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Abstract

In stochastic optimal control, a key issue is the fact that “solutions” are searched
for in terms of “feedback” over available information and, as a consequence, a ma-
jor potential difficulty is the fact that present control may affect future available
information. This is known as the “dual effect” of control.

Given a minimal framework (that is, an observation mapping from the product
of a control set and of a random set towards an observation set), we define open-loop
lack of dual effect as the property that the information provided by observations
under open-loop control laws is fixed, whatever the open-loop control. Our main
result consists in characterizing the maximal set of closed-loop control laws for which
the information provided by observations closed with such a feedback remains also
fixed.

We then address the multi-agent case. To obtain a comparable result, we are led
to generalize the precedence and memory-communication binary relations introduced
by Ho and Chu for the LQG problem, and to assume that the precedence relation is
compatible with the memory-communication relation.

When the precedence relation induces an acyclic graph, we prove that, when
open-loop lack of dual effect holds, the maximal set of closed-loop control laws for
which the information provided by observations closed with such a feedback remains
fixed is the set of feedbacks measurable with respect to this fixed information. We
end by studying the dual effect for discrete time stochastic input-output systems with
dynamic information structure, for which the same result holds.
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1



Contents

1 Introduction 3

2 Admissible feedback laws and dual effect 5
2.1 A minimal framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 A measurability pre-ordering tool for information structures . . . . . . . . 6
2.3 Lemmas on measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Admissible feedbacks and observation after feedback . . . . . . . . . . . . . 10
2.5 Definitions of open-loop dual effect and of the no dual effect feedbacks set . 11
2.6 Characterization of the no dual effect feedbacks set . . . . . . . . . . . . . 12

3 Dual effect for multi-agent stochastic input-output systems 13
3.1 Multi-agent stochastic input-output systems . . . . . . . . . . . . . . . . . 13
3.2 Precedence and memory-communication binary relations . . . . . . . . . . 14
3.3 Definitions of open-loop dual effect and of the no dual effect feedbacks set . 18
3.4 Characterization of the no dual effect feedbacks set when precedence implies

memory-communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Characterization of the no dual effect feedbacks set under additional as-

sumption of acyclicity in the precedence relation . . . . . . . . . . . . . . . 20

4 Dual effect for discrete time stochastic input-output systems with dy-
namic information structure 21
4.1 Discrete time stochastic input-output systems with dynamic information

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Characterization of the no dual effect feedbacks set . . . . . . . . . . . . . 23

5 Conclusion 24

2



1 Introduction

In stochastic optimal control, a key issue is the fact that “solutions” are searched for in
terms of “feedback” over available information (which is revealed in a causal way as time
evolves). As a consequence, a major potential difficulty is the fact that present control
may affect future available information. This is known as the “dual effect” of control: the
control strategy has the (dual) purpose of addressing the problem of cost minimization
directly, and, at the same time, of improving the situation of future decisions to be taken
by enhancing the information available at the moment of making those decisions.

The most famous illustration of this difficulty is provided by the celebrated Wit-
senhausen’s counterexample [11] which shows how a relatively simple Linear-Quadratic-
Gaussian (LQG) stochastic optimal control problem may lead to very nonlinear “solu-
tions” to the point that nobody, indeed, knows how to write down optimality conditions
that would lead to a numerical resolution of this problem.

Witsenhausen’s counterexample is based on a so-called “non classical information pat-
tern”, namely, in that specific case, the lack of perfect recall, or memory, of past obser-
vations. On the contrary, with a classical information pattern, the solution of the LQG
problem is quite simple and this problem then enjoys many properties, and at the first
rank of them, the lack of dual effect. That is, there is no way to affect the quality of
future observations with the control law, even if numerical values of future observations
do depend on past controls. Generally speaking, one way of talking about the “quality”
of information provided by observations in mathematical terms is to consider the σ-field
generated by those random variables. Thus, saying that information cannot be affected by
control amounts to saying that those σ-fields are left invariant by the control.

Another notion also discovered about the LQG problem and discussed extensively in
another paper by Witsenhausen [13] is the so-called separation principle. Whether the lack
of dual effect is a prerequisite for some sort of separation principle to hold true is a subject
we do not want to discuss in depth here. Our main motivation is the numerical resolution
of stochastic optimal control problems, and, as we will try to explain it shortly in the next
lines, the lack of dual effect is of paramount importance in this respect.

Essentially, we would like to distinguish between two points of view. On the one hand,
when control variables are searched for as functions of observations, this very dependence
expresses, by itself, the information structure of the problem. Then, the difficulty is rather
that of manipulating such functions effectively, both because of the richness of such math-
ematical beings (the famous “curse of dimensionality”) and because there are generally no
reasons to restrain oneself to “well-behaved” functions that can be cast into nice mathe-
matical “spaces”.

On the other hand, control and observation variables may simply be considered as
random variables, that is, indeed, as functions over a certain set Ω supplied with a basic
σ-field and a probability measure. Then, one is faced with the problem of expressing
that the control variables do not contain more information than the observation variables.
This is achieved by saying that the former are measurable with respect to the latter.
In the numerical handling of the problem, assuming that Ω is finite, the practical rule
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is to represent control variables as piecewise constant functions over the partitions of Ω
determined by the observation variables (when the latter are constant over a subset, the
former must also be constant over the same subset).

Then comes the crucial problem: can those partitions, defined by observations, be
determined in advance, without reference to the solution itself, that is, without knowing
(past) optimal controls? Here, we exactly touch the issue of whether or not the dual effect
of control is present in the problem under consideration. In [3], it is shown that the lack
of dual effect is a prerequisite to tackle stochastic optimal control problems by variational
methods based on an approximation in terms of scenario trees. A sufficient condition
for this lack of dual effect is given in that reference (which covers nontrivial cases when
observation values do depend on past controls). It is our purpose in the present paper to
revisit and enlarge this topic.

However, in [3], the property that partitions defined by observations are independent of
controls is referred to as a “separation principle”. We decided to abandon this terminology
here: maybe, the separation property refers more closely to a situation when controls are
searched for as functions of observations and when a certain “factoring” of this function
via a “filtering” problem and a “feedback design” problem occurs (see [13]).

