤ lK−1

(3)

That is, corresponding to each linear part of this penalty cost function, an (upper bounded)
variable is defined. Due to the conditions on the cost coefficients, the resulting function is
convex. See Figure 2.1 for an example of such a functionv.

Remark 2.1 For completeness, we state that the recourse matrix of them-dimensional
MSR second-stage problem is given by











e1 −e1
e2 −e2

. . .
. . .

em −em











,

whereei is aKi -vector of ones,i = 1, . . . ,m.
It is obvious that the MSR structure iscomplete, i.e., the value functionv satisfies

v(s) < ∞ for all s ∈ R
m. MSR problems can therefore be solved using algorithms
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for general complete recourse problems. This would be ill-advised, however, since such
algorithms do not take advantage of the special structure ofMSR problems.

Remark 2.2 Without loss of generality we definev in terms of the same number of vari-
ables/intervals for both shortage and surplus. (Use e.g.q−

k+1 = q−
k for k ≥ K− to obtain

an MSR value function withK− < K intervals corresponding to shortages.)

Remark 2.3 TakingK = 1, we obtain the simple recourse value function as a special case
of multiple simple recourse.

For a fixeds ∈ R, it is easy to determinev(s) by constructing an optimal solution of
the defining second-stage problem. For example, ifs > 0 theny−

k = 0 for all k, and the
variablesy+

k are chosen such that
∑

k y+
k = s, with y+

k+1 > 0 only if y+
k is equal to its

upper bound. Fors ≤ 0, an optimal solution can be constructed analogously.
Using straightforward computation, we find the following closed form forv. Fors ∈ R,

v(s) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

(s − uk)
+ +

(

q−
k+1 − q−

k

)

(s + lk)
−

]

, (4)

where we conveniently defineq+
0 = q−

0 = 0.
By definition, the expected value functionQ(x), x ∈ R, equals the expectation with

respect toω of v(ω − x). Thus, using (4) we find that

Q(x) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

G(x + uk) +
(

q−
k+1 − q−

k

)

H(x − lk)
]

, x ∈ R, (5)

with G andH defined by (2), is a closed form for the (one-dimensional) multiple simple
recourse expected value function.

For later reference, we now present several properties of the functionQ.

Lemma 2.2 Consider the multiple simple recourse expected value function Q, given in
closed form by (5).

(i) The functionQ is finite, convex, and Lipschitz continuous onR.

(ii) The right derivative ofQ exists everywhere. Forx ∈ R, it is given by

Q′
+(x) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

F(x + uk) +
(

q−
k+1 − q−

k

)

F(x − lk)
]

− q+
K .

Moreover,

lim
x→−∞

Q′
+(x) = −q+

K and lim
x→∞

Q′
+(x) = q−

K .

(iii) The asymptotes forQ are given by

q+
K(µ − x) −

K−1
∑

k=0

(

q+
k+1 − q+

k

)

uk, asx → −∞,

q−
K(x − µ) −

K−1
∑

k=0

(

q−
k+1 − q−

k

)

lk, asx → ∞.

PROOF. Immediate from applying Lemma 2.1 to the individual terms of (5).

As suggested by Lemma 2.2, the mathematical properties of the multiple simple re-
course (MSR) expected value function are very similar to those of its simple recourse (SR)
counterpart. This strong relationship is exploited in the next section.
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3 Relation between MSR and SR

The following result is proven in [7], and repeated here (in compact form) for easy refer-
ence.

Theorem 3.1 [Theorem 3.1 in [7]] Letϕ be a finite, convex, Lipschitz continuous function
on R. Assume thatϕ has asymptotesa2z + c2 asz → ∞, and−a1z + c1 asz → −∞. If
a1 + a2 6= 0 then

ϕ(z) = a1

∫ ∞

z

(

1 − 8(s)
)

ds + a2

∫ z

−∞

8(s) ds +
a1c2 + a2c1

a1 + a2
, z ∈ R,

where

8(s) =
ϕ′

+(s) + a1

a1 + a2
, s ∈ R,

is a cdf.

