DYNAMIC SPLITTING: AN ALGORITHM FOR DETERMINISTIC
AND STOCHASTIC MULTIPERIOD OPTIMIZATION*
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Abstract. A new algorithm for the nonlinear multistage stochastic programming problem
(MSP) is presented; one that is reasonable for the large-scale problem (e.g. long term hydropower
scheduling) and is highly parallel. The algorithm is based on the application of Spingarn’s operator
splitting method to the saddle point problem associated with the MSP. The splitting method imposes
a decomposability which results in two main subproblems to be solved at each iteration. One is
reformulated as an unconstrained linear-quadratic dynamic programming problem and is solved via
a linear feedback loop solution extended to the scenario tree structure. The other subproblem is
separable into box constrained convex sub-subproblems for each decision state. This crucial separable
structure arises only from the splitting of the saddle point problem formulation.

The algorithm was tested on a hydropower scheduling test problem containing 165,000 control
variables.

Key words. stochastic programming, dynamic programming, maximal monotone operator,
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1. Introduction. Dynamic programming is used to model situations where de-
cisions are made in stages. It is well known though that the dynamic programming
algorithm associated with this modeling framework is ill-suited in general for all but
the smallest of these problems. In the new dynamic splitting algorithm to be pre-
sented here, the nonlinear (convex) multiperiod deterministic or multistage stochastic
optimization problem is solved by exploiting a decomposability imposed via an oper-
ator splitting. Properly done, this avoids the state-space discretization which dooms
the DP algorithm. Our formulation also takes advantage, in one of the resulting
subproblems, of the one situation where the DP algorithm shines; the unconstrained
linear-quadratic case.

A goal in developing the algorithm was to decompose the multistage stochastic
programming problem (MSP) in such a way that the dynamics could be handled eas-
ily. The algorithm grew from observation of the special decomposability structure
exhibited only by the saddle point formulation of the problem. This underlying mod-
eling structure was laid out by Rockafellar (1998) (see also Salinger, 1997). It will be
necessary to review some of that work as a starting point here in Section 2.

Monotone operator splitting methods (see Eckstein (1989) for a thorough review)
have long been known in numerical analysis on linear algebra and differential equa-
tions. Those operators where predominantly linear and single-valued. Lions and
Mercier (1979) extended operator splitting to multivalued monotone operators and
applied it to the convex optimization setting. Eckstein and Ferris (1998) have applied
operator splitting to the multiperiod deterministic problem with specialization for ex-
tended linear-quadratic programs. In the dynamic splitting algorithm presented here
(see also Salinger, 1997) operator splitting is, for the first time, applied to multistage
stochastic programming. Section 3 reviews some pertinent monotone operator split-
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ting results as a starting point for the extension of Spingarn’s (1983, 1985) operator
splitting method for the saddle point problem.

The new dynamic splitting algorithm is developed in section 4 by applying Spin-
garn’s splitting method to the saddle point formulation of the MSP. The splitting
results in two main subproblems to be solved at each iteration. One subproblem
is reformulated as an unconstrained dynamic programming problem with quadratic
cost and linear dynamics (with scenario tree information/decision structure). This
is solved at each iteration via a linear feedback loop solution extended to the sce-
nario tree structure. The other subproblem is separable into box constrained convex
minimization problems for each node of the tree. It should be noted that the crucial
separable structure of the second subproblem only arises from the appropriate split-
ting of the saddle point problem formulation associated with the reduced Lagrangian.
The resulting algorithmic structure can be easily adapted to parallel computation.

This algorithm is unusual in that it was developed directly for the multistage
stochastic programming problem and not as an adaptation of an algorithm for the
two-stage stochastic problem or the deterministic problem. It is also unusual in that
it is applicable to the nonlinear (convex) problem rather than a linear or piecewise
linear objective. Many variations and approximations of the DP algorithm have been
tried for these multistage problems. The current fashion for MSP is a stochastic
Bender’s decomposition approach (cf. Birge (1980, 1985), Wets(1988), Periera and
Pinto(1985, 1991)). While the Bender’s decomposition theory holds for application
of these methods to the nonlinear problem, they have been found to be practical for
the linear and piecewise linear problems.

Previous results by Eckstein provide an alternative perspective of the underpin-
nings of our algorithm. Eckstein and Bertsekas (1992) have shown that the partial
inverse operator (Spingarn, 1983) is a special case of their splitting operator and thus
Spingarn’s splitting method is a special case of their generalized Douglas-Rachford
splitting method (since both splitting methods can be derived by application of the
proximal point method (Rockafellar, 1976a) to the splitting operator). Eckstein (1994)
provides a saddle point application of Douglas-Rachford splitting to convex program-
ming. Also, Eckstein and Ferris (1998) have utilized a generalized Douglas-Rachford
splitting to the multiperiod deterministic problem. Our algorithm could then also be
viewed as the extension of a saddle point application of Douglas-Rachford splitting
to convex multistage stochastic programming. But the Douglas-Rachford iterations
(cf. Eckstein, 1989) have a completely different form than the Spingarn iterations
we invoke for that splitting. Though Spingarn’s scheme can be obtained by invoking
Douglas-Rachford for a certain “auxiliary pair” of operators, the two methods do act
differently when applied without such a reformulation. That said, we have chosen to
present the algorithm as an application of Spingarn’s method for reasons of clarity of
argument as well as to acknowledge its pedigree.

Section b shows an improvement to the algorithm via the introduction of an addi-
tional control variable which greatly assists in state constraint compliance. Some per-
formance results from a 165,000 control variable hydropower scheduling test problem
will be reported in Section 6. The test problem was constructed from data supplied
by the Pacific Gas and Electric Co. in Northern California.

Most of the results presented here are taken from the thesis of Salinger (1997)
which contains a more detailed development of the theory as well as the development of
a hydropower scheduling model and the application of our algorithm to the scheduling
problem.
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2. Modeling Structure in Multistage Stochastic Programming. In sto-
chastic optimization, we desire to make an optimal decision (or sequence of decisions)
based on information which cannot be known with certainty at the time of the decision.
Stochastic programming is characterized by the opportunity, after initial decisions,
to make recourse decisions in response to additional developments in information.
After new information is revealed, a decision is chosen optimally with respect to that
information and to expectations on future information. A dynamical constraint (the
dynamics) is included to track the effects of previous decisions (through the definition
of an auxiliary state vector).

Laying out the precise modeling structure is crucial to the development of the
dynamic splitting algorithm. This section reviews Rockafellar’s (1998) MSP modeling
structure in the context of our current purpose (see also Salinger, 1997). The section
concludes by specializing saddle point theorems for the convex MSP.

2.1. The Scenario Tree. The underlying information and decision structure of
the multistage stochastic model is a scenario tree (see Figure 2.1). The nodes i € 7
of the tree are the information/decision states (also referred to as states or nodes).
Node i_ is the unique predecessor of ¢. The notation i represents the variable index
ranging over the successors of i, while Ij represents the set of all successors of i. The
set of terminal states (nodes with no following branches) is denoted by 7 C Z.

