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1 Introduction

A fairly general shape of chance constraint programs is

(P)  min{g(z)|z € X, u(H(z)) > p},

where g : R™ — R is a continuous objective function, X C R™ is a closed
subset of deterministic constraints, and the inequality defines a probabilistic
constraint with H : R™ =3 R® being a multifunction with closed graph, u
is a probability measure on R® and p € (0,1) is some probability level. In
the simplest case of linear chance constraints, g is linear, X is a polyhedron
and H(z) = {z € R°|Az > z}, where A is a matrix of order (s,m) and the
inequality sign has to be understood component-wise.

Since the data of optimization problems are typically uncertain or approx-
imated by other data which are easier to handle, the question of stability of
solutions arises naturally. Concerning (P), the first idea is to investigate so-
lutions under perturbations of the right hand side p of the inequality. This
reflects the modeling degree of freedom when choosing a probability at which
the constraint system is supposed to be valid. Furthermore, the probability
measure p is unknown in general and has to be approximated, for instance,
by empirical measures. This motivates to extend the perturbation analysis
to p. Stability of solutions of (P) with respect to p and p is well understood
now but shall be briefly reviewed in this paper for the sake of being selfcon-
tained. Apart from these two constraint parameters, also approximations of
the deterministic constraint X and of the random set mapping H in (P) may
be of interest. The aim of this paper is to identify constraint qualifications
for stability under partial perturbations of the single constraint parameters
in (P). Due to the increasing complexity of how these parameters influence
each other, the resulting constraint qualifications become more and more re-
strictive when passing from p over u to X and H. Part of the result relate to
convex data in (P) or even in the perturbations of (P). Special emphasis is
put on a series of counter-examples highlighting the necessity and limitations
of the obtained conditions.
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2 Notation and basic assumptions

2.1 Stability concepts

For a multifunction M : Z = Y between metric spaces, we denote by Gph M,
dom M and M ! its graph, domain and inverse, respectively. At some = € Z,
M will be called closed if (zn,yn) = (z,y) along with y, € M(z,) imply
y € M(z). M is upper (lower) semicontinuous at z, if for all open V' O M(z)
(with V- N M(z) # 0) there exists some open W 3 z such that V2 M(z')
(VN M(z') #0) for all z' € W. Clearly, Gph M is closed if and only if M
is closed at all z € X. M will be called metrically regular at some (Z,7) €
Gph M, if there exists some L > 0 such that d(z, M~'(y)) < Ld(y, M(z))
for all (z,y) in some neighbourhood of (Z, 7).

For a sequence A, C Z, the upper (lower) set limit in the sense of
Painlevé-Kuratowski is defined as

Limsup (lelnf) ={z € 7| hmlnf (hmsup) (d(z, A,) = 0}.

In case that lesup A, = lelnf A, =: A, we write A, — A. For multifunc-
tions M : 7 = Y correspondlng upper and lower limits evaluated at some Z

are defined as

Limsup M (z) = {y € Y| zn,yn) € GPh M : (zn,yn) = (Z,y)},

T

Liminf M(z) ={y €Y |V2, = Z 3y, — y: yn € M(z,) for n > np}.
TT—T

From the definitions it follows that M is closed (lower semicontinuous) at
if and only if

Limsup M (z) C M(z) (M (z) C Liminf M (z)).

T—7T Tz

In case that both relations hold true, we write M(z) = Lim M (z). Finally,
T—T

for a sequence of multifunctions M,, : Z = Y, we introduce the following
upper and lower limits evaluated at some x:

(lesupM ) U Limsup M,,(z,,)
Tn —T "
(lelnfM ) ﬂ lelnfM (zn),
Ty —T

We note that (Limsup Mn> (z) coincides with the so-called graphical outer

limit of M, evaluated at z ([9], p.166) whereas (Liminf Mn) (z) differs from

the corresponding graphical inner limit in that it uses intersection in place
of union.
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2.2 Data spaces and metrics

The constraint data of our problem (P) are given by (u, H, X, p). According
to the assumptions above, we introduce the following data space

D =P(R°) x MR™,R®*) x F(R™) x (0,1),

where P(R®) is the set of Borel probability measures on R®, M(R™ R?) is the
set of multifunctions from R™ to R® having closed graph and F(R™) denotes
the hyperspace of closed subsets of R™. The perturbations (v, G,Y, q) of the
original data (u, H, X,p) are supposed to belong to the same data space.
Each of the factors of D can be endowed with a suitable metric. For F(R™)
we take the so-called integrated set distance ([9], p. 139) between closed
subsets A and B:

d(A, B) ::/ 0,(A, B)e Pdp,
0

where 0,(A, B) = m;(a,x )|d(ac,A) — d(z, B)| denotes the p— Hausdorff dis-
z€B(0,p
tance. It is known that § metrizes the Painlevé-Kuratowski set convergence in-

troduced above, i.e., A, = A if and only if §(A4,, A) — 0. Applying the same
idea to graphs of multifunctions, one may define 7(G, G) := §(Gph G, Gph G)
as a distance on M(R™,R?). Then, obviously, G,, = G in the sense of
7(Gn,G) — 0, if and only if GphG,, — GphG in the sense of Painlevé-
Kuratowski set convergence. Finally, on P(R®) we use the so-called B- dis-
crepancy

ag(v,p) := sup |v(B) — 0(B)|, B={z+R’|ze R }U{H(z)|z € X}, (1)
BeB

where X and H refer to the original data of problem (P). The first constituent
of the collection B makes ag a metric on P(R®), while the second one is
required for a suitable stability analysis.