Loosely speaking, Theorem 3.1 states that every function that is similar to a SR ex-
pected value function can be represented as such a function.Next, we apply this result to
the MSR expected value function.

Corollary 3.1 Consider the multiple simple recourse expected value function Q, given in
closed form by (5). Then

Q(x) = q+
KEξ

[

(ξ − x)+
]

+ q−
KEξ

[

(ξ − x)−
]

− C, x ∈ R,

whereξ is a random variable with cdfV ,

V (t) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

F(t + uk) +
(

q−
k+1 − q−

k

)

F(t − lk)
]

q+
K + q−

K

, t ∈ R,

with F the cdf ofω. The constantC is given by

C =

q+
K

K−1
∑

k=1

(

q−
k+1 − q−

k

)

lk + q−
K

K−1
∑

k=1

(

q+
k+1 − q+

k

)

uk

q+
K + q−

K

.

PROOF. The result follows from Theorem 3.1 and the properties ofQ presented in Lemma 2.2.

Remark 3.1 Corollary 3.1 can also be stated in terms of random variables. To this end,
define the discrete random variableη, independent ofω, with

Pr{η = lk} =
q−
k+1 − q−

k

q+
K + q−

K

, k = 1, . . . ,K − 1,

Pr{η = 0} =
q+

1 + q−
1

q+
K + q−

K

,

Pr{η = −uk} =
q+
k+1 − q+

k

q+
K + q−

K

, k = 1, . . . ,K − 1.

Then, in the setting of Corollary 3.1,ξ = ω + η with cdf V and

C = q+
KEη

[

(η)+
]

+ q−
KEη

[

(η)−
]

.
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The interpretation of Corollary 3.1 is that every (one-dimensional) MSR expected value
function isequivalent to an SR expected value function, which isexplicitly givenin terms of
its parametersq+, q−, and the distribution of the random variableξ , plus a known constant.

Recall that the full-dimensional expected value functionQ is defined asQ(x) =
∑m

i=1 Qi(Tix),
x ∈ R

n, where eachQi is a one-dimensional expected value function as consideredin
Corollary 3.1. Extending this result to the functionQ in the obvious way, it follows that
MSR models can be solved by existing algorithms for SR models, which are very efficient
(see e.g. [1]). Indeed, only the following preprocessing steps are needed: fori = 1, . . . ,m,

(i) Compute the constantCi ;

(ii) Construct the distribution ofξi , by applying the specified transformation of the distri-
bution ofωi .

If all components ofω are discretely distributed, the resulting distribution of(the com-
ponents of)ξ is also discrete, and can be specified directly, without reference to the distri-
bution function. Because this special case is important forapplications, this result is stated
separately.

Corollary 3.2 Assume the setting of Corollary 3.1.
Consider the case thatω is a discrete random variable with support�. Then the random

variableξ is discretely distributed, with support

4 =

K−1
⋃

k=0

{

{

� − uk

}

∪
{

� + lk
}

}

and probabilities

Pr{ξ = ξ̄ } =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

Pr{ω = ξ̄ + uk} +
(

q−
k+1 − q−

k

)

Pr{ω = ξ̄ − lk}
]

q+
K + q−

K

.

Note that if� is finite, then the cardinality of4 is bounded by|�|(2K − 1).

PROOF. The cdfF of ω is piecewise constant, with discontinuities in�. Hence, by Corol-
lary 3.1, the cdfV of ξ is piecewise constant with discontinuities in4, so thatξ is a
discrete random variable with support4. The corresponding probabilities are given by
V (ξ̄) − lims↑ξ̄ V (s), ξ̄ ∈ 4.

