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Abstract

We consider multistage stochastic optimization models. Logical or integrality
constraints, frequently present in optimization models, limit the application of
powerful convex analysis tools. Different Lagrangian relaxation schemes and the
resulting decomposition approaches provide estimates of the optimal value. We
formulate convex optimization models equivalent to the dual problems of the
Lagrangian relaxations. Our main results compare the resulting duality gap for
these decomposition schemes. Attention is paid also to programs that model
large systems with loosely coupled components.
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1 Introduction

Stochastic dynamic programs arise as optimization models of systems driven by some
discrete-time stochastic process {&; : t = 1,2,...}. Let & be defined on some probability
space (2, F,P) with values in R**. More precisely, let & € Li(Q, F,P;R%). Let
us assume that our modeling time horizon includes 7' time periods, and we make
sequential decisions z; € R% at every time interval (stage) ¢ = 1,2,...,T based on
the information available at that time. We shall denote the information available at
time period ¢ by (; := (&1,&s, - -+, &). The condition that x; may depend only on (; is
known as nonanticipativity condition. This property is equivalent to the measurability
of x; with respect to the o-algebra F; C F that is generated by (;. Clearly, the set
{F:} forms a filtration, i.e., F; C F; 1, and we assume that F; = {0, Q} and Fr = F.
Furthermore, there are constraints associated with each time period expressed in the

following general form:
xtEXt(Ct), t:1,2,...,T.
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We shall assume that the sets X; are compact P-almost surely. Furthermore, we as-
sume that X; are nonconvex sets, which may be due to different reasons. A typical
example are mixed-integer optimization problems. Some integrality requirements may
be incorporated into the definition of the set X3, e.g., (x:); € Z, j € J; for some index
set J; 1 | J¢| < qi, where Z is the set of all integers. Other constraints in the description
of the set X; may involve nonconvex functions as well.

The dynamics of the system is described by the following inequality:

ZAt,r(Ct)fCr > Ct(Ct)-
=1

We shall consider the following stochastic optimization problem:

mmin ]E[ XT:ft(Ct,xt)] (1)

t
subject to ZAt,T(Q)IT >a(¢G) t=1,...T, P-as., (2)
T=1
T € Xt(ct) t = ]_, PN T, ]P’—a.s., (3)
2y = ]E[xt|.7-"t] t=1,....T, P-as.. (4)

Throughout the paper we shall assume that all necessary integrability requirements are
satisfied, so that the problem is well defined. Moreover, all functions f;, t = 1,2,...T
will be assumed lower semi-continuous with respect to the second argument.

Let us summarize that the optimization model (1)-(4) consists in minimizing the ex-
pected cost subject to three groups of constraints. The first group (2) expresses the
dynamics of the system. The second group are constraints describing feasibility require-
ments (3) for the decisions x; at stage ¢, which may include integrality requirements
for some of the decisions. The nonanticipativity condition (4) is a linear constraint on
the decision process. All constraints are imposed P-almost surely.

In order to solve such a stochastic optimization problem, the stochastic process is
approximated by a set of scenarios. They form the basis of a deterministic optimiza-
tion problem which replaces the stochastic problem. We shall refer to the scenario-
based deterministic problem as a multistage stochastic programming problem. The
approximation typically leads to a model of very large dimensions. The large size,
the combination of different type of constraints, and the nonconvexity (e.g., integrality
requirements) turn the multistage problem into a theoretical and numerical challenge.
In the recent years different decomposition approaches to these type of problems were
suggested (see [6, 26] for an overview). Let us mention the primal nested Benders
decomposition and the regularized decomposition methods (see [4, 23, 24]). Dual ap-
proaches associate Lagrange multipliers with some group of the constraints and make
use of the solution of some “dual” problem. Most of the approaches as progressive
hedging ([19]), and the augmented Lagrangian decomposition suggested in (25, 18]),
relax the nonanticipativity constraints (4). Lagrange multipliers properties of some



inequality constraints like those that may be incorporated in (3) are investigated in
[20] but no relaxation or decomposition is further pursued there. Nodal decomposi-
tion is a technique that associates Lagrange multipliers with dynamics constraints (2)
(see [22]). Decomposition methods for stochastic programming models with integrality
constraints are suggested in [7, 8, 21]. Our analysis will focus on comparing the dual-
ity gaps for the established decomposition techniques. The main result, presented in
Section 4 will show that the scenario decomposition provides a better bound (smaller
duality gap) than the nodal decomposition. The issue how to estimate the duality
gap for mixed-integer optimization problems, and how to compare different relaxation
approaches is investigated in [1, 3, 13, 12, 16, 14]. The general results and techniques in
these papers are not applicable to estimate and compare the stochastic programming
decomposition approaches which we consider. The specific structure of the stochastic
models requires different approach, however, our study is inspired by those works. In
the context of stochastic programming some related research is presented in [5, 27, 28].
In the papers [5, 28] the authors try to establish quantitative estimates for the duality
gap arising when scenario decomposition approach is applied to solving mixed-integer
multistage stochastic programs. The example presented in the paper [27] contradicts
some of the results obtained in [5].