Specific attention will be paid to convex-like problems. For this purpose,
we introduce the subspace of convex problem data

D¢ = PE(R®) x ME(R™,R®) x FE(R™) x (0,1),

where M°(R™,R?) is the set of multifunctions from R™ to R® having closed
and convex graph and F¢(R™) denotes the hyperspace of closed and con-
vex subsets of R™. By P¢(R?) we refer to the set of so-called r— concave
probability measures for some r < 0 ([8]) which are defined as to satisfy the
inequality

W (ABy + (1= \)Bs) < Au"(By) + (1 — A" (Bs) 2)

for all Borel measurable convex subsets By, Bx of R® and all A € [0,1] such
that AB; 4+ (1 — A)B» is again Borel measurable and convex. Many of the
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prominent multivariate distributions (e.g. normal, Dirichlet, Student and
Pareto distribution as well as uniform distribution on bounded convex sets)
belong to the class P¢(R®) (cf. [8]). If (u, H,X,p) € D¢, then the function
u"o H (with 7 < 0 from (2) is convex and, in particular, the constraint set in
problem (P) is convex (after raising the inequality to the negative power ).

With problem (P) we associate the constraint set mapping ¢ : D = R™,
the solution set mapping ¥ : D = R™ as well as the optimal value function
¢ : D — R, all of them depending on the problem data (v, G,Y,q) which are
considered as parameters:

¢ (v,G,Y,q): ={z €Y, v(G(z)) > q}
0 (v,G,Y,q) : =inf{g(z)|z € ¢ (v,G,Y,q)}
¥ (v,GY,q):={z€®(vG,Y,q|9(z) =¢(G,Y,q)}

By adding a left upper index ’u’, "H’, "X’ or 'p’, we refer to the respective
partial mappings, when all parameters except the indexed one are fixed as
the original data, e.g. X¥(Y) = ¥ (u, H,Y,p) ,? ®(G) = & (u,G, X,p) etc.
For some open subset () C R™, define the localized mappings

¢q (v,G,Y,q) : = inf{g(z)|z € ¢ (v,G,Y,q) Nl Q}
Uy (v,G,Y,q): ={z € P (v,G,Y,q) NclQ|g(z) = po (v,G,Y,q)}.

The localized partial mappings are obtained by prepending the corresponding
index to @ in these definitions, e.g., Pog(q) = inf{g(z)|z € PP (¢) NclQ}.

3 Partial Stability of Solutions and Optimal Values

In this section, we study the stability of solutions and optimal values to
problem (P) with respect to single data parameters. As a basic preparatory
result we need the closedness of all partial constraint mappings.

Proposition 1. The partial constraint set mappings ?®, *&, X& HP are
closed at their respective original data points p, u, X and H.

Proof. Closedness of P$ and #@ follows from the upper semicontinuity of
the mapping u(H(-)) and from the definition of the discrepancy in (1) (cf.
[10], Prop. 3.1). For closedness of X& let (X,,z,) — (X,z) such that z, €
X®(X,). Then, z,, € X,, and pu(H(z,)) > p. It follows that = € Limsup X,, =

X (by X, — X) and p(H(z)) > limsup p(H(z,)) > p again by upper
semicontinuity of p(H(:)). This means z € X*&(X), and, hence, closedness
of X at X. To check #®, let (H,,z,) — (H,z) such that z,, € F&(H,).

Then, z, € X and p(H,(z,)) > p. Closedness of X implies that z € X.
Furthermore, equation (9) from the appendix yields
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Limsup H,(z,) C (Limsup Hn> (z) = H(z).

Then, equation (6) from the appendix provides the desired relation

p(H(z)) > limsup p(Hn(zn)) > p,
whence the closedness of & at H.

3.1 Stability with respect to the probability level

The dependence of solutions and optimal values on perturbations of the prob-
ability level is the simplest one among all data variations considered here, and
the following stability results are readily derived from classical facts of para-
metric optimization (cf. [1], Th. 4.2.1, Th. 4.2.2, [4], Th. 1, Th. 2 and [5],
Th. 2.2) upon noting that the partial constraint set mapping P® is closed at
p according to Proposition 1. We emphasize that all assumptions made to
obtain stability exclusively refer to the original data (u, H, X, p) of problem
(P).

Theorem 1. Assume that
1. (”515)7l is metrically regular at oll (Z,p) with T € ¥(u, H, X,p) (solution
set for the original data of (P)).

Then, PV is closed at p and Py is upper semicontinuous at p.

2. In addition, ¥(u,H, X, p) is bounded, i.e., ¥(u,H,X,p) C Q for some
bounded open @Q C R™.
Then, PWq is upper semicontinuous at p, and Ppg is continuous at p.

