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Abstract

We develop a two-stage stochastic integer programming model for the simultaneous optimization of
power production and day-ahead power trading. The model rests on mixed-integer linear formulations
for the unit commitment problem and for the price clearing mechanism at the power exchange. Foreign
bids enter as random components into the model. We solve the stochastic integer program by a
decomposition method combining Lagrangian relaxation of nonanticipativity with branch-and-bound
in the spirit of global optimization. Finally, we report some first computational experiences.
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1 Introduction

Optimization of power production, mainly fuel cost minimization, is a traditional field of applied op-
timization in power engineering. In the course of the liberalization of electricity markets new trading
instruments have emerged whose proper handling is of supreme importance for the efficient operation of
electrical utilities as a whole. Among the new instruments there is day-ahead trading of power. In the
present paper we address the simultaneous optimization of day-ahead trading and production of power.
This problem is inherently uncertain, in that day-ahead trading involves bids that result in dispatch only
after clearance of the market by an independent operator.

The need for simultaneous optimization of power production and trading arises if a utility has to cover
with its installed generators a demand profile of power over time and, at the same time, has the possibility
to offer into a day-ahead market. The demand profile may arise from physical bilateral contracts, for
instance. The challenge then is to adjust production and trading in such a way, that “cheap” purchases
replace “expensive” production and “cheap” production is used for “profitable” sales. Beside the men-
tioned uncertainty, time coupling of production decisions prevents an optimization hour by hour. Hence,
a large-scale optimization problem arises.

The power system underlying our model is a hydro-thermal one as operated for instance by the German
utility VEAG Vereinigte Energiewerke AG Berlin. It comprises pumped-storage hydro as well as coal
and gas fired thermal power plants.

Day-ahead trading involves sealed selling and purchase bids for every individual hour of the day ahead.
Each offer comprises volume and price. There is only one round of bidding, and the market price is
cleared by an independent agent such that the total exchange is maximized. Selling offers strictly below
and purchase offers strictly above market price are executed completely. Vice versa, sellings strictly above



as well as purchases strictly below do not become effective. Offers at market price in general are only
partially executed, with specific splitting rules in case of several offers with identical price.

Decision making in the utility involves both production decisions for the generators and bids for the in-
dividual hours of the day ahead. Up to now, demand profiles and generator failures were typical sources
of uncertainty in power optimization. The prime source of uncertainty in day-ahead trading are foreign
bids, i.e., the bids of the other market participants.

We will formulate the problem of simultaneous optimization of power production and trading as a two-
stage linear stochastic program with mixed-integer recourse. With a time horizon of one week, the model
will provide non-anticipative production and bidding decisions for the first day such that the expected
value of fuel costs minus trading income over time becomes minimal.

Stochastic integer programming is gaining increased interest in power optimization under uncertainty.
For a recent contribution including a rich list of references we refer to [5].

Our paper is organized as follows. In the following two sections we develop submodels for power produc-
tion and day-ahead trading. In Section 4 these are combined into a two-stage stochastic integer program
with foreign offers as source of randomness. With a discrete probability distribution, the stochastic pro-
gram turns into a large-scale mixed-integer linear program for which we outline a decomposition method
in the second part of Section 4. Section 5 reports our computational experiences.

2 Power Production

Optimization of power production, often referred to as unit commitment, concerns the scheduling of start-
ups and shut-downs and the finding of operation levels for power generation units such that the fuel costs
over some time horizon are minimal, see [10] for a literature synopsis. In the following we will present
a mixed-integer linear programming model for unit commitment. Given the algorithmic capabilities
in mixed-integer linear optimization, we will either avoid nonlinearities or work with approximations
involving mixed-integer linear expressions.

Consider a discretization of the planning horizon into ¢ = 1,...,T equidistant, e.g. hourly, subintervals,
and assume that there are I thermal and J pumped-storage hydro units. The variable u; € {0,1}, ¢ =
1,...,I;t =1,...,T indicates whether the thermal unit ¢ is in operation at time ¢. Variables p;:, s;¢,
wjg, 1 =1,...,1,j=1,...,J;t =1,...,T are the output levels for the thermal units, the hydro units in
generation and in pumping modes, respectively. The variables [;; denote the fill (in terms of energy) of
the upper dam of the hydro unit j at the end of interval ¢, j=1,...,J;t=1,...,T.

