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Abstract

We consider convex approximations of the expected value function of a two-stage
integer recourse problem. The convex approximations are obtained by perturbing the
distribution of the random right-hand side vector. It is shown that the approximation
is optimal for the class of problems with totally unimodular recourse matrices. For
problems not in this class, the result is a convex lower bound that is strictly better than
the one obtained from the L P relaxation.
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1 Introduction

We consider the two-stage integer recourse problem

min  c¢cx + 9Q(x)
X
st. Ax<b
n
x € R,

where
Q) i =Eyu[viw—Tx)], xeR™M,

and, for s € R™,

v(s) == min gqy D
y
st. Wy>sys
y € Z2.

Thefunction v isthe second-stage value function, and the function Q is called the expected
value function. These functions model the (expected) costs of recourse actions to compen-
sate for infeasibilities associated with the random goal constraints 7x > w. The right-hand
side vector w isarandom vector with known cumulative distribution function (cdf) F,.

In addition to difficulties met in the continuous recourse case (see e.g. [2, 4, 14]), this
problem is hard to solve because — due to integrality of the second-stage variables — the
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expected value function Q is non-convex in general, see e.g. [8]. For the special case of
simpleinteger recourse models, associated with W = I in (1), we gave a compl ete descrip-
tion of the class of (continuous) distributions of w that result in convexity of the function
Q, see[7], dlowing the construction of convex approximations of Q by approximation of
the distribution of w, see[6]. In this paper we extend these results to obtain convex approx-
imations for the general complete recourse case (see e.g. [15]), but first we concentrate on
aspecial case.

2 Assumptions

We will derive our results for problems with totally unimodular (TU) recourse matrix W.
In that case, the extreme points of the polyhedral set {y € R"2 : Wy > h} are integra
for any integer right-hand side i (see e.g. [12]), so that solving an LP problem over this
set results in an integer optimal solution. However, note that in our recourse problem the
right-hand sideisw — Tx, which is not an integer vector in general.

A TU matrix has integer components necessarily (infact, all componentsare either —1,
0, or 1). In Section 6, we drop the TU assumption on W but still assumethat W isinteger
(or rational, so that integrality of W can be obtained by scaling). We will show that in this
case our approach leads to a convex lower bound for Q that is strictly better than the one
obtained from the L P relaxation of (1).

Throughout, we assume that the recourse structureis

(i) complete,i.e, v < +o0, and
(ii) sufficiently expensive,i.e., v > —oo,

so that v isfinite for all s € R™. Together with the assumption that E,, [|w|] is finite, this
impliesthat Q isfinitefor all x € R™.

Remark 2.1 Actually, it is sufficient to require relatively complete recourse, so that v is
finitefor al relevant s € R™.

3 Thevaluefunction

Assumingthat W isanm x nz TU matrix, and giventhat v isfinite, we haveforal s € R

v(s) = min gqy
y
st. Wy>s, yeZ?
= min gy 2
y
st. Wy>/Js], ye R’f
=  max Als] ©)

)
st. AW <gq, A eRY,

where [-] denotes component-wiseround up. Equality (2) holds because Wy isintegral for
al y € Z"2, so that no feasible solutions are cut off if we replace the right-hand side s by
its round up; subsequently, we may relax the integrality of y because W isa TU matrix.
The equality (3) follows by (strong) LP duality.

Since the recourse structure is complete and sufficiently expensive, it follows that the
dual feasibleregion {1 € R’} : AW < ¢} isanon-empty polyhedron. Hence,

vis) = max Af[s], s eR™, 4)
k=1,...,.K

where Ak, k = 1, ..., K, arethefinitely many extreme points of the dual feasible set.



Thus, v is the maximum of finitely many weighted round up functions, and hence non-
convex. However, we are not interested in convexity of v per se, but in convexity of its ex-
pectation Q(x) := E, [v(w — Tx)], x € R". Properties of the one-dimensional expected
round up function follow from results obtained in the context of simple integer recourse
(SIR) models[10, 18, 7]. In particular, in [7] a complete description is given of a class of
probability density functions (pdf) for w € R, such that the SIR expected value function is
convex if and only if w has a pdf from this class. In the next section, we summarize and
adapt these results for the current situation.