Example 3.1 Consider the MSR value functionv, defined by the parametersK = 2, u1 =

2, q+ = [1, 2], l1 = 1, andq− = [1, 3],

v(s) = min
y≥0

y+
1 + 2y+

2 + y−
1 + 3y−

2

s.t. y+
1 + y+

2 − y−
1 − y−

2 = s , s ∈ R,

y+
1 ≤ 2, y−

1 ≤ 1,

and the corresponding expected value functionQ(x) = Eω [v(ω − x)], whereω is a dis-
crete random variable with realizationsω1 = 9 andω2 = 11.5, with Pr{ω = ω1} = 1/3,
Pr{ω = ω2} = 2/3, so thatµ = 32/3. Figure 3.1 shows these functionsQ andv(µ − s),
s ∈ R.

According to Corollaries 3.1 and 3.2

Q(x) = 2Eξ

[

(ξ − x)+
]

+ 3Eξ

[

(ξ − x)−
]

− 2, x ∈ R,
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Figure 3.1: The functionsQ andv(µ−s) of Example 3.1. Also shown are the SR expected
value function (with respect toω; dashed) and the corresponding value function.

whereξ is the discrete random variable with support

4 = {9, 11.5} ∪ {9 − u1, 11.5− u1} ∪ {9 + l1, 11.5 + l1}

= {7, 9, 9.5, 10, 11.5, 12.5}.

To compute e.g. Pr{ξ = 10} we observe that 10 can be written asω1 + l1 (no other suitable
combinations ofω and−u or l), so that

Pr{ξ = 10} =
q−

2 − q−
1

q+
2 + q−

2

Pr{ω = ω1} = 2/15.

In the same way, we find that the respective probabilities forξ ∈ 4 are given bypξ =

[1, 2, 2, 2, 4, 4]/15. ⊳

3.1 Numerical experiments

The algorithm as described above is implemented as Mscr2Scr1.0 (Multiple simple con-
tinuous recourse to Simple continuous recourse, M.H. van der Vlerk and J. Mayer, 2001) in
the model management system SLP-IOR [4]. The current version of Mscr2Scr is restricted
to MSR problems with discrete random variables.

Table 3.1 summarizes information on computing times of thisMSR algorithm on a set
of randomly generated instances. The name of each problem isof the form MSRm1×n×mYKDS,
wherem1 andn denote the number of first-stage constraints and first-stagevariables, re-
spectively, andm indicates both the number of second-stage constraints as well as the
number of random right-hand side parameters. As before,K is the number of recourse
variables for shortages and surpluses; thus, there are 2K recourse variables for each con-
straint. Finally,S denotes the number of realizations of each of the random parameters.

For each problem, some of the deterministic parameters wereobtained by sampling
from a discrete uniform distribution (notation:U{u1, . . . , ur }), with given density of non-
zero elements (100% unless stated otherwise).

c : U{1, 2, . . . , 10}

A, T : U{1, 2, 3, 4, 5}, density 25%

b : U{40, 50, 60, 70, 80}
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Problem min max std mean SR mean

MSR12×25×25Y3D5 0.00 0.03 0.013 0.017 0.021
MSR25×50×25Y3D5 0.02 0.03 0.005 0.027 0.022
MSR25×50×50Y3D5 0.05 0.06 0.005 0.053 0.048
MSR25×50×75Y3D5 0.06 0.08 0.011 0.070 0.063
MSR50×100×75Y3D5 0.16 0.20 0.016 0.180 0.182
MSR50×100×100Y3D5 0.22 0.28 0.020 0.255 0.244
MSR50×100×100Y6D5 0.30 0.36 0.019 0.335 0.355
MSR50×100×100Y12D5 0.36 0.44 0.028 0.399 0.409

MSR12×25×25Y3D100 0.06 0.11 0.016 0.080 0.080
MSR25×50×25Y3D100 0.06 0.11 0.017 0.096 0.096
MSR25×50×50Y3D100 0.16 0.20 0.014 0.175 0.179
MSR25×50×75Y3D100 0.22 0.30 0.024 0.267 0.265
MSR50×100×75Y3D100 0.38 0.47 0.034 0.429 0.440
MSR50×100×100Y3D100 0.48 0.66 0.046 0.586 0.588
MSR50×100×100Y6D100 0.97 1.18 0.059 1.040 0.921
MSR50×100×100Y12D100 1.69 1.92 0.062 1.770 1.400

Table 3.1: CPU times in seconds. For each problem, results are computed over 10 random
instances.