In Section 2, we present a measurability pre-ordering tool for information structures (see
[3]), with which we can properly define the dual effect and admissible feedbacks. The main
result of this section consists in characterizing the no dual effect feedbacks set assuming
no open-loop dual effect. We also relate the absence of dual effect to a form of “noise
factoring” of the output functions together with an injectivity property.

In Section 3, we apply the general framework developped in the previous section to
the multi-agent case (see [11, 12, 13, 14, 15, 7, 8]). We generalize the precedence and
memory-communication binary relations introduced by Ho and Chu for the LQG problem
in [7, 8]. Thus, assuming that the precedence relation is compatible with the memory-
communication relation, we are able to prove that, when lack of dual effect holds for the
set of open-loop feedbacks, it can then be extended to the set of admissible feedbacks that
are measurable with respect to the fixed invariant partition resulting from the open-loop no
dual effect. When the precedence relation induces an acyclic graph, we obtain a stronger
conclusion: when lack of dual effect holds for the set of open-loop feedbacks, it can then
be extended to the set of feedbacks that are measurable with respect to the fixed invariant
partition resulting from the open-loop no dual effect. Here, such feedbacks are necessarily
admissible whereas they were not before.

In Section 4, we present discrete time stochastic input-output systems with dynamic
information structure as introduced in [3]. We relate the notions of causality and of perfect
memory to the above precedence and memory-communication binary relations. We are
thus able to apply the above result since, by causality, the precedence relation induces an
acyclic graph.
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2 Admissible feedback laws and dual effect

2.1 A minimal framework

The minimal framework is: an observation function h : U × Ω → Y with

• U , control set;

• Ω, random set;

• Y , observation set.

Examples of observation functions h : R × R → R are

h(u, ω) = u + ω or h(u, ω) = max(u, ω) . (1)

Observation functions often come from state space systems:{
yt = Ht(xt, wt) , t = 0, . . . , T ,

xt+1 = Ft+1(xt, ut, vt+1) , t = 0, . . . , T − 1 .
(2)

Indeed, putting u = (u0, . . . , uT−1) and ω = (x0, w0, v1, w1, . . . , vT , wT ), we can write y =
(y0, . . . , yT ) = h(u, ω).

Definition 1
We define the set of all feedbacks

Γ
def
= {γ : Ω → U} , (3)

and the set ⊥U of open-loop feedbacks (constant mappings),

⊥U
def
= {γ ∈ Γ | ∀(ω, ω′) ∈ Ω2 , γ(ω) = γ(ω′)} . (4)

We wish to define a class of admissible feedbacks Fad containing open-loop feedbacks:

⊥U ⊂ Fad ⊂ Γ . (5)

The definition of the set Fad must capture the fact that a feedback is admissible if it
depends on the observations. To this purpose, we need a tool to express that a feedback
is measurable with respect to the observations.

However, the sets U , Ω and Y are not supposed to be measurable. Our motivation
for this is double. First, we are ultimately interested in numerical applications, thus
manipulating discrete sets for which no measurability concept is needed. Second, we feel
that the introduction of σ-fields, by its technicalities, may hide the algebraic nature of the
lack of dual effect. Indeed, we shall see that certain results are very tedious to express
when one considers measurability issues. However, to stress the generality or the limits
of our approach, we shall provide remarks all along the paper about what changes or not
with a classical measurability framework.
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Remark. In the classical measurability framework,

1. U , Ω and Y would be equipped with σ-fields, U , A and Y,

2. the mapping h : (U,U) × (Ω,A) → (Y,Y) would be supposed measurable,

3. Γ would consist only of measurable mappings from (Ω,A) to (U,U).

2.2 A measurability pre-ordering tool for information structures

We revisit here parts of the mathematical framework developed in [3] by Carpentier, Cohen
and Culioli.

To represent information structures (causality constraints, partial observations, etc.)
and the notion of closed-loop strategies, one introduces a measurability pre-ordering, de-
noted �, on mappings sharing the same domain (in fact on the partitions induced by such
mappings). This is, roughly speaking, a ranking of these mappings according to their
respective injectivity.

Definition 2
For any mapping g : Ω → Y , we denote by part(g) the partition generated by g, i.e.

part(g)
def
= {g−1({y}), y ∈ g(Ω)} . (6)

Note that, with the above definition, the partition part(g) never contains ∅.
Definition 3
Let gi : Ω → Yi, i = 1, 2.

We say that g1 is measurable with respect to g2, and write g1 � g2, if part(g1) ⊃
part(g2), in the sense that every element of part(g2) is included in an element of part(g1)
or, equivalently, every element of part(g1) is the union of elements of part(g2).

We say that g1 is equivalent to g2, and write g1 ≡ g2, if g1 � g2 and g2 � g1.

Remark. This concept of measurability differs from the one in measure theory in that
it refers to partitions and not to σ-fields. The difference is meaningless when the random set
is discrete, and when we, as is the case here, make no use of probability measures.

In the classical measurability framework, part(g) would be replaced with σ(g), the σ-field
generated by g. We then say that g1 is measurable with respect to g2 if σ(g1) ⊂ σ(g2), in the
sense that every element of σ(g1) is also element of σ(g2); we write g1 � g2. We say that g1

is equivalent to g2, and write g1 ≡ g2, if σ(g1) = σ(g2).
The framework developped here may be seen as a particular case of classical measurability

with the σ-fields P(Ω) and P(Y) of all subsets of Ω and Y , rendering all mappings measurable.

Remark. We shall manipulate not only mappings with domain Ω, but also mappings
with domain U × Ω. In this latter case, we shall write �U×Ω and ≡U×Ω to stress this fact.
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The relation � induces a pre-ordering on the mappings sharing the same domain Ω
(with the difficulty that such mappings do not form a set in the set theory). If we take the
quotient with respect to the equivalence relation ≡, we obtain a lattice in correspondence
with the lattice of all partitions of Ω (see [9, p.138]).

Definition 4
The bottom ⊥ of the lattice of all partitions of Ω is ⊥= {Ω}, in correspondence with
constant mappings over Ω.

The top 
 of the lattice of all partitions of Ω is 
 = {{ω}, ω ∈ Ω}, in correspondence
with injective mappings over Ω.