4 Properties of the expected round up function

For any fixed A € R”, we define the m-dimensional round up function
R(@) = AEy[[w—2]], zeR™

Itiseasy to seethat R(z + k) = R(z) — Ak, k € Z™, z € R™, so that R is linear on
every grida + Z" witha = (a1, ..., o) € [0, 1)™. It follows that any reasonable convex
approximation of R is an affine function with gradient —i. Moreover, if such a convex
approximationis equal to R(z) for some z, thenthe sameistrueforal z € 7 + Z™.

In this section wewill show how to construct convex approximationsof R using certain
approximations of the distribution of w. To this end, wefirst consider the one-dimensional
round up function, for which results follow from those for simple integer recourse models.

In the literature on simple integer recourse models [10, 18, 19], results are presented in
termsof the one-dimensional functionsG (z) := E¢ [([§ —z])T ] and H (z) := E¢ [(1€ — z))7 ],
z € R, where (s)™ := max{0, s} and (s) ~ := max{0, —s} arethe positive and negative part
of s € R, respectively, and | s | isthe round down of s.

Using straightforward computation, we find that the expected round up function satis-
fies

o
Ee[[6 -21=G@-Hz-1D—) Pig=z-k. zeR (5)
k=1
Note that the last term vanishesif & follows a continuous distribution.
Thisleads to the following result for the one-dimensional expected round up function.

Lemmad4.l Let& € R be a continuous random variable with finite mean value and pdf
fe that is constant on every interval (o« + k — 1, « + k], k € Z, for an arbitrary but fixed
a €[0,1). Then

Ee [[6 —21] =By, [00 — 2] = o — 2, z €R,

whereg, = [£ — «] + « isadiscrete random variable with mean value u,, and support in
o + 7, with

Prige = a + k} Fe(a +k) — Fe(a +k—1)

Pri¢ e (@ +k—La+k]}, keZ,

where F¢ isthe cdf of &.
Hence, in this caseE¢ [[¢€ — 1], z € R, isan affine function with slope —1.

PROOF. To prove the first claim we use Corollary 5.2 in [6], which states that G(z) =
Eg, [(9e —2)T] and H(z — 1) = Ey, [(¢e —2)7], z € R. Theresult now follows from
(5),since(s)™ — (s)” =s,5 € R.

The second claim follows trivially from the first one. ]



Next we generalize this result to m-dimensional round up functions.

Lemma4.2 Let w € R™ be a continuous random vector with joint pdf f, that is constant
on every hypercube CX = [T (i + ki — 1,0 + k;], k € Z™, for an arbitrary but fixed
a=(a1,...,ay) €[0,)™. Then

Eo[[0 — 211 = Eg, [¢0 — 2] = o — 2, z € R™,

where p, = [w — a] + « is adiscrete random vector with mean value ., and support in
a + 7", with

Prige = a +k} = Priw e CX}, kez™

Hence, in this case the round up function R(z) = AE, [[w — z]], z € R™, is affine with
gradient — ).

PROOF. We use that

E, [[w— 2] = Zpr{wecg}]Ew[[w—ﬂ‘wec{;], ZeR". 6)
kez™

For each fixed k € Z™, Pr{w € C*} iseither zero or the conditional distribution of o given
o € Ckisuniformon CX. In that case, the components of the vector w are independent
random variables on CX, with each w; uniformly distributed on (o; + ki — 1, o + kil,
i=1...,m,sotha

Ew[(w—z]‘weC§]=a+k—z, z € R", (7)

by Lemmad4.1. Substitution of (7) in (6) provesthefirst claim.
The second claim follows trivially from the first one. ]

Asin the simple integer recourse case, the main use of Lemma 4.2 is that it allows to
construct convex approximations of the generally non-convex expected round up function
by modifying the distribution of the right-hand side vector w.