Another decomposition approach has been suggested for the unit commitment prob-
lem under uncertain load (cf.[10, 17]). For related work we refer to [2, 9, 29]. The
decomposition is based on a certain type of structure of the model, which is frequently
present in models of large systems. Many complex systems consist of components,
which require their own independent model and have costs associated with their oper-
ation. The operation of the components is further coordinated by constraints linking
their models. Therefore, the model of the whole system has to large extend a separable
structure with respect to the system’s components. We shall place a special attention
to the decomposition technique, which takes advantage of this property. We call this
approach geographical decomposition. The precise description of the model and its
analysis are presented in Section 5. The geographical decomposition is compared to
the nodal and scenario decomposition in Section 6. For an optimization problem we
introduce a measure of sensitivity to relaxation of constraints and use it to characterize
the relative effectiveness of the decomposition approaches.

2 Formulations of multistage stochastic program-
ming problems based on scenarios

Let us consider the multistage problem based on S scenarios. We may think of it as a
special case of the stochastic program in which the set €2 is finite, i.e., Q@ = {wy, ..., ws}.
For simplicity we shall identify each scenario w, with its index s, and from now on, we
shall assume that Q = {1,2,...,S}. In this case F is the power set of  and P({s}) =
ps, s = 1,2,...,5 with ZSSZI ps = 1. We denote the value of the process ¢ for the
scenario s at stage ¢ by &, ;. Correspondingly, z,; will denote the value of the decision
for the scenario s at stage ¢, where s = 1,2,...,S and ¢t =1,2,...,T. There exists a
finite partition & of € for each ¢, t = 1,2,...,T, such that & generates the o-algebra
F:. Moreover, since F; form a filtration, each element C' of &; is further partitioned into



sets Cj, j = 1,...,Sc, which are members of the partition &;. Clearly, the partition
Er consists of the members {s}, s =1,2,...,S. Using the partitioning we can express
the conditional expectation with respect to F; in the nonanticipativity constraint as
the following sum:

Efe: | 7] = CX; % / 24(w)P(dw)ye = CX; ( Zcml( Zcpsxs,»x@

Here yc denotes the characteristic function of the set C' € &. We define for each
scenario o the set C,; to be the unique element of & that contains . Then the
nonanticipativity constraint corresponds the following system of equations

Top = ( Z ps) " Z ps¥sy o=1,2...,5t=12,...T.
s€Cqyt s€Cp,t

For t = 1 we have & = {Q}, and the latter condition reads

S
x0'71: E psx&l 0-:]-727"'737
s=1

i.e., the nonanticipativity condition is equivalent to the equations z1; = 227 = --- =
Ts1-

The nonanticipativity constraint can be formulated in another way which yields a
simple and sparse structure (see [18]). Here is how it goes. Let the last common stage
for the scenarios ( and 6 be denoted by

tmaX(C7 9) = max{t . <T = 9,” T = ]_, . ,t}

We can always order the scenarios 1,2,...s so that t™*({,( + 1) = max{t™**((, j) :
J > (}. Next for every scenario s and every stage ¢, we define the sibling of s as follows:

(s ) = s+1 if (s, s4+1) >t
| min{y: (s, j) >t} otherwise

Observe that for every ¢, the mapping a(-,t) defines a permutation of ©, which maps
bundles of undistinguishable scenarios onto themselves. Using this mapping we can
formulate the nonanticipativity constraint as

Tot = Ta(sp)y forallt =1,...T, and s € Q).

We can formulate the stochastic dynamic problem as a multistage stochastic program-
ming problem in the following manner:

T S
m:vln ]E|: ZZ fs,t((s,taxs,t) (5)

t=1 s=1
subject to
t
Z At7T(<S,t)xS7T Z C&t((s,t) t= 17 s ,T, (6)
=1
'Ts7t€Xs,t t:]-v"'aTv (7)
xsyt:xa(&tm tzl,...,T,3:1,2,...,S. (8)



Generally, the number of elements in the partition & corresponds to the number of
realizations or sample paths of ¢ at time period ¢ and to the number of realization
of x at time period ¢t. Graphical representation of the relations between the elements
of & and the elements of &, leads to a tree. The nodes stand for the elements
of the partitions &, e.g., the root node stands for the value of ¢ at the time period
t = 1, and a branching node corresponds to a member of & that is partitioned and
represented as union of sets members of £ ;. The tree expresses the relations between
the scenarios. The structure of the decisions can be represented by the same tree as
well because any z,; and z;; are undistinguishable for s € C,l € C, and C € &; due
to the nonanticipativity constraint. Therefore, we can associate both the realizations
of the process {;; and the decisions z,; with the nodes of the tree. Let us enumerate
the nodes of the tree setting n = 1 for the root node. Every other node n has a
unique predecessor node a(n). Every node n has a set of successors S(n). The set of
successors is empty for the terminal nodes (leaves). Each member C of any partition
Et=1,2,...,T, is associated in an unique way with a node n. Let us observe that
this is a unique correspondence 3 : (s,t) — n assigning a node n to a scenario s at
a certain stage t. Note that (,; represents a path from the root to a certain node
n = [(s,t). We shall denote this path by ¢, and its length by ¢(n). Note also that ¢(n)
is the number of the stage at which the node occurs. A scenario is a path from the root
to a leaf of the tree. Let us observe that S(n) = 0 for all nodes n = (s, T'). These are
exactly the terminal nodes representing a member {s} of &r. Thus, the correspondence
v :n — s is well defined by setting y(n) = s if n = B(s,T).