The sup (least upper bound) operation on the lattice of partitions may be seen as an
operation on mappings. If gi : Ω → Yi, i = 1, 2, g1 ∨ g2 is any representative of the class
containing the mapping

ω ∈ Ω �→ (g1(ω), g2(ω)) ∈ Y1 × Y2 . (7)

We shall frequently use the following property in the sequel:

∀gi : Ω → Yi, i = 1, . . . , 4 , g1 � g2 and g3 � g4 ⇒ g1 ∨ g3 � g2 ∨ g4 . (8)

Remark. When Ω is equipped with a σ-field A, the set of all sub-σ-fields of A is a
lattice with the sup (least upper bound)

Y1 ∨ Y2 = σ(Y1 ∪ Y2) (9)

and inf (greatest lower bound)
Y1 ∧ Y2 = Y1 ∩ Y2 . (10)

operations.

Remark. If we specify the image set U , we define


U
def= {γ ∈ Γ | γ ≡ idΩ} , (11)

and we note that 
U consists of injective mappings from Ω to U .
We recall that ⊥U has been defined in equation (4). We have:{

∀γ ∈ ⊥U , part(γ) ∈ ⊥ ,

∀γ ∈ 
U , part(γ) ∈ 
 .
(12)

We now give a series of lemmas useful in the sequel.
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2.3 Lemmas on measurability

Lemma 5
Let gi : Ω → Yi, i = 1, 2. The following conditions are equivalent characterizations of the
fact that g1 is measurable with respect to g2:

1. g1 � g2;

2. ∀(ω, ω′) ∈ Ω2, g2(ω) = g2(ω
′) ⇒ g1(ω) = g1(ω

′);

3. there exists a mapping p : im g2 → im g1 such that g1 = p ◦ g2 (as a mapping over
im g2, p is uniquely defined).

Proof. The equivalence of 1 and 2 is an immediate consequence of the definition of �. Let
us define the multi-application p as :

∀y2 ∈ im g2 , p(y2) =
⋃

ω∈g−1
2 (y2)

g1(ω) ∈ im g1 .

From 2, we deduce that p is in fact a mapping (p(y2) contains a single element) satisfying 3. The
reverse implication is immediate. �

Remark. In the classical measurability framework, the lemma is now formulated as
follows.

Suppose (Yi,Yi), i = 1, 2 are (Rni ,BRni ), i = 1, 2 (where BRni stands for the Borel
σ-field). Let gi : (Ω,A) → (Yi,Yi), i = 1, 2 be measurable. g1 is measurable with respect to
g2 (g1 � g2) if and only if there exists a measurable (Borelian) mapping p : im g2 → im g1

such that g1 = p ◦ g2 (see [5, Ch. 1, p. 18]).
The former lemma being of paramount importance in the sequel of the paper, all forth-

coming remarks concerning the classical measurability framework will assume that (Yi,Yi) =
(Rni ,BRni ).

Lemma 6
Let gi : Ω → Yi, i = 1, 2. The following conditions are equivalent characterizations of the
fact that g1 is equivalent to g2:

1. g1 ≡ g2;

2. ∀(ω, ω′) ∈ Ω2, g2(ω) = g2(ω
′) ⇐⇒ g1(ω) = g1(ω

′);

3. there exists an injection p : im g2 → Y1 such that g1 = p ◦ g2;

4. there exists a bijection p : im g2 → im g1 such that g1 = p ◦ g2.
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Proof. We have

g1 ≡ g2 ⇐⇒ g1 � g2 and g2 � g1 ⇐⇒ part(g1) = part(g2)

if and only if, by Lemma 5, there exist a mapping p : im g2 → im g1 such that g1 = p ◦ g2 and a
mapping q : im g1 → im g2 such that g2 = q ◦ g1.

This ends the proof since p : im g2 → im g1 is a bijection if and only if there exist q : im g1 →
im g2 such that p ◦ q = idim g1 and q ◦ p = idim g2 . �

Remark. In the classical measurability framework, the lemma is now formulated as
follows.

Let gi : (Ω,A) → (Yi,Yi), i = 1, 2 be measurable. g1 is equivalent to g2 if and only if
there exist a measurable mapping p : im g2 → im g1 such that g1 = p ◦ g2 and a measurable
mapping q : im g1 → im g2 such that g2 = q ◦ g1.

Lemma 7
Let gi : Ω → Yi, i = 1, 2 and f : Y1×Ω → Y3. Assume that, for all y1 ∈ Y1, f(y1, · ) � g2( · )
and that g1( · ) � g2( · ). Then f(g1( · ), · ) � g2( · ).

Proof. By Lemma 5, there exist

1. a mapping q : im g2 → im g1 such that g1 = q ◦ g2,

2. for all y1 ∈ Y1, a mapping py1 : im g2 → im Y3 such that f(y1, · ) = py1(g2( · )).

Introducing p̃ : Y1× im g2 → im Y3 defined by p̃(y1, y2)
def= py1(y2), we have f(y1, ω) = p̃(y1, g2(ω)).

We deduce that
f(g1(ω), ω) = p̃(g1(ω), g2(ω)) = p̃(q(g2(ω)), g2(ω))

so that, by Lemma 5, f(g1( · ), · ) � g2( · ). �

Remark. In the classical measurability framework, the lemma is now formulated as
follows.

Let gi : (Ω,A) → (Yi,Yi), i = 1, 2 and f : (Y1,Y1) × (Ω,A) → Y2 be measurable.
Assume that f( · , · ) �Y1×Ω idY1( · )∨g2( · ), where idY1( · ) and g2( · ) are considered in

a straightforward manner as mappings defined on Y1 ×Ω. Assume also that g1( · ) �Ω g2( · )
(as mappings defined on Ω). Then f(g1( · ), · ) �Ω g2( · ) (as mappings defined on Ω).

Lemma 8
Let gi : Ω → Yi, i = 1, 2 and f : Y1 × Ω → Y3. Assume that, for all y1 ∈ Y1, g2( · ) �
f(y1, · ), and that g1( · ) � f(g1( · ), · ). Then g2( · ) � f(g1( · ), · ).