Definition 4.1 Let w € R™ be arandom vector with arbitrary continuous or discrete dis-
tribution, and choose @ = (1, ..., o) € [0, 1)™. Define the a-approximation w, as the
random vector with joint pdf f,, that is constant on every hypercube CX := [/, (e; + ki —
1, a; + k], k € Z™, such that Pr{w, € CX} = Pr{w € CX}, k e 2.

That is, for each k € Z™, the probability mass assigned to C{,j is the same under » and
wyg; the conditional distribution of @, isuniformon CX.
Accordingly, wewill call the function R, defined for each @ € [0, 1)™,

Ry(2) i= A, [[we —21], z€R™,

the a-approximation of R(z) = AE, [[@ — z]]. In general, an a-approximation is neither
alower bound nor an upper bound.

However, since R(z + k) = R(z) — Mk, k € Z™, for every z, we seethat R(z) + Az isa
periodic function, which repeats itself on every set C%. Thus, defining

o € agmin{R(z) + Az 1 z € [0, D™}, (8)

Ry~ isalower bound for R, which issharp at every z € o* 4+ Z™. Moreover, since R+ is
affine by Lemma 4.2, it is the pointwise largest convex lower bound of R. In other words,
Ry~ isthe convex hull of R.

Lemma4.3 Consider the convex hull R, of the function R. The componentsa’, i =
1,...,m, of the parameter vector «* can be determined analytically in the following cases.



(i) If the margina distribution of w; is continuouswith pdf f; (assumed to be of bounded
variation), thena is one of the solutions of

—1le |:_ Z fi @i+k),— Z fi+(Zi+k):|, z €0, 1),

k=—00 k=—00
with £~ and f;* the left and right continuous version of the pdf f;.

(ii) Let the marginal distribution of w; be discrete with finitely many different fractional
values in its support. That is, the support is contained in Ufle{ai,»s + 7}, where
0< ! <w?<... <% <1 Thena} can be chosen equal to any &;* such that

Si
ke argmin{ Z pf+03in},

n=1,...,5; s=n+1
where p; = Priw; € o +Z},s =1,...,S;.

PrROOF. Accordingto (8), «* isasolution of min{R(z) + Az : z € [0, 1)}, where A > 0
isfixed. Since

m
Zer[lg!?)m [R@) + Az} = Zie?g{?)\ﬁ 2 Li (Ri(zi) + zi)
m
- ;Ai _min, {Ri(zi) + 2},
we see that
af € agmin{R;(z;) +zi : zi € [0, D}, ©)

so that the components of a* can be determined independently.

(i) If the margina distribution of w; is continuous, we can resort to results known for
simple integer recourse models. Using (5), it follows from the differentiability prop-
ertiesof thefunctions G and H, discussed in [18], that theleft derivative R ;- and right
derivative R;" of the function R; exist everywhere. Thus, being aglobal minimizer of
(9), o satisfies —1 € [R; (a}), R ()], with

RIz)=— Y f G@+k ad Rf@)=- Y f"G+k),

k=—00 k=—00

where £~ and £+ denote the left and right continuous versions of the pdf f; of w;,
respectively.

(i) If the marginal distribution of w; isdiscrete, then the function R; islower semicontin-
uous with a discontinuity at every point z; such that Pr{w; € z; + Z} > 0. Moreover,
R; is constant in between discontinuity points. Hence, if the discrete distribution sat-
isfies the conditions, the function R; (z;) + z; attains its minimum value on [0, 1) in
oneof thefractional valuesw;*, s =1, ..., S;.

Sincet)=T[t—11+1,1 € Z,fordlt eR,itholds
Ri@") = Eo [0 - "]

= By, [lor = loi] = 6] + Eay [l ]]

Si
= Y pila — 61+ Eo, [Loi]] .
s=1
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Figure 1: The functions R; (dashed) and its convex hull Rer of Example4.1.