The power outputs of units and the fills of the upper dams have to be within the following bounds

min,

D; Uit S Dit S p?laxuita ? - ]-7-")-[) t = la"'aT
0 < sjp < 808K j = 1,...,J, t = 1,...,T (1)
0 < wjp < W™, j = 1,...,J, t = 1,...,T
0 <l <R j = 1,...,J, t = 1,...,T
max

Here, p;™'™, pi"a%, s108% 4] denote minimal and maximal outputs, respectively, and [;"®¥ is the

maximal fill of the upper dam. The hourly coverage of electrical load results in the constraints

1 J
Y pie+ Y (sjp—wi) > Dy, t=1,...,T, (2)
i=1 =1

where D; denotes the demanded load at time ¢. In addition to load coverage, reserve management is a
key issue in power production. Different reserve schemes are employed in practice. At least the following
requirement involving a so-called spinning reserve R; has to be met for the thermal units:

I
Z(Uitpi'nax —pit) > Ry, t=1,...,T. (3)
i=1

Reserve schemes involving pumped-storage hydro units are more elaborate but can still be handled using

mixed-integer linear expressions, cf. [4].
In the pumped-storage plants the following water balances over time have to be maintained:

ljg = lj(t—l) - (Sjt - "jwjt)v ;
J :l’_,.,J,t:]_,...,T- 4
le l;n’ le — l]@nd, J ( )
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Figure 1: Market price determination

Here, l;-", lje-"d are the initial and final fills (in energy) of the upper dams, 1; denote the pumping efficiencies.
The latter are known to be nonlinear functions of the fill in the upper dam. Our model will work with
approximative constants that are tolerable due to test runs done with the real system of VEAG Berlin.
Constraints avoiding simultaneous generation and pumping in the hydro plants are dispensable since it
can be shown that such a deficiency can not occur in optimal points.

To avoid excessive thermal stresses in the coal fired blocks, they have to adhere to minimum up and down
times o; and 7;. These are modeled via

Uip — Uj(t—1) < Uio, o = t+1,...,min{t+o; —1,T},
Uip—1) — Uit < 1=y, 7 = t+1,... ,min{t+7—1,T}, (5)
i = 1,...,;t=2,...,T —1.

The constraints (1) — (5) provide a mathematical model for basic features and basic interaction of the
generating units of the VEAG system. A typical objective function to be minimized on the constraint
set (1) — (5) is the fuel consumption for starting up and operating thermal units. It can be formalized by

SN Cilpirwie) + > Silui), (6)

t=1 =1 t=1 =1

where, with suitable constants ai, by, and ¢;, Ci(pit,uit) = aitDit + biruir denote the fuel costs and
Sit(ui) = ¢; max{u;s —u; ¢—1,0} the start-up costs for the thermal unit ¢. Being in a minimization frame-
work, the max-term in the start-up costs can be transformed in a standard way into a linear objective
term and additional linear constraints. In the above setting, start-up costs are independent of the pre-
ceding down time. Down time dependence can be modeled by suitable max-terms over linear expressions
in Boolean variables as well, see [4] for details.

3 Day-Ahead Trading

The trading rules described in the Introduction result in the price formation mechanism depicted in
Figure 1. Selling and purchase offers (or bids) are placed in (price-) ascending and descending orders,
respectively, yielding two step curves where step length corresponds to volume and step height to price.
The intersection of the curves determines both the market price and the total volume traded. In our
model we make the basic assumption that executed offers are traded at market price, in contrast to
trading at offer price.

In the following, we will model the pricing mechanism in mixed-integer linear terms. Since trading
is carried out at any individual hour of a given time horizon, we again consider a time discretization



t=1,...,T.

Bids are divided into own bids and foreign bids, the latter being those of the other market participants.
Own bids will enter the model as indeterminates. Each bid consisting of volume and price, own bids
create nonlinearities by the products of the two. To overcome this, a fixed equidistant discretization of
the price range into m = 1,..., M ascending levels with values b,,; > 0 will be used.

Forall t =1,...,7, m = 1,..., M we introduce triplets (vs,,,v%,,v¢,,) € {0,1}3 of indicators. In the
end, we will have that v, =1 (vf,, = 1) iff the selling (purchase) offer with price level m at time ¢ is
strictly below (above) market price and hence executed completely. Moreover, we will have that v$,, =1
iff price level m coincides with the valid market price at time t.

In a first step, we introduce the following set of logical constraints. Beside the conditions that exactly

one out of v¢,, (t fixed and m = 1,..., M) and one out of v, vP ., vE, (m,t fixed) have to be one, the

mtr “mtr “mt
system assures that, once v$, = 1, then also v$,, = 1 for all m’ > m and , once v5, = 0, then also

vP . =0 for all m' < m.