Moreover, for the problems withK = 3, the unit cost vectors were initially chosen as
q+ = [5, 10, 30] andq− = [0, 16, 25]; subsequently, to obtain cost vectorsq+

i andq−
i

corresponding to each rowi, i = 1, . . . ,m, the non-zero components were perturbed by a
sample fromU{−2, 0, 2}. All upper bound vectorsui andli were fixed at [10.1, 30.3] and
[15.3, 40.7], respectively. For other values ofK, these vectors were chosen analogously.

The discrete distributions of the right-hand side parameters ωi , i = 1, . . . ,m, were
obtained as discrete approximations of independent normaldistributions with standard de-
viation 15 and mean values sampled fromU{40, 50, 60, 70, 80}. To this end, we used the
standard discretization technique of SLP-IOR which partitions the (truncated) support in
S intervals of equal length, yielding a discrete approximation by assigning the probability
mass on each interval to its conditional mean (all calculations based on a sample of size
10,000).

Finally, for each of the problems 10 instances were created by perturbing each non-zero
element of the matrixT with a sample fromU{−1, 1}.

Table 3.1 describes the CPU times needed by the Mscr2Scr implementation of our
algorithm, which converts the MSR problem to the equivalentSR problem (see Corollaries
3.1 and 3.2), and then calls the solver SRAPPROX v1.0 (P. Kalland J. Mayer, 1994) to
solve the latter problem. For comparison, the last column ofTable 3.1 contains the average
CPU time needed by SRAPPROX to solve a simple recourse version of each problem,
i.e., the same problem with linear penalty costs using cost coefficientsq+

Ki
andq−

Ki
. All

computations were performed in SLP-IOR v2.1.2 on a PC with Pentium 4 CPU at 2.4GHz
and 512MB memory, using as stopping criterion a relative error of 10−6.

The conclusions from these numerical experiments are unambiguous. Multiple simple
recourse problems can be solved as efficiently as conventional simple recourse problems.
The additional modeling features of the MSR approach come atvirtually no additional
computational costs, so that MSR problems of realistic sizecan be solved in reasonable
time.

Obviously, solvers which do not exploit the special MSR structure are much less effi-
cient in solving these problems. In fact, due to the extremely high number of joint real-
izationsSm as appearing in non-separated models, none of the other solvers available in
SLP-IOR was able to even start computations on the smallest instance.
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4 Multiple simple integer recourse

We now turn to the integer version of the MSR model, which we will denote as multiple
simple integer recourse (MSIR).

4.1 Definition and closed forms

Like in the continuous recourse case, MSIR is a generalization of the simple integer re-
course (SIR) model, allowing for a refined penalty cost structure for (individual) surpluses
and shortages.

If the integrality restrictions in the SIR model are relaxed, then it is equal to a continu-
ous SR model. Similarly, the LP relaxation of the MSIR model is an MSR model. Thus, not
surprisingly, the MSIR value function is separable so that we can again restrict the analysis
to the one-dimensional version.

For s ∈ R, the one-dimensional MSIR value function is defined as

v(s) := min
y≥0

K
∑

k=1

(

q+
k y+

k + q−
k y−

k

)

s.t.
K

∑

k=1

y+
k ≥ s,

K
∑

k=1

y−
k ≥ −s

y+
k ≤ uk − uk−1,

y−
k ≤ lk − lk−1,

k = 1, . . . ,K − 1

y ∈ Z
2K

with u0 = l0 = 0, the vectorsu andl integer, and the elements ofq+, u, q−, andl satisfying
the same monotonicity assumptions (3) as in the continuous recourse setting.