3. In addition, g (the objective in problem (P)) is locally Lipschitzian.
Then, Pogq is locally Lipschitzian at p.

4. In addition, g satisfies a k— th order growth condition on the set of global
solutions, i.e. (with T from 1. and Q from 2.),

g9(z) > g(z) + d*(z,¥(u,H,X,p)) Vz € QN&(u,H,X,p)

Then, PW¥q is upper Holder continuous at p with rate k= ,i.e.,

-1
sup{d(z.? ¥ (p))|z € "¥q(9)} < Llq—pl*
for some L > 0 and q close to p.

The inconvenient use of localizations (by means of Q) in the stability state-
ments 2., 3. and 4. cannot be avoided in general. However, there are some
special cases where localizations are not necessary. For instance, if the set X
of deterministic constraints is compact, then assumption 2. of Theorem 1 is
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automatically fulfilled with @ := {z|d(z, X) < 1}. Then, P¥g = P¥, Ppg =
Py and all the results of the Theorem maybe rephrased in terms of the un-
localized mappings P¥ and Py. Another instance of avoiding localizations is
given in Proposition 2 below.

Re-inspection of Theorem 1 reveals that assumptions 1. and 4. are most
difficult to verify. In [10] (Proof of Cor. 3.7) it was shown that for convex
problem data (i.e., (u, H, X, p) € D) the metric regularity of (”515)7l (equiv-
alently formulated there as a Lipschitzian property of P®) is implied by the
Slater-type condition

there exists some & € X such that u(H()) > p. (3)

For the nonconvex setting, a series of verifiable conditions was formulated
in ([2]) in the special case of H(z) = {z € R®*|z < h(z)} with continuous
h : R™ — R® (chance constraints with random right-hand side. To give a
simplified idea, assume that A is locally Lipschitzian and p has a continuous
density f,. Then, assumption 1. of Theorem 1 will be satisfied under the
following two conditions:

— If u(H(z)) = p, then there exists some z € h(Z)+bd R such that f,(z) >0
(’bd’=boundary).
= 0a (y",h) () N —Na(X;2) =0 Vy* € R® \ {0},

where in the second condition 8, and N, refer to Mordukhovich’s subdif-
ferential and normal cone, respectively [7]. In case of differentiable h and of
Z € int X, this second condition simply reduces to the positive linear indepen-
dence of the gradients Vh;(Z). The first condition is fulfilled, in particular, if
fu(h(Z)) > 0, which is always true for the multivariate normal distribution,
for instance.

Concerning assumption 4. of Theorem 1, the quadratic growth condition
for g (k = 2) is closely related, for smooth data, to second order sufficient
conditions. For convex data in the setting of our problem (P) verifiable con-
ditions of quadratic growth are given in [2], Th. 8. Finally, we formulate
a stability result for convex data avoiding any compactness or localization
statements:

Proposition 2. In problem (P), let (u, H,X,p) € D¢ and g be convez. If
U(u,H,X,p) is nonempty and bounded and if (3) is satisfied, then P¥ is
upper semicontinuous at p and Py is continuous at p.

Proof. e convexity assumption imply that the parametric constraint set
PP(q) is convex for all q. Also, one easily checks that metric regularity
at all z € P@(p), which was noted above to be implied by (3), guar-
antees the lower semicontinuity of P® at p. Furthermore, we know that
P@ is closed at p according to Prop. 1. Now, apply Theorem 5 (2.) with
f=g, A:=(0,1), \:=gq, Ao :=p, M := PP,
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3.2 Stability with respect to the probability measure

Stability of program (P) with respect to variations of the probability measure
u may be partially reduced to the previously discussed case of stability with
respect to the scalar probability level p. The main observation in this context
was made in [10] (Proof of Th. 3.2) where (formulated in different terms

there) it was shown that the metric regularity of (P®) " (see assumption 1.
in Th. 1) is sufficient to guarantee (local) lower semicontinuity of (“®) ' and

thus to derive parallel results to Theorem 1. More precisely, one has

Theorem 2. Assume that
1. (7‘@)_1 is metrically regular at all (Z,p) with T € ¥(u, H,X,p) .
Then, *¥ is closed at p and *@ is upper semicontinuous at p.

2. In addition, W(u,H,X,p) is bounded, i.e., ¥(u,H,X,p) C Q for some
bounded open @ C R™.
Then, *Wq 1is upper semicontinuous at p and *pg is continuous at p.

3. In addition, g is locally Lipschitzian.

Then, there exists some bounded open set Q' O W(u,H,X,p) (smaller
than @), such that *pqr is upper Lipschitzian at p, i.e., with some L,§ > 0,
one has

"oq (v) — oq (W)| < Lag(v,p) Vv € P(R?), ap(v,p) < 4.

4. In addition, g satisfies a k— th order growth condition on the set of global
solutions (see Th. 1).

Then, *Wg is upper Hélder continuous at p with rate 1/k, i.e., there are
L, > 0 such that for all v € P(R®) with ap(v,p) < 8

sup{d(e," ¥y (1))|w € "o (v)} < Llas(v,m)]'/*.

The first assertion of the Theorem relies on the local lower semicontinuity of
(”45)71 as stated above and on standard arguments of parametric program-
ming (cf. [1]) similar as in Theorem 1. 2. and 3. are shown in Theorem 3.2 of
[10] while 4. results from Theorem 2.2 in [5].

