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Abstract

We consider multiple simple recourse (MSR) models, bothinaous and integer
versions, which generalize the corresponding simple mseo{8R) models by allowing
for a refined penalty cost structure for individual shortaged surpluses.

It will be shown that (convex approximations of) such MSR mlsccan be repre-
sented as explicitly specified continuous SR models, ansidhn be solved efficiently
by existing algorithms.
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1 Introduction

Consider the two-stage linear recourse problem

min  c¢cx + 9(x)
X
st. xeX:={xeR}|:Ax =0},

whereQ(x) := E, [v(w — Tx)] is theexpected valuer recoursefunction, andv(s) is the
value function of thesecond-stagproblem: fors € R,

v(s) == min gqy
y
st. Wy=s
yevY.

Here,W is called thaecourse matrixg specifies the recourse unit cost parameters,Yand
describes the feasible setretourse actions by means of simple bounds and/or integral-
ity restrictions.

Such models arise as reformulations of models in which randarameters appear
in the constrainty'x = . Here, we consider only uncertainty in the right-hand side
parameter vecto® € R™, which is assumed to be a random vector whose distribution
is known. Forfirst-stage decisions € R", Q(x) specifies the expected costs of optimal
recourse actions to compensate for deficienaies Tx. For a general introduction to
recourse models, see e.g. the text books [1, 5, 13], thetrbaexdbook [15], and the web
site [16].

*This research has been made possible by a fellowship of tizal Rietherlands Academy of Arts and Sci-
ences.



This specification of the recourse model allows for a lot ofifidity: many choices
for the recourse structurdg, W, Y) are possible. A well-known special casesismple
recourse defined by the recourse structute = (I,,, —1I,,), with I,, them x m identity
matrix,q = (¢*, ¢7), andY = R?", so that is given by

v(s) = min gtyt+gq7y”
i

st. yt—y =5 , s € R™,
yryT eRY

Using theseparabilityof the functionv, and under the usual assumption that the cost pa-
rameters satisfy ™ + ¢~ > 0 (component wise), it holds(s) = > ; v; (s;), where each
functionv; is given in closed form:

viGs) =g )T+ g7 ()7,

with (u)* := maxu, 0}, (u)~ := max—u, 0}, u € R.

The interpretation of this recourse structure is tiva¢ar penalty costare assigned
to both shortages and surpluses with respect to each condtra = w;, i = 1,...,m,
individually.

Separability of the function is the key to very efficient algorithms [1, 5, 13], allowing
to solve simple recourse models of high dimensions. Indieegiroblems with hundreds
of random variables, as for example is the case in some esrgiigeapplications, a simple
recourse formulation is an attractive choice from a contputal point of view.

On the other hand, in many applications linear penalty castsnot realistic or de-
sirable. In [6] Klein Haneveld proposed theultiple simple recoursenodel, which is a
generalization of the simple recourse model allowingdi@cewise lineaconvex penalty
cost functions. Although attractive from a modeling poifitiew, this model has not been
used much in practice because no (efficient) algorithms aeadable.

Below we will show that every multiple simple recourse mockeh be transformed to
an equivalent simple recourse model. Consequently, suckeimoan be solved by existing
algorithms for simple recourse models.

Following the discussion on continuous multiple simpleowgse models, we present
corresponding results for the integer version, which isivt®d by setting’ C Zi’" instead
of Y C Ri’". Properties and algorithms for simple integer recourseetsoare discussed
in[8,9, 10, 12, 17].

Before going into technical details, we motivate our ing¢ie multiple simple recourse
models by mentioning some applications which call for pigse linear penalty cost func-
tions.

In an early computational paper, Dupacatéal. [3] discuss stochastic programming
models and solution techniques for a water managementgrrolior the recourse version
of their model, they advocate the use of piecewise lineaalperfunctions as approxi-
mations of more general convex functions. However, in thieaacomputations (one-
sided) simple recourse penalty functions are used, prdsyna keep the computation
time within reasonable bounds.