The transition probability p; > 0 represents the fixed probability of moving from
state i_ to state ¢ along a branch of the tree. The scenario corresponding to state
1 is the set of branches leading from the initial state to that state. The scenario
probability 7; > 0 represents the probability of arriving at that state i. It is the
product of the transition probabilities along that scenario.

For each information/decision state i € Z, a decision (or control) vector u; € R™
is chosen; this defines a policy mapping w : ¢ — u; for all ¢ € Z. We can also view u
as a super-vector of controls in R = IT;czR™.

A particularly attractive feature of the scenario tree structure is the ease in rep-
resenting the expected cost, which we may wish to minimize. The expectation is
conditioned on the successor states iy. If G;(u;,u;_,...,up) is the cost incurred at
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state 7 due to decision u; and as a function of all previous decisions in that scenario,
then the expected total cost is

ZﬂiGi(ui,uL,. . .,’u,()).

i€l

If the G; are convex in (u;,u;_,...,up), then the expected cost is a convex function
of the policy u.

As well as providing an underlying structure for the decisions, the scenario tree
also provides a structure for the information. The scenario tree structure arises from
the discrete transition probabilities or a discretization of the continuous transition
probabilities. The tree structure makes clear the fact that the probability of reaching
a state iy is conditioned on the probability of reaching state ¢ in the first place.

There is opportunity to respond (recourse) to developments of information on the
scenario tree. That is, future decisions are made after the observation of information.
Notice also that the development of information on the tree is not affected by interim
decisions.

We will be working directly on the scenario tree, and not on an expanded tree via
variable splitting (not to be confused with operator splitting). Advantages of this are
that it avoids both the proliferation of variables and the need for nonanticipativity
constraints.

2.1.1. Problem Dynamics. As a way of accounting for the effects of past
decisions, a state vector z; € R is defined recursively (by the dynamics) as
Tiyp = fi+ (i, u;)

where ¢4 € Ij represents any of the states following state i. Here, we will assume a
linear form of the dynamics

Ti, :Ai+xi+Bi+ui+bi+

where the b; € R! are random variables with discrete probability distribution defined
on the scenario tree. The components of b;, z; and u; represent various aspects of the
physical system in question at state ¢ € Z.

2.2. The Cost Structure. In general, the physical system will give rise to
various constraints. These are incorporated into the cost objective via a penalty
(possibly infinite) or multiplier formulation. Borrowing Rockafellar’s (1998) notation,
write this cost for each ¢ € Z as

Fi(wi,ui) = ri-ui + pi(ui) + 9] (di — Cizi — Diu;) + ¢z

where the extended-real-valued penalty functions ¢; and ¢ are convex, lower semi-
continuous (L.s.c.) and proper and where ¢ is the Fenchel conjugate (cf. Rockafellar,
1970a) of v; given by

Yi(zi) = sup {wi-zi —Pi(vi)}.

v; ER™i
If for example ;(v;) = 6§Rri (v;), then the Fenchel conjugate expression is

0, if dl — C’ixi — Diui S 0

400, otherwise

Y;i(di — Cizwi — Diu;) = {
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(where the vector inequality should be interpreted as holding for all components).

This generalized cost formulation melds what have traditionally been called costs
with what have traditionally been called constraints. What is a cost, but a penalty
(or soft constraint) on some action?

2.2.1. The General Multistage Stochastic Programming Problem. Col-
lecting the cost and dynamics structures (where G; is replaced by F; in conjunction
with the dynamics), the multistage stochastic programming problem (MSP) is formu-
lated as follows:

m:tnelgren]\}ze f(u) Zm i(2i,uq) (Po)
i€l
where: Fi(zi,u;) = ri-u; + pi(wi) +9; (di — Cizi — Diu;) + ¢ivw;

T, = Ai, i+ Bi,u; +bi,, x=bo

where the z; are viewed as dependent variables defined by the dynamics, where ¢;
and ¢} (and 1);) are extended-real-valued, convex, l.s.c. and proper, where m; > 0
is the scenario probability, and where RY is the product of the R for all i € .
For examples of how this structure can exhibit linear, piecewise linear, or extended
linear-quadratic programming structure see Rockafellar (1987, 1998) (also Salinger,
1997).

2.2.2. Example. Extended Linear-Quadratic Programming Structure.
The special case of extended linear-quadratic programming can be represented in this
extended problem (Pp) format with

1 1
©i(u;) = v, (us) + iui'RiUia i(v;) = o, (vs) + E'Ui‘QiUi

where U;, V; represent polyhedral constraints on u; and v; and R; and @); are positive
semidefinite. Here, in the minimization, the conjugate function ] inflicts piecewise
linear-quadratic penalties for violation of d; — C;x; — D;u; < 0. (See Rockafellar (1992)
for a review of piecewise linear-quadratic penalties.)

2.3. Problem Formulation; The Primal Problem. A constrained convex
programming structure can also be represented in this problem (Py) format and will be
used to provide a primal formulation of the convex multistage stochastic programming
problem. Specifically, take for each i € 7

gi(ui), ifu; €U;
oi(u;) = .
400, otherwise

and v;(v;) = dy; (v;) where g; is convex and finite on U; and the sets U; and V; = [0, ;]
(vector interval where ; € R"*) are the product sets of intervals. Then the conjugate
expression is

0, if di - Ci:vi - D,-ui S 0

i — Ciz; — Dju;]+, otherwise.

¥i(d; — Cixy — Diju;) =
( ) Yi-[d

where the notation [-]; represents the residual (or nonnegative part) of the vector. The
components of -y; specify the level of linear penalty if the corresponding component
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of the constraint d; — Cyx; — D;u; < 0 is violated. By allowing components of ~y;
to approach oo, we get the limiting case of infinite penalties for constraint violation
(with the convention that 0-co = 0). The convex version of the primal problem is
then formulated as

minimize f(u) = Z i {ri-wi + 0i(w;) + ¥ (di — Cizy — Dyug) + ci-x4} (P)
ueRy i€T
where: x;, = A; z; + Bi u; +b;,, x0=bp,

where ¢; and 1] are given above and where z; is viewed as a dependent variable.

Notice that the term ¢} (d; — C;z; — D;u;), in combination with the dynamics
in (P), creates a nonlinear function of u;,u; as well as previous decisions on that
scenario. The algorithm to be presented in Section 4 exploits a certain separable
structure in ¢ but needs (at highest order) bilinear terms in u;,u;_. The dual for-
mulation displays similar higher order non-separable terms. But, by formulating the
saddle point problem on the reduced Lagrangian, we shall see that this stipulation
can be met.