In contrast to the previous section, the first three assumptions of Theorem 2
do not guarantee the local Lipschitz property for #¢q/ (unlike Ppg in Th. 1)
but just the formulated weaker upper Lipschitz property. This is confirmed
by the following counter-example even in case of convex-like original data
((u, H, X, p) € D, g convex):

Ezample 1. In problem (P) let m = s = 1, p = 0.5,g9(z) = z, X = R
and H(z) = (—oo,z]. We define the probability measure p along with two
sequences of perturbed probability measures v,, v, via the following distri-
bution functions (recall that v € P(R?®) is uniquely defined by its distribution
function F,(z) = v(H(2))):
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F,(z) = max{0, min{z + 0.5,1}};

F,(x) z<0
_Jos z e [0,n!] _
Fy, (2) = z+05-—n"tze[n7n7t+0.5] "
1 z>n"1405
F,(z) G
Fp () =< 05+ (@z—n1)/(n+1)ze[-n2n"]
F, (z) z>n"t

Clearly, (u, H, X,p) € D¢ (note that H has convex graph and that u € P¢(R?)
as the uniform distribution over the interval [—0.5,0.5]). The original and
perturbed constraint sets are given by

FP(p) = {z|Fu(z) > 0.5} =[0,00) = {z|F,, (z) > 0.5} = ¥P(v,) VneN,
LP(ir,) = {z|F5, (2) > 0.5} = [n" 00) VneN

Consequently, ¥ (u) = {0} and, no matter how small the open neigh-
bourhood @' of 0 is chosen (compare Theorem 2), one has Hpg (u) =
Pog (vn) = 0 and #pg (7,) = n~! (for large n). Furthermore, due to
p(H(1)) = F,(1) = 1 > p, condition (3) is satisfied, which guarantees as-
sumption 1. in Theorem 2. Summarizing, assumptions 1.-3. of Theorem 2 are
satisfied. On the other hand, for the particular choice of the mapping H in
this example, the collection B in (1) reduces to its first part. As a consequence,
ap becomes the Kolmogorov distance

ag(v,v') = sup |1/(z +R) —V(z+ ]RS_)| = sup |F,(z) — F,(2)].
z€R* zER*

For the data in this example, one easily checks that the maximum deviation
between F,, and both of F'; and F,, is realized at z = n~!, whereas the
maximum deviation between F'; and F,, is realized at z = 0. Accordingly,
one calculates

OéB(Vn,N) = OlB(’ij) = nil; aB(Vna ﬂn) = [TL(TL + 1)]717
hence vy, 7, — p but |[Fog (vn) — Pog (Fn)| = n™t = (n + 1) ap(Vn, 7x).
This means that #pg cannot be locally Lipschitzian at u, although it is
upper Lipschitzian at p according to Theorem 2.

A stability result for convex data, where localizations can be ignored similar
to Proposition 2, is (cf. [3], Th. 3.1):

Proposition 3. In problem (P), let (u,H,X,p) € D° and g be convez. If
U(u,H,X,p) (the solution set of the original problem) is nonempty and
bounded and if condition (3) is satisfied, then, at p, *¥ is upper semicon-
tinuous and *¢ is upper Lipschitzian.
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Note that, although for the original probability measure we have the con-
vexity requirement p € P¢(R®), the upper semicontinuity of #¥ relates to
arbitrary perturbed probability measures v € P(R®) here. This is important
in practical applications, where the original measure u is frequently known to
be r— concave for some r < 0 whereas its approximations (based on empirical
or Kernel estimates) definitly lack this property.

3.3 Stability with respect to the deterministic constraint set

A stability analysis of problem (P) with respect to variations of the determin-
istic constraint set X turns out to be more restricted than in the previously
discussed cases. First of all, in contrast to the previous results, stability of
the constraint set mapping can no longer be reduced to stability with respect
to perturbations of the right-hand side . More precisely, the following exam-
ple shows that metric regularity of (”@)_1 does not imply closedness of X&
(whereas it implies closedness of P¥ and #¥, see Theorems 2 and 1).

Ezample 2.In (P) set m = s = 1,¢9(z) = z, X = {0,1},p = 0.5, u =
uniform distribution on [0, 1] and define H via Gph H = [0, 1]2. Clearly, the
unique solution of (P) is given by ¥(u, H,X,p) = X¥(X) = {0}. Since
PP(q) = {0,1} for g close to p (i.e., PP is locally constant), (P$) ! must
be metrically regular at (0,p), hence assumption 1. of Theorems 1 and 2
is fulfilled. On the other hand, defining X,, := {-n71,1} it is clear that
X, — X and that ¥¥(X,,) = ¥®(X,,) = {1}, hence X ¥ is not closed at X
(nor is X ¢ upper semicontinuous at X).

The example suggests that it is difficult to find verifiable conditions for sta-
bility w.r.t. perturbations of X if X itself is an arbitrary closed set even
if H and p have convexity properties (H € M¢(R™,R?), u € P¢(R*)). A
slight modification of the example (X := [0,1],Gph H := ({0} x [0,1]) U
({1} x [0,1]), X, := [n_l, 1]) shows that the convexity of Gph H cannot be
dispensed with either when expecting stability w.r.t. X. Note, that in this
modified example X € F¢(R™),u € P°(R®) and (P®) " is again metrically
regular at (0,p). Furthermore, p has to satisfy a convexity property as well,
as is shown by the following example, where both X and H do satisfy the
convexity requirements.