Using that [;* — ;] = 0if s < k and [&;* — &;¥]1 = Lif s > k, we seethat

Si
Ri@") +@" = Y pl +Eu [loi]] + o (10)
s=k+1

Since the second term of the right-hand side of (10) is a constant, this completes the
proof.

O

Example4.1 Let the random variable w; be uniformly distributed on (0, u;), with 0 <
u; < 1. Then,for z; € [0, 1),

-2 fi_(Zi+k)={ ~1/ui. 7 € O.ui]

0, otherwise,
k=—00
and
o0
—1/u;, zi €[0,u;)
_ +/ . _ i i i
Z fir @tk = { 0, otherwise,
k=—00
so that o = u;. See Figure 1 for the corresponding functions R; and Ry <

5 Convex approximation of the expected value function

We now return to the analysis of the expected value function Q. Instead of studying Q asa
function of the first-stage variablesx € R’*, we first consider it as a function of the tender
variablesz := Tx € R™. To avoid confusion, we will denote the latter functionby Q.

Theorem 5.1 Consider the integer recourse expected value function Q, defined as
0(z) =Ey [myinqy Wy>w—z, y€ Z'f} , zeR™

Under the assumptions of Section 2, in particular that W is totally unimodular, the convex
hull of Q isthe function Q.+, defined as

Qo (2) =Eg,. [myinqy Wy = o —z, y € R'f} , zeR™,

where o* is defined by (8), and ¢~ is the discrete random vector g+ = [w — a*] + o*
with support ino* 4+ 7", and

Priger = &* +k} = Priw € C.), ke zZ™,
withCk, =TTy (e + ki — L of + ki, k € Z™.



ProoF. First we will prove that Q,~ is a lower bound for Q, and subsequently that
Q00+ (2) = Q(z) foral z € o* + Z™. This completes the proof, since all vertices of
the polyhedral function Q.+ are contained in o* + Z".

Using the dua representation (4) of the value function v, we have

0() =E, [ max  AfTw — z]} , zeR",
k=1,...,.K
and, analogously,
k=1,...K

Ou(2) = E(pa* |: max )‘k((/)a* - Z)i| , z€eR™

Conditioning on theeventsw € C'.., 1 € Z™, we obtain, for z € R™,

Q) = Y PrloeCL)E, [k_TaxK Ml — 2] ‘ we cg[*}

17" o

> Y Prwe Cé,}k:rrﬂ% WE, [[a) — 7 ‘ we ny*]
leZlﬂ

1 k I

= Y PloeCl) ma 1 E,, [[wa* — 7] ‘ O € Ca*]
leZlﬂ

= Z Priw e CL.} max aF (o +1-72)

k=1,...K

1eZ™

— Z Pr{(pa* = (X* + l} k_TaXK )\,k ((X* +l — Z) = Qa*(Z)-
17" o

The second inequality is valid because each A ¥ is nonnegative, so that the «-approximation
MEy,. [[0er — 2] | war € CL. ] is alower bound for A*E,, [[w — 2] | @ € CL.] by the
choice of o*. The subsequent equality holds by Lemma4.2.

It remainsto provethat Q,« = Q ona* + Z™. Consider afixedz € o* + Z™ and a
fixed/ € Z". Then [w — 7] = 1 — |z] is constant for all w € Cé, so that there exists a
Az, 1) satisfying

AZ. 1) € argmax A [w —7] Vo e CL.
k=1,....K

Sincethisistrueforevery z € «* + Z™ andl € Z™, it followsthat, for z € o* + Z™",

Q) = Y PrloeCl)rzDE, [m —z] \ w € Cé*]
12"
= Y PriweCl}ri D) Ey,. [rwa* — 7] ‘ wer € Cé*]
1eZ™
= Y PrioeCl)ic] (@ +1-2)
1eZ™

=4,...,

The second eguality follows from the fact that each «-approximation is sharpono + Z ™.
The last equality follows from the definition of A(z, ) and (pé, —z=1l—-|z],z€ea*+
Zl‘n . |:|

We now return to the function Q, which gives the expected recourse costs for x € R"1.