In [11] we proposed models for optimizing electricity distrtion in the Netherlands.
One of the problems considered is the daily planning of thegosupply to be obtained
from so-called small generators (e.g. green houses andtéig$pin addition to the usual
supply from power plants. Each contract between the digitand such a small generator
also specifies lower and upper bounds for the total supplyginen year. To model these
bounds, as well as the desire of the management to reserve fexibility for future
decisions, we used multiple simple penalty functions,gaesg relatively small unit costs
to prospective deviations from the average of lower and uppends.

In [2] we described a (preliminary version of) a recourse eiddr the Asset Liability
Management problem for pension funds. One of the novel éspddchis model is that
we explicitly consider the stability of contribution ratéhis is implemented by assigning



penalty costs to changes in this rate from one period to tkg ifehey exceed a certain
amount. Both the unit penalty cost and the threshold valug lmeadifferent for decreases
and increases.

2 Multiple simple recourse

To set the stage for our results on multiple simple recoursdats, we first review some
well-known properties of the simple recourse expectede/alaction and related functions.

2.1 Simple recourse functions

As stated in the introduction, the simple recourse valuetion v is separable, so that the
expected value functio@ is separable in thiender variableg := Tx:

Q) =Y i),
i=1

where, assuming that™ + ¢~ > 0, it holds
0i(zi) = q; Bu; [(0j —2)*] + ¢; Eo; [(@i —20)7], zi €R, (1)

which is finite if and only ifE,, [|w;|] is finite, which we assume from now on.
Since each of these function® : R — R has the same structure, we analyze the
function @ by studying the generic function

Q) =Ey[v(w—2x)], xekR,

wherew is a one-dimensional random variable, with cumulativeriigtion function (cdf)
denoted byF and mean valug.
Forx € R, we define

G(x) =E, [(w—x)7T] and  H(x) =E,[(w—x)"],

called theexpected surplus functicand theexpected shortage functiprespectively, so
that Q(x) = ¢TG(x) + ¢~ H(x). Hence, properties of the functia® follow trivially
from properties of the function& and H, which are easily derived using the following
well-known formulae. Fok € R,

X

G(x) = /oo (1-F@)dt and H(x)= / F(t)dt. 2)

—00

In particular, in the next section we will use the followingperties.

Lemma 2.1 (i) The simple recourse expected value functnis finite, convex, and
Lipschitz continuous oR.

(i) The right derivative ofQ equalsQ’, (x) = g*t (F(x) — 1) +qg F(x),x eR.

(i) The asymptotes of) are given by—q*(x — u) asx — —oo, andg~(x — u) as
X — 00. U]



Figure 2.1: Example of a multiple simple recourse value fiamoin = 1, K = 3).

2.2 Multiple simple recourse functions

The recourse structure of the multiple simple recourse (M@&Bdel is chosen such that
its value functiorv assigns piecewise linear penalty costs to individual siges and sur-
pluses. Like in the simple recourse case, the value funéisaparable. To avoid unnec-
essary notational burden, we restrict the detailed pratentto the one-dimensional case.
Fors e R,

K

v(s) = min > @iy +ave)
- k=1

K K
s.t. Zy;“—Zy,: =s

k=1 k=1

ylj = Uk — Uk—1,

Ve <l —lg-1,

with ug = lp = 0 and

0< ¢f <...< g5, < qf

O0< u1=<...< ug-1

3

0< gy <...=< qx 1= 4
O0< h <...=5 Ig

That is, corresponding to each linear part of this penalst fimction, an (upper bounded)
variable is defined. Due to the conditions on the cost coeffisi the resulting function is
convex. See Figure 2.1 for an example of such a funation

Remark 2.1 For completeness, we state that the recourse matrix ofztllémensional
MSR second-stage problem is given by

e1 —e1

€m —€m

wheree; is aK;-vectorof ones; =1, ..., m.
It is obvious that the MSR structure @mplete i.e., the value function satisfies
v(s) < oo foralls € R". MSR problems can therefore be solved using algorithms



for general complete recourse problems. This would beddiised, however, since such
algorithms do not take advantage of the special structukdSR problems.