2.3.1. The Reduced Lagrangian. In the formulation of a full Lagrangian, the
state variables x; would be viewed as independent variables in addition to u;. A
dual state variable y; would then be introduced as a multiplier for the dynamical
constraint. In the reduced Lagrangian formulation, the state variable x; is interpreted
as a dependent variable defined by the dynamics. Then

L(u,v) = Zﬂi {ri-wi + @i(us) +vi-(di — Ciws — Diug) — (i) + ¢iomi}
i€
where: z;, = A;, x; + B; u; +b

ivs To = bo

on U xV where we use the convention that co — co = oco.

One should recognize that the reduced Lagrangian was the form used in the
development of (Py) as well as in the convex version (P).

For completeness, the dual problem can be formulated from the reduced La-
grangian as

maximize g(v) = Zﬂ'i {di'vi —i(vi) — @f(( > piBj y;) + D vi — Ti) - bzyz}

vERM - jez
(D)
where: y; = (2 ijjTyj) + C v — ¢, forig T
jezi
y,-—[CiTvi—ci] =0, forieT.

We now have the primal (P) and dual (D) problem formulations associated with
the reduced Lagrangian. Because of its special structure mentioned above, we would
also like to formulate the associated saddle point problem.

2.4. Saddle Point Problem Formulation. The saddle point problem for the
reduced Lagrangian L on U x V associated with the convex multistage problem is
formulated

find (u,7) € UxV (S)

such that : L(@,v) = min L(u,7) = max L(u,v)
ueRN veERM



Dynamic Splitting 7

where the restrictions u € U and v € V reside within the indicator functions in L.

If a saddle point exists for L on U x V, the optimal values in (P) and (D) must
coincide. Then, the problems (P), (D) and (S) can provide three formulations, each
possibly with distinct advantages, for finding (@, v). The algorithm to be presented in
this paper relies on a structural advantage found only in the saddle point formulation.

2.4.1. Saddle Point Existence. The following proposition (cf. Rockafellar,
1998) explains the relationship between the solutions of problems (P), (D) and (S)
and provides a context for the duality theorems which follow.

PROPOSITION 2.1 (Characterization of Saddle Points).

u is a solution to (P),
(@, ) is a solution to (S) <= < U is a solution to (D),
inf(P) = sup(D).

where sup(D) and inf(P) represent the optimal values in problems (P) and (D).

The following theorem, which relates primal optimality for the convex problem
(P) and existence of a saddle point of L on U xV (i.e. a saddle point solution in
(8)), follows easily from application of theorems in Rockafellar (1970a and 1998) to
the current context. (Note: “ri” stands for relative interior.)

THEOREM 2.2 (MSP Duality). Consider the convex problem (P), the associated
reduced Lagrangian L on U XV and the functions f and g defined in (P) and (D)
respectively;

(a) Suppose that for each i € T there exists a u; € ri U; such that d;—Ciz;—D;u; €
ri dom ¢} where x;, = A;, x; + Bi, u; + b, w9 = bo. Then u is optimal in (P) if
and only if there exists U such that (w,v) is a saddle point of L on UXV.
or

(') Suppose that —g is proper on 'V and the set {v € V|g(v) > a} is bounded for
all o € R. Then w is optimal in (P) if and only if there exists U such that (w,v) is a
saddle point of L on UXV.

(b) Additionally, if f is proper on U and the set {u € U|f(u) < a} is bounded for
all « € R, then an optimal U exists.

Proof. Part (a) follows from (Theorems 6 and 7 in) Rockafellar (1998). Parts
(a") and (b) specialize the duality theorems in (§35 of) Rockafellar (1970a). O

If, for a particular convex MSP, the necessary condition ((a) or (a’)) of Theo-
rem 2.2 is not met, all is not lost. By modifying the MSP to insist that the V; are all
bounded, condition (a') is automatically met.

The effect of this modification is small. Originally, the V; were allowed to be
unbounded (for example V; = R7*). As a result, the 9 (d; — Ciz; — Dju;) term in
the primal problem would inflict an infinite penalty in the minimization for violation
of the constraint d; — C;x; — D;u; < 0. If instead the V; are bounded, the infinite
penalty is replaced by a linear penalty. In practice, this modification will have little
effect as the multipliers (penalties) are cranked up until a specified level of constraint
compliance occurs. Of course during computation, the penalties never actually reach
00. If a bound on a component of V; is found to be too restrictive, it can be increased
(in a following run) so that the effect is like the unbounded case.

3. Operator Splitting. Methods of partitioning or decomposition have long
been used in mathematics to reduce a problem to one of iteratively solving a collection
of smaller or easier problems. These types of methods continue to be emphasized
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with the advent of parallel computing structures which make it possible to to solve
the smaller problems all at the same time. One such class of methods is known as
splitting methods for monotone operators (or operator splitting methods). The main
purpose of these methods is to find a zero of a monotone operator (or sum of monotone
operators) by “splitting” the operator into two or more simpler operators and then
exploiting the special structure of the resulting subproblems.

A monotone operator can be thought of as generalizing, to multivalued nonlinear
functions, the property of positive semidefiniteness. The gradient or subgradient of a
convex function provides the most famous example of a monotone operator. One can
easily see that the minimization of the sum of convex functions becomes the problem
of finding a zero of the sum of monotone operators.

This section will provide a way for us to apply Spingarn’s operator splitting to
the saddle point problem formulation (S) of the multistage stochastic programming
problem.

A multivalued function T:R"™ = R" is said to be a monotone operator if

(x—=x,m—n") >0 whenever neT(x), n € T(x)

where (-, -) is the inner product. An operator T is said to be mazimal monotone if it
is monotone and its graph

G(T) ={(x,m) € R*xR"|n € T(x)}
is not strictly contained in the graph of any other monotone operator 7" : R"™ = R”.

3.1. Zero of a Maximal Monotone Operator. Given a maximal monotone
operator T:R™ = R", consider the problem of finding a zero of that operator:

find x € R" such that 0 € T'(x). (21)

In principle, problem (Z1) may be solved by such techniques as a forward step or
backward step method.

3.1.1. Operator Splitting. Now imagine that 7" can be “split” so that T =
Ty +T5 where T} and T3 are also maximal monotone. Our problem is then formulated

find x € R™ such that 0 € (Th + T2)(x) (22)

This operator splitting can be used to impose a decomposition of the problem into
“smaller” problems. We then apply backward or forward steps to 17 and T5 separately
in some combination at each iteration.

The Paceman-Rachford and Douglas-Rachford splitting methods (cf. Eckstein,
1989) are well-known especially in the numerical PDE community. Those methods,
as well as the forward-backward splitting (cf. Chen and Rockafellar, 1995) employ
a combination of forward and backward steps. Another less-known method, due to
Spingarn (1983), was derived by applying the proximal point method to a specially
contrived partial inverse operator associated with the operator 77 X T». This method
involves only backward steps. Backward steps exhibit better convergence in general
and tend to be less adversely effected by ill-conditioning. (As mentioned previously,
Eckstein and Bertsekas (1992) have shown that Spingarn’s method can be thought
of as a special case of their generalized Douglas-Rachford splitting when a certain
auxiliary operator is employed.)
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3.2. Spingarn’s Operator Splitting Method. Spingarn’s (1983) method for
finding a zero of the sum of maximal monotone operators (written here for the two-
operator case of problem (Z£2)) is formulated as follows:

Step 1. Start with arbitrary xy € R™ and 71,712 € R™ such that n; + 12 = 0.