Remark 4.1 ForK = 1, we obtain the value function of the (one-dimensional) SIRprob-
lem.

Remark 4.2 Note that this second-stage problem is defined using two inequalities instead
of the single equality used in the continuous recourse case.This is necessary, since the
right-hand side parameters can be any real number, whereas the left-hand side is integral
by definition.

Using the monotonicity of the cost coefficients, it is straightforward to determinev(s)

for any fixeds ∈ R. This leads to the following closed form forv:

v(s) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

⌈s − uk⌉
+ +

(

q−
k+1 − q−

k

)

⌊s + lk⌋
−
]

, s ∈ R,

where, as before, we defineq+
0 = q−

0 = 0. Fort ∈ R, ⌈t⌉+ denotes the positive part of the
integer round up oft, and⌊t⌋− is the negative part of the integer round down oft.

By definition, the (one-dimensional) MSIR expected value functionQ is obtained as
the expectation ofv(ω − x), x ∈ R, giving

Q(x) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

G(x + uk) +
(

q−
k+1 − q−

k

)

H(x − lk)
]

, x ∈ R, (6)

where

G(x) := Eω

[

⌈ω − x⌉+
]

=

∞
∑

j=0

(

1 − F(x + j)
)

,
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H(x) := Eω

[

⌊ω − x⌋−
]

=

∞
∑

j=0

F(x − j),

with F cdf of ω.
The formulae above and structural properties of the SIR functionsG, H, andQ (with

K = 1) are derived in [12] and [17]. In particular, it holds that these functions are non-
convex in general, implying that a simple recourse representation of the MSIR functionQ
does not exist in general.

Instead, we will show that reasonable convex approximations of the MSIR functionQ
can be constructed, and that every such approximation is equivalent to acontinuousSR
expected value function. Consequently, MSIR problems can be solved approximately by
solving a continuous SR problem.

4.2 Convex approximations of MSIR

Consider the LP relaxation of the MSIR second-stage problem. Obviously, the expected
value function of the resulting MSR problem is a convex lowerbound for the MSIR func-
tionQ. It is also not difficult to see that a convex upper bound is obtained by addingq+

K+q−
K

to this MSR function. Since any reasonable convex approximation of Q should be in be-
tween these trivial approximations, it follows that such anapproximation has asymptotes
with the same slopes, as specified by Lemma 2.2. Since every such approximation satisfies
the assumptions of Theorem 3.1, it follows that every reasonable convex approximation of
the MSIR functionQ can be represented as a continuous SR expected value function (plus
a constant). For the convex approximations presented below, an explicit representation will
be presented in the next section.

To construct non-trivial convex approximations of the MSIRfunctionQ, we follow the
ideas that were developed for the corresponding SIR function (i.e., forK = 1).

In [8] a strongly polynomial algorithm is presented for the construction of the convex
hull of the SIR expected value function for the case thatω is adiscrete random variable.
The algorithm is based on structural properties of the function Q (lower semicontinuous,
piecewise constant) which are shared by the MSIR version, sothat in principle the same
approach can be used to construct the convex hull of the latter function. It is also clear,
however, that many technicalities need to be handled to obtain this result. This matter will
not be worked out here.

If ω is continuously distributed, the functionQ (both SIR and MSIR version) is contin-
uous, but non-convex in general. It is convex if and only if the probability density function
(pdf) of ω belongs to a certain class, which is completely specified in [10]. The main idea
of [9] is to approximate the original pdf ofω by a specific (family of) density functions
from this class, thus constructing a convex approximation of the SIR functionQ. Below
we apply this approach to the MSIR functionQ.