Remark 2.2 Without loss of generality we definein terms of the same number of vari-
ables/intervals for both shortage and surplus. (Useg.g. = ¢, fork > K~ to obtain
an MSR value function wittk ~ < K intervals corresponding to shortages.)

Remark 2.3 TakingK = 1, we obtain the simple recourse value function as a spezsal ¢
of multiple simple recourse.

For a fixeds € R, it is easy to determine(s) by constructing an optimal solution of
the defining second-stage problem. For example,s#f O theny, = O for all k, and the
variablesy,” are chosen such that, y; = s, with y”; > 0 only if y is equal to its
upper bound. Fos < 0, an optimal solution can be constructed analogously.

Using straightforward computation, we find the followingstd form fon. Fors € R,

K-1
vis) =Y [(qktl —q) G —uT + (g — ) G+ )™ ] , (4)
k=0

where we conveniently defirqgr =gy =0.
By definition, the expected value functigh(x), x € R, equals the expectation with
respect tav of v(w — x). Thus, using (4) we find that

K-1

0 =Y [(@f1— ) G +u0 + (i —ai) Hx =], xeR ()
k=0

with G and H defined by (2), is a closed form for the (one-dimensional)tipial simple

recourse expected value function.
For later reference, we now present several propertiesediictionQ.

Lemma 2.2 Consider the multiple simple recourse expected value foma@, given in
closed form by (5).

(i) The functionQ is finite, convex, and Lipschitz continuous Bn
(i) The right derivative ofQ exists everywhere. Far e R, it is given by

K-1

0 @ =Y [(afa—a) F&+ w0 + (a52 — 7)) F&x — 1] - g
k=0

Moreover,
|| / = — n || / = .
m Q. (x) qg and . m Q. (x) =qg

(i) The asymptotes fop are given by

K-1

ax (e —x) = > (451 — ) us asx — —oo,
k=0
K-1

QE(X—M)—Z(ql;l—qk_)lk, asx — oo.
k=0

PrROOF Immediate from applying Lemma 2.1 to the individual term§5). ]

As suggested by Lemma 2.2, the mathematical propertieseomthitiple simple re-
course (MSR) expected value function are very similar te¢haf its simple recourse (SR)
counterpart. This strong relationship is exploited in tbgtrsection.



3 Relation between MSR and SR

The following result is proven in [7], and repeated here @mpact form) for easy refer-
ence.

Theorem 3.1 [Theorem 3.1 in [7]] Lety be a finite, convex, Lipschitz continuous function
onR. Assume thap has asymptotasz + ¢ asz — oo, and—aiz + c1 asz — —oo. If
a1+ az # 0then

o 2 aic + azc
¢(2) =a1/ (1- @) ds +a2/ O(s)ds + 2 2L LR,
z —00 ai+az
where
/
B(s) = vy () +ar R,
al +az
is a cdf. ]

Loosely speaking, Theorem 3.1 states that every functiahithsimilar to a SR ex-
pected value function can be represented as such a fundtmxt, we apply this result to
the MSR expected value function.

Corollary 3.1 Consider the multiple simple recourse expected value fomg?, given in
closed form by (5). Then

0() = qgBe [6 =0T ]+ qxEe [ —0)T] = C, x€R,
wheret is a random variable with cdf,

K-1

Z[(quJrl_qu)F(f"i‘uk)—i‘(qkjrl—q]:)F(t—lk):I

V) = k=0

- , teR,
ay +dax

with F the cdf ofw. The constan€ is given by

K-1 K-1
9 Y G —a0) ke +ax Y (@ — 4w
k=1 k=1
C= —
qg + 4k

PrROOF The result follows from Theorem 3.1 and the propertie@ giresented in Lemma 2.2.