Using the probabilities of the scenarios, we can define probabilities associated with the
nodes of the tree according to the following recursive procedure:

_— { Pryv(n) for all n such that S(n) =0

Tn = D mes(n) Tm for all other nodes n.

Let N; for ¢t = 1,2,...,T denote the set of nodes at stage t, i.e., Ny = {n : t(n) = t}.
It holds Z 7, = 1 for each period t = 1,2,...,T. Clearly, |[Ny| = S. Let us denote

neNt
the number of all nodes by N. Using the mapping /3, we can introduce a shorthand

notation as follows. For all (s,t) let n = (s, t), then
fn(xn) = ft(CS,ta xs,t)

Xy = Xs7t
Ang(s.r) = Atr(Cot)
Cp 1= Ct(CS,t)-

At this point we can formulate the multistage problem based on the scenario tree in
the following way:

€xr

min Z T fn(T0) (9)

subject to
Y Ansre > m=12,... N, (10)
TECR
2, € X, n=12...N. (11)



This formulation of the multistage problem is commonly called a primal formulation.
Let us observe that the formulation with respect to scenarios can be obtained by split-
ting the decision variables in (9)-(11) for each scenario and formulating the constraints
for all split variables and introducing the explicit nonanticipativity constraint (8). The
latter constraint is omitted in the model (9)-(11) because it is reflected in the tree
structure of the decisions.

3 Lagrangian relaxation approaches and their dual
equivalent convex problems

We can distinguish three relaxation ideas which lead to decomposition of the multistage
optimization model:

e Lagrange multipliers are associated with the nonanticipativity constraints in the
extended formulation (5)-(8). The problem decomposes into S subproblems, each
one in (Zle nt)-dimensional decision space expressing the optimal operation of
the system under the realization of each scenario. This approach is frequently
called scenario decomposition or scenario disaggregation.

e Lagrange multipliers are associated with the dynamic constraints at each node
of the scenario tree. Let us emphasize that this formulation involves generally
a much smaller decision space (N << ST). The problem decomposes into N
subproblems each one in an n;-dimensional decision space (for t = 1,2,...,T).
The subproblems model the optimal operation of the system under the conditions
determined by the node of the tree. This approach is called nodal decomposition
in [22].

e Lagrangian relaxation by decoupling system components when the multistage
program has loosely coupled structure. This approach will be called geographical
decomposition in Section 5.

For more information about the scenario and nodal decomposition the reader is re-
ferred to [22, 19]. In the next subsections we shall describe the Lagrange function, the
dual functional, and review some features of the first two relaxation approaches. The
third approach requires a more precise description, so we defer its discussion to the
next section.

Let us first recall some basic notation and theory. The conjugate function f* : R" — R
of a function f : R — R is defined as follows:

f*(y) =sup {(y,z) — f(z): z € R"}.

Here R = R U {co}. Convexity is not needed for the conjugacy operation to make
sense. We just need to assume that f is not identical to infinity and there exists an
affine minorant of f. Note that this assumption implies that f(x) > —oco for all x € R".



The biconjugate function f** of f is defined by
f () = (f)"(x) =sup {{y.2) — f*(y) : y e R"}.

It is known that this operation provides the close-convexification of f.

Lemma 3.1 ([15], Ch.X, Theorem 1.3.5, p.45) Assume that f is not identical to
infinity and there exists an affine minorant of f. Then
epif** = co(epif).

Here epif refers to the epigraph of f and o denotes the operation of taking the convex
hull and closure. Thus, the biconjugate function f** is the closed convex hull of the
function f, i.e., the largest lower semicontinuous convex function below f.

Let us observe the following fact.

Lemma 3.2 Assume that f : R — R has an affine minorant. If f is a sum of
a linear and nonlinear functions, i.e., f(x) = aTz + g(z) for some a € R, then

f*(x) = 'z + g (x).
Proof: We have f*(y) = sup{y’z —aTx — g(z) : x € R"} = g*(y — a) by definition of
the conjugate function. Furthermore,
f(z) = sup{Ty— f*(y):y e R} =sup{z"(y —a) —g*(y —a) + o’z : y € R"}
= sup{z’(y—a)— g (y—a):y eR"}+a’ 2= g*(2) +a’ 2

This proves the statement. O

The indicator of a nonempty set A will be denoted by

Salz) = 0 ifre A
AVT) = +00 otherwise

Clearly, it holds that [§4]** = 0.4+, where A** =70 A.
Given the optimization problem

min f(z) subject to
reX
a,-xgbi, izl,...,l,

where f is a finite lower semicontinuous function, we denote its dual function by D(y),
ie.,

!
D(y) = min{f(x) - Zyi(bi —a;r) 1 € X}, yeR,.
i=1
Further, we can collect the nonlinearities and nonconvexities of f and X into f using
the indicator function of X. We define
fx=Ff+0x.