It is intuitively clear that the construction of the convex hull of Q needs to be based on a
complete description of Q. Thisideais formalized in the following corollary.



Corollary 5.1 Consider the integer recourse expected value function Q, defined as

Qx) =E, |:m}!nqy " Wy>w—-Tx, ye Z'_t_21| , x eR™M, 1y
and the continuous recourse expected value function Q , defined as

Qur(x) = Ey,. [myinqy Wy >y —Tx, ye R’f} . xeR™, (12)

witho* and .+ as defined in Theorem 5.1.

Under the assumptions of Section 2, in particular that W is totally unimodular, the
function Q-+ isthe convex hull of Q if the matrix T is of full row rank. If not, then Q ,+ is
alower bound for Q.

PROOF. The result follows from Theorem 5.1 and Theorem 2.2 in [5]. ]

Example5.1 Consider the value function

v(is) = min{y:y>s1, y>52, vy €7Zy}
= max{[s1], [s21, O}, s € R?,

and the expected value function Q(x) = E, [v(w — x)], x € R2. Note that the recourse
matrix W = (1 1)’ istotally unimodular.

Let w beuniformly distributed on (0, 0.7) x (0, 1.2). Using Lemma4.3
(i) wefind that «* = (0.7, 0.2), so that by Theorem 5.1 the distribution
of the discrete random vector ¢+ is given by Pr{g,» = (0.7,0.2)} =
1/6, Pr{gp,+ = (0.7,1.2)} = 5/6.

Since T is the identity matrix, it is of full row rank. Hence, by
Corollary 5.1 the function Q ,~ is the convex hull of Q, see Figure 2.

<

We concludethat if W istotally unimodular andif T isof full row rank, then solving the
unrestricted integer recourse problem min, cx + Q(x) is equivalent to solving min, cx +
Qq+ (x). Thelatter is a continuous recourse problem with discretely distributed right-hand
side vector, for which several good algorithms exist, see e.g. [11].

6 General completerecourse

In this section we present results for the case that the recourse matrix is not totally unimod-
ular; we still assume, however, that W isintegral (which can be obtained by scaling if W is
rational) and such that the recourse structure is compl ete.

In this case the convex function Q~ is till alower bound for @, since (2) now holds
with inequality, so that

v(s) > max Af[s], seR”,
k=1,...,.K

but Q.+ can not be expected to equal to the convex hull of Q. However, we will prove that
Q.+ isadtrictly better convex approximation than the one obtained using the L P rel axation
of the second-stage problem. The latter convex function will be denoted by Q ©7, defined
as

oL (x) :=E, I:myin{qy Wy>w—Tx, ye R'J’f}] x € R™, (13
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Then Q(x) > 0 if and only if Prie® € N(x)} > 0, which is equivalent to Pr{w €
intN(x)} > 0since N(x) is an open set. By Definition 4.1, it follows that then aso
Pr{wy € N(x)} > 0, whichimplies Q,(x) > Ofor all « € [0, 1)™.

Let x be such that Q(x) > 0, implying Qq+(x) > 0. Then, since each term of (14) is
0; obviously, any optimal solution X of this problem satisfies » # 0. For an arbitrary but
fixed® € Cl. suchthat @ < o* +1, it holds

AM@—Tx)<i(e*+1—Tx) Viz=0,

.....

Then there are two possibilities:

(i) A =0,sothat (@ — Tx) =0 < A (a* +1—Tx);

(i) A #0,s0that A (@ — Tx) <& (@* +1—Tx) < i(a* +1—Tx).
We concludethat, for all @ € CL, with < o* +1,

max Af(a*+1—T max Af (@ —Tx). 16
k=1,...K (a + x) - k=1,...K (0) X) ( )
SincePriw < o* +1|w € Cf;*} > 0 by assumption (ii), and (16) holds with weak
inequality for all w € C.,, it follows that

a*?

max Ak(a*+f—Tx)>IEw|: max )»k(a)—Tx)‘a)eCf;*] (17)
k=1,....K k=1,....K
Finally, using that (17) holds with weak ineguality for all I € Z™, we see from (14) and
(15) that Qu+ (x) > QL% (x). O

Corollary 6.1 Assume that  follows a non-degenerated continuous distribution and g >
0. Then Q.- is strictly better convex approximation of Q than Q¥ in the sense of Theo-
rem6.1.