O

Remark 3.1 Corollary 3.1 can also be stated in terms of random variablesthis end,
define the discrete random varialglendependent ob, with

Prin =1} = Htt "N 4 _q g _q

ax +ax
+ p—
g1 +4q
Prin=0} = =—*,
ax + 4k
+ 4
Prin=—u) = 22— 9 k-1
dx T dg

Then, in the setting of Corollary 3.%,= w + n with cdf V and

C =qgEy [T ]+ qxEy [()7].



The interpretation of Corollary 3.1 is that every (one-disienal) MSR expected value
function isequivalent to an SR expected value fungtishich isexplicitly givenin terms of
its parameterg™, ¢, and the distribution of the random varialleplus a known constant.
Recall that the full-dimensional expected value functiis defined a®Q(x) = Y7L ; Qi (Tix),
x € R", where each); is a one-dimensional expected value function as considared
Corollary 3.1. Extending this result to the functighin the obvious way, it follows that
MSR models can be solved by existing algorithms for SR moudeish are very efficient
(see e.g. [1]). Indeed, only the following preprocessiepstare needed: for=1, ..., m,

(i) Compute the constaidt;;

(ii) Constructthe distribution of;, by applying the specified transformation of the distri-
bution ofw; .

If all components ot are discretely distributed, the resulting distributior(thie com-
ponents off is also discrete, and can be specified directly, withoutregfee to the distri-
bution function. Because this special case is importarafglications, this result is stated
separately.

Corollary 3.2 Assume the setting of Corollary 3.1.
Consider the case thatis a discrete random variable with suppQrtThen the random
variablet is discretely distributed, with support

K-1
== {{e-ulu{e+u)]
k=0
and probabilities
K-
Z [ 41— af) Plo =& +uk) + (¢, —a; ) Priw =€ — lk}]
Prig = §) = +=2

ax +ax
Note that ifQ2 is finite, then the cardinality d& is bounded by2| (2K — 1).

PROOF The cdfF of w is piecewise constant, with discontinuitiestn Hence, by Corol-
lary 3.1, the cdfV of & is piecewise constant with discontinuities &) so that¢ is a
discrete random variable with supp@&t The corresponding probabilities are given by

V() —limg,z V(s), € € E. ]

Example 3.1 Consider the MSR value functian defined by the parameteks= 2, u; =
2,qt=[1,2],h=1andg” =[1, 3],
v(s) = mig yf+2y£r+y{+3y£
y=
s.t. yf+y£r—yi—y5=s , s eR,
yi <2 y; <1,

and the corresponding expected value functibix) = E, [v(w — x)], wherew is a dis-
crete random variable with realizations = 9 andwy = 115, with P{w = w1} = 1/3,
Pr{w = wy} = 2/3, so thatu = 32/3. Figure 3.1 shows these functio@sandv(u — s),

s € R.
According to Corollaries 3.1 and 3.2

O(x) =2E: [ —x)T]+3Ee [ —x)"] -2, xeR,



0 I I I I - I I
7 9 9.5 10 115 125

Figure 3.1: The function® andv(u —s) of Example 3.1. Also shown are the SR expected
value function (with respect o, dashed) and the corresponding value function.

wheret is the discrete random variable with support

E = {9 115/U{9—u1, 115— u1} U{9+11, 115+ 1)
(7,9, 9.5, 10, 115, 12.5).

To compute e.g. Rf = 10} we observe that 10 can be writtena@as+ /1 (no other suitable
combinations ofvo and—u or /), so that

Prig = 10 = 22— priy = vy} = 2/15
q, +4,
In the same way, we find that the respective probabilitiesfer E are given byp: =
[1, 2, 2, 2, 4, 4]/15. <

3.1 Numerical experiments

The algorithm as described above is implemented as Msct28dMultiple simple con-
tinuous recourse to Simple continuous recourse, M.H. vaWigek and J. Mayer, 2001) in
the model management system SLP-IOR [4]. The current veodiMscr2Scr is restricted
to MSR problems with discrete random variables.