We recall a result due to the pioneering work [11], also formulated in [16], which will
be applied here.



Theorem 3.3 ([11, 16]) Assume that X is a compact set. The function D is also
the dual function associated with the following problem.:

inf[fx]™(x) subject to a;x <b;, i=1,...,1. (12)
Moreover, assume that there is a feasible point T lying in the relative interior of

dom[fx]*™*. Then D attains its mazimum, which is equal to the infimal value of (12).

3.1 Scenario decomposition

For simplicity, we assume that the dimension of the decision vector ¢; is the same for
all stages, i.e., ¢ = r. All observations of this paper can be carried out without this
assumption, which merely simplifies notation.

We transform the scenario formulation of the multistage problem in the following way:

T S
min 3 19
t=1 s=1
subject to

f&t((s,taxs,t) S Utsa -Ts7t € Xs,ta (14)
t

D A (Gp)sr > eo(Con)s (15)

=1

Tot = Tasp)t, S=1,2,...,8 t=12,...T. (16)

We associate a Lagrange multiplier g € RTS=N)" with the nonanticipativity constraint

(16). Both formulations of the nonanticipativity constraint can be used for our analysis.
The only issue relevant to our considerations is that the nonanticipativity condition is
expressed by linear equality constraints. The Lagrange function reads:

S T

Lna(xa v, ,U/) = Zps Z [vts + ,U/s,t(x&t - xa(s,t),t)]
s=1

t=1

The dual functional is defined as follows:
s
D™ (n) = inf{Ln“(x,v,u) : (z,v) € % Xsn“}
s=1

where the set of feasible solutions X"* = x%_ X" is defined by setting X™* for each
scenario s, s = 1,2,...,5, to be the set

S

xne — {ys c RT(?‘-H) 3fs,t(xs7t) < Uts, Tst € Xsm

t
ZAt,T(S)xSJ > Cs.ts t = 1, .. T’}7

=1
where y* = (z51,..., 257, v],...,v5). The dual problem is:
sup {D"*(p) : p € R(ST_N)’"}. (17)

8



The dual functional decomposes into S subproblems associated with each scenario.
Each subproblem optimizes the operation of the system when the stochastic process
follows a particular scenario. We introduce the functions

T
_ E : s
- psvta
t=1

which is the part of the objective function associated with the scenario s (s = 1,...,5).
Let us consider the following convex optimization problem:

S
infz[%a] (y*)  subject to (16). (18)
s=1

Proposition 3.4 The functional D™ is also the dual functional of problem (18).
Moreover, assume that the problem (13)-(16) has a feasible solution lying in the rela-
tive interior of the set [X"]**. Then D" attains its mazimum, which is equal to the

infimal value of (18).

Proof: According to Theorem 3.3 the dual functional D™ is also a dual functional to
the following problem:

min[(iFs)Xm]**(y) subject to  (16).

s=1

Due to the linearity of Fj (Lemma 3.2) we obtain:

[( Z F) W] Z F® 4 §yna]™( Z F?(y*) + [6ama]™ (y)

s=1

Further, due to the separability of the set X" it holds true that

S
[5xna]** (y) X”“ ok Z (5Xna ok = Z |:5XSTML:| (ys)
s=1

Combining the two equations, we obtaln:

(2F) 1700 = P + Yol () - > [ )] )

= Z [F/’ipa] **(?/8)

Let us observe also that dom [( Zle Fs> ] = [X”“] . Thus the constraint quali-
XTL(L

fication of Theorem 3.3 is satisfied and we may conclude that the dual function D™*(u)
attains its maximum, which is equal to the infimum value of the problem (18). O

The proposition gives us a primal convex optimization problem, namely (18), which
is equivalent to the dual problem in the Lagrange relaxation of the nonanticipativity
constraints. The Fenchel duality reveals the essence of this approach. This relaxation is
equivalent to the “convexification” of the objective function and feasible set separately
for each scenario.



3.2 Nodal decomposition

The next relaxation is associated with the primal formulation of the multistage prob-
lem. We shall simplify the dynamics of the system, assuming that there is a dependence
only between two successive stages. This assumption does not limit the application
of the results obtained here. It simplifies the notation and provides more clarity in
the presentation of the main ideas. We introduce again an equivalent formulation
converting the objective function to a linear objective.