As shown in [10], the SIR functionsG, H, andQ are convex ifω has a pdf that is
piecewise constant on every interval(α+j, α+j+1), j ∈ Z, for someα ∈ [0, 1). It follows
trivially that also the MSIR functionQ is convex in this case. Such piecewise constant
densities, depending on the shift parameterα, will be used to approximate arbitrary density
functions. In this way, we obtain convex approximations of the MSIR functionQ.

Definition 4.1 Let F be the cdf of a continuous random variable. For anyα ∈ [0, 1), the
α-approximation of the pdff of F is defined as

fα(s) := F(⌊s⌋α + 1) − F(⌊s⌋α), s ∈ R,

where⌊s⌋α = ⌊s − α⌋ + α is the round down ofs with respect toα + Z.

Denoting byωα the continuous random variable with pdffα , theα-approximation of
the functionG is defined as

Gα(x) := Eωα

[

⌈ωα − x⌉+
]

, x ∈ R,

11



which is convex by construction. The convex functionHα is defined analogously.
It follows that theα-approximation of the MSIR functionQ, defined as

Qα(x) :=
K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

Eωα

[

⌈ωα − x⌉+
]

+
(

q−
k+1 − q−

k

)

Eωα

[

⌊ωα − x⌋−
]

]

(7)

=

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

Gα(x + uk) +
(

q−
k+1 − q−

k

)

Hα(x − lk)
]

, x ∈ R,

is a convex function.
Note thatα-approximations can be defined without making any assumption about the

distribution ofω. Thus, convex approximationsQα of the MSIR functionQ can also be
constructed in caseω is discretely distributed. However, in that case the following uniform
bound on the approximation error does not apply; in fact, it can be shown that the error
then equalsq+

K + q−
K in the worst case.

Corollary 4.1 Assume thatω has a pdff that is of bounded variation. Then, for allα ∈

[0, 1),

‖Qα − Q‖∞ ≤
q+
K + q−

K

4
|1|f,

where|1|f denotes the total variation off onR.

PROOF. In [9] it is shown that both‖Gα − G‖∞ and‖Hα − H‖∞ are bounded by|1|f/4.
The result follows by summation.

4.3 Representation ofQα as SR expected value function

In the previous section we definedα-approximations for multiple simple integer recourse
models. We conclude our discussion on MSIR models by providing a continuous simple
recourse representation of such approximations.

Corollary 4.2 For a fixed but arbitraryα ∈ [0, 1), consider theα-approximationQα of the
MSIR expected value functionQ, as defined in (7). Then

Qα(x) = q+
KEξα

[

(ξα − x)+
]

+ q−
KEξα

[

(ξα − x)−
]

+ D, x ∈ R,

whereξα is a random variable with cdfVα,

Vα(t) =
1

q+
K + q−

K

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

F(⌊t⌋α + uk)

+
(

q−
k+1 − q−

k

)

F(⌊t⌋α + 1 − lk)
]

, t ∈ R,

with F the cdf ofω. That is,ξα is discretely distributed, with support contained inα + Z

and probabilities

Pr{ξα = α + j } =
1

q+
K + q−

K

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

Pr{ω ∈ �j
α + uk}

+
(

q−
k+1 − q−

k

)

Pr{ω ∈ �j+1
α − lk}

]

, j ∈ Z,

where�
j
α := (α + j − 1, α + j ].
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The constantD is given by

D =
q+
K q−

K

q+
K + q−

K

− C,

whereC is the constant given in Corollary 3.1.

PROOF. The result follows from applying Theorem 3.1 to the function Qα . To this end,
we first derive the required information on properties ofQα by studying the constituting
functionsGα andHα .

As shown in [9], the functionGα can be written as

Gα(x) = Eξ1
a

[

(

ξ1
α − x

)+
]

, x ∈ R,

whereξ1
α is a random variable with cdfF(⌊t⌋α). Let µ1

α denote the mean value ofξ1
α .

