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Abstract

We consider convex approximations of the expected value function of a two-stage
integer recourse problem. The convex approximations are obtained by perturbing the
distribution of the random right-hand side vector. It is shown that the approximation
is optimal for the class of problems with totally unimodular recourse matrices. For
problems not in this class, the result is a convex lower bound that is strictly better than
the one obtained from the LP relaxation.
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1 Introduction

We consider the two-stage integer recourse problem

min
x

cx + Q(x)

s.t. Ax ≤ b

x ∈ R
n1+ ,

where

Q(x) := Eω [v(ω − T x)] , x ∈ R
n1 ,

and, for s ∈ R
m,

v(s) := min
y

qy

s.t. Wy ≥ s

y ∈ Z
n2+ .

(1)

The function v is the second-stage value function, and the function Q is called the expected
value function. These functions model the (expected) costs of recourse actions to compen-
sate for infeasibilities associated with the random goal constraints T x ≥ ω. The right-hand
side vector ω is a random vector with known cumulative distribution function (cdf) F ω .

In addition to difficulties met in the continuous recourse case (see e.g. [2, 4, 14]), this
problem is hard to solve because – due to integrality of the second-stage variables – the

∗This research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sci-
ences.

1



expected value function Q is non-convex in general, see e.g. [8]. For the special case of
simple integer recourse models, associated with W = I in (1), we gave a complete descrip-
tion of the class of (continuous) distributions of ω that result in convexity of the function
Q, see [7], allowing the construction of convex approximations of Q by approximation of
the distribution of ω, see [6]. In this paper we extend these results to obtain convex approx-
imations for the general complete recourse case (see e.g. [15]), but first we concentrate on
a special case.

2 Assumptions

We will derive our results for problems with totally unimodular (TU) recourse matrix W .
In that case, the extreme points of the polyhedral set {y ∈ R

n2 : Wy ≥ h} are integral
for any integer right-hand side h (see e.g. [12]), so that solving an LP problem over this
set results in an integer optimal solution. However, note that in our recourse problem the
right-hand side is ω − T x, which is not an integer vector in general.

A TU matrix has integer components necessarily (in fact, all components are either −1,
0, or 1). In Section 6, we drop the TU assumption on W but still assume that W is integer
(or rational, so that integrality of W can be obtained by scaling). We will show that in this
case our approach leads to a convex lower bound for Q that is strictly better than the one
obtained from the LP relaxation of (1).

Throughout, we assume that the recourse structure is

(i) complete, i.e., v < +∞, and

(ii) sufficiently expensive, i.e., v > −∞,

so that v is finite for all s ∈ R
m. Together with the assumption that Eω [|ω|] is finite, this

implies that Q is finite for all x ∈ R
n1 .

Remark 2.1 Actually, it is sufficient to require relatively complete recourse, so that v is
finite for all relevant s ∈ R

m.

3 The value function

Assuming that W is an m×n2 TU matrix, and given that v is finite, we have for all s ∈ R
m

v(s) := min
y

qy

s.t. Wy ≥ s, y ∈ Z
n2+

= min
y

qy

s.t. Wy ≥ 
s�, y ∈ R
n2+

(2)

= max
λ

λ
s�
s.t. λW ≤ q, λ ∈ R

m+,
(3)

where 
·� denotes component-wise round up. Equality (2) holds because Wy is integral for
all y ∈ Z

n2 , so that no feasible solutions are cut off if we replace the right-hand side s by
its round up; subsequently, we may relax the integrality of y because W is a TU matrix.
The equality (3) follows by (strong) LP duality.

Since the recourse structure is complete and sufficiently expensive, it follows that the
dual feasible region {λ ∈ R

m+ : λW ≤ q} is a non-empty polyhedron. Hence,

v(s) = max
k=1,...,K

λk
s�, s ∈ R
m, (4)

where λk , k = 1, . . . ,K , are the finitely many extreme points of the dual feasible set.
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Thus, v is the maximum of finitely many weighted round up functions, and hence non-
convex. However, we are not interested in convexity of v per se, but in convexity of its ex-
pectation Q(x) := Eω [v(ω − T x)], x ∈ R

n1 . Properties of the one-dimensional expected
round up function follow from results obtained in the context of simple integer recourse
(SIR) models [10, 18, 7]. In particular, in [7] a complete description is given of a class of
probability density functions (pdf) for ω ∈ R, such that the SIR expected value function is
convex if and only if ω has a pdf from this class. In the next section, we summarize and
adapt these results for the current situation.