N

rraﬂin Z Ty, (19)
n=1

subject to An,nxn + An,a(n)xa(n) > Cp, (20)

folzn) <vp, z,€X,, n=12,... N. (21)

The nodal decomposition associates Lagrange multipliers v € RY™ with the dynamic

constraints (20), where we have assumed for simplicity that m is the fixed dimension
of ¢, for each n € N. The set of feasible solutions X% becomes
i_ Noypa_ N 1
X = ><1Xn = xl{(xn,vn) ER™ : fulzy) <wy, x, € Xn}.
n= n=

The Lagrange function and the dual functional are defined by

N
Ld(x, v,v) = Zﬂ-n [vn + Vn(Cn — Apnn — An,a(n)xa(n))] and

n=1
DUv) = inf{LY(z,v,v) : (z,v) € X},
respectively, and the dual problem is
sup{D*(v) : v € R} (22)

The dual functional D? decomposes into N subproblems associated with each node of
the scenario tree. Each subproblem optimizes the operation of the system for the data
identified with the node. For each node n =1,2,..., N we introduce the function

F™"(yn) := mpv,, where vy, = (z,,0,).

Let us consider the following convex optimization problem:
N - Hok
infz [ ;d] (y,) subject to  (20). (23)
n=1

Proposition 3.5 The functional D? is also the dual functional of problem (23). More-
over, assume that there is a feasible solution of the problem (19)-(21) lying in the rel-

ative interior of the set [X4**. Then D? attains its mazimum, which is equal to the
infimal value of (23).

10



Proof: We follow the same line of arguments as in the proof of Proposition 3.4.
According to Theorem 3.3 the dual functional D? is also a dual functional to the
following problem:

min [( i ﬁ’”) Xd] **(y) subject to  (20).

n=1

Due to the linearity of the objective function (Lemma 3.2) and the separability of the
feasible set X', the following chain of equations holds true:

N N N

(7)) 0= [P ] ) = X P )+ Bl 0)
ZF” Yn) Z[(Sxd] “(yn) = ZN:[NA%Z]**(?J)

Observe, that the constraint qualification of Theorem 3.3 is satisfied as well and we
conclude that the dual function D?(v) attains its maximum, which is equal to the in-
fimal value of the problem (23). O

Due to Proposition 3.5, problem (23) is a primal convex program which is equivalent
to the dual problem in the Lagrange relaxation of the dynamic constraints. This
relaxation is equivalent to the “convexification” of the objective function and of the
feasible set separately for each node of the scenario tree.

4 Scenario versus nodal decomposition

Now, we are ready to compare the duality gap of the introduced Lagrangian relaxations
for multistage stochastic programs.

Theorem 4.1 Assume that the convex hull of the feasible set of the problem (19)-(21)
has nonempty relative interior, then the scenario decomposition provides a better bound
for the optimal value of the multistage problem than the nodal decomposition, i.e., the
following inequality holds true:

sup D(v) < sup D"(p).
v H

Proof: Let us introduce the following notation, which will simplify the presentation.
The following set is associated with the dynamics constraints:

G = {y = (z,v) € RN(+1) . Ay n®p + Apam)Tam) > €y n=1,2,.. .,N}

For each scenario s, s = 1,2,...,5, we set 2° = (z41,..., 25 r) and v* accordingly, and
define the sets

Gs:{( )ERTTH Ay + Appazy g >, t:1,2,...,T}

11



and
Yy = {(‘T&ta Us,t) eR*: Tst € Xst, fS,t(xs,t) < vts}

Furthermore, let Y* = xI_Y;*. Let us observe that for each scenario s the relation
XM =GNy’

holds. Furthermore, if the problem (19)-(21) has a feasible solution in the relative
interior of the set [X? M G]**, then this solution is contained in the set G and in the
relative interior of the larger set [X?]**. Consequently, the constraint qualification of
Proposition 3.5 is satisfied. Moreover, we can split the variables for each scenario and
obtain a feasible solution of the problem (13)-(16). This solution will be contained in
the relative interior of [X™*]** by construction. Therefore, the assumptions of Proposi-
tion 3.4 are satisfied as well. By relaxing the nonanticipativity constraints one obtains
a lower bound D" of the objective function

D" = max D"*(p) (24)
I

According to Proposition 3.4 there exists a solution 7 = (Z,7) € RF*0*) of the convex
equivalent problem (18) such that:

S S

D = inf{z [Fj”(ga]**(ys) : subject to (16)} = Z [F;na]**(ﬂs) (25)

s=1 s=1

and y satisfies the nonanticipativity constraint. Using the linearity of F; and separa-
bility of the set X", we obtain

D = Zij[F;;m]**(@s)=§3[F8+5asmys]**(ys)
= i[Fs(gs)+5[GSmYS]**](gs)- (26)

s=1

Il

Let us observe that [G*NY*]* C (G*)** N (Y*)* = G° N (Y*)**. Consequently,

(5[GsmYs]** (gs) Z (5Gsm(y.s)** (gs) — 5Gs (gs) + 5(Ys)** (gs)
We can continue the chain of transformations (26) in the following way:

S

S
S [F @) + e @] = 30 [P0 + 8- () + G- (32)
s=1 s=1
S
= L D@D

Let us define § = (%,0) € RN+ to be the projection of § corresponding to the node
formulation of the multistage problem. That is, we set: @, := g5, for n = B(s,t),