Proof. We provide two proofs. The first one may be extended to the classical measurability
framework, while the second cannot, but is much more intuitive.

By Lemma 5, there exist
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1. a mapping q : im g1 → im Y3 such that g1( · ) = q(f(g1( · ), · )),

2. for all y1 ∈ Y1, a mapping py1 : im f(y1, · ) → im g2 such that g2( · ) = py1(f(y1, · )).

Introducing p̃ :
⋃

y1∈Y1

{y1} × im f(y1, · ) → im g2 defined by p̃(y1, y3)
def= py1(y3), we have g2(ω) =

p̃(y1, f(y1, ω)). We deduce that

g2(ω) = p̃(y1, f(y1, ω)) = p̃(g1(ω), f(g1(ω), ω)) = p̃(q(f(g1(ω), ω)), f(g1(ω), ω))

so that, by Lemma 5, g2( · ) � f(g1( · ), · ). This ends the first proof.

Let (ω, ω′) ∈ Ω2 be such that f(g1(ω), ω) = f(g1(ω′), ω′).
Since g1( · ) � f(g1( · ), · ), we have g1(ω) = g1(ω′). Putting y1 = g1(ω) = g1(ω′), we thus get

f(y1, ω) = f(g1(ω), ω) = f(g1(ω′), ω′) = f(y1, ω
′) .

On the other hand, we have y1 ∈ Y1, g2( · ) � f(y1, · ), so that g2(ω) = g2(ω′). Thus, by
Lemma 5, we have proved that g2( · ) � f(g1( · ), · ). �

Remark. In the classical measurability framework, the lemma is now formulated as
follows.

Let gi : (Ω,A) → (Yi,Yi), i = 1, 2 and f : (Y1,Y1) × (Ω,A) → Y2 be measurable.
Assume that g2( · ) �Y1×Ω idY1( · ) ∨ f( · , · ) as mappings defined on Y1 × Ω, and

that g1( · ) �Ω f(g1( · ), · ) (as mappings defined on Ω). Then g2( · ) �Ω f(g1( · ), · ) (as
mappings defined on Ω).

2.4 Admissible feedbacks and observation after feedback

Since any feedback affects the available information, we introduce a notation for the ob-
servation after feedback.

Definition 9
For any γ ∈ Γ, the observation after feedback ηγ : Ω → Y is defined by

∀ω ∈ Ω , ηγ(ω)
def
= h

(
γ(ω), ω

)
. (13)

Definition 10
The set Fad of admissible feedbacks is

Fad def
= {γ ∈ Γ | γ � ηγ} . (14)

This definition captures the fact that the feedback may depend only on the observations
y, namely (by Lemma 5) that there exists a mapping g : Y → U such that the controls u
produced by an admissible feedback are of the form u = g(y).

Since any constant γ ∈ ⊥U is measurable with respect to any mapping over Ω, we have

⊥U ⊂ Fad , (15)

meaning that open-loop feedbacks are admissible.
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2.5 Definitions of open-loop dual effect and of the no dual effect
feedbacks set

We wish here to formulate and characterize the “dual effect” of control (see [6, 2, 1, 10]).
First, we define the dual effect through the action of constant feedbacks (open-loop control
laws).

Definition 11
There is no open-loop dual effect for the stochastic controlled system with observation
function h : U × Ω → Y if we have

∀(γ, γ′) ∈ ⊥U ×⊥U , ηγ ≡ ηγ′
. (16)

We then denote by ζ any mapping with domain Ω such that

∀γ ∈ ⊥U , ηγ ≡ ζ . (17)

For instance, ζ can be any mapping of the class of ηγ for γ ∈ ⊥U . We introduce

Fζ def
= {γ ∈ Γ | γ � ζ} . (18)

Proposition 12
There is no open-loop dual effect if and only if

∃ζ : Ω → Z , ∃p : U × Z → Y (19)

such that
∀u ∈ U , p(u, · ) : Z → Y is injective (20)

and that
∀u ∈ U , ∀ω ∈ Ω , h(u, ω) = p(u, ζ(ω)) . (21)

Proof. This is a straightforward application of Lemma 6, for each u ∈ U . �

Remark. In the classical measurability framework, the definition of Fζ would remain the
same, while the definition of no open-loop dual effect would be given by the characterization
of the above Proposition, with ζ and p measurable.

Our main aim in this paper is to determine to what extent open-loop dual effect remains
valid for a larger set of admissible closed loops. This motivates the following definition.

Definition 13
Assuming no open-loop dual effect, the no dual effect feedbacks set is

Fnde def
= {γ ∈ Fad | ηγ ≡ ζ} . (22)

We clearly have that
∀(γ, γ′) ∈ Fnde × Fnde , ηγ ≡ ηγ′

, (23)

and Fnde is the largest such set in Fad.
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2.6 Characterization of the no dual effect feedbacks set

Our main result in this section is the following characterization of the no dual effect feed-
backs set.

Proposition 14
Assuming no open-loop dual effect, we have that

Fnde = Fad ∩ Fζ . (24)

Proof. Let γ ∈ Fnde. On the one hand, we have, since γ ∈ Fad, γ( · ) � ηγ( · ) = h
(
γ( · ), ·

)
.

On the other hand, we have, by assumption, h
(
γ( · ), ·

)
= ηγ( · ) ≡ ζ( · ). Thus, γ( · ) �

h
(
γ( · ), ·

)
= ηγ( · ) ≡ ζ( · ), so that γ ∈ Fad ∩ Fζ . We have shown that

Fnde ⊂ Fad ∩ Fζ .

Let γ ∈ Fad ∩ Fζ .

1. On the one hand, we have, by definition of Fζ , γ � ζ. On the other hand, we have, by
assumption, ∀u ∈ U , h(u, · ) ≡ ζ( · ) and thus ∀u ∈ U , h(u, · ) � ζ( · ). By Lemma 7, we
deduce that h

(
γ( · ), ·

) � ζ( · ), that is ηγ � ζ.

2. On the one hand, we have, by definition of Fad, γ( · ) � ηγ( · ) = h
(
γ( · ), ·

)
. On the other

hand, we have, by assumption, ∀u ∈ U , h(u, · ) ≡ ζ( · ) and thus ∀u ∈ U , ζ( · ) � h(u, · ).
A straightforward application of Lemma 8 then gives ζ( · ) � h

(
γ( · ), ·

)
, that is ζ � ηγ .