4 Properties of the expected round up function

For any fixed λ ∈ R
m+, we define the m-dimensional round up function

R(z) := λEω [
ω − z�] , z ∈ R
m.

It is easy to see that R(z + k) = R(z) − λk, k ∈ Z
m, z ∈ R

m, so that R is linear on
every grid α+ Z

m with α = (α1, . . . , αm) ∈ [0, 1)m. It follows that any reasonable convex
approximation of R is an affine function with gradient −λ. Moreover, if such a convex
approximation is equal to R(z̄) for some z̄, then the same is true for all z ∈ z̄ + Z

m.
In this section we will show how to construct convex approximations of R using certain

approximations of the distribution of ω. To this end, we first consider the one-dimensional
round up function, for which results follow from those for simple integer recourse models.

In the literature on simple integer recourse models [10, 18, 19], results are presented in
terms of the one-dimensional functionsG(z) := Eξ

[
(
ξ − z�)+]

andH(z) := Eξ

[
(�ξ − z�)−]

,
z ∈ R, where (s)+ := max{0, s} and (s)− := max{0,−s} are the positive and negative part
of s ∈ R, respectively, and �s� is the round down of s.

Using straightforward computation, we find that the expected round up function satis-
fies

Eξ [
ξ − z�] = G(z)− H(z − 1)−
∞∑
k=1

Pr{ξ = z − k}, z ∈ R. (5)

Note that the last term vanishes if ξ follows a continuous distribution.
This leads to the following result for the one-dimensional expected round up function.

Lemma 4.1 Let ξ ∈ R be a continuous random variable with finite mean value and pdf
fξ that is constant on every interval (α + k − 1, α + k], k ∈ Z, for an arbitrary but fixed
α ∈ [0, 1). Then

Eξ [
ξ − z�] = Eϕα [ϕα − z] = µα − z, z ∈ R,

where ϕα = 
ξ − α� + α is a discrete random variable with mean value µα and support in
α + Z, with

Pr{ϕα = α + k} = Fξ (α + k)− Fξ (α + k − 1)

= Pr{ξ ∈ (α + k − 1, α + k]}, k ∈ Z,

where Fξ is the cdf of ξ .
Hence, in this case Eξ [
ξ − z�], z ∈ R, is an affine function with slope −1.

PROOF. To prove the first claim we use Corollary 5.2 in [6], which states that G(z) =
Eϕα

[
(ϕα − z)+

]
and H(z − 1) = Eϕα

[
(ϕα − z)−

]
, z ∈ R. The result now follows from

(5), since (s)+ − (s)− = s, s ∈ R.
The second claim follows trivially from the first one.
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Next we generalize this result to m-dimensional round up functions.

Lemma 4.2 Let ω ∈ R
m be a continuous random vector with joint pdf fω that is constant

on every hypercube Ck
α := ∏m

i=1(αi + ki − 1, αi + ki], k ∈ Z
m, for an arbitrary but fixed

α = (α1, . . . , αm) ∈ [0, 1)m. Then

Eω [
ω − z�] = Eϕα [ϕα − z] = µα − z, z ∈ R
m,

where ϕα = 
ω − α� + α is a discrete random vector with mean value µα and support in
α + Z

m, with

Pr{ϕα = α + k} = Pr{ω ∈ Ck
α}, k ∈ Z

m.

Hence, in this case the round up function R(z) = λEω [
ω − z�], z ∈ R
m, is affine with

gradient −λ.

PROOF. We use that

Eω [
ω − z�] =
∑
k∈Z

m

Pr{ω ∈ Ck
α}Eω

[

ω − z�

∣∣∣ ω ∈ Ck
α

]
, z ∈ R

m. (6)

For each fixed k ∈ Z
m, Pr{ω ∈ Ck

α} is either zero or the conditional distribution of ω given
ω ∈ Ck

α is uniform on Ck
α . In that case, the components of the vector ω are independent

random variables on Ck
α , with each ωi uniformly distributed on (αi + ki − 1, αi + ki],

i = 1, . . . ,m, so that

Eω

[

ω − z�

∣∣∣ ω ∈ Ck
α

]
= α + k − z, z ∈ R

m, (7)

by Lemma 4.1. Substitution of (7) in (6) proves the first claim.
The second claim follows trivially from the first one.