Table 3.1 summarizes information on computing times of Kh&R algorithm on a set
of randomly generated instances. The name of each probl#ithis form MSRn1 xnxmY KDS,
wheremj andn denote the number of first-stage constraints and first-stagables, re-
spectively, andn indicates both the number of second-stage constraints hsasvéhe
number of random right-hand side parameters. As bef&rés the number of recourse
variables for shortages and surpluses; thus, there Eree2ourse variables for each con-
straint. Finally,S denotes the number of realizations of each of the randonmpeas.

For each problem, some of the deterministic parameters wlgt@ned by sampling
from a discrete uniform distribution (notatiob:{x?, . .., u”}), with given density of non-
zero elements (100% unless stated otherwise).

¢ © U{1,2,...,10)
A, T : U(L2 3, 4,5), density 25%
b - U{40, 50, 60, 70, 80}



Problem min  max std mean SR mean

MSR12x25x25Y3D5 0.00 0.03 0.013 0.017 0.021
MSR25x50x25Y3D5 0.02 0.03 0.005 0.027 0.022
MSR25x50x50Y3D5 0.05 0.06 0.005 0.053 0.048
MSR25x50x 75Y3D5 0.06 0.08 0.011 0.070 0.063
MSR50x 100x 75Y3D5 0.16 0.20 0.016 0.180 0.182

MSR50x100x100Y3D5 0.22 0.28 0.020 0.255 0.244
MSR50x100x100Y6D5 0.30 0.36 0.019 0.335 0.355
MSR50%x100x100Y12D5 0.36 0.44 0.028 0.399 0.409

MSR12x25x25Y3D100 0.06 0.11 0.016 0.080 0.080
MSR25x50x25Y3D100 0.06 0.11 0.017 0.096 0.096
MSR25x50x50Y3D100 0.16 0.20 0.014 0.175 0.179
MSR25x50x75Y3D100 0.22 0.30 0.024 0.267 0.265
MSR50x100x 75Y3D100 0.38 0.47 0.034 0.429 0.440
MSR50x100x100Y3D100 0.48 0.66 0.046 0.586 0.588
MSR50x100x100Y6D100 0.97 1.18 0.059 1.040 0.921
MSR50x100x100Y12D100 1.69 1.92 0.062 1.770 1.400

Table 3.1: CPU times in seconds. For each problem, res@tsanputed over 10 random
instances.

Moreover, for the problems witlk = 3, the unit cost vectors were initially chosen as
gt =[5, 10,30] andg~ = [0, 16, 25]; subsequently, to obtain cost vectqfs andg;”
corresponding to each rowi = 1, ..., m, the non-zero components were perturbed by a
sample fromU{—2, 0, 2}. All upper bound vectors; and/; were fixed at [10L, 30.3] and
[15.3, 40.7], respectively. For other values &f, these vectors were chosen analogously.

The discrete distributions of the right-hand side paramsete, i = 1,...,m, were
obtained as discrete approximations of independent natistaibutions with standard de-
viation 15 and mean values sampled fréh40, 50, 60, 70, 80}. To this end, we used the
standard discretization technique of SLP-IOR which parig the (truncated) support in
S intervals of equal length, yielding a discrete approximatdy assigning the probability
mass on each interval to its conditional mean (all calocofetibased on a sample of size
10,000).

Finally, for each of the problems 10 instances were creatgekliurbing each non-zero
element of the matrif{" with a sample frontU {—1, 1}.

Table 3.1 describes the CPU times needed by the Mscr2Sceingpitation of our
algorithm, which converts the MSR problem to the equivatRtproblem (see Corollaries
3.1 and 3.2), and then calls the solver SRAPPROX v1.0 (P. &=l J. Mayer, 1994) to
solve the latter problem. For comparison, the last columFabte 3.1 contains the average
CPU time needed by SRAPPROX to solve a simple recourse vedfi@ach problem,
i.e., the same problem with linear penalty costs using coeffi«:ientSq,Jgi andq;i. All
computations were performed in SLP-IOR v2.1.2 on a PC wititiBem 4 CPU at 2.4GHz
and 512MB memory, using as stopping criterion a relativeresf 10,

The conclusions from these numerical experiments are uigaiobs. Multiple simple
recourse problems can be solved as efficiently as conveltsimple recourse problems.
The additional modeling features of the MSR approach comértally no additional
computational costs, so that MSR problems of realistic sa® be solved in reasonable
time.