Ezample 3. In (P) set m = s = 1,g(z) = 2, X = [0,1],p = 1/4, p =
(8o + 61) /2 (with &, = Dirac measure on z € R ) and define H via

Gph H = conv{(0,0),(1,0.5),(1,1),(0,0.5)}.

Then, X € F¢(R), H € M¢(R,R) but p ¢ P(R) (u is not r-concave for any
r < 0). Elementary calculation shows that X@(X) = {0,1} and *¥(X) =
{0}. With X,, := [n™',1], one has X,, & X and X*¥(X,,) = *&(X,,) = {1},

hence X¥ is not closed at X (nor is X ¢ upper semicontinuous at X). On the
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other hand, (P®) " is metrically regular at (0,p) with the same reason as in
Example 2.

The following Theorem confirms that the desired stability results - even w.r.t.
nonconvex perturbations of X - are available in case that the original problem
is a completely convex one. This is parallel to the statement concerning u in
Proposition 3. However, the constraint qualification (3) has to be strength-
ened.

Theorem 3. In problem (P) assume that:
1. (u,H,X,p) € D°.

2. 1 has a density.

3. There exists some % € int dom H NX with u(H (%)) > p.
Then, XW is closed at X and X ¢ is upper semicontinuous at X.

4. In addition, 0 # ¥ (u, H, X,p) C Q for some bounded open @Q C R™.
Then, XWq is upper semicontinuous at X and X g is continuous at X.

5. In addition, g is convez.

Then, the restrictions XW|F¢(R™) and Xp|F°(R™) of *¥ and Xy to
convez perturbations of X are upper semicontinuous and continuous, respec-
tively, at X (without localization).

Proof. rst, we show that X® is lower semicontinuous at X. If it were not,
then there would exist a sequence F(R™) 5 X,, — X along with an open set
V such that X@(X) NV # 0, but X&(X,,) NV = 0 for all n. Rephrasing the

last relation, gives
z ¢ X, forallnandall zeV with u(H(z)) > p. (4)

Choose some z° € X¥@(X)NV. Assumption 1. implies u" (H(-)) to be convex,
where r < 0 refers to the modulus of r-concavity from p € P¢ (see (2)). Con-
sequently, for zy := AZ+ (1 —X)z° and A € (0, 1], it holds that u(H (z,)) > p.
Furthermore, since 2° € X&(X), we have 2° € X and z° € dom H (otherwise
the contradiction 0 < p < p(H(z°)) = u(B) = 0). After fixing some small
enough A > 0, one has z) € intdom HNX NV with u(H(z))) > p by convex-
ity of dom H. Now, the relation z, € int dom H implies H to be lower semi-
continuous at z (cf. [9], Th. 5.9), so H(z) C Limninf H(z,) for any sequence

zn, — zx. Now, (8) in Lemma 2 provides liminf u(H(z,)) > pu(H(z,)) > p.
In other words, since =, — z) was arbitrary, one derives that u(H(z)) > p
for all  in an open ball around z) with some radius € > 0 chosen small
enough such that the open ball is still contained in V. But then, (4) leads
to d(zx, X,) > & > 0 contradicting zy € X and X,, = X. So, X® is lower
semicontinuous at X. Now, in Theorem 5 in the appendix (statement 1.), put
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f=g,A:=FR™), N = X, M := X& (note that M is closed at Ay by
Prop. 1) in order to verify the statement under assumption 3.

Next, select some z* € ¥(u, H, X, p) according to assumption 4. and let
F(R™) > X,, = X be an arbitrary sequence. Due to z* € X&(X), the lower
semicontinuity of ¥@ at X guarantees the existence of a sequence &, — z*
with 2,, € X&(X,,) and moreover, by assumption 4., with z,, € Q. Denoting
by M® the constant multifunction M®?(Y) = clQ, it follows that

z* € ¥(u, H, X, p) N Liminf [X&(Y) N M9 (V)] .
Y—->X

Putting f := g, A :== F(R™), Ao := X, M := X& N M® and noting that M
is closed at Ag, we deduce from Theorem 5 (statement 1.) the assertion under
assumption 4. Finally, with f := g, 4 := F¢(R™), Ao := X, M := X, the

second statement in Theorem 5 yields the last assertion of the Theorem.

The following lemma provides a constraint qualification alternative to 3. in
Theorem 3 without requiring a density for the probability measure. Its ap-
plication, however, restricts to convex perturbations of X from the very be-
ginning.

Lemma 1. In problem (P) let (u, H, X,p) € D° and assume that:
1. (u, H,X,p) € D°.

2. There exists some & € int X with pu(H(z)) > p.
Then, XW|Fe(R™) is closed at X and X |F¢(R™) is upper semicontinu-
ous at X.

3. In addition, § # ¥ (u, H,X,p) C Q for some bounded open Q@ C R™.
Then, XWq|F°(R™) is upper semicontinuous at X and X pg|F(R™) is
continuous at X .

4. In addition, g is conver.
Then, XW|F¢(R™) and X | F°(R™) are upper semicontinuous and con-
tinuous, respectively, at X (without localization).