As in the simple integer recourse case, the main use of Lemma 4.2 is that it allows to
construct convex approximations of the generally non-convex expected round up function
by modifying the distribution of the right-hand side vector ω.

Definition 4.1 Let ω ∈ R
m be a random vector with arbitrary continuous or discrete dis-

tribution, and choose α = (α1, . . . , αm) ∈ [0, 1)m. Define the α-approximation ωα as the
random vector with joint pdf fα that is constant on every hypercubeCk

α := ∏m
i=1(αi +ki −

1, αi + ki], k ∈ Z
m, such that Pr{ωα ∈ Ck

α} = Pr{ω ∈ Ck
α}, k ∈ Z

m.

That is, for each k ∈ Z
m, the probability mass assigned to Ck

α is the same under ω and
ωα ; the conditional distribution of ωα is uniform on Ck

α .
Accordingly, we will call the function Rα , defined for each α ∈ [0, 1)m,

Rα(z) := λEωα [
ωα − z�] , z ∈ R
m,

the α-approximation of R(z) = λEω [
ω − z�]. In general, an α-approximation is neither
a lower bound nor an upper bound.

However, since R(z+ k) = R(z)− λk, k ∈ Z
m, for every z, we see that R(z)+ λz is a

periodic function, which repeats itself on every set C k
α . Thus, defining

α% ∈ argmin
{
R(z) + λz : z ∈ [0, 1)m

}
, (8)

Rα% is a lower bound for R, which is sharp at every z ∈ α% + Z
m. Moreover, since Rα% is

affine by Lemma 4.2, it is the pointwise largest convex lower bound of R. In other words,
Rα% is the convex hull of R.

Lemma 4.3 Consider the convex hull Rα% of the function R. The components α%
i , i =

1, . . . ,m, of the parameter vector α% can be determined analytically in the following cases.
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(i) If the marginal distribution of ωi is continuous with pdf fi (assumed to be of bounded
variation), then α%

i is one of the solutions of

−1 ∈
[
−

∞∑
k=−∞

f−
i (zi + k),−

∞∑
k=−∞

f+
i (zi + k)

]
, zi ∈ [0, 1),

with f−
i and f +

i the left and right continuous version of the pdf fi .

(ii) Let the marginal distribution of ωi be discrete with finitely many different fractional
values in its support. That is, the support is contained in

⋃Si
s=1{ω̄i

s + Z}, where
0 ≤ ω̄i

1 < ω̄i
2 < . . . < ω̄i

Si < 1. Then α%i can be chosen equal to any ω̄i
k such that

k ∈ argmin
n=1,...,Si




Si∑
s=n+1

psi + ω̄i
n


 ,

where ps
i := Pr{ωi ∈ ω̄i

s + Z}, s = 1, . . . , Si .

PROOF. According to (8), α% is a solution of min {R(z) + λz : z ∈ [0, 1)m}, where λ ≥ 0
is fixed. Since

min
z∈[0,1)m

{
R(z)+ λz

} = min
zi∈[0,1)∀i

m∑
i=1

λi
(
Ri(zi) + zi

)

=
m∑
i=1

λi min
zi∈[0,1)

{
Ri(zi)+ zi

}
,

we see that

α%i ∈ argmin {Ri(zi)+ zi : zi ∈ [0, 1)} , (9)

so that the components of α% can be determined independently.

(i) If the marginal distribution of ωi is continuous, we can resort to results known for
simple integer recourse models. Using (5), it follows from the differentiability prop-
erties of the functionsG and H , discussed in [18], that the left derivativeR−

i and right
derivative R+

i of the function Ri exist everywhere. Thus, being a global minimizer of
(9), α%i satisfies −1 ∈ [

R−
i (α

%
i ), R

+
i (α

%
i )

]
, with

R−
i (zi) = −

∞∑
k=−∞

f−
i (zi + k) and R+

i (zi) = −
∞∑

k=−∞
f+
i (zi + k),

where f −
i and f +

i denote the left and right continuous versions of the pdf f i of ωi ,
respectively.