PROOF. Immediate from the observation that condition (ii) of Theorem 6.1 is trivialy
satisfied in this case. ]

Remark 6.1 If the support of w is contained in a* + Z™, then assumption (ii) of Theo-
rem 6.1 is not satisfied. In this case Q.+ = QLF since po+ = w, as can be readily verified.

Example 6.1 Consider the value function

v(is) =min{y:2y >s, ye Zy}, seR,
y

and the expected value function Q(x) = E, [v(w — x)], x € R, with w uniformly dis-
tributed on (0, 1.6). Note that the recourse structure is complete but that the recourse
matrix W = 2 is not totally unimodular.

Using Lemma 4.3 (i) we find that «* = 0.6, so that by Theorem 5.1 the distribution of
the discrete random variable g+ is given by Pr{p,« = 0.6} = 3/8, Pr{gp,~ = 1.6} = 5/8.

The assumptions of Theorem 6.1 are satisfied (with ¢ = 1 and L = {1}), so that
Qu+(x) > QLP(x) for dl x suchthat Q(x) > 0, see Figure 3.

<
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Figure 3: The functions Q, Q.+, and Q¥ of Example 6.1.

Moreover, Q.- is computationally more tractable than Q% ”. Indeed, Q- isthe expec-
tation of an LP value function with respect to the random vector ¢ .+, which is discretely
distributed by Theorem 5.1. On the other hand, Q £*' isthe expectation of the same function
with respect to the arbitrarily distributed random vector w. In particular, if the distribution
of w is continuous, each evaluation of Q¥ amounts to computing an m-dimensional inte-
gral. Evenif w isadiscrete random vector, computation of Q .+ is possibly easier than that
of QL since the number of realizations of ¢+ isnot larger than that of w.

Finally, we consider the practical use of the convex approximation Q .+ for the current
case, i.e., if therecourse matrix W is not totally unimodular.

Thefunction Q4+ can of course beused instead of Q in order to solve the corresponding
integer recourse problem approximately. It should be stressed, however, that no (non-
trivial) bound on the approximation error is known. On the other hand, this approach is
easy to implement given the availability of continuous recourse solvers (see e.g. [11]).

We believe, however, that the convex lower bound Q ,~ is most useful as a building
block in arange of special-purpose algorithms for complete integer recourse models. Sev-
era of these algorithms, such as integer L-shaped [9], stochastic branch-and-bound [13],
and structured enumeration [16] (see also [1]), use the function Q* (corresponding to
the LP relaxation) for bounding purposes. As explained above, the function Q ,+ provides
an alternative convex lower bound which in many cases is both better as well as easier to
compute.

7 Summary and conclusions

We have shown that optimal «-approximations, which are obtai ned through a specific mod-
ification of the distribution of the right-hand side parameters, provide good convex approx-
imations of the integer recourse expected value function. Indeed, if the recourse matrix is
totally unimodular then the «-approximation equal s the convex hull. For general complete
recourse structures, the result is a convex lower bound which is strictly better than the one
corresponding to the LP relaxation. In al cases, the convex approximation can be repre-
sented as the expected value function of a continuous recourse problem, whose right-hand

11



side parametersfollow an explicitly given discrete distribution.

The results of this paper generalize those obtained for models with simple integer re-
course [6] and multiple simple (integer) recourse [20]. In particular, they do not depend on
separability of the second-stage value function, which so far appeared to be an indispens-
able condition for this approach. In this sense the current results open up a wide range of
possibilities for constructing convex approximations for integer recourse models, both for
general and specific recourse structures. In future research we will combine this approach
with the use of certain classes of valid inequalities (see aso [3, 17]); similar approachesfor
mixed-integer models will also be investigated.
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