Proof. All one has to show is lower semicontinuity of X ®|F¢(R™) at X since
the rest of the argumentation is identical to that in the proof of Theorem
3. Now, violation of that lower semicontinuity amounts to the existence of a
sequence F°(R™) > X,, — X along with an open set V such that (4) holds
true. We proceed in an analogous way as in the proof of Theorem 3 to find
some z € int X NV with u(H(z))) > p on the basis of assumption 2. in this
lemma. Now, the X,, being convex (in contrast to Theorem 3), relation (7)
in the appendix may be invoked to show that z, € X,, for large enough n.
This, however, is in contradiction to (4).
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The next example illustrates why the constraint qualification 2. in Lemma
1 is not sufficient in order to guarantee stability with respect to non-convex
perturbations of X:

Ezample 4. In (P),let m = 2,5 = 1,g(z,y) = —z,X = R?,p = 0.5, 4 = uni-
form distribution on [0, 1] and define H via Gph H = [0,1]x {0} x [0, 1]. Then,
(1, H, X, p) € D, XB(X) = [0,1] x {0}, *¥(X) = {(1,0)} and X(X) = —1.
Taking & = (0,0), all assumptions of Lemma 1 are satisfied. However, with
the non-convex perturbations X,, := {(z,y) € R?|z < n|y|} one has X,, -+ X
and X¢(X,,) = X¥(X,)) = {(0,0)}, Xp(X,) = 0, hence X*¥(X,,) fails to be
closed at X and X fails to be upper semicontinuous at X.

Note, that in this example, the constraint qualification 2. of Lemma 1 is
satisfied even with strict inequality and, furthermore, u has even a density.
This underlines the necessity of & belonging to intdom H (see constraint
qualification 3. in Theorem 3), as soon as one is interested in stability w.r.t.
non-convex perturbations of X (note that intdom H = () in Example 4).
Another example demonstrates why p has to have a density in the context
of Theorem 3.

Ezample 5. In (P), let m = 2,s = 1,g9(z,y) = —2,X = [0,1] x {0},p =
0.5, u = Dirac measure on the point 1 € R and define H via

Gph H = conv{(0, —1,0), (1, —1,0), (1,0,1), (1,1,0), (0,1,0),0,0,1)}.

One easily verifies that y is r-concave for any r < 0, hence (u, H, X, p) € D°.
Furthermore, *@(X) = [0,1] x {0}, *¥(X) = {(1,0)} and Xp(X) = —1.
Taking £ = (0.5,0.5) € intdom H, all assumptions of Theorem 3 except
2. are satisfied. Now, with X,, := conv{(0,0),(1,n~!)}, one has X,, -+ X
and X¢(X,,) = X¥¥(X,)) = {(0,0)}, Xp(X,.) = 0, hence X¥(X,,) fails to be
closed at X and ¥ ¢ fails to be upper semicontinuous at X.

In the last example, the perturbations of X have even been convex, so the
failure of stability illustrates at the same time the necessity of & belonging
to int X in the constraint qualification 2. of Lemma 1 (note that int X =
in Example 5).

3.4 Stability with respect to the random set mapping

In contrast to the previous sections, for a stability analysis relating to the
random set mapping H, there is no chance to arrive at results for nonconvex
perturbations under reasonable assumptions. This will be seen in Example
9 below. Therefore, the following theorem relates to the restrictions of the
mappings ¥ and ¢ to the space M¢(R™,R*) of multifunctions with closed
and convex graph from the very beginning.
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Theorem 4. In problem (P) assume the following conditions:
1. (u, H, X, p) € D°.The solution set of (P) is nonempty: ¥(u, H, X,p) # 0.

2. u has a density.

3. There exists some & € intdom H N X with u(H(Z)) > p.
Then, at H, H@|M(R™,R®) is closed and Hp|M*(R™,R®) is upper

semicontinuous.

4. In addition, O # ¥ (u,H,X,p) C Q for some bounded open Q C R™.
Then, at H, HWQ|MC(RW,]RS) is upper semicontinuous and, moreover,
Hepo|Me(R™,R?) is continuous.

5. In addition, g is convez.
Then, BO|M*(R™ R*) and Hp|M(R™,R®) are upper semicontinuous
and continuous, respectively, at H (without localization).

Proof. We just have to verify that Z&|AM°(R™,R*) is lower semicontinuous
at H, since the rest of argumentation is completely analogous to the proof
of Theorem 3 after having shown lower semicontinuity of the mapping X &
there. For brevity, we put 7¢* := HH| M(R™,R?). If #&* were not lower
semicontinuous at H, then there would exist a sequence M*(R™,R*) > H,, —
H and an open set V such that 7¢*(H) NV # §, but #o*(H,) NV =
PV¥n € N. Let 2° € #¢*(H) N V. Exactly in the same way as in the proof
of Theorem 3, one derives, for small enough A > 0, the existence of some
Ty = A&+ (1 —N)z° with u(H(zy)) > p and z» € intdom HNX NV. If H$*
violates lower semicontinuity at H, then

w(Hy(zy)) <p VneN (5)

Now, (10) in Proposition 4 (see appendix) yields
H(zy) C (Liminf Hn) (z) C Liminf H,(z),
and (8) in Lemma 2 (see appendix) gives with (5) the contradiction

p(H(zy)) < liminf u(Hy,(23)) < p.