Step 2. For ¢ = 1,2, find x} € R", n; € R" such that
X+ni=x;+mn and nj=Ti(x;).
Step 3. For i = 1,2, let
x+=;ﬁ+ﬁ)wdmszéﬁ+%)
Return to Step 2 with the updated values for x, n; and ns.

We now derive a more convenient form of Spingarn’s algorithm before adapting
it for the saddle point problem. To that end, combine the equations in Step 2 to get

Xi=I+T) ' (x+m)
n=x+n—x

for i = 1,2 where the inverse is single valued since the T; are maximal monotone.
Notice from Step 3 that 7o = —n; and let n = —n; = n2. Replace T; by AT;
(i = 1,2) to introduce a parameter for the purpose of speeding convergence (0 €
(Th + 1) (x) < 0 € (A1 + AT12)(x)). Substituting into Step 3 (and defining iteration
index k) gives the following:
THEOREM 3.1 (Spingarn’s Method). An iteration of Spingarn’s method for prob-
lem (22) can be formulated

| =N =

X = S [+ AT) 7 E = 1*) + (L AT2) H(E + )] (SM)

= ST HAT) T F =) = (T M) (¢ +0)] + 0

where Ty and Ty are maximal monotone operators.

The definition of piecewise polyhedral mapping is given now as it provides a special
case for the convergence theorem which follows.

DEFINITION 3.2 (Piecewise Polyhedral Mapping). A mapping M : R"* = R™ s
piecewise polyhedral if its graph is the union of finitely many polyhedral (convex) sets
(Rockafellar and Wets, 1998).

THEOREM 3.3 (Convergence of Spingarn’s Method). Suppose that Ty and T are
mazimal monotone. In Spingarn’s method (SM) with X\ > 0, if a solution of problem
(22) exists, then x* converges to X and n* converges to 1 such that —7 € T1(X) and
7€ Tr(x) (i.e. 0€ (11 +T12) (X))

Moreover, if there exists an o such that

I(x+n) — X+l <allw| when (x+n) € (T1xT2) " (w)

for (w,x +n) close to (0,X+7), then the convergence of X* to X and n* to 7 is linear

and there is an index k such that
1

V14 (1/a)?

IOMH + 0™ = (x+ 1)l < I6* +n*) = (x+ )| for k> k
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where (Ty xT3) 4 is the partial inverse operator (Spingarn, 1983) associated with op-
erator (Ty xTz).

This extra assumption about the existence of such an « is satisfied in particular
if Ty and Ty are piecewise polyhedral.

Proof. The first part of the theorem is due to Spingarn (1983). The second
part of the theorem is a direct consequence of convergence results for the proximal
point method of Rockafellar (1976a) with the less restrictive conditions due to Luque
(1984).

If 77 and T, are piecewise polyhedral, then so is T} x Ty as is (11 X T3) 4 since
it is a one-to-one linear transformation in the graph space. Then, it is immediate
from (Example 9.35 of) Rockafellar and Wets (1998) and the definition of piecewise
polyhedral that such an « exists. O

A result about the rate of linear convergence for x* (rather than x* + n*) with
conditions in terms of T} + T (rather than (77 xT%) 4) might be more desirable. Still,
this result implies that if o can be decreased, faster convergence should result.

The exact nature of the relationship between A and « is not obvious. However,
it does seem evident and numerical tests concur, that adjusting A can help speed
convergence.

3.2.1. Application to Minimization. The purpose of this section is to intro-
duce, in the simpler context of minimization, the pattern that will be developed for
finding saddle points. In optimization, problem (Z1) arises from the minimization of
a proper convex l.s.c. function h. If h:R" — RU {400} is convex, then Oh:R" = R”
is a monotone operator. If h is also l.s.c. and proper, then 0h is a maximal monotone
operator on R™ (Rockafellar, 1966). Then the optimality condition 0 € dh(x) gives
rise to problem (Z1) where T = 0Oh.

To apply a splitting in the optimization setting, imagine that 77 and 75 arise as
subgradients of proper convex L.s.c. functions h; and hs and that we wish to minimize
h:h1+h2 on R".

mi;léggze h(u) = hy(u) + ha(u) (M)

To formulate algorithm (S.M) more conveniently for optimization, we use the fact
that when 7' = Oh (for h convex ls.c proper), the backward step (I + A\T')~!(u¥) is
equivalent to computing a step of the proximal point method:

1
k+1 _ in b _ k2
u arg;re%g{ (uw)+ 2>\||u u”| }

Rockafellar (1976a). Then in (§M), employ the proximal step for the backward steps,
let
@ =* —nF and @* = x* +
and define (ul); and (u2)* as the results of the proximal steps in this iteration.
THEOREM 3.4 (Spingarn’s Method for Minimization). An iteration of Spingarn’s
method for problem (M) can be formulated as follows:
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The proximal steps are
1
()" = arg i, {’”(“)* ﬁ”“—ﬁ”z} (SM)
1
(2 = ane g {ra(0) + gl = 1.

Then, the proximal terms are updated as

ﬂk-i-l — (ui)k + 5(@19 _ ﬁk)
1
At = () (- )

The convergence results of Theorem 3.3 hold also for this minimization formula-
tion (S M) of Spingarn’s method where, if h; and hy are convex l.s.c proper functions
on R", then T7 = Oh; and To = Oho are maximal monotone operators. If, in fact, hq
and hg are piecewise quadratic, then T} and T, are piecewise polyhedral (by Propo-
sition 12.30 of Rockafellar and Wets, 1998). In this case, the convergence is linear.

Notice that in this formulation, u takes the place of x while the variable 7 is
eliminated. Then, by the convergence of n* — 7 in Theorem 3.3, we get (ul)F —
(u?)¥ — 0. With u* — @, this shows that the solution of each proximal subproblem

in (SM’) converges to the minimizer (if one exists).

3.2.2. Extension of Spingarn’s Method to the Saddle Point Problem.
Recall that our purpose is to be able to apply this operator splitting method to the
saddle point formulation of the multistage stochastic programming problem. A final
step on that path is to extend Spingarn’s method to the general saddle point problem.
First we review a couple definitions.

DEFINITION 3.5. Consider any function L : " X R™ — [—o0, +00]. Then

(a) L(u,v) is termed a saddle-function if it is convex in u for all v € R™ and
concave in v for all u € R".

