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Abstract

We introduce an axiomatic definition of a conditional convex risk mapping
and we derive its properties. In particular, we prove a representation theorem
for conditional risk mappings in terms of conditional expectations. We also
develop dynamic programming relations for multistage optimization problems
involving conditional risk mappings.
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1 Introduction

Models of risk and optimization problems involving these models attracted a con-
siderable attention in recent years. One direction of research associated with an
axiomatic approach, was initiated in Artzner, Delbaen, Eber and Heath [1], where
the concept of coherent risk measures was introduced. Subsequently, this approach
was developed by Föllmer and Schied [4], Rockafellar, Uryasev and Zabarankin [11],
and Ruszczyński and Shapiro [13]. In the discussion below we follow the general
setting and terminology of [13].

We assume that Ω is a measurable space equipped with a sigma algebra F of
subsets of Ω, and that an uncertain outcome is represented by a measurable function
X : Ω → R. It is natural to assume, for example if X represents uncertain costs,
that the smaller the values of X, the better it is. Of course, our constructions can be
adapted to other situations as well.

If we introduce a space X of measurable functions on Ω, we can talk of a risk
function as a mapping ρ : X → R (we can also consider risk functions with values
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in the extended real line). In our earlier work [13] we have refined and extended the
analysis of [1, 4, 11] and we have derived, from a handful of axioms, fairy general
properties of risk functions and of optimization problems involving such functions.

Our objective in this paper is to introduce models of risk in a dynamic setting.
Here the main issue is our knowledge at the time when risk is evaluated. We consider,
therefore, two sigma algebras F1 ⊂ F2 of subsets of Ω, with F1 representing our
knowledge when risk is evaluated, and F2 representing all events under consideration.
Together with that, we consider two vector spaces X1 and X2 of functions measurable
with respect to F1 and F2. A conditional risk mapping is defined in section 2 as
a convex, monotone and translation equivariant mapping ρX2|X1

: X2 → X1. In
section 3 we extend our insights from [13] to derive a duality representation theorem
for conditional risk mappings. Section 4 is devoted to the analysis of relations of
conditional risk mappings and conditional expectations. In section 5 we consider
a sequence of sigma algebras F1 ⊂ F2 ⊂ · · · ⊂ FT and the corresponding linear
spaces Xt, t = 1, . . . , T , of measurable functions, and analyze compositions of risk
mappings of the form ρX2|X1

◦ · · · ◦ ρXt−1|Xt−2
◦ ρXT |XT−1

. Two practically important

examples of conditional risk mappings are thoroughly analyzed in section 6. Finally,
section 7 addresses the issue of risk measures for sequences, and develops a dynamic
programming equation for associated optimization problems.

2 Axioms of Conditional Risk Mappings

In order to construct dynamic models of risk we need to extend the concept of risk
functions. We proceed as follows. Let F1 ⊂ F2 be sigma algebras of subsets of a set
Ω, and X1 ⊂ X2 be linear spaces of real valued functions φ(ω), ω ∈ Ω, measurable
with respect to F1 and F2, respectively.

Definition 1 We say that a mapping ρ : X2 → X1 is a conditional risk mapping if
the following properties hold:

(A1) Convexity: if t ∈ [0, 1] and X, Y ∈ X2, then

tρ(X) + (1− t)ρ(Y ) � ρ[tX + (1− t)Y ];

(A2) Monotonicity: if Y � X, then ρ(Y ) � ρ(X);

(A3) Translation Equivariance: if Y ∈ X1 and X ∈ X2, then

ρ(X + Y ) = ρ(X) + Y.

The inequalities in (A1) and (A2) are understood componentwise, i.e., Y � X
means that Y (ω) ≥ X(ω) for every ω ∈ Ω. Of course, the above definition depends
on the choice of the spaces X1 and X2. To emphasize this, we sometimes write ρX2|X1
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for the conditional risk mapping. We show in section 4 that the concept of conditional
risk mappings is closely related to the classical notion of conditional expectation. This
provides the motivation for the use of the term conditional in the name of considered
risk mappings.

For ω ∈ Ω, we associate with ρ the function

ρω(X) := [ρ(X)](ω), X ∈ X2. (2.1)

Assumptions (A1) and (A2) mean that, for every ω ∈ Ω, the function ρω : X2 → R is
convex and monotone, respectively, and assumption (A3) implies that ρω(X + a) =
ρω(X)+a for any X ∈ X2 and a ∈ R. That is, ρω(·) satisfies the axioms of convex risk
functions, as given by Föllmer and Schied [4] and analyzed in our earlier paper [13].
In particular, if the sigma algebra F1 is trivial, i.e., F1 = {∅,Ω}, then any function
X ∈ X1 is constant over Ω, and hence the space X1 can be identified with R. In
that case ρ(·) becomes real valued and assumptions (A1)–(A3) become the axioms of
convex (real valued) risk functions.

We assume that with each space Xi, i = 1, 2, is associated a linear space Yi of
signed finite measures on (Ω,Fi) such that Y1 ⊂ Y2, and1

∫
Ω
|X|d|µ| < +∞ for every

X ∈ Xi and µ ∈ Yi. Then we can define the scalar product (bilinear form)

〈µ,X〉 :=

∫
Ω

X(ω) dµ(ω), X ∈ Xi, µ ∈ Yi. (2.2)

By PYi
we denote the set of probability measures µ ∈ Yi, i.e., µ ∈ PYi

if µ is
nonnegative and µ(Ω) = 1. We assume that Xi and Yi are paired locally convex
topological vector spaces. That is, Xi and Yi are equipped with respective topologies
which make them locally convex topological vector spaces and these topologies are
compatible with the scalar product (2.2), i.e., every linear continuous functional on
Xi can be represented in the form 〈µ, ·〉 for some µ ∈ Yi, and every linear continuous
functional on Yi can be represented in the form 〈·, X〉 for some X ∈ Xi. In particular,
we can equip each space Xi and Yi with its weak topology induced by its paired space.
This will make Xi and Yi paired locally convex