Obviously, solvers which do not exploit the special MSR atiive are much less effi-
cient in solving these problems. In fact, due to the extrgrh&@h number of joint real-
izationsS™ as appearing in non-separated models, none of the otharsalvailable in
SLP-IOR was able to even start computations on the smafistgtrice.



4 Multiple simple integer recourse

We now turn to the integer version of the MSR model, which wik e@note as multiple
simple integer recourse (MSIR).

4.1 Definition and closed forms

Like in the continuous recourse case, MSIR is a generatinaif the simple integer re-
course (SIR) model, allowing for a refined penalty cost stmecfor (individual) surpluses
and shortages.

If the integrality restrictions in the SIR model are relaxéeen it is equal to a continu-
ous SR model. Similarly, the LP relaxation of the MSIR modelih MSR model. Thus, not
surprisingly, the MSIR value function is separable so thatan again restrict the analysis
to the one-dimensional version.

Fors € R, the one-dimensional MSIR value function is defined as

K
v(s) = min > (@i +ave)
- k=1

K K
S.t. Zy,jzs, Zy,;z—s
k=1 k=1

b < up —up-a,
Y = k=1....K-1
Ve <l —lg-1,

yezzK

with ug = Ip = 0, the vectorg and! integer, and the elementsgf, u, g~, and! satisfying
the same monotonicity assumptions (3) as in the continueeurse setting.

Remark 4.1 For K = 1, we obtain the value function of the (one-dimensional) Siéb-
lem.

Remark 4.2 Note that this second-stage problem is defined using twaisléps instead

of the single equality used in the continuous recourse c@bés is necessary, since the
right-hand side parametercan be any real number, whereas the left-hand side is irtegra
by definition.

Using the monotonicity of the cost coefficients, it is strafgrward to determine(s)
for any fixeds € R. This leads to the following closed form for

K-1

v = [(@Fa—ai) s —wd* + (g —a0) L+ 17|, seRr
k=0

where, as before, we dethgL =gy = 0. Forr € R, [+]" denotes the positive part of the
integer round up of, and|z]~ is the negative part of the integer round dowr .of

By definition, the (one-dimensional) MSIR expected valuection Q is obtained as
the expectation of(w — x), x € R, giving

K-1
0 = Y [ (a1 - a1 96 +up) + (a51 — ) HGE — 0], xeR. (®)
k=0
where
Gx) = Ey[lo—x1"]=) (1-Fx+)),
j=0

10



Hx) = Ey[lo—x]7]=) Fx—j),
j=0

with F cdf of w.

The formulae above and structural properties of the SIRtfansgG, H, andQ (with
K = 1) are derived in [12] and [17]. In particular, it holds thaese functions are non-
convex in general, implying that a simple recourse reprasien of the MSIR function)
does not exist in general.

Instead, we will show that reasonable convex approximatafrihe MSIR function)
can be constructed, and that every such approximation isvaqaot to acontinuousSR
expected value function. Consequently, MSIR problems easdived approximately by
solving a continuous SR problem.

4.2 Convex approximations of MSIR

Consider the LP relaxation of the MSIR second-stage probl@iwiously, the expected
value function of the resulting MSR problem is a convex loweund for the MSIR func-
tion Q. Itis also not difficult to see that a convex upper bound isitetd by adding;ngq,}

to this MSR function. Since any reasonable convex appratiimaf Q should be in be-
tween these trivial approximations, it follows that suchagproximation has asymptotes
with the same slopes, as specified by Lemma 2.2. Since evelnyegproximation satisfies
the assumptions of Theorem 3.1, it follows that every reabtenconvex approximation of
the MSIR functionQ can be represented as a continuous SR expected value fu(jtis

a constant). For the convex approximations presented baloexplicit representation will
be presented in the next section.