(b) Let
U = {u € R"|L(u,v) < +o00 Yv € R™}
V = {v e R™L(u,v) > —0c0 Yu € R"}.
A saddle function L is said to be proper if the effective domain U XV is non-empty

DEFINITION 3.6 (Rockafellar, 1970b). For a saddle function L on R™ xR™, the
associated operator Tr(u,v) is defined as the set of (w,z) € R xR™ such that

L(ulav) - <ul7w> + <Ua Z> Z L(ua U) - <u,w) + <Ua Z> (’TL)
> L(u,v') — (u,w) + (v, 2)
for all v’ € R™, v/ € ™.

The following result, adapted from Rockafellar (1970b), provides conditions for
the maximal monotonicity of T7,.
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PROPOSITION 3.7. Let L be a proper saddle-function on R™ xR™ such that the
function h,(u) = L(u,v") is lower semicontinuous on R™ for all v' € R™ and such
that the function k., (v) = —L(u',v) is upper semicontinuous on R™ for all u' € R".
Then Ty, is a maximal monotone operator.

To formulate Spingarn’s Method (SM) more conveniently for the saddle point
problem (S), we use the fact that for the maximal monotone operator Ty, associated
with the proper saddle function L(u,v) satisfying the semicontinuity requirements of
Proposition 3.7, the backward step (I + \T7)~!(u*,v*) is equivalent to computing a
step of the proximal point method as follows (with pu = )):

1 1
(4, 0841) = angmipmape {2 (u,0) 4 5= o = o= o2
(Rockafellar, 1976b) where UXV is the effective domain (introduced in Definition 3.5).

Note that the case where p # A can be accomodated simply by reconstrueing
what norm is used.

Imagine that L can be split so that L = Ly + Lo with L; and L, convex-concave
and L; finite. Then the Spingarn’s splitting algorithm can be reformulated for the
saddle point problem by applying (SM) to the maximal monotone operators 77, and
Ty, arising from the saddle-functions Ly and Ly (with the @, 4, ... notations of the
previous section) as follows:

THEOREM 3.8 (Spingarn’s Method for the Saddle point Problem). An iteration
of Spingarn’s method for problem (S) can be formulated as follows:

The proximal steps are

1 1
(u,v1)" = argminmas {L1<u,v> +orllu— @ = oo ﬁ’“n?} (SM")

1 1
(u?,v2)k = argminma‘} {Lz(u,v) + ﬁ”“ — a2 - EHU - ﬁk||2} ,

uclU ve

the proxzimal term updates are
1
(@,0)** = (ul,v)* + 5((11,17)’c - (4,9)")

(’l], "A))k-‘rl = (uiv ’Ui)k + _((avﬁ)k - (ﬂ, ﬁ)k)

and the current iterates toward the primal and dual solutions are

1, 2 _ Ll 2
Wb — 5((u*)k + (u2)*) and o* = 5((11*)1c + (1)),

The convergence results of Theorem 3.3 hold also for the saddle point version of
Spingarn’s method (SM") where, if L; and Ly are proper saddle functions satisfying
the upper and lower semicontinuity requirements of Proposition 3.7, then T7 = 17,
and Ty = T, (as in Definition 3.6) are maximal monotone operators. In this case, z*
is replaced by (u,v)*. Also, by remarks following Theorem 3.4 the primal and dual
solutions of each proximal subproblem in (SM") converge to the saddle point (if one
exists).

If Ly and Ly are linear-quadratic with polyhedral domain U xV, Then T7,, and
Ty, are piecewise polyhedral (by Example 12.31 of Rockafellar and Wets, 1998). In
this case, the convergence is linear.
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4. Application to Multistage Stochastic Programming. This section pres-
ents the main result of this paper; the development of the new dynamic splitting
algorithm for multistage stochastic programming problem (P) introduced in Section 2.
The algorithm utilizes Spingarn’s method to decompose the saddle point formulation
of the problem into two main subproblems to be solved at each iteration. The dynamic
subproblem is reformulated as an unconstrained linear-quadratic DP and is solved via
a linear feedback loop. Separability of the second subproblem will be exploited, but
specific information about function structure is needed to fill in the details of a solution
method.

In Section 2, a saddle point problem was formulated relative to the reduced La-
grangian L associated with the convex multistage stochastic problem (P). In Section
3, Spingarn’s method was formulated for the saddle point problem (SM"). The idea
here is to apply that method to the multistage stochastic problem with the appropriate
choice of splitting L = Ly + Lo (giving rise to the appropriate operator splitting).

To this end, rewrite the reduced Lagrangian associated with problem (P) as
follows:

L(u,v) =Y mi{eiw — vi-Comi} + Y mi{ri-wi + ¢i(us) + di-vi = ¥i(vi) + vi- Dy}
i€ET 1€EL

L1 (u,v) Lo (u,v)

where: Ti, = Ai+$i + Bi+ui + biJr, o = bo,

on UxV where ¢;(v;) = dv; (v;) and ¢;(u;) = g;(u;) + 6y, (u;) are the convex functions

defined in (P). As mentioned previously, we use the convention that co — 0o = 0.
This choice of splitting (L = Ly + Lg) results from the desire to exploit the

decomposable structure of the reduced Lagrangian. Notice the separable structure of

Ly, which can be written

LQ(U, ’U) = Zﬂ'lll(’ul, ’Ui)
€T
where: li(ui,vi) =7r;-u; + gol(ul) +d;-v; — @bl(vl) + v;-Dju;

and is clearly convex-concave in u;,v;. This separable structure makes the monotone
operator associated with Lo a strong candidate for the proximal point step.

Notice also that because ¢; and v; can be oco-valued, Ly is not differentiable in
general. This illustrates the necessity for methods (like proximal point, Spingarn’s,
forward-backward) which can accommodate multivalued monotone operators.

The biaffine structure of

Ll(’LL,’U) = Zﬂ'i(ci-xi - vZC’m)
=

where : Ti, = Ai+xi+ +Bi+ui +bi+, zo = bo
contains all links between the different decision states. The function L; is differ-
entiable, so a forward step for the associated monotone operator might have been
considered. But, one of the keys to the algorithm lies in the method for solving
the proximal step arising from L;. General splitting methods that mix forward and
backward steps have been discussed, for example, by Chen and Rockafellar (1997).
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4.1. The Dynamic Splitting Algorithm. We have chosen the saddle point
problem formulation of the multistage problem. We have chosen a particular splitting
of the reduced Lagrangian based on its decomposable structure. From the structure of
the resulting functions, we have chosen proximal steps for both subproblems and will
therefore apply Spingarn’s method to the saddle point problem. The true justification
for these choices comes in hindsight at the point of having found reasonable methods
for the subproblems and later from numerical tests showing that the algorithm actually
performs as designed (with the help of assorted implementation tricks).