Similarly,

Hα(x) = Eξ2
a

[

(

ξ2
α − x

)−
]

, x ∈ R,

whereξ2
α is a random variable with cdfF(⌊t⌋α +1), so that the mean valueµ2

α of ξ2
α equals

µ1
α − 1.

By Lemma 2.1 we have, forx ∈ R,

(Gα)′+ (x) = F(⌊x⌋α) − 1 and (Hα)′+ (x) = F(⌊x⌋α + 1),

so that

(Qα)′+ (x) =

K−1
∑

k=0

[

(

q+
k+1 − q+

k

)

(F (⌊x⌋α + uk) − 1)

+
(

q−
k+1 − q−

k

)

F(⌊x⌋α + 1 − lk)
]

,

and

lim
x→−∞

(Qα)′+ (x) = −q+
K , lim

x→∞
(Qα)′+ (x) = q−

K .

Moreover, sinceGα has asymptotesµ1
α − x asx → −∞ and 0 asx → ∞, andHα has

asymptotes 0 asx → −∞ andx − µ2
α asx → ∞, it follows that the asymptotes forQα

are given by

q+
K (µ1

α − x) −

K−1
∑

k=0

(

q+
k+1 − q+

k

)

uk, asx → −∞,

q−
K (x − µ2

α) −

K−1
∑

k=0

(

q−
k+1 − q−

k

)

lk, asx → ∞.

Using this information, the result follows from Theorem 3.1by straightforward computa-
tion.

Example 4.1 Consider the MSIR value functionv, defined by the parametersK = 2,
u1 = 2, q+ = [1, 2], l1 = 3, andq− = [1, 3],

v(s) = min
y≥0

y+
1 + 2y+

2 + y−
1 + 3y−

2

s.t. y+
1 + y+

2 − y−
1 − y−

2 = s , s ∈ R,

y+
1 ≤ 2, y−

1 ≤ 3

y ∈ Z
4
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Figure 4.1: The functionsQ (solid) andQα (dashed) of Example 4.1.

the corresponding expected value functionQ(x) = Eω [v(ω − x)], whereω is a normal
random variable with mean valueµ and varianceσ 2, and theα-approximationQα .

Figure 4.1 shows the functionsQ andQα for the case thatµ = 0, σ 2 = 0.05, and
α = 0. The random variableξα , as defined in Corollary 4.2, has support{−2,−1, . . . , 3}

with respective probabilities(1, 2, 2, 1, 2, 2)/10 (computation based on truncation of the
support ofω to [−4σ, 4σ ] ⊂ (−1, 1), so that Pr{ω ∈ �

j
α} = 1/2 for j = 0, 1). The

constantD = −2.4. ⊳

5 Summary and conclusion

Starting from the well-known (integer) simple recourse (SR) model, we developed efficient
solution methods for the corresponding multiple simple recourse (MSR) models. Such
MSR models are generalizations of SR models in that they allow for a refinement of the
penalty cost structure, which makes them attractive from anapplication point of view.

We have shown that MSR models (or convex approximations in the integer case) can be
represented as explicitly specified continuous SR models, and thus can be solved efficiently
by existing algorithms for continuous SR models.

Apart from a trivial adaptation of the cost parameters, the continuous SR representation
of MSR models is obtained by a particular transformation of the underlying distribution of
the random right-hand side parameters. It is common practice in stochastic programming
to replace a given distribution by a suitable approximation. The main example is of course
the use of discrete approximations (e.g., empirical distributions) of continuous distributions
in recourse models. However, the approach used in this paperis conceptually different,
because it transforms problems of a more general or difficulttype into a well-solved, easy
problem type.

Recently we have successfully applied this approach to models with a more general
(non-separable) integer recourse structure [18]. In the near future, we will extend this
line of research to models with non-linear separable penalty cost functions (e.g. piecewise
quadratic, see [14]), and to mixed-integer recourse models.
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