M
dvgy=1, t=1,..,T;
m=1

s s
vthUerl,tv
p p — —
Ut < Uyttt t=1,....,T, m=1,...,M.
s c P _
Umt +’Umt +’Umt - ]-7

(7)

We distinguish variables for energy volumes of own bids of price level m in time period ¢ (¢,;, q5,; > 0)
and variables for volumes of own ezecuted bids of price level m in time period ¢ (p5 ,, pb,; > 0). Executed
bids cannot exceed bids:

ngfntgq:ntvoépfntgqfnt; t:]-a"'aTam:]-v---am- (8)

Own selling bids below and own purchase bids above market price are to be executed completely:

Pt 2 Gme — C1(1 = vpy), }
t=1,...., T, m=1,....m 9

Pt = Gme — C1(1 = ), ©)
with a sufficiently big constant C;. Own selling (purchase) bids must not be executed, if they are above
(below) the valid price:

Pt < C2(Vpy + U5,

t=1,.... T, m=1,....m 10
pfnt < CQ(Ufnt+U$nt)’ } ( )

with a sufficiently big constant Cl.

The foreign selling and purchase bids of price level m for time ¢ are denoted by f35,,f2, > 0,m =
1,...,M,t =1,...,T, respectively. It is permitted that not the complete volume of a competitor’s bid
at market price is executed (as in our example, Figure 1). Then 8§, 87 > 0 denote the actually executed
volumes of the competitors at valid market price:

M M
0< B <D Woufor 0SBE <D v fly, t=1,...,T. (11)
m=1 m=1
Maximum exchange is reached at the equilibrium of supply and demand:
M M
Z (Ume St + D) + 87 = Z (Uit Sme + Poe) + 8L, t=1,...,T. (12)
m=1 m=1

At market price, either a complete selling offer or a complete purchase offer or both a complete selling
and a complete purchase offer have to be executed (cf. Fig. 2). Introducing another indicator v? € {0, 1}
attaining the value 1 iff at least all selling offers at market price are executed, the price formation model
is completed by the following constraints:

M M
0 0
By = Zvrcnt mt — C3(1 —vy), Bf > Zvrcntfvit*CSUtv t=1,....,T;
m=1 m=1

Dot qusnt_o3(2_vrcnt_vg)7 }
n t=1,....T,m=1,...,.M
pfnt quzt_03(1_vmt+vg)7

(13)
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Figure 2: Cases at market price

with a sufficiently big constant Cs.

For selling and purchase offers at market price, the above relations, together with the final cost criterion,
imply a splitting rule favouring the home utility. Indeed, equations (12) imply in particular that those
shares p$,, and p? , of the home utility’s offers become committed that are optimal from the home utility’s
view alone, neglecting the preferences of the foreign utilities and leaving only the possibly remaining shares
B¢ and BY to them.

By gm:t € IR we denote the net traded volume at price level m and time ¢. It has to fulfil

M M
— P s _
Z_lgmt - Z_l(pmt _pmt)a t= 17"'7T7 (14)
—C48 < gmt K Cpvly, t=1,...., T, m=1,....M

with a sufficiently big constant Cy.

The above trading model is concatenated with the production model from Section 2 by modifying the
load coverage constraints (2) into

I J M
Zpit+2(8jt*wjt)+zgmt:Dta t=1,...,T (15)
i=1 j=1 m=1

and adding the term

T M

t=1 m=1
to the objective (6).

4 Stochastic Integer Programming Model

The trading model in Section 3 reflects the underlying mechanisms without considering availability of
data information. In an operational setting this, clearly, is insufficent. In particular, the foreign bids
finfPom=1,...,M,t=1,...,T are not known at the moment own bids have to be made. Bids for a
day typically have to be handed in by early afternoon the previous day.

For the simultaneous optimization of power production and trading this suggests to consider all production
and bidding decisions for the first day of the time horizon as here-and-now decisions, i.e., as decisions
that have to be taken without precise knowledge of the missing data, the foreign bids. The latter enter
the model in stochastic form through a finite number of scenarios with given probabilities. Decisions to
be made at the second and at all further days of the time horizon then are stochastic as well, since they
vary with the scenarios for the foreign offer.

In this way, one arrives at a decision problem that can be formulated as a two-stage stochastic program.
The here-and-now decisions, also called non-anticipative, are collected into the first stage. The second
stage assembles the remaining decisions which can be understood as recourse actions given the first-stage
decisions and the realizations of the random data.