The dynamic splitting algorithm is derived by applying the saddle point version of
Spingarn’s method (SM"') to our splitting of the reduced Lagrangian. The proximal
subproblems arising at each iteration are then as follows:

_ 1 ) 1 )
(ul, o))k = argurgg}v Urgg)ﬂi 2 e {ci.xi —v;-Cixy + ﬁ”uz —a¥|? - EHvl - f||2}
(P1%)
subject to: éL'i+ = AiJrIi + Bi+ui + bi+, Trog = bo;
. 1 ) 1 i
(u,v7)"= arg min max 2 {li(uz-,vi) HET U ol fIIQ}
(P2)

where : li(ui, ’Ui) =7r;-u; + gpi(u,-) +d;-v; — ’(ﬁi(?}i) + v;-D;u;.

The proximal term updates are

(3,01 = (u2,02)" + 5((@9)* - ()"
(i) = (ud, o)+ 3 (30~ (39,

It should also be noted that at each iteration, the solution of subproblem (P1%)
is feasible in the dynamics while the solution of subproblem (P2*) is feasible in the
control bounds.

THEOREM 4.1 (Convergence Results for Dynamic Splitting). For the splitting
L = Ly + L of problem (P) specified above, the operators Ty, and Ty, are mazimal
monotone. With nk+1 = %(ui —u2, vl —v?) —nF at each iteration, if a solution of the
saddle point problem (S) exists, then (uF,v*) converges to (,v) and n* converges to
7 such that —7 € T, (w,7) and 7 € T, (4,v) (ie. 0 € (Ty, +TL,)(T,v)).

Moreover, if there exists an a such that (with x = (u,v))

I(x+m) — X+ 0l < allw| when (x+n) € (TL, xTw,) 5" (w)

for (w,x +n) close to (0,X+7), then the convergence of (u*,v*) to (uw,v) and n*
tomn
is linear and there is an index k such that

k+1 E+1\ _ (~ 1 = 1 E ok (= =
IO +7770) = (X + 1)l < 1+(1/a)2”(x +0°) = (X +m fork >k
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where (T, X Tr,)a is the partial inverse operator (Spingarn, 1983) associated with
operator (T, XTp,).

This extra assumption about the existence of such an « is satisfied in particular
if L1 and Ly are linear-quadratic on polyhedral domains.

Proof. This follows directly from Theorem 3.3 and the comments pertaining to
linear-quadratic Ly and Ly following Theorem 3.8. O

Note, by the convergence of n* — 7, we get (ul)*—(u2)* — 0and (v!)F—(v2)F —
0. With (u*,v¥) — (w, ), this shows that the solution of each subproblem converges
to the saddle point (if one exists).

As in the remarks made after Theorem 3.3, a result about the rate of linear
convergence for x* = (uF,v*) (rather than x* + n*) with conditions in terms of
Ty, + Tr, (rather than (T, x Tr,)4) might be more desirable. Still, this result
implies that if « can be decreased, faster convergence should result.

The exact nature of the relationship between A and « is not obvious. However,
it does seem evident and numerical tests concur, that adjusting A can help speed
convergence.

It remains to be explained how to solve the subproblems.

4.2. Subproblem (P1*¥): The Dynamic Subproblem. At each iteration,
subproblem (P1*) is a saddle point problem in its own right and therefore has an
associated primal problem of the form

1 1
ot e k ~k12 ~k112
minim — Neioxi —v;-C:xs R . " _ . ;h

Lelw\}ze fi (u) = vseup {;E ”z(cz T; — ;- Oy A 2)\Huz i || 9 ||v1 i || )}

where: x;, = A;, x; + B;,u; +b

+ xo = bo

)

Noticing that the supremand is concave and unconstrained in v; for all i € Z, we
set the gradient to zero in order to determine the max.. Solving that equation reveals
that

Ei :’55 7/.£Ci£1?i, Vi el

Substituting gives

k — ik 1 1 P
fr(u) = Zm {(Ci - Cit;)-mi + Qﬂ(ciivi)'c'ﬂi + ﬁ“ui =4 ||" ¢

i€

We desire to write the resulting minimization in a general form. To this end, let
Qi = uC;'Ci, q; = ¢; — CiiF, R; = %I, and r; = —%ﬂf Dropping constant terms
(and with the assumption that no decision is made at the terminal states i € 7)), the

minimization becomes

L. 1 1
mggg}éze Z U {Efszle +qix; + §quzuz + Tzuz}
1€L/T
1
+Z7Ti{§xi'Qi$i+qz"wi} (DPuq)
€T
where: .CCiJr = AiJrZL'i + Bi+ui + biJr, Ty = bo.
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+

Ly

Ti, :Ai+mi+Bi+ui+bi+

Usg

u; = ul(z;)

Zo

Fic. 4.1. Linear feedback loop solution for the unconstrained linear-quadratic DP on the sce-
nario tree (where uf(x;) is defined in Theorem 4.2).

Formulated in this way, the resulting problem can be thought of as an uncon-
strained dynamic programming problem on the scenario tree with linear dynamics
and quadratic cost; though we would instead think of the problem as one of choosing
a minimizing policy {u;(x;)};cz/7 rather than a minimizing supervector {u;};cz/7

Rockafellar has shown that if {u; (2;)};cz/7 is an optimal policy for the dynamic
programming version of the problem, then {u;}iez/7 (Where w; = uj(z}), zj, =
Ai xf + Bi Ui + by, xy = xo for i € Z/T) is an optimal solution for the MSP
version of the problem (see Salinger, 1997).

This special case of unconstrained dynamic programming with quadratic cost and
linear dynamics is well known to be one of the few general cases where a closed form
(“linear feedback loop”) solution can readily be determined. The following theorem
extends that celebrated result (see, for instance, Bertsekas, 1987) to the DP on a
scenario tree structure. The proof is an easy induction argument.

THEOREM 4.2 (Feedback Loop Solution for (DPy;)). A linear feedback loop
solution (see Figure 4.1) to problem (DPi,) can be obtained for each i € Z)T as

uf(zi) = —(Ri+ > 0B K;B;) ' (ri+ Y piB] (1 + Kj(bj + Ajz:)))
Jel—:r ]EI%+

where x; s given by the dynamics and where the symmetric positive semidefinite
matriz K; and the vector l; is defined, for i € T, as K; = Q; and l; = q; and
recursively defined, fori & T, as

jezt
-1
— <Z pJA;rKJBJ> <Rz + Z pJB‘;rKJBJ> (Z p]B;rK]A]>
jez; JETS jez;t
i=a+ > piAl (;+ Kb))
JET;

~ (X piATK;B;) (Ri+ Y 3B/ K;B;) ( > 0B (15 + Kjby) ).

jez; jez; jez;
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4.2.1. Practical Concerns. To employ this DP algorithm for the subproblem,
first calculate the Kj,I; starting with ¢ € 7 and working in a single “backward” pass
of the scenario tree. Then calculate the v} in a single “forward” pass (see Figure 4.1)
while updating z; in the dynamics.

The matrix inversion (R; + > jeTt p;B] K;B;)~* does not cause any diffuculty
in the solution process. Notice first that since R; is positive definite and @Q; is posi-
tive semidefinite, then K; is also positive semidefinite and R; + ) ezt ijjTK ;Bj is
positive definite. Therefore the inverse exists.