12



and m, = Z(s 1):6(s,t)=n Ps- This definition is non ambiguous because y satisfies the

nonanticipativity constraint. Therefore,

We can represent the set x,(Y?) as follows: x4(Y*®) = x, x; ¥;’. By the definition
of the models (19)-(21) and (13)-(16) the sets Y; = V" for all s = 1,2,...,5, t =
1,2,...,T. Therefore, we can write Y = X¢ for the node n = f(s,t). Since ¥, €
[X7]** we obtain that

o € [X,]7 and 06(7) = 0. (28)
Thus, we obtain that
imys) Bty () + 0 (9) = iﬁn@m + Gtz () + 00 ()
- i Fut o] () + 06 (9) = i (B ] () +96(3)
> min { i Fux] ) + 060} (29)

According to Proposition 3.5 the right hand side of the latter inequality is equal to the
optimal value max, D%(v) of the dual problem associated with the relaxation of the
dynamic constraints. From the chain of inequalities (26), (27), and (29), we obtain:

5 N
max D" (1) = Y [Fhpal*(5) 2 3 [Fu] () +06(9) 2 max D)
s=1 n=1
which is the desired inequality. O

In general, the estimate in Theorem 4.1 is strict. To see this consider a multistage
problem with several scenarios which happen to coincide. In that case, the relaxation
of the nonanticipativity constraints does not induce a duality gap, i.e., the supremum of
D™ coincides with the infimum of the primal problem. However, in the same situation,
relaxing the dynamic constraints induces a duality gap if the dynamics of the system
impose restrictions to the decisions of consecutive states.

5 (Geographical decomposition

In this section, we turn to complex systems with loosely coupled components. We
shall assume that system components require their own models which are coordinated
by several linking constraints. Furthermore, we assume that the objective function
is separable with respect to components. Therefore, the model of the entire system
has to large extent separable structure with respect to the system’s components. We
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would like to associate geographical locations with the components and refer further
to them as locations. Let us assume that the modeling system comprises I locations
and z' € R" is the portion of the decisions associated with location 4, i = 1,2,...,T
and S0 n; =7

We shall deal with the following multistage stochastic optimization problem:

min  E| XTJ S )] (30)

i=1

) ?

subject to ZA )zl > (&), i=1,2,... . [,t=1,2,....T, (31)

ZBZ )l > dy(G), t=1,2,....T, (32)
xtEXZ(Ct), i=1,2,....I,t=1,2,...,T, (33)
i =E[z)|R], t=1,2,...,T,i=1,2...,1. (34)

Here B} are K x n;-dimensional matrices and d; are K-dimensional vectors. All con-
straints are imposed P-a.s. Thus, there are K constraints (32) for each sequential deci-
sion that are coupling the models of the locations. The assumption that the modeled
system consists of loosely coupled locations means that K << I. The model written in
a primal formulation with the transformations we have adopted in the previous section
reads:

N T
gvnvr)l ; ; e (35)

subject to A}, (z7,) + A}y Ty = G n=1,2,...,N,i=1,2,...,1, (36)

rh e X!, ffl(x;)gv’ n=12...,Ni=1,2,...,1, (37)

I
> Bzl >d, n=12,.. N (38)

As the third decomposition approach we consider the decoupling of locations. Let us
associate Lagrange multipliers A € RN¥ with the coupling constraints (38). Then we
obtain the following Lagrange function and dual functional:

N

I
Lé(x,v,\) = Z[anv + A n—ZBQx;)] and
i=1

n=1
D¢(A) = inf{L(xz,v, \) : y € X},

respectively. Here the set of feasible solutions X¢ = x!_, X¢ decomposes into I com-
ponents, defined in the following way:

—{y ) e RVNUHD . vhoe X! fi(rt) <vlin=1,2,...,N,
A;L,n(x:z) + Aiz,a(n)xi

a
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The dual problem reads

sup {D°(A) : A e REV . (39)
The dual functional decomposes into I subproblems associated with each location. For
each ¢ = 1,...,I we introduce the functions
N
F'(y') :== Z TpUy,.
n=1

We can now formulate a convex optimization problem that will be the dual equivalent
to the Lagrangian relaxation of the coupling constraints. Let us consider the following
problem:

I
infz [nyl] (y')  subject to (38). (40)
i=1

Proposition 5.1 The functional D¢ is also the dual functional of problem (40). More-
over, assume that there is a feasible solution of the problem (35)-(38) lying in the rel-
ative interior of [X¢|*™*. Then D¢ attains its mazimum, which is equal to the infimal

value of (40).

Proof: The proof follows the same lines of arguments as those of the Propositions 3.4
and 3.5. O

The proposition shows that the Lagrange relaxation of the coupling constraints is equiv-
alent to the convexification of the objective function and of the feasible set separately
for each geographical location.

6 Geographical decomposition versus scenario and
nodal decomposition

We shall derive necessary and sufficient conditions for comparing the geographical
decomposition with the two other approaches. For this purpose we need a measure
of stability of a problem with respect to Lagrange relaxations when its feasible set
(and possibly also its objective function) is nonconvex. Given a problem inf f 45, we
can evaluate the change of the optimal value of the Lagrangian dual problems when
the constraints defining the set B are relaxed, i.e., inf[(f4)** + dz+], compared to the
optimal value of the dual problem with no relaxation inf[f4~5]**. It provides us also
with some measure of effectiveness of the particular relaxation.