(ii) If the marginal distribution of ωi is discrete, then the functionRi is lower semicontin-
uous with a discontinuity at every point zi such that Pr{ωi ∈ zi + Z} > 0. Moreover,
Ri is constant in between discontinuity points. Hence, if the discrete distribution sat-
isfies the conditions, the function Ri(zi) + zi attains its minimum value on [0, 1) in
one of the fractional values ω̄i

s , s = 1, . . . , Si .

Since 
t� = 
t − l� + l, l ∈ Z, for all t ∈ R, it holds

Ri(ω̄i
k) = Eωi

[

ωi − ω̄i

k�
]

= Eωi

[

ωi − �ωi� − ω̄i

k�
]

+ Eωi [�ωi�]

=
Si∑
s=1

psi 
ω̄i
s − ω̄i

k� + Eωi [�ωi�] .
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Figure 1: The functions Ri (dashed) and its convex hull Rα%i
of Example 4.1.

Using that 
ω̄i
s − ω̄i

k� = 0 if s ≤ k and 
ω̄i
s − ω̄i

k� = 1 if s > k, we see that

Ri(ω̄i
k) + ω̄i

k =
Si∑

s=k+1

psi + Eωi [�ωi�] + ω̄i
k. (10)

Since the second term of the right-hand side of (10) is a constant, this completes the
proof.

Example 4.1 Let the random variable ωi be uniformly distributed on (0, ui), with 0 <

ui < 1. Then, for zi ∈ [0, 1),

−
∞∑

k=−∞
f−
i (zi + k) =

{ −1/ui, zi ∈ (0, ui]
0, otherwise,

and

−
∞∑

k=−∞
f+
i (zi + k) =

{ −1/ui, zi ∈ [0, ui)
0, otherwise,

so that α%i = ui . See Figure 1 for the corresponding functions Ri and Rα%i
. �

5 Convex approximation of the expected value function

We now return to the analysis of the expected value function Q. Instead of studying Q as a
function of the first-stage variables x ∈ R

n1+ , we first consider it as a function of the tender
variables z := T x ∈ R

m. To avoid confusion, we will denote the latter function by Q.

Theorem 5.1 Consider the integer recourse expected value function Q, defined as

Q(z) = Eω

[
min
y

qy : Wy ≥ ω − z, y ∈ Z
n2+

]
, z ∈ R

m.

Under the assumptions of Section 2, in particular that W is totally unimodular, the convex
hull of Q is the function Qα% , defined as

Qα%(z) = Eϕα%

[
min
y

qy : Wy ≥ ϕα% − z, y ∈ R
n2+

]
, z ∈ R

m,

where α% is defined by (8), and ϕα% is the discrete random vector ϕα% = 
ω − α%� + α%

with support in α% + Z
m, and

Pr{ϕα% = α% + k} = Pr{ω ∈ Ck
α%}, k ∈ Z

m,

with Ck
α% := ∏m

i=1

(
α%i + ki − 1, α%i + ki

]
, k ∈ Z

m.

6



PROOF. First we will prove that Qα% is a lower bound for Q, and subsequently that
Qα%(z) = Q(z) for all z ∈ α% + Z

m. This completes the proof, since all vertices of
the polyhedral function Qα% are contained in α% + Z

m.
Using the dual representation (4) of the value function v, we have

Q(z) = Eω

[
max

k=1,...,K
λk
ω − z�

]
, z ∈ R

m,

and, analogously,

Qα%(z) = Eϕα%

[
max

k=1,...,K
λk(ϕα% − z)

]
, z ∈ R

m.

Conditioning on the events ω ∈ Cl
α% , l ∈ Z

m, we obtain, for z ∈ R
m,

Q(z) =
∑
l∈Z

m

Pr{ω ∈ Cl
α%} Eω

[
max

k=1,...,K
λk
ω − z�

∣∣∣ ω ∈ Cl
α%

]

≥
∑
l∈Z

m

Pr{ω ∈ Cl
α%} max

k=1,...,K
λkEω

[

ω − z�

∣∣∣ ω ∈ Cl
α%

]

≥
∑
l∈Z

m

Pr{ω ∈ Cl
α%} max

k=1,...,K
λkEωα%

[

ωα% − z�

∣∣∣ ωα% ∈ Cl
α%

]

=
∑
l∈Z

m

Pr{ω ∈ Cl
α%} max

k=1,...,K
λk

(
α% + l − z

)

=
∑
l∈Z

m

Pr{ϕα% = α% + l} max
k=1,...,K

λk
(
α% + l − z

) = Qα%(z).