Secondly, K;, R;, B; do not change from one iteration to the next if A and p are
fixed (as they should be). Therefore, the inverse can be calculated for each ¢ € 7 in
the initial iteration of the algorithm and used throughout. (Matlab can invert a 1000
by 1000 matrix in under a second, so this is not a bottleneck when it is expected that
the algorithm will need on the order of 500 iterations.)

Thirdly, notice in our formulation of the subproblem that R; did not depend on 1.
The incidence matrix B; is often independent of . If the C; (and therefore Q;) also do
not depend on ¢, or depend on 7 only to the extent that within each decision stage (e.g.
month, etc.) the Q; are identical, then the K; within each stage are also identical. In
this case (which was the situation for the hydropower scheduling problem) the matrix
inverse (R;+)_;c7+ p;B] K;B;)~" needs only to be calculated once for each decision
stage and only in the first iteration of the solution process.

One final simplification to the dynamic subproblem can be made if the matrices
A; and B; are block diagonal (as is exhibited in a hydropower scheduling problem
with two or more distinct watersheds). In this case, the subproblem is separable by
diagonal block (or by watershed in the hydro example).

4.3. Subproblem (P2*); The Separable Subproblem. Utilizing the separa-
bility of L, and the norms, we can formulate subproblem (P2F) as follows:
Foreacht €T

_ 1 ) 1 )
(u2,03)" = arg min e {1, v0)+ 5o = 0] = oo — o5}

where: li(ui,vi) =7r;-u; + np,(u,) +d;-v; — z/),(v,) + v;-D;u;.

Recall that ¢;(u;) takes a value of +oco for u; ¢ U; and that ¢;(v;) = v, (v;). Thus,
the subproblem can be formulated for each i € Z as

2 2 \k .
(uki, viy)" = arg o Fgg}{huz + gi(wi) + di-v; + vi-Diw;

1 1
oyl = ab 1P = oo = o
where U; and V; represent box constraints on u; and v;.

Further, if v; is unconstrained (alternatively if w; is unconstrained) then this
saddle point problem should be written in equivalent primal (alt. dual) form. Then
the supremum (alt. infimum) problem would be unconstrained in v; (alt. u;) and could
be solved in closed form (as was done with the supremum in subproblem (P1F)).

Without knowledge of the exact nature of g; as well as U; and V;, it would be
difficult to be specific about how to continue from here. An example of this for
the long term hydropower scheduling problem can be found in Salinger (1997) and
will be published later in a companion paper. There, the subproblem is further
separated into easy quadratic subproblems for the dual, primal “spilled release” and
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additional control (defined in Section 5) variables. The primal “turbined release”
variable subproblem, where g; is formed from the sum over subperiods of the integral
of marginal cost data over power shortage in that subperiod, is solved using properties
of Fenchel duality.

5. An Improvement. This section presents a practical improvement which was
seen to greatly improve constraint compliance without changing the overall problem
structure. Return to our splitting of the reduced Lagrangian on page 13 and notice
that some of the terms of the constraint equation d; — C;x; — D;u; < 0 occur in
Ly and some in Ls. When the resulting subproblems are solved, this splitting up
of the constraint terms results in neither subproblem aiming for compliance of this
constraint. Although Theorem 4.1 promises linear convergence under this splitting,
as a practical matter this constraint was seemingly ignored by the algorithm in the
course of test problem computation.

If all terms associated with that constraint were to be grouped in Lo for the
purposes of the splitting, the separability of subproblem (P2*) would be ruined. If
all terms associated with that constraint were to be grouped in L; for the purposes
of the splitting (including ;), the unconstrained nature of the dynamic subproblem
(P1F) would be ruined. Another fix is needed.

To combat this constraint compliance problem, we modify the reduced Lagrangian
via an additional control variable.

5.1. The Modified Reduced Lagrangian. As a step toward formulating a
modified reduced Lagrangian for problem (P), an additional control variable w; € R™:
is introduced along with the stipulation that

The terms
Ui‘(di — Ciz; — Diui) - wi(vi)

of the reduced Lagrangian, possibly corresponding in the associated primal problem
to the state constraint

d; — Ciz; — Dyu; <0,
are then replaced by
Uz(dl - C’lwl - Dzuz) - wz(vz) + v:(wl — Iz)

where the multiplier v, € ®™ is introduced for the new constraint w; — z; = 0.
Then a modified reduced Lagrangian associated with problem (P) can be formu-
lated

L(u,w;v,v') =

Zﬂ'i {ri-wi + @i(ui) +vi-(di — Ciw; — Diug) — bi(vi) + vj-(wi — x3) + ¢io}
=V
where: ;. = A; z; + Bi u; + b, 0 =Dbg

on (UxRM) x (V x RM) where 1;(v;) = v, (v;) and ¢;(u;) = g;(u;) + 0y, (u;) are the
convex functions defined in (P).
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5.2. The Splitting. Then, the modified reduced Lagrangian is split as follows
to arrive at an operator splitting exhibiting the same structure as before but now with
a mechanism for constraint compliance within subproblem (P2*):

Ly (u, w;v,v") = Zm {ci-z; + v} (w; — x;)}
i€Z
where: ;. = A;, x; + Bi u; +b

iy Zo = bo

LQ(U,U);’U,’UI) = Zﬂ'i {rzuz + gal(ul) + ’Ul(dz — C’lwl — Dzuz) — wz(vz)}
1€EL

on (UxRM)x (VxRM) where ¢; and v; are defined above.

Notice that the structure exhibited here is identical to the structure of the original
formulation (with (u;, w;) replacing u; and (v;,v}) replacing v; and with the proper re-
sizing of B;, D; etc. Thus, all previous theorems and the subproblem solution methods
remain valid for this modified formulation.

6. Performance Results. There are various criteria for measuring algorithm
performance including CPU times and solution accuracy measurements. A standard
measure of accuracy of the solution is the duality gap which is reported along with
the norm of constraint violations. This information can also provide useful stopping
criteria for the algorithm.

The algorithm was implemented, with various “implementation tricks,” for a large
long-term hydropower scheduling problem constructed from data supplied by the Pa-
cific Gas and Electric Co. The sparsely branched scenario tree (supplied by PG&E)
consisted of 27 scenarios spanning 24 months. There were 165,200 control variables
representing turbined or spilled releases of water (350 control decisions at each of 472
decision nodes) and 44,368 state variables representing water storage. (For more on
the test problem and implementation, see Salinger (1997).)

The test problem and algorithm were prototyped in Matlab. Running on a DEC
Alphastation 500/333 (333MHz EV5 processor), the algorithm used about one minute
of CPU time per iteration. But, Matlab is notoriously slow for large problems with
large loops. If the algorithm were to be implemented using a “faster” language and by
taking advantage of the ample opportunity for parallelization, it seems certain that
reasonable run times would result.