This can be formalized as follows. With stochastic foreign offers, the random optimization problem arising
from concatenation of the models in Sections 2 and 3 adopts the form

min{c’z +d"y : Az +W(w)y = h,z€ X, yeY} (17)
@y



where z and y denote the first- and second-stage decisions, respectively. In the context of our power
model, x comprises first-day production decisions, i.e., the variables p;¢, s;¢, wjt, [;; for suitable ¢ and all
i,j, and the utility’s own offers for the second day, i.e., the variables ¢2,,, g%, for suitable ¢ and all m.
We assume that the trading for the individual hours of the first day (based on bids from the day before)
is known such that the corresponding variables are fixed. All the remaining variables are assembled into
the vector y. The only place where the random foreign offers f2,, fP . occur is as coefficients in front of
second-stage variables. This explains that in (17) the matrix W is the only random entity.

We assume that W lives on some probability space (£, .4, IP), that all the ingredients in (17) have con-
formal dimensions, and that X C IR™,Y C IR™ are polyhedra, possibly involving integer requirements
to components of z and y.

The following two-stage linear stochastic program with mixed-integer recourse then aims at selecting
a feasible non-anticipative decision x such that the expected value of the total random costs becomes
minimal

min {CT:L' + E,(min{dTy : W(w)y=h— Az, ycY}:z € X}. (18)
@ y

As already mentioned, foreign offers, and thus the matrices W (w), enter our model by a discrete prob-
ability distribution, with realizations W7i,..., Wy and probabilities 7y, ...,m,, say. Problem (18) then
can be equivalently rewritten as a large-scale block-angular mixed-integer linear program

N
I;lzi;n {cT:v + Z?Tdeyj tAe+Wiy; = h,y; €Y,z € X}. (19)
Vi =
Problem (19) is far too big to be handled directly by mixed-integer linear programming solvers. Instead
we apply the following decomposition method from [2] for its solution.

Introduce copies z;,j = 1,..., N, according to the number of scenarios, and add the constraints z; = ... =
zn (or an equivalent system), for which we use the notation Z;VZI Hz; = 0 with proper (I, nq)—matrices
H;,j=1,...,N. Problem (19) then becomes

N N
min{Zﬂ'j(CTIEj +dTyj) : ACIZ]' +Wy; =h,z; € X,y; €Y, ZH]'CIZ]' = 0} (20)

j=1 =1

This model allows for Lagrangian relaxation of the constraints E;VZI Hj;z; =0. For A € IR! we consider
the functions
Li(zj,y5,\) = mj(cTa;+dTy;) + \THzj, j=1,...,N,

and form the Lagrangian
N

L(I,y,k) = ZLj(xjayjak)‘

j=1

The Lagrangian dual of (20) then is the optimization problem

max{D()\) : X € R'} (21)
where
N
D) = min{ 3" Lj(zj,95,)) : Az;+ Wiy; = h, 25 € X, y; € Y. (22)
j=1
For separability reasons we have
N
D) = Y D;(\) (23)
j=1
where
DJ(A) = min{Lj(mj,yj,)\) : Al’j +ijj = h, Tj € X, Y; € Y} (24)

D; () is the pointwise minimum of affine functions in A, and hence piecewise affine and concave. There-
fore, (21) is equivalent to a non-smooth convex minimization problem that can be solved by bundle
methods, see [6, 7] for background and details. At each iteration, bundle methods require the objective



value and one subgradient of D. Here, the separability in (23) is most beneficial. It is well known, cf.
e.g. [9], that the optimal value ¢rp of (21) provides a lower bound to the optimal value ¢ of problem
(19).

The total computational effort is distributed. The single-scenario problems in (24) have to be solved
repeatedly to provide the input for (21). Powerful software is available for these tasks. In our compu-
tational experiments we resorted to CPLEX ([3]) for solving the single-scenario problems, and to the
bundle method NOA 3.0 developed and implemented by K.C. Kiwiel ([7, 8]).

In Lagrangian relaxation, feasible points for the original problem are often obtained by suitable heuris-
tics starting from the results of the dual optimization. Our relaxed constraints being very simple
(z1 = ... = zy), ideas for such heuristics come up straightforwardly. For example, examine the
xzj—components, j = 1,...,N, of solutions to (24) for optimal or nearly optimal A, and decide for
the most frequent value arising or average and round if necessary.