We thus have both ηγ � ζ and ζ � ηγ , so that ηγ ≡ ζ. We conclude that γ ∈ Fnde. We have thus
shown that

Fad ∩ Fζ ⊂ Fnde .

�

Remark. In the classical measurability framework, this proposition would be delicate
to express, requiring in particular a technical definition of Fnde.

We now show by three examples that Fad and Fζ have no relationship in general.

1. Let U = Ω = R and h(u, ω) = u for which no open-loop dual effect holds with any
constant ζ ∈ ⊥U . We thus have

Fζ = {γ ∈ Γ | γ � ⊥U} = ⊥U .

Since, for all γ ∈ Γ, ηγ = γ, we have

Fad = {γ ∈ Γ | γ � γ} = Γ .

This is thus a case where Fζ � Fad.
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2. Let U = Ω = R and h(u, ω) = ω for which no open-loop dual effect holds with
ζ = idΩ (or any injective mapping ζ ∈ 
U). We thus have

Fζ = {γ ∈ Γ | γ � idΩ} = Γ .

Since, for all γ ∈ Γ, ηγ = idΩ, we have

Fad = {γ ∈ Γ | γ � idΩ} = Γ .

This is thus a case where Fζ = Fad.

3. Let U = Ω = R and h(u, ω) = ω − u for which no open-loop dual effect holds with
ζ = idΩ (or any injective mapping ζ ∈ 
U). We thus have

Fζ = {γ ∈ Γ | γ � idΩ} = Γ .

On the other hand, idΩ �∈ Fad since ηidΩ = 0. This is thus a case where Fad � Fζ .

3 Dual effect for multi-agent stochastic input-output

systems

Multi-agent decision problems have been studied for instance in [11, 12, 13, 14, 15, 7, 8].
We focus here on the modifications to bring to the above single-agent analysis in Section 2
in order to be able to define and characterize the lack of dual effect.

3.1 Multi-agent stochastic input-output systems

Let A be a finite set representing agents. Each agent α ∈ A is supposed to take only one
decision uα ∈ Uα, where Uα is the control set for agent α. We put

UA
def
=

∏
α∈A

Uα . (25)

We denote

ΓA
def
= {γ : Ω → UA} = {γ = (γα)α∈A | ∀α ∈ A , γα : Ω → Uα} . (26)

To each agent α ∈ A corresponds an observation function

hα : UA × Ω → Yα . (27)

Definition 15
For any feedback γ ∈ ΓA and agent α ∈ A, the observation of agent α after feedback
ηγ

α : Ω → Yα is defined by

∀α ∈ A , ∀ω ∈ Ω , ηγ
α(ω)

def
= hα

(
γ(ω), ω

)
. (28)
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In general, the observation available to agent α depends, through the feedback γ, upon the
decisions of other agents.

Definition 16
The set of admissible feedbacks for the multi-agent stochastic input-output system (hα)α∈A

is
Fad

A
def
= {γ = (γα)α∈A ∈ ΓA | ∀α ∈ A , γα � ηγ

α} . (29)

The link with the single-agent case is obvious. If we put

U
def
= UA =

∏
α∈A

Uα , Y
def
=

∏
α∈A

Yα , h
def
= (hα)α∈A

we have that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ΓA = Γ as defined in equation (3),

(ηγ
α)α∈A = ηγ as defined in equation (13),

Fad
A ⊂ Fad as defined in equation (14).

Remark. Note that in general, Fad
A � Fad, since by (8)

∀α ∈ A, γα � ηγ
α ⇒ γ ≡

∨
α∈A

γα �
∨

α∈A

ηγ
α ≡ ηγ

but not the other way in general. Indeed, take Ω = R2, A = {1, 2}, h1(u, ω) = ω1, h2(u, ω) =
ω2.

3.2 Precedence and memory-communication binary relations

Two binary relations between agents were introduced by Ho and Chu in [7, 8] for the
multi-agent LQG problem. We generalize these relations here.

Precedence binary relation

Definition 17
For any B ⊂ A, let πB denote the projection from UA to UB (see (25)). We also denote

∀u ∈ UA , uB
def
= πB(u) = (uα)α∈B for u ∈ UB . (30)

For any B ⊂ A and any family of mappings (fα)α∈A taking values in UA, we denote

fB
def
= (fα)α∈B . (31)
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Remark. By abuse of notation, we will possibly consider uB as an element of UA using
an embedding application from UB into UA. Accordingly, the projection πB takes its values
in UA and we may write πB ◦ πB = πB .

Definition 18
For any α ∈ A, let

Bα
def
= {B ⊂ A | hα

(
· , ·

) �UA×Ω πB( · ) ∨ idΩ( · )} . (32)

Proposition 19
Bα is stable by set intersection.

Proof. Since A is a finite set, we have to prove that B ∩ C ∈ Bα as soon as B and C are
elements of Bα. Let (B,C) ∈ Bα ×Bα. By Lemma 5, there exist

- a mapping p such that hα

(
· , ·

)
= p

(
πB( · ), ·

)
,

- a mapping q such that hα

(
· , ·

)
= q

(
πC( · ), ·

)
,

and thus
p
(
πB(u), ω

)
= q

(
πC(u), ω

)
, ∀(u, ω) ∈ UA × Ω .

Writing this equation for all u of the form πC(v), we obtain (recall here that the projection πB

is extended to take its values in UA)

p
(
πB ◦ πC(v), ω

)
= q

(
πC ◦ πC(v), ω

)
, ∀(v, ω) ∈ UA × Ω .

But πC ◦ πC = πC so that

hα

(
· , ·

)
= q

(
πC( · ), ·

)
= p

(
πB ◦ πC( · ), ·

)
.

From the very definition of πB, we have

πB ◦ πC = πB∩C ,

and thus hα

(
· , ·

) �UA×Ω πB∩C( · ) ∨ idΩ( · ). �

Definition 20
Since Bα is stable by set intersection, we define

[α]
def
= ∩B∈BαB . (33)

In other words, [α] ⊂ A is the smallest subset B ⊂ A such that

hα

(
· , ·

) �UA×Ω πB( · ) ∨ idΩ( · ) . (34)
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Definition 21
We define a precedence binary relation P on A by

β P α ⇐⇒ β ∈ [α] (35)

and we say that β is a precedent of α.