The second inequality is valid because each λk is nonnegative, so that the α-approximation
λkEωα%

[
ωα% − z� ∣∣ ωα% ∈ Cl
α%

]
is a lower bound for λkEω

[
ω − z� ∣∣ ω ∈ Cl
α%

]
by the

choice of α%. The subsequent equality holds by Lemma 4.2.
It remains to prove that Qα% = Q on α% + Z

m. Consider a fixed z̄ ∈ α% + Z
m and a

fixed l ∈ Z
m. Then 
ω − z̄� = l − �z̄� is constant for all ω ∈ Cl

α , so that there exists a
λ(z̄, l) satisfying

λ(z̄, l) ∈ argmax
k=1,...,K

λk
ω − z̄� ∀ω ∈ Cl
α.

Since this is true for every z̄ ∈ α% + Z
m and l ∈ Z

m, it follows that, for z ∈ α% + Z
m,

Q(z) =
∑
l∈Z

m

Pr{ω ∈ Cl
α%} λ(z, l) Eω

[

ω − z�

∣∣∣ ω ∈ Cl
α%

]

=
∑
l∈Z

m

Pr{ω ∈ Cl
α%} λ(z, l) Eωα%

[

ωα% − z�

∣∣∣ ωα% ∈ Cl
α%

]

=
∑
l∈Z

m

Pr{ω ∈ Cl
α%} λ(z, l)

(
α% + l − z

)

=
∑
l∈Z

m

Pr{ω ∈ Cl
α%} max

k=1,...,K
λk

(
α% + l − z

)
.

The second equality follows from the fact that each α-approximation is sharp on α + Z
m.

The last equality follows from the definition of λ(z, l) and ϕ l
α% − z = l − �z�, z ∈ α% +

Z
m.

We now return to the function Q, which gives the expected recourse costs for x ∈ R
n1 .

It is intuitively clear that the construction of the convex hull of Q needs to be based on a
complete description of Q. This idea is formalized in the following corollary.
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Corollary 5.1 Consider the integer recourse expected value function Q, defined as

Q(x) = Eω

[
min
y

qy : Wy ≥ ω − T x, y ∈ Z
n2+

]
, x ∈ R

n1, (11)

and the continuous recourse expected value function Q α% , defined as

Qα%(x) = Eϕα%

[
min
y

qy : Wy ≥ ϕα% − T x, y ∈ R
n2+

]
, x ∈ R

n1, (12)

with α% and ϕα% as defined in Theorem 5.1.
Under the assumptions of Section 2, in particular that W is totally unimodular, the

function Qα% is the convex hull of Q if the matrix T is of full row rank. If not, then Q α% is
a lower bound for Q.

PROOF. The result follows from Theorem 5.1 and Theorem 2.2 in [5].

Example 5.1 Consider the value function

v(s) = min{y : y ≥ s1, y ≥ s2, y ∈ Z+}
= max{
s1�, 
s2�, 0}, s ∈ R

2,

and the expected value function Q(x) = Eω [v(ω − x)], x ∈ R
2. Note that the recourse

matrix W = (1 1)′ is totally unimodular.

−0.3 0.7

−0.8

0.2

1.2

Letω be uniformly distributed on (0, 0.7)×(0, 1.2). Using Lemma 4.3
(i) we find that α% = (0.7, 0.2), so that by Theorem 5.1 the distribution
of the discrete random vector ϕα% is given by Pr{ϕα% = (0.7, 0.2)} =
1/6, Pr{ϕα% = (0.7, 1.2)} = 5/6.

Since T is the identity matrix, it is of full row rank. Hence, by
Corollary 5.1 the function Qα% is the convex hull of Q, see Figure 2.

�
We conclude that if W is totally unimodular and if T is of full row rank, then solving the

unrestricted integer recourse problem minx cx + Q(x) is equivalent to solving minx cx +
Qα%(x). The latter is a continuous recourse problem with discretely distributed right-hand
side vector, for which several good algorithms exist, see e.g. [11].

6 General complete recourse

In this section we present results for the case that the recourse matrix is not totally unimod-
ular; we still assume, however, that W is integral (which can be obtained by scaling if W is
rational) and such that the recourse structure is complete.