If the heuristic results in a feasible solution to (20), then the objective value of the latter provides an
upper bound @ for ¢. Together with the lower bound ¢, p this yields a quality certificate (gap) @ — ¢Lp.
If necessary, this certificate can be improved by embedding the procedure described so far into the fol-
lowing branch-and-bound scheme. Let P denote the list of current problems, ¢rp = ¢rp(P) be the
Lagrangian lower bound for P € P, and Q(z) := IE,(min,{d"y : W(w)y =h — Az, y € Y}).

Step 1 Initialization: Set ¢ = +00 and let P consist of problem (20).
Step 2 Termination: If P = ) then the solution & that yielded ¢ = c¢T2 + Q(%) is optimal.

Step 3 Node selection: Select and delete a problem P from P and solve its Lagrangian dual. If the
optimal value ¢, p(P) hereof equals 400 (infeasibility of a subproblem) then go to Step 2.

Step 4 Bounding: If orp(P) > @ go to Step 2 (this step can be carried out as soon as the value of the
Lagrangian dual rises above @).

(i) The scenario solutions z;, j = 1,..., N, are identical: If cTz; + Q(z;) < ¢ then let g = cTz; +
Q(z;) and delete from P all problems P" with ¢ p(P’) > . Go to Step 2.

(i) The scenario solutions z;, j = 1,..., N differ: Compute the average T = Z;\le m;z; and round
it by some heuristic to obtain Z%. If cT2% 4+ Q(z%) < ¢ then let ¢ = cTZ% + Q(z?) and delete
from P all problems P’ with ¢p(P’") > @. Go to Step 5.

Step 5 Branching: Select a component x(;) of z and add two new problems to P obtained from P
by adding the constraints z(yy < [Z()] and 2y > |Z(r)| + 1, respectively (if z(x) is an integer
component), or () < Zk)—¢ and x (k) > T(x) +¢, respectively, where ¢ > 0 is a tolerance parameter
to have disjoint subdomains.

5 Computations

The model from Section 4 was validated with VEAG data for the power system and market prices of the
Amsterdam Power Exchange (APX) [1] for day-ahead trading. The VEAG system comprises 17 coal and
8 gas fired thermal units as well as 7 pumped storage plants. Using APX market prices we constructed
hourly foreign offers of different prices and volumes. These were assembled into 10 scenarios. To study
the impact of trading we have also solved the pure production problem (Problem A) with trading volumes
fixed to zero.

Problem sizes of the deterministic production problem A and the stochastic programs B-F (in the block-
angular form of (19)) are displayed in Table 1. The sizes of B-F, clearly, suggest to apply our decom-
position method rather than pursuing a direct approach with some general-purpose mixed-integer linear
programming solver.

The test runs are reported in Table 2. They were carried out at a SUN E450 ultra SPARC with 300 MHz
processor. The “Gap” column displays the relative size of the difference between the optimal value of the
best feasible solution and the tightest lower bound found by the branch-and-bound method from the end
of Section 4. The “Min. Saving” column contains the relative cost improvement over pure production
achieved by the best solution found for the model of simultaneous production and trading. The “Gap”
column then can be seen as an upper bound for possible additional saving provided one is able to solve
the stochastic program to optimality. Given the very substantial amount fuel costs in power utilities



Prob. power exchange  Constr. Variables Integers Binaries

A - 18641 11089 1008 1512
B 10 scenarios 563 959 332848 8784 47736
C 20 scenarios 1109277 643 008 16 560 93960
D 30 scenarios 1654595 963 168 24336 140184
E 40 scenarios 2199913 1282328 32112 186408
F 50 scenarios 2745231 1603488 39888 232632
Table 1: Problem characteristics and sizes

Time Best Lower Min.

Prob. h:min:sec  Solution Bound Gap Saving

A 0:07:06 46287933 46287933 0.00 % 0.00 %

B 8:32:49 46132267 45634163 1.07% 0.34 %
C 18:28:53 46149049 45657419 1.06 % 0.30 %
D 27:25:27 461540564 45661411 1.07% 0.29 %
E 37:00:46 46171033 45652329 1.12% 0.25 %
F 47:27:18 46175202 45642053 1.15% 0.24 %

Table 2: Test runs

accumulate to, the savings in Table 2, although still below one percent, seem to be relevant, though.
The tests confirm that problems with up to 50 scenarios are within the reach of computation. However,
problem sizes then are really huge, and computation times (at our fairly slow serial machine) become
quite excessive.
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