In other words, if β is a precedent of α, then hα(u, ω) indeed depends upon uβ: the
agent β influences the observation made by agent α. Since hα(u, ω) depends only on the
components u[α] = (uβ)β∈[α], by abuse of notation we shall write

hα(u, ω) = hα(u[α], ω) = hα(uB, ω), ∀B ⊃ [α] , (36)

and we shall frequently use this latter relationship in the sequel.

Memory-communication binary relation

The following definition of memory-communication is inspired by [7].

Definition 22
We define a memory-communication binary relation M on A by

∀α ∈ A , ∀β ∈ A , β Mα ⇐⇒ hβ( · , · ) �UA×Ω hα( · , · ) , (37)

and we say that β is remembered by α. We introduce

∀α ∈ A , ‖α‖ def
= {β ∈ A | β Mα} . (38)

When β is remembered by α, the observations made by agent β are part of those made by
agent α. This is expressed by the following relationship

∀α ∈ A , h‖α‖( · , · ) �UA×Ω hα( · , · ) , (39)

which results from

h‖α‖( · , · ) = (hβ( · , · ))β∈‖α‖ ≡UA×Ω

∨
β∈‖α‖

hβ( · , · ) �UA×Ω hα( · , · ) .

by (8).

Properties

Definition 23
We say that the precedence binary relation P is included in (or compatible with) the
memory-communication binary relation M if

∀α ∈ A , ∀β ∈ A , β P α ⇒ β Mα . (40)

We denote this property by P ⊂ M.
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Proposition 24
The following conditions are equivalent characterizations of the fact that the precedence
binary relation P is included in the memory-communication binary relation M:

P ⊂ M ⇐⇒ ∀α ∈ A , [α] ⊂ ‖α‖ , (41)

P ⊂ M ⇐⇒ ∀α ∈ A , h[α]( · , · ) �UA×Ω hα( · , · ) . (42)

Proof. Equation (41) simply is a reformulation of the definition P ⊂ M.
It may be easily checked that

∀B ⊂ A ,∀α ∈ A , B ⊂ ‖α‖ ⇐⇒ hB( · , · ) �UA×Ω hα( · , · ) . (43)

Combined with equation (41), this gives equation (42). �

Remark. If the precedence binary relation P is included in the memory-communication
binary relation M, then it is clear by Lemma 5 that

∀α ∈ A , ∀β ∈ A , β P α ⇒ ∀γ ∈ ΓA , hβ(γ( · ), · ) �Ω hα(γ( · ), · ) . (44)

This latter property is taken as the definition of a partially nested information structure in
[7, 8]. Note that the problem with this latter definition is the presence of any feedback γ. Our
assumption is an “open-loop one” which does not require assumptions as to the closed-loop
system.

Here are other properties of M and P.

Proposition 25
The memory-communication binary relation M is a pre-order on A such that

∀α ∈ A , ∀β ∈ A , β Mα ⇐⇒ β ∈ ‖α‖ ⇒ [β] ⊂ [α] . (45)

Proof. M clearly is a pre-order on A (reflexive and transitive) since � is a pre-order on
UA × Ω.

Now, β Mα implies that

hβ( · , · ) �UA×Ω hα( · , · ) �UA×Ω π[α]( · ) ∨ idΩ( · ) (46)

by definition of [α]. Thus, from definition (33), we deduce that [β] ⊂ [α]. �

Proposition 26
If the precedence binary relation P is included in the memory-communication binary rela-
tion M, then P is transitive.

17



Proof. Let (α, β, γ) ∈ A3 be such that αPβ and βPγ.
On the one hand, since αPβ, by equation (35), we have α ∈ [β]. On the other hand, by

P ⊂ M and equations (38) and (45), we get:

βPγ ⇒ βMγ ⇒ β ∈ ‖γ‖ ⇒ [β] ⊂ [γ] .

Thus, transitivity holds. Indeed, αPγ is true since

α ∈ [β] ⊂ [γ] ⇐⇒ αPγ .

�

3.3 Definitions of open-loop dual effect and of the no dual effect
feedbacks set

We now introduce a notion of open-loop dual effect adapted to the multi-agent case.

Definition 27
There is no open-loop dual effect for the multi-agent stochastic controlled system with
observation functions (hα)α∈A if we have

∀(γ, γ′) ∈ ⊥UA
×⊥UA

, ∀α ∈ A , ηγ
α ≡ ηγ′

α . (47)

For all α ∈ A, we then denote by ζα any mapping with domain Ω such that

∀γ ∈ ⊥UA
, ηγ

α ≡ ζα . (48)

For instance, ζα can be any mapping of the class of ηγ
α for γ ∈ ⊥UA

. We introduce

F
ζ
A

def
= {γ = (γα)α∈A ∈ ΓA | ∀α ∈ A , γα � ζα} . (49)

Definition 28
Assuming no open-loop dual effect, the no dual effect feedback set is

Fnde
A

def
= {(γα)α∈A ∈ ΓA | ∀α ∈ A , ηγ

α ≡ ζα} ∩ Fad
A . (50)

Remark. With the notations of the remark following Definition 16, and with

ζ
def= (ζα)α∈A (51)

we have that
Fnde

A ⊂ Fnde as defined in equation (22). (52)

Note that, in general, Fnde
A � Fnde since by (8)

∀α ∈ A , ηγ
α ≡ ζα ⇒ ηγ ≡

∨
α∈A

ηγ
α ≡

∨
α∈A

ζα ≡ ζ

but not the other way in general.
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3.4 Characterization of the no dual effect feedbacks set when
precedence implies memory-communication

Proposition 29
Assuming no open-loop dual effect, we have

Fnde
A ⊂ Fad

A ∩ F
ζ
A . (53)

While the previous inclusion may be proved as in Proposition 14, the following one
requires an additional assumption.