Definition 6.1 The measure of sensitivity of the problem inf f 4~ with respect to re-
laxation of the constraint set B is given by

p(f, A; B) = inf[faqp]™ — inf[(fa)™ + dpe].
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Obviously, problems where f is a convex function and A and B are closed convex
sets satisfying a constraint qualification, are insensitive to relaxations by virtue of the
strong duality theorem. One can easily see that in this case also p(f, A; B) = 0.

In [14] the notion of “convexity with respect to a set” is introduced for a similar
purpose. There, a set A is called B-convez if (AN B)** = A* N B**. Note that if the
set A is B-convex, then also the set B is A-convex. Let us observe also, that if the set
A is B-convex, then p(f, A; B) = 0 for all linear functions f.

In order to compare the relaxations, we shall need a dual formulation of the model,
where the variables are split for all scenarios, and the nonanticipativity is formulated
as a system of equality constraints. We introduce the set M of points in RT5U+1) which
satisfy the coupling constraints, and the set A of points in R7*+7) which satisfy the
nonanticipativity constraints. We define

M, = {y = (z,v) € RTSCHD . ZBst:vs»ds t=1,2,....T},
i=1
Ni:{y:(x,v)ERTS(TJJ):y;t:yit(&t),t t:1,2,...,T,8:1,2,...,S}.

Then, we can represent the sets M = N_; M, and N' = N{_;N". For each scenario
s=1,2,...,5 and each location s = 1,2,..., I we define the cylindrical sets:
f‘i:{y:(xvv)eRTS(H—I)‘ steXst? (Z )SUZ

Aftl( ;t)+Att lxst 120 = 172,---,T}

st

Furthermore, for each ¢ =1,2,..., ] and s =1,2,...,5 we set
S5 I .. I
M=Af, r=n0f ad =T
= i=1 i=1
We denote the objective function of the multistage problem by F : RTS0+D 4 R e,
s I T
=222 Pl
s=1 i=1 t=1

Theorem 6.2 Assume that the convex hull of the feasible set for the problem (35)-(38)
has nonempty relative interior. The geographical decomposition provides a better bound
for the optimal value than the scenario decomposition, i.e.,

sup D" (1) < sup D°(A)
" A

if and only if the following inequality holds true:
p(F,TNMN) —p(F,TNN, M) > 0.
Proof: According to Proposition 5.1 by relaxing the coupling constraints one obtains

a lower bound D¢ of the objective function such that:

I

D= Sup D(A) = inf{ > [Fixic] " subject to (38)}. (41)

=1
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According to Proposition 3.4 by relaxing the nonanticipativity constraints one obtains
another lower bound D™ of the objective function such that:

D = SL/I}) D™ () = inf{ XS: [F)S(SM] . subject to (16)}. (42)

s=1

We shall transform the latter problem by using the definition of the sensitivity measure.
Let V' denote the optimal value of the multistage problem before relaxation. Then

= it i Fin| 40}

§$=

= V—p(FFmMN)

= inf{i [ZZ})S Lot O ]+5/\mM}

= i=1 t=1
+p(F,F,NmM)—p(F PmMN)
S
- mf{zzzm St+z(5 +5M+5N}
s=1 i=1 t=1

+p(F,T,N N M) —p(F,rmM,N)

Let us observe that
> o= Z Opiyer = Z Oriyes (43)

s
For this purpose, we note that the sum on the left hand side ) dr,)--(y) = 0 for the

s=1
point y € RSTU+D if and only if y € T** for all s. Furthermore, I'; are cylindrical
sets of the form RT(+D(s=1) x C X ]RT(’"”) ) for some set C. Consequently, ['** =
RTr+D(=1) 5 O RTC+D(5=5) " This implies that

S Kk S Kk S S
1—\** — ( N FS> — ( X Cs) = X C’;“* = N P:*
s=1 s=1 s=1 s=1

S

using the separability of the sets C,. Otherwise the sum ) d(r,)--(y) = co. By the
=1

same arguments ’

S I I
— Z Z (S(fé)** and F** = Z (5(1—\1)**
s=1 i=1

=1 =1
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which proves the equality (43). Therefore, we can continue the transformation of the
dual equivalent problem as follows:

S T

I I
Pre — inf { SN pavl, ) Gy + 0ur + 6N} (44)

=1 s=1 t=1 i=1

I

= inf { Z [zszipsvz’t + O(piyes + 5Ni] + (5M}
1

=1 s=1

t—

+p(F,D,NNM)—p(F,I' N M,N)
On the other hand for each point y = (z,v) € RSTU+D . ¢ € (I N N;)**, we can
associate a point § = (#,9) € R¥U*V such that

I S T I N I
=1

[Z Zpsvi,t + (5(1’*iﬂ./\[i)**:| (y) = Z [ ﬂnU; + Gaens (gz)] _ Z FA’ZXC(QZ)
n=1 ;

s=1 t=1 i=1

)

with n = [(s,t) because nonanticipativity is satisfied. Using again the measure of
sensitivity, we obtain

I S T

D= inf{ S [Z S povi,+ a(wi)w] + 5M} (45)

i=1 s=1 t=1
=V —p(F,T AN, M)
I S T

= inf{ > [Z > pavly + iy + @W] + 5M}
=1 s=1 t=1
+p(F,T NN M) —p(F,TNN, M)
Putting the two equalities (44) and (45) together yields
D" =D+ p(F,TNN,M)— p(F,T N M,N)
This completes the proof. O

The next corollary is an immediate consequence of the theorem and the definition of
“set-convexity”.