To construct non-trivial convex approximations of the MSURction Q, we follow the
ideas that were developed for the corresponding SIR fum¢tie., forK = 1).

In [8] a strongly polynomial algorithm is presented for thenstruction of the convex
hull of the SIR expected value function for the case thas adiscrete random variable
The algorithm is based on structural properties of the fona® (lower semicontinuous,
piecewise constant) which are shared by the MSIR versiothatoin principle the same
approach can be used to construct the convex hull of the fambetion. It is also clear,
however, that many technicalities need to be handled tarotites result. This matter will
not be worked out here.

If w is continuously distributedhe functionQ (both SIR and MSIR version) is contin-
uous, but non-convex in general. It is convex if and only & gmobability density function
(pdf) of w belongs to a certain class, which is completely specified @).[The main idea
of [9] is to approximate the original pdf @ by a specific (family of) density functions
from this class, thus constructing a convex approximatioe SIR functionQ. Below
we apply this approach to the MSIR functigh

As shown in [10], the SIR function§, H, and Q are convex ifo has a pdf that is
piecewise constant on every interval-j, «+j+1), j € Z, forsomex € [0, 1). Itfollows
trivially that also the MSIR functiorQ is convex in this case. Such piecewise constant
densities, depending on the shift parametewill be used to approximate arbitrary density
functions. In this way, we obtain convex approximationshaf MSIR functionQ.

Definition 4.1 Let F be the cdf of a continuous random variable. For any [0, 1), the
a-approximation of the pdf of F is defined as

Ja(s) == F(lsla +1) — F(ls]a), s€R,
where|s]y = |s — ] + « is the round down of with respect tax + Z.

Denoting byw, the continuous random variable with pdf, the «-approximation of
the functiong is defined as

Go(x) :=Ey, [[we —x17]. x€R,

11



which is convex by construction. The convex functigp is defined analogously.
It follows that thex-approximation of the MSIR functiof, defined as

K-1

Qu(x) = Z [(q,:rl — q,j') Eg, [(a)a — x]+]
k=0
+ (31— 42 ) Eay [Low = x17] | ™)
K-1
= > [ —a) Gt +u0 + (g51 — a0 Hale 0], x € R,
k=0

is a convex function.

Note thate-approximations can be defined without making any assumgtiimut the
distribution ofw. Thus, convex approximationd, of the MSIR functionQ can also be
constructed in case is discretely distributed. However, in that case the foltfaywuniform
bound on the approximation error does not apply; in factait be shown that the error
then equalsy;(r + g in the worst case.

Corollary 4.1 Assume that has a pdff that is of bounded variation. Then, for alle
[07 1)1
+ —
qx +4
10 = Qllos = FE7=F1AI,
where|A| f denotes the total variation gf onR.

PROOE In [9] it is shown that both G, — Gllcc and||Hy — H|lco are bounded byA| f/4.
The result follows by summation. H

4.3 Representation ofQ,, as SR expected value function

In the previous section we definedapproximations for multiple simple integer recourse
models. We conclude our discussion on MSIR models by progidi continuous simple
recourse representation of such approximations.

Corollary 4.2 For a fixed but arbitrary € [0, 1), consider the:-approximatiorQ,, of the
MSIR expected value functio@, as defined in (7). Then

Qu(x) = g B, [(e —)T] + qxEBe, [E« —0) 7]+ D, x€R,
whereg, is a random variable with cdf,,

K-1

+ +
PR — Qg — 4 ) F(lt]a +ui)
o ol @)

V(1)

+ (G- a0) Ftla +1-10]. 1eR,

with F the cdf ofw. That is,&, is discretely distributed, with support containedvin- Z
and probabilities

K-1
. 1 .
Prige =a+j) = ——— > [ (a5, — 9 Priw € 24 + )
qx + 4k k=0

+ (g1 —a; ) Priw € Q{;“—lk}], iez

Whereszgl =(@+j—-1a+ /]
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The constanb is given by
_ 4k 9k
= =
dg T ag
whereC is the constant given in Corollary 3.1.