Proposition 30
Let us assume that no open-loop dual effect holds and that the precedence binary relation
P is included in the memory-communication binary relation M. Then

Fad
A ∩ F

ζ
A ⊂ Fnde

A . (54)

Proof. We note that, by definition of [α] and by equation (36):

∀α ∈ A , ∀γ ∈ ΓA , ηγ
α = η

γ[α]
α . (55)

Let γ = (γα)α∈A ∈ Fad
A ∩ F

ζ
A, that is

∀α ∈ A , γα � ζα and γα � ηγ
α . (56)

Let α ∈ A be fixed: we now prove that both ηγ
α � ζα and ζα � ηγ

α.

Let us first show that ηγ
α � ζα.

By the no open-loop dual effect assumption, we have that, for any u ∈ UA, by (8),

γ[α] = (γβ)β∈[α] ≡
∨

β∈[α]

γβ �
∨

β∈[α]

ζβ �
∨

β∈[α]

hβ(u, · ) ≡ h[α](u, · ) . (57)

Since the precedence binary relation P is included in the memory-communication binary relation
M and by equation (42), the right hand side is such that h[α](u, · ) � hα(u, · ), and we deduce
that

γ[α]( · ) � hα(u, · ) ≡ ζα( · ) . (58)

Combined with hα(u, · ) = hα(u[α], · ) � ζα( · ), for all u ∈ UA, this gives by Lemma 7,

ηγ
α( · ) = η

γ[α]
α ( · ) = hα

(
γ[α]( · ), ·

) � ζα( · ) .

Now, let us prove that ζα � ηγ
α.
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We have
γ[α] = (γβ)β∈[α] ≡

∨
β∈[α]

γβ �
∨

β∈[α]

ηγ
β ≡ ηγ

[α] . (59)

Since the precedence binary relation P is included in the memory-communication binary relation
M and by equation (42), the right hand side is such that

ηγ
[α]( · ) = h[α]

(
γ( · ), ·

) � hα

(
γ( · ), ·

)
= hα

(
γ[α]( · ), ·

)
.

We deduce that γ[α]( · ) � hα

(
γ[α]( · ), ·

)
. Combined with ζα( · ) � hα(u, · ) = hα(u[α], · ), for

all u ∈ UA, this gives, by Lemma 8,

ζα( · ) � hα(γ[α]( · ), · ) = hα(γ( · ), · ) = ηγ
α( · ) .

�

3.5 Characterization of the no dual effect feedbacks set under

additional assumption of acyclicity in the precedence relation

If we assume that the directed graph G(P) built from the binary relation P is acyclic (note
that even simple loops αPα are forbidden), then Proposition 30 can be strengthened.

Proposition 31
Let Fnde be defined as in (22) and assume no open-loop dual effect.

If the precedence binary relation P is included in the memory-communication binary
relation M, then

Fnde
A = Fad

A ∩ F
ζ
A . (60)

Moreover, if the directed graph built from the binary relation P is acyclic, then we also
have

Fnde
A = {γ ∈ ΓA | ∀α ∈ A , γα � ζα} . (61)

Proof. The first equation (60) is a simple consequence of Propositions 29 and 30.

The rest of the proof is based on induction on a particular ordering of the set of agents.
Indeed, we know from graph theory that the directed graph G(P) is acyclic if and only if it is
possible to perform a topological sort of this graph [4, p.485], i.e. a linear ordering of the agents
such that if αPβ then α appears before β in the ordering (we must point out here that this
ordering is not unique, it is just used here as a tool which provide a relevant ordering for the
induction proof). In other words, there exists an ordering A = {α0, . . . , αT−1} (we assume that
T = card A ≥ 2) such that

[α0] = ∅ and ∀i = 1, ..., T − 1 , [αi] ⊂ {α0, . . . , αi−1} . (62)

Using the ordering of agents α0, . . . , αT−1, we now prove by induction that(
∀i ∈ {0, . . . , T − 1} γαi � ζαi

)
⇒

(
∀i ∈ {0, . . . , T − 1} γαi( · ) � hαi

(
γ( · ), ·

))
.
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Let the induction assumption be

H(i)
(
∀s ∈ {0, . . . , i} γαs � ζαs

)
⇒

(
∀s ∈ {0, . . . , i} γαs( · ) � hαs

(
γ( · ), ·

))
.

Suppose that γα0( · ) � ζα0( · ) ≡ hα0(u, · ). Here, hα0 is independent of u, since agent α0 has
no predecessor for the P relation ([α0] = ∅). Thus γα0( · ) � hα0(γ( · ), · ) = hα0(u, · ) ≡ ζα0( · ),
and H(0) is true.

Assume that H(i − 1) is true. Suppose that ∀s ∈ {0, . . . , i} γαs � ζαs . Then,

γ[αi]( · ) =
∨

β∈[αi]

γβ( · ) �
∨

β∈[αi]

hβ

(
γ( · ), ·

)
since [αi] ⊂ {α0, . . . , αi−1}.

Now, since P is compatible with M, we have that [αi] ⊂ ‖αi‖, and thus∨
β∈[αi]

hβ

(
γ( · ), ·

) �
∨

β∈‖αi‖
hβ

(
γ( · ), · ) = h‖αi‖

(
γ( · ), ·

) � hαi

(
γ( · ), ·

)
by equation (39).

By equations (36), we have

hαi

(
γ( · ), ·

)
= hαi

(
γ[αi]( · ), ·

)
Thus, combining the three above relationships, we get:

γ[αi]( · ) � hαi

(
γ[αi]( · ), ·

)
.

On the other hand, we have by assumption

γαi( · ) � ζαi( · ) ≡ hαi(u[αi], · ) .

A straightforward application of Lemma 8 then gives

γαi( · ) � hαi

(
γ( · ), ·

)
.

Thus, H(i) is true. �

4 Dual effect for discrete time stochastic input-output

systems with dynamic information structure

We can now simply treat the sequential case.
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4.1 Discrete time stochastic input-output systems with dynamic
information structure

The sequential case is a particular case of multi-agent stochastic input-output systems for
which A represents time

A = {0, . . . , T − 1} where T ≥ 2. (63)

With the notations of Section 3, we have that

T−1∏
t=0

Ut = UA = U{0,...,T−1} .