The following examples shall illustrate the (independent) necessity of the
first three assumptions in Theorem 4. Concerning the first assumption,
slight modifications of Example 2 (Gph H, := [n_l, 1] x [0,1] on the
one and X := [0,1],Gph H := ({0} x [0,1]) U ([0.5,1] x [0,1]),Gph H,, :=
({—n"'} x [0,1]) U ([0.5,1] x [0, 1]) on the other hand) confirm that violat-
ing convexity of X or Gph H (while satisfying all the respectively remaining
assumptions of Theorem 4) destroys stability. The following example shows
that the same holds true for the convexity assumption p € P¢(R®):
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Ezample 6. In problem (P) let m,s,p and g as in Example 2. Define X =
[0,3], Gph H := conv{(0,0); (3,2);(3,3);(0,1)} and p as the one-dimensional
probability measure induced by the density

Fa) = {8.5 gls: €f0,1u[2,3]

One easily calculates that #&(H) = {0,3} and #¥(H) = {0}. Now, all
assumptions of Theorem 4 are met with the exception that u fails to be r—
concave for some r < 0. Defining

Gph H), := Conv{(nilanil); (3,2); (3,3); (nila 1+ nil)}a

one verifies that H,, — H and #®(H,,) = {3} (e.g., u(H,(n"1)) = 0.5 (1 —
n~1) < p), hence #¥(H,) = {3} and H¥|M(R™,R?) cannot be closed at
H and #p|M°(R™,R®) is not upper semicontinuous at H either.

The next example demonstrates that assumption 2. cannot be dispensed with:

Ezample 7. In problem (P) let m,s, g, X,p be given as in Example 2, but
now define H by Gph H = [0, 1]2 and p as the Dirac measure on the point
1 € R. Then, all assumptions of Theorem 4 are met (for 3. take Z := 0.5)
with the exception of 2. Furthermore, #@(H) = [0, 1], hence #¥(H) = {0}.
Defining H,, via Gph H,, := conv{(0, 0); (1,0); (1,1); (0,1—n"1)}, one verifies
that H, — H and that pu(H,(1)) = 1 but p(H,(z)) =0for allz # 1. As a
consequence, one gets T¢(H,) = HW(H,) = {1}, hence H¥|IM(R™ R?) is
not closed at H. Similarly, #¢|M¢(R™ R?) is not upper semicontinuous at
H.

Another example highlights the role of constraint qualification 3. At the same
time it (negatively) answers the question whether the alternative constraint
qualification 2. of Lemma 1 could be sufficient in order to derive stability
w.r.t. to convex perturbations as it was the case for the deterministic con-
straint set in the previous section. It turns out that even strengthening this
constraint qualification towards strict inequality and insisting on p having
a density (which was not required in Lemma 1) does not yield the desired
result.

Ezample 8. In problem (P) let m = 2,s = 1,g9(z,y) = y,p = 3/4,X =
R?,Gph H = {0} x [0,1] x [0, 1] and g = uniform distribution on [0, 1]. Then,
all assumptions of Theorem 4 are met except 3. since int dom H = (). One
even has

u(H((0,0))) = u([0,1]) =1 > p,

hence condition 2. of Lemma 1 is strictly satisfied. On the other hand,

To(H) = {0} x [0,1],7w(H) = {(0,0)}," p(H) =0,
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and, defining H,, via

Gph H, := conv{(0,1,0), (0, 1, 1), (n"%,0,0), (n"*,0,1/2),
(_nila 07 1/2)7 (_n717 07 1)}7

one gets H, — H, Ho(H,) = 0.5 and

HQS(HTL) = COHV{(—(2TL)_1, 1/2)7 ((2”)_1, 1/2)7 (07 1)}7
Hy(H,) = [-(2n) ', (2n) '] x {1/2}.

Summarizing, no stability results for F¥| M (R™ R*) and Hp| M (R™,R?)
are available at H.

Finally, motivated by Proposition 3 and Theorem 3, one might wonder if the
assumptions of Theorem 4 are sufficient in order to derive stability of the map-
pings #¥ and ¥ ¢ themselves rather than of their restrictions Z&|M°¢(R™, R?)
and H | M°(R™,R?*). The answer is negative:

Ezample 9. Let m, s, g, X and u be given as in Example 2, set p := 3/4
and define H by Gph H = [0,1]2. Then, (u, H,X,p) € D¢, u has a density
and p(H(0.5)) > p with 0.5 € intdom H N X. Clearly #&(H) = [0, 1] and
Hy(H) = {0}. Summarizing, all assumptions of Theorem 4 are fulfilled. Now,
define the following closed subsets of [0, 1]:

2" 1 L

2t 2i+1

Ay, = — .

= U e
=0

Then, A, — [0,1] and p(A,) = 0.5 (recall that, on the subsets of [0,1], u is

identical to the Lebesgue measure). We set

Gph H,, := ({1} x [0,1]) U ([0, 1] x A,,).

Thus, M(R™,R*) > H,, —» H. Furthermore, u(H,(1)) = 1, but u(H,(z)) =
0.5 for z € [0,1), so #&(H,,) = HW¥(H,) = {1}. Consequently, due to the fact
that H, ¢ M°(R™,R®), ¥ fails to be closed or upper semicontinuous at H
and ¥ fails to be upper semicontinuous at H. Of course, the corresponding
properties do hold for the restrictions #&|M¢(R™,R*) and Hp|M*(R™,R?)
according to Theorem 4.