Corollary 6.3 Assume that the convex hull of the feasible set for the problem (35)-(38)
has nonempty relative interior.

(1) If the set T NN is M-convex, then the geographical decomposition provides a
better bound for the optimal value than the scenario decomposition, i.e.,

sup D°(A) > sup D" (u)
A Iz
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(2) If the set T'N M is N -convex, then the scenario decomposition provides a better
bound for the optimal value than the geographical decomposition, i.e.,

sup D(A) < sup D" (u)
A B

Now, we turn to the relations between the geographical and the nodal decomposition.
We shall use the relations and properties of the following sets:

I
Co={y=(0,0) e RN 3" Bral, > d,
i=1

Gi == {y = (JJ, U) € RN(TJFI) : A;,n(x%) + A%7a(n)xi(n) Z Cib n= 17 2’ o N}

Then the sets C = NY_,C,, and G = N!_,G'. For each node n = 1,2,..., N and each
location 1 = 1,2,..., I, we define the sets:

A .

Y! = {y = (z,v) € RNUHD - gl e X0 fi(gi) < v;}
Furthermore, for each 2 =1,2,..., T and n=1,2,..., N we set

. N ~. I . I .
Y'=nY, Y,=nY' and Y =nNnY"
n? ) .
n=1 1 =1

Again, we denote the objective function of the multistage problem by F : RV +I) 5 R:

I N

F(y)=>_) mu,

i=1 n=1

Theorem 6.4 Assume that the convex hull of the feasible set for the problem (35)-(38)
has nonempty relative interior. The geographical decomposition provides a better bound
for the optimal value than the nodal decomposition, i.e.,

sup D?(v) < sup D(\)
v A

if and only if the following inequality holds true:
p(F,YNC,G)—p(F,YNG,C) > 0.

Proof: According to Proposition 5.1 by relaxing the coupling constraints one obtains
a lower bound of the objective function D¢ such that:

D* = sup D°(A) = int { XI: [Pixe] ") : (33)}.

i=1
According to Proposition 3.5 the dynamic relaxation provides a lower bound of the

objective function D such that:

N

D? = sup D%(v) = inf { Z [ N;ﬁg]

v n=1

kk

(yn) :  subject to (6)}
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We shall transform the latter problem by using the definition of the sensitivity measure.
Observe that X¢ =Y, N C, and X4 =Y NC . Let V denote the optimal value of the
multistage problem before relaxation. Then

= {3 [F] "+ o)

n=1

— {3 [ St o] )
n=1 =1

= 1nf{ZZ7rnv +Z§Ynﬂ0n **+5G}
n=1 =1

= V—,o(FYﬂC’ G)

_ inf{ZZﬂnv +Z(5Yn H+5C+5G}

n=1 i=1

On the other hand,
I *k
D¢ = 1nf{;[F1Xic] +5C}
= inf { [Zﬂnv + 5yzngz] - + 50}
= inf{ZZﬂnv +Z(5ymgl +50}

i=1 n=1

= V—p(FYﬂG C)

= 1nf{ZZ7rnv —i—Zde - +6C+5g}

n=1 =1

M~

1

~ |l

By the same arguments as in the previous proof, we observe that

> = Z Ogriyes = Z Oyiyes (46)
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Therefore, we can write the equality:

N I N

D' =inf { 37N mh + D G +de + 06 |

n=1 i=1 n=1
N I I

=inf { D" mavh + 3 by + 0 + da |

n=1 i=1 i=1

:Dc—i—p(F,Y,GﬂO)—,O(F,YﬂO,G)—p(F,Y,GﬂC)—!—p(F,YﬂG,O)
D — p(F,YNC,G)+p(F.YNG,C)

This proves the assertion. O

Analogously to the comparison of scenario and geographical decomposition we obtain
the following corollary.

Corollary 6.5 Assume that the convex hull of the feasible set for the problem (35)-(38)
has nonempty relative interior.

(1) If the set Y NG is C'-convex, then the geographical decomposition provides a better
bound for the optimal value than the nodal decomposition, i.e.,

sup D¢(A) > sup D*(v)
A v

(2) If the set Y NC' is G-convez, then the nodal decomposition provides a better bound
for the optimal value than the geographical decomposition, i.e.,

sup D?(v) > sup D¢(\)
v A
Some sufficient conditions for set-convexity are provided in [14].
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