We are given a family {ht}t=0,...,T−1 of observation functions for t = 0,. . . , T − 1:

ht : UA × Ω → Yt . (64)

We now have a notion of causality.

Definition 32
For t = 0, . . . , T − 1, the t-th prefix operator ρt on UA is π{0,...,t}, that is

ρt : UA → U{0,...,t}, ρt(u) = ρt(u0, . . . , uT−1)
def
= (u0, . . . , ut) . (65)

Observation causality is the property that

∀t ∈ {0, . . . , T − 1} , ht( · , · ) �UA×Ω ρt−1( · ) ∨ idΩ( · ) , (66)

with the convention that ρ−1( · ) ∨ idΩ( · ) = idΩ( · ).

Definition 33
Open-loop perfect memory is the property that

∀t ∈ {0, . . . , T − 2} , ht( · , · ) �UA×Ω ht+1( · , · ) . (67)

Remark. Observe that, here, we only care about causality with respect to control, but
not with respect to noise (this latter property is, for instance, valid for state-space systems
like (2)). This is because, from the mathematical point of view, only the former kind of
causality is needed.

Proposition 34
Observation causality implies that the directed graph built from the binary relation P is
acyclic.

Observation causality and open-loop perfect memory imply that the precedence binary
relation P is included in the memory-communication binary relation M.
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Proof. With the notations of section 3, observation causality means that

∀t ∈ {0, . . . , T − 1} , [t] ⊂ {0, . . . , t − 1} . (68)

This is precisely a topological ordering as introduced in the proof of Proposition 31: the directed
graph built from the binary relation P is thus acyclic.

Open-loop perfect memory may be stated as

∀t ∈ {0, . . . , T − 1}, h{0,...,t}( · , · ) ≡
∨

s∈{0,...,t}
hs( · , · ) �UA×Ω ht+1( · , · ) , (69)

which may be also expressed as
{0, . . . , t − 1} ⊂ ‖t‖ .

Hence ∀t ∈ {0, . . . , T − 1} , [t] ⊂ ‖t‖. The proof is complete by equation (41). �

4.2 Characterization of the no dual effect feedbacks set

In the sequential case, the description of the no dual effect feedbacks set is more precise
than in Proposition 30.

Proposition 35
Let us assume that no open-loop dual effect holds (in the sense of Definition 27) and
that the family {ht}t=0,...,T−1 of observation functions is causal and has open-loop perfect
memory. Let us define as in (50)

Fnde
A

def
=

{
(γt)t∈A : Ω → UA | ∀t ∈ {0, . . . , T − 1}, γt � ηγ

t and ηγ
t ≡ ζt

}
.

Then
Fnde

A = {(γt)t∈A : Ω → UA | ∀t ∈ {0, . . . , T − 1}, γt � ζt} .

Proof. From Proposition 34, we know that the precedence binary relation P is included in
the memory-communication binary relation M and that the graph of the binary relation P is
acyclic.

A straightforward application of Proposition 31 completes the proof. �

Remark. Define closed-loop perfect memory as the property that, for all t = 0,. . . , T −1,

∀γ = (γt)t∈A : Ω → UA, ht(γ( · ), · ) �Ω ht+1(γ( · ), · ) . (70)

then open-loop perfect memory does imply closed-loop perfect memory.
On the contrary, a weaker form of open-loop perfect memory

∀u ∈ UA, ht(u, · ) �Ω ht+1(u, · )

does not imply closed-loop perfect memory. This can directly be seen with the following
example: let h0(ω) = ω and h1(u, ω) = u − ω; then h0(·) � h1(u, ·) for all u; whereas, for
γ(ω) = ω, this γ is admissible since γ � h0, but obviously h0( · ) �� h1(γ( · ), · ) since the
latter is the zero mapping.
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5 Conclusion

In this paper, the notion of dual effect in stochastic optimal control (in which decisions are
based on observations) is revisited using first a minimal framework in which ingredients
are

• the observation set,

• the noise set,

• an observation mapping from the product of control and noise sets to the observation
set,

• a feedback law from the noise to the control set.

Dual effect is defined as the capacity of admissible control strategies to affect the quality
of observations. This quality is characterized by a partial ordering of partitions of the noise
set generated by the “observation mappings after feedback” or “closed-loop observations”
(that is, when control is generated by a feedback law in the observation mapping). This
partial ordering expresses the measurability conditions found in standard formulations of
stochastic optimal control problems.

The lack of dual effect is thus defined as the invariance of those partitions with respect
to a given subset of admissible feedbacks. When lack of dual effect holds for the set of
open-loop feedbacks (open-loop lack of dual effect), our goal is to identify the maximal
subset of admissible feedbacks for which lack of dual effect still holds.

We introduce a general definition of admissible feedbacks and we prove that, when lack
of dual effect holds for the set of open-loop feedbacks, it can then be extended to the set
of admissible feedbacks that are measurable with respect to the fixed invariant partition
resulting from the open-loop no dual effect.

We study multi-agents problems with an appropriate definition of admissible feed-
backs. Following Ho and Chu in [7, 8], we introduce a precedence relation and a memory-
communication relation on the set of agents.

When lack of dual effect holds for the set of open-loop feedbacks (open-loop lack of
dual effect), our goal is to identify the maximal subset of admissible feedbacks for which
lack of dual effect still holds.

We prove that, when lack of dual effect holds for the set of open-loop feedbacks, it can
then be extended to the set of admissible feedbacks that are measurable with respect to
the fixed invariant partition resulting from the open-loop no dual effect if we assume that
the precedence relation is compatible with the memory-communication relation. These
assumptions depend only on the open-loop system and are thus more easy to check than
the partially nested information structure of Ho and Chu which requires properties on the
closed-loop system.

When the precedence relation induces an acyclic graph, we obtain a stronger conclusion:
when lack of dual effect holds for the set of open-loop feedbacks, it can then be extended
to the set of feedbacks that are measurable with respect to the fixed invariant partition

24



resulting from the open-loop no dual effect. Here, such feedbacks are necessarily admis-
sible whereas they were not before. As an application, we treat the case of discrete time
stochastic input-output systems with dynamic information structure, namely observation
causality and open-loop perfect memory.
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