Results of the duality gap measurements and the norm of constraint violations
are presented in Figures 6.1 — 6.3. Figure 6.1 is a plot of the primal and dual ob-
jective values at each iteration as well as the true cost (D ;.7 migi(u;)). Due to the
above mentioned implementation tricks, and to better reflect the actual problems
being solved at each iteration, the primal and dual objectives contain some penalty
(multiplier) terms. The reported value of these objectives is likely inflated due in part
to small infeasibilities in the test problem.

Reporting of the duality gap is further complicated by the fact that the primal
and dual solutions at each iteration are not necessarily feasible. Recall that in each
iteration, the solution of the dynamic subproblem (P1k) is always feasible in the
dynamics and that the solution of the separable subproblem (P2k) is always feasible
in the control constraints. But, as the reported solution at each iteration is the mean
of the two subproblem solutions, it need not be feasible in the dynamics nor the
controls. In fact, there are times early in the solution process when the sign of the
multipliers (dual variables) is clearly out of step with the constraints. As a result, it
appears that we are reporting a negative duality gap in that iteration. With enough
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F1G. 6.1. The value of the primal (P) and dual (D) objectives and the true cost (dotted line)
at each iteration. (Note: the primal objective contains some penalty information in addition to the
true cost.)

iterations, the approximate solution at each iteration becomes more nearly feasible,
and so the reported duality gap better approximates the actual duality gap.
The duality gap is usually reported as a ratio of

[Primal Objective] — [Dual Objective]
[Primal Objective]

A plot of this ratio at each iteration is shown in Figure 6.2. The fairly large gap (0.1)
is likely due in part to small infeasibilities in the test problem.

Figures 6.3 (a) and (b) show the norm of the expected value of the state constraint
violations and the norm of the control constraint u; € Z violations. Recall that the
solution of the dynamic subproblem is always feasible in the dynamics while the
solution of the separable subproblem is always feasible in the box constraints. Recall
also that the current solution at each iteration is the average of the solutions of the two
subproblems at that iteration. Thus, Figure 6.3(b) also gives an idea of the violation
of the dynamical constraint.

REFERENCES

[1] D. P. BERTSEKAS, Dynamic Programming, Prentice-Hall, inc., Englewood Cliffs, N.J., 1987.

[2] J. R. BIRGE, Solution methods for stochastic dynamic linear programs, tech. report, Report
80/29, Systems Optimization Lab.,Dept of Operations Research, Stanford University, CA,
1980.

, Decomposition and partitioning methods for multistage stochastic linear programs, Op-

erations Research, 33(5) (1985), pp. 989-1007.

(3]



Dynamic Splitting 21

S
A= T B
T T T T

FU‘
1 1 1 1

e
=~
T

The Duality Gap
o o
o W
T T

I
=
T

0 100 200 300 400 500 600 700
Iterations

Fic. 6.2. The Duality gap at each iteration.

[4] G. H.-G. CHEN AND R. T. ROCKAFELLAR, Convergence rates in forward-backward splitting,
Siam J. Optimization, 7 (1997), pp. 421-444.

[5] J. ECKSTEIN, Splitting methods for monotone operators with applications to parallel optimiza-
tion, PhD thesis, Massachusetts Institute of Technology, 1989.

(6] , Some saddle point splitting methods for convexr programming, Optimization Methods
and Software, 4 (1994), pp. 75-83.

[7] J. ECKSTEIN AND D. P. BERTSEKAS, On the douglas-rachford splitting method and the prozimal
point algorithm for mazimal monotone operators, Math. Programming, 55 (1992), pp. 203—
243.

[8] J. ECKSTEIN AND M. C. FERRIS, Operator splitting methods for monotone affine variational
inequalities, with a parallel application to optimal control, INFORMS J. on Computing,
10 (1998), pp. 218-235.

[9] P. L. LioNs AND B. MERCIER, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer Anal., 16 (1979), pp. 964-979.

[10] F.J. LuQUE, Asymptotic convergence analysis of the prozimal point algorithm, STAM J. Control
and Opt., 22 (1984), pp. 277-293.

[11] M. V. F. PEREIRA AND L. M. V. G. PINTO, Stochastic optimization of a multireservoir hydro-
electric power system, Water Resour. Res., 21(6) (1985), pp. 779-792.

, Stochastic dual dynamic programming, Mathematical Programming, 52 (1991), pp. 359—
375.

[13] R. T. ROCKAFELLAR, Characterization of subdifferentials of convez functions, Pacific Journal
of Mathematics, 17(3) (1966), pp. 497-510.

(12]

[14] , Convex Analysis, Princeton University Press, Princeton N.J., 1970a.

[15] , Monotone operators associated with saddle-functions and minimaz problem, in Proceed-
ings of Symposia in Pure Mathematics, F. Browder, ed., vol. 18(1), American Mathematical
Society, 1970b, pp. 241-250.

[16] , Monotone operators and the prozimal point algorithm, SIAM J. Control And Optimiza-

tion, 14 (1976a), pp. 877-898.

[17] ———, Augmented lagrangians and applications of the prozimal point algorithm, Math. Oper.
Res., 1 (1976b), pp. 97-116.

, Linear-quadratic programming and optimal control, STAM J. Control and Optimization,

(18]



22 D. H. Salinger. and R. T. Rockafellar.

N
T

3o}
T

(a) Norm of State Violations
w
T

1F
0 | | | | | | |
0 100 200 300 400 500 600 700
Iterations
0.4

o
w

I
o

0.1

(b) Norm of Control Violations

0 100 200 300 400 500 600 700

Iterations

F1G. 6.3. (a) The 2-norm of the state-constraint violation at each iteration.
(b) The 2-norm of the primal control-constraint violation at each iteration.



Dynamic Splitting 23

25 (1987), pp. 781-814.

[19] , Eztended linear-quadratic programming, SIAM J. Optimization, News and Views, 1
(1992), pp. 3-6.
[20] , Lagrange multipliers and optimality, SIAM Review, 35 (1993), pp. 183-236.

[21] ———, Duality and optimality in multistage stochastic programming, Annals of Operations
Research, December (1998).

[22] R. T. ROCKAFELLAR AND R. J.-B. WETS, Variational Analysis, Springer-Verlag, 1998.

(23] D. H. SALINGER, A splitting algorithm for multistage stochastic programming with application
to hydropower scheduling, PhD thesis, Dept of Applied Math., University of Washington,
1997.

[24] J. E. SPINGARN, Partial inverse of a monotone operator, Appl. Math. Optim., 10 (1983),
pp. 247-265.

, Applications of the method of partial inverses to convexr programming: decomposition,
Mathematical Programming, 32 (1985), pp. 199-223.

[26] R. J.-B. WETS, Large scale linear programming techniques, in Numerical Results for Stochastic
Optimization, Y. Ermoliev and R. Wets, eds., Springer, Berlin, 1988, ch. 3.

(25]