In this case the convex function Qα% is still a lower bound for Q, since (2) now holds
with inequality, so that

v(s) ≥ max
k=1,...,K

λk
s�, s ∈ R
m,

but Qα% can not be expected to equal to the convex hull of Q. However, we will prove that
Qα% is a strictly better convex approximation than the one obtained using the LP relaxation
of the second-stage problem. The latter convex function will be denoted by Q LP , defined
as

QLP (x) := Eω

[
min
y

{
qy : Wy ≥ ω − T x, y ∈ R

n2+
}]

, x ∈ R
n1 . (13)
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Figure 2: The functions Q (top left) and its convex hull Qα% (top right) of Example 5.1;
both functions are shown in the bottom two figures.

Theorem 6.1 Consider the functions Qα% and QLP , defined by (12) and (13) respectively,
which both are convex lower bounds for the integer recourse expected value function Q,
defined by (11).

(a) Qα% ≥ QLP

(b) Assume

(i) q ≥ 0, so that 0 is a trivial lower bound for v and Q;

(ii) there exists a subset L of Z
m such that the support / ⊂ ⋃

l∈L {ω : ω ≤ α% + l}
and Pr{ω < α% + l

∣∣ ω ∈ Cl
α% } > 0 for all l ∈ L.

Then the function Qα% is a strictly better convex approximation of Q than QLP , in the
sense that Q(x) > 0 implies Qα%(x) > QLP (x).

PROOF. As before, we condition on the events ω ∈ C l
α% , l ∈ Z

m, to obtain, for x ∈ R
n1 ,

Qα%(x) =
∑
l∈Z

m

Pr{ω ∈ Cl
α%} max

k=1,...,K
λk

(
α% + l − T x

)
(14)

and

QLP (x) =
∑
l∈Z

m

Pr{ω ∈ Cl
α%} Eω

[
max

k=1,...,K
λk (ω − T x)

∣∣∣ ω ∈ Cl
α%

]
. (15)

For each l ∈ Z
m it follows from the definition of Cl

α% = ∏m
i=1

(
α%i + li − 1, α%i + li

]
that

α% + l ≥ ω for all ω ∈ Cl
α% . Thus, for k = 1, . . . ,K , λk (α% + l − T x) ≥ λk (ω − T x) for

all ω ∈ Cl
α% , since λk ≥ 0. Substitution in (14) and (15) proves that Qα% ≥ QLP .

To prove (b), we first show that Q(x) > 0 implies Qα%(x) > 0. To this end, define

N(x) := {
t ∈ R

m : v(t − T x) > 0
}
, x ∈ R

n1 .

9



Then Q(x) > 0 if and only if Pr{ω ∈ N(x)} > 0, which is equivalent to Pr{ω ∈
intN(x)} > 0 since N(x) is an open set. By Definition 4.1, it follows that then also
Pr{ωα ∈ N(x)} > 0, which implies Qα(x) > 0 for all α ∈ [0, 1)m.

Let x be such that Q(x) > 0, implying Qα%(x) > 0. Then, since each term of (14) is
non-negative by assumption (i), there exists an l̄ ∈ L such that maxk=1,...,K λk

(
α% + l̄ − T x

)
>

0; obviously, any optimal solution λ̄ of this problem satisfies λ̄ �= 0. For an arbitrary but
fixed ω̄ ∈ Cl

α% such that ω̄ < α% + l̄, it holds

λ (ω̄ − T x) ≤ λ
(
α% + l̄ − T x

) ∀λ ≥ 0,

with strict inequality unless λ = 0. Let λ̂ be an optimal solution of maxk=1,...,K λk (ω̄ − T x).
Then there are two possibilities:

(i) λ̂ = 0, so that λ̂ (ω̄ − T x) = 0 < λ̄
(
α% + l̄ − T x

)
;

(ii) λ̂ �= 0, so that λ̂ (ω̄ − T x) < λ̂
(
α% + l̄ − T x

) ≤ λ̄
(
α% + l̄ − T x

)
.