4 Appendix
In this section we collect some known or easy to prove facts. The results of

the following lemma are based on [6] (for (6), see Th. 3, for (7) see Cor. 8,
for (8) see Lemma 1 and Proof of Th. 4).
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Lemma 2 (Lucchetti,Salinetti,Wets). Let A,(n € N), A C R* be closed
with Limsup A,, C A and p € P(R®) a probability measure. Then, one has

limsup 1(An) < p(A). (6)

Conversely, assume that the A,, and A are closed and convex but Liminf A,, D
A. Then,
int A Cint | J [ 4n (7)

keENn>k

If, in addition to the last assumptions, u has a density, then it holds that

liminf p(An) > p(A). (8)

Proposition 4. Let G,(n € N), G : R™ = R® be multifunctions with closed
graph such that G,, — G . Then one has

(Lirr;sup Gn> (z) = G(z) for allz € R™. (9)

If, in addition, the G, and G have convex graph, then it holds that

(Liminf Gn) (z) D G(z) for all z € intdom G (10)
and
int dom G C int U ﬂ dom G, (11)
kEN n>k

Proof. (9) follows immediately from the definitions. In order to verify (10),
let y € G(z) and a sequence z,, — z be arbitrarily given. We have to show
the existence of a sequence y, € G, (z,) with y,, — y. To this aim, we verify
the following relation:

Vm € N In,, € NVn >n,, 320" € Gp(z,) N B (y,m™").

So, let m € N be arbitrary. By z € int dom G and due to convexity of Gph
G, G is lower semicontinuous in z (cf. [9], Th. 5.9). Consequently, there is
some § > 0, such that G(w)NB°(y,2/m) # OVw € B°(z, ). We select points
wt, ..., wV € B%(z,6) with z € int conv{w!,...,w™} as well as corresponding
points o, ..., oV with of € G(w?) N B%(y,2/m). By continuity, there is some
A > 0, such that =z € intconv{v!,...,vN} for all (v!,...,v") with * €
B°(wt, A). In view of G,, — G and (w',a’) € GphG, for each i € {1,..., N}
there exists some k; € N, such that GphG, N [B%(w’, A) x B°(a*,2/m)]
# (Vn > k;. Hence, there is some n,, such that for all n > n,, we may
find points (v, 8%) with B8 € G, (vi) N B%(af,2/m) and vi € B%(w?, A) for
i =1,..,N. Thus, z,, € conv{v},....vN} if n > n,,. Consequently, for such
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n there exist AL, ..., AN > 0 with AL + ... + A = 1, such that =, = A\Lvl +
e+ AN WY We set 2™ = ALBL + ...+ AN BN Since G, has a convex Graph,

one arrives at z™ € H,(z,). Furthermore, with 2* := A\a! + ... + ANaV it
holds that
N
7 =yl < Nz = 27l + ll2" =yl < DX, [167 — @[ +2/m <m7H,

i=1

which proves the intermediary assertion above. In this assertion, one may
assume N, < npmy1 Vm € N without loss of generality. Setting y, := 2] Vn €
{Pmy s Nmt1} Ym € N, it follows that y,, € G(z,,) and y, — y, as was to be
shown.

Finally, let us prove (11). Since by closedness and convexity of Gph G and
Gph G, the sets dom G and dom G, are closed and convex as well, it suffices
to verify, according to (7), the relation Limninf dom G,, D dom G. To this aim,

consider an arbitrary z € dom G and correspondingly select some y € G(z).
Then, assuming without loss of generality, the distance on R™** to be based
on the euclidean norm, we get

d(z,dom G,,) = inf{||z — 2’| |z’ € dom G}

<inf{y/llo — oI + lly — IPa’ € dom G, y' € G ()}
= d((z,y),Gph G,,) = 0,

where the last convergence relies on G,, -+ G and (z,y) € GphG. Thus,
z € Liminf dom G,,, as was to be shown.

The following Theorem (cf. [1], Th. 4.2.1, Th. 4.2.2, Th. 4.3.3) collects some
classical results of parametric programming in a simplified setting sufficient
for our purposes:

Theorem 5. In the parametric problem
(Py) min{f(z)lz € M(N)} (A€ 4),

let A be a metric space, M : A = R™ a multifunction which is closed at
X € A and f: R* - R a continuous function. Denote by ¥ : A = R and
p: A= R the solution set mapping and optimal value function, respectively,
associated with (Py). Then, the following statements hold true:

1. If M is lower semicontinuous at Ag or, alternatively, W()\O)r‘lL/\im;nf M) #
—>Ao

(0 is satisfied, then ¢ is upper semicontinuous at Ao and ¥ is closed at
Xo- If, moreover, B # W(X) C K is fulfilled for some compact set K C R
and all X close to Ay, then ¢ is continuous at A9 and ¥ is upper semi-
continuous at Ag.
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2. If f is convex, W(Xg) is nonempty and bounded and M (M) is convex for

all X € A as well as closed and lower semicontinuous at Ao, then, at A,
the solution set mapping ¥ : A = R" is upper semicontinuous and the
optimal value function ¢ : A — R is continuous.
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