- C,

PROOF The result follows from applying Theorem 3.1 to the funiti@,. To this end,
we first derive the required information on propertiesf by studying the constituting
functionsg, andH,,.

As shown in [9], the functio, can be written as

Go(¥) = Bzt [(go} _x)j . xeR,

whereso} is a random variable with cdf'(|7],). Let Mi denote the mean value eg.
Similarly,

Ho(x) = Egp [(53 = x)j| , xeR,

where&? is a random variable with cdf (7], + 1), so that the mean valy€? of £2 equals

ni-1
> .
By Lemma 2.1 we have, for € R,

(Ga) (1) = F(lx]o) =1 and (Ho)} (x) = F(lx]a + 1),

so that
K-1
Q)4 ) = Y[ (g —af) Flale+un = D)
k=0
+ (a1~ a0) Fllxla + 110,
and
Jim Q) () =—qg,  lIm (Qu)}y (¥) =gk

Moreover, sincej, has asymptote/si —x asx - —oo and 0 asx — oo, and’H, has
asymptotes 0 ag — —oo andx — ;Lg asx — oo, it follows that the asymptotes fap,,
are given by

K-1

ar(ul =)= (g1 — ) k. asx — —oo,
k=0
K-1

g (x — ) — Z (41 — 25 ) s asx — oo.
k=0

Using this information, the result follows from Theorem Byl straightforward computa-
tion. ]

Example 4.1 Consider the MSIR value function, defined by the parametefs = 2,
ur=2,q7 =[1, 2,11 =3,andg~ =[1, 3],
v(s) = mig yf+2y£r+y{+3y£
y=
s.t. yf+y£r—y{—y£=s , s eR,
yi <2 y; <3

yez?
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Figure 4.1: The function® (solid) andQ, (dashed) of Example 4.1.

the corresponding expected value functi@nx) = E, [v(w — x)], Wherew is a normal
random variable with mean valyeand variance 2, and thex-approximationQ,,.

Figure 4.1 shows the function and Q,, for the case that. = 0, o2 = 0.05, and
a = 0. The random variablg,, as defined in Corollary 4.2, has supppH2, —1, ..., 3}
with respective probabilitie€l, 2, 2, 1, 2, 2) /10 (computation based on truncation of the
support ofw to [—40, 40] C (-1, 1), so that Pfw € Q}} = 1/2 for j = 0,1). The
constantD = —2.4. <

5 Summary and conclusion

Starting from the well-known (integer) simple recourse)8®del, we developed efficient
solution methods for the corresponding multiple simpleotese (MSR) models. Such
MSR models are generalizations of SR models in that thewvdito a refinement of the
penalty cost structure, which makes them attractive froragglication point of view.

We have shown that MSR models (or convex approximationsiinteger case) can be
represented as explicitly specified continuous SR modetkttaus can be solved efficiently
by existing algorithms for continuous SR models.

Apart from a trivial adaptation of the cost parameters, th@iauous SR representation
of MSR models is obtained by a particular transformatiorhefunderlying distribution of
the random right-hand side parameters. It is common prtistochastic programming
to replace a given distribution by a suitable approximatitime main example is of course
the use of discrete approximations (e.g., empirical distidbns) of continuous distributions
in recourse models. However, the approach used in this pspenceptually different,
because it transforms problems of a more general or diffigp# into a well-solved, easy
problem type.

Recently we have successfully applied this approach to matiéh a more general
(non-separable) integer recourse structure [18]. In ther heure, we will extend this
line of research to models with non-linear separable pgwcakt functions (e.g. piecewise
guadratic, see [14]), and to mixed-integer recourse models
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