We conclude that, for all ω̄ ∈ Cl̄
α% with ω̄ < α% + l̄,

max
k=1,...,K

λk
(
α% + l̄ − T x

)
> max

k=1,...,K
λk (ω̄ − T x) . (16)

Since Pr{ω < α% + l̄ | ω ∈ Cl̄
α%} > 0 by assumption (ii), and (16) holds with weak

inequality for all ω ∈ Cl̄
α% , it follows that

max
k=1,...,K

λk
(
α% + l̄ − T x

)
> Eω

[
max

k=1,...,K
λk (ω − T x)

∣∣∣ ω ∈ Cl̄
α%

]
. (17)

Finally, using that (17) holds with weak inequality for all l ∈ Z
m, we see from (14) and

(15) that Qα%(x) > QLP (x).

Corollary 6.1 Assume that ω follows a non-degenerated continuous distribution and q ≥
0. Then Qα% is strictly better convex approximation of Q than QLP in the sense of Theo-
rem 6.1.

PROOF. Immediate from the observation that condition (ii) of Theorem 6.1 is trivially
satisfied in this case.

Remark 6.1 If the support of ω is contained in α% + Z
m, then assumption (ii) of Theo-

rem 6.1 is not satisfied. In this case Qα% = QLP since ϕα% = ω, as can be readily verified.

Example 6.1 Consider the value function

v(s) = min
y

{y : 2y ≥ s, y ∈ Z+}, s ∈ R,

and the expected value function Q(x) = Eω [v(ω − x)], x ∈ R, with ω uniformly dis-
tributed on (0, 1.6). Note that the recourse structure is complete but that the recourse
matrix W = 2 is not totally unimodular.

Using Lemma 4.3 (i) we find that α% = 0.6, so that by Theorem 5.1 the distribution of
the discrete random variable ϕα% is given by Pr{ϕα% = 0.6} = 3/8, Pr{ϕα% = 1.6} = 5/8.

The assumptions of Theorem 6.1 are satisfied (with q = 1 and L = {1}), so that
Qα%(x) > QLP (x) for all x such that Q(x) > 0, see Figure 3.

�
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Figure 3: The functions Q, Qα% , and QLP of Example 6.1.

Moreover, Qα% is computationally more tractable than QLP . Indeed, Qα% is the expec-
tation of an LP value function with respect to the random vector ϕα% , which is discretely
distributed by Theorem 5.1. On the other hand, QLP is the expectation of the same function
with respect to the arbitrarily distributed random vector ω. In particular, if the distribution
of ω is continuous, each evaluation of QLP amounts to computing an m-dimensional inte-
gral. Even if ω is a discrete random vector, computation of Q α% is possibly easier than that
of QLP , since the number of realizations of ϕα% is not larger than that of ω.

Finally, we consider the practical use of the convex approximation Q α% for the current
case, i.e., if the recourse matrix W is not totally unimodular.

The functionQα% can of course be used instead of Q in order to solve the corresponding
integer recourse problem approximately. It should be stressed, however, that no (non-
trivial) bound on the approximation error is known. On the other hand, this approach is
easy to implement given the availability of continuous recourse solvers (see e.g. [11]).

We believe, however, that the convex lower bound Qα% is most useful as a building
block in a range of special-purpose algorithms for complete integer recourse models. Sev-
eral of these algorithms, such as integer L-shaped [9], stochastic branch-and-bound [13],
and structured enumeration [16] (see also [1]), use the function QLP (corresponding to
the LP relaxation) for bounding purposes. As explained above, the function Q α% provides
an alternative convex lower bound which in many cases is both better as well as easier to
compute.

7 Summary and conclusions

We have shown that optimal α-approximations, which are obtained through a specific mod-
ification of the distribution of the right-hand side parameters, provide good convex approx-
imations of the integer recourse expected value function. Indeed, if the recourse matrix is
totally unimodular then the α-approximation equals the convex hull. For general complete
recourse structures, the result is a convex lower bound which is strictly better than the one
corresponding to the LP relaxation. In all cases, the convex approximation can be repre-
sented as the expected value function of a continuous recourse problem, whose right-hand

11



side parameters follow an explicitly given discrete distribution.
The results of this paper generalize those obtained for models with simple integer re-

course [6] and multiple simple (integer) recourse [20]. In particular, they do not depend on
separability of the second-stage value function, which so far appeared to be an indispens-
able condition for this approach. In this sense the current results open up a wide range of
possibilities for constructing convex approximations for integer recourse models, both for
general and specific recourse structures. In future research we will combine this approach
with the use of certain classes of valid inequalities (see also [3, 17]); similar approaches for
mixed-integer models will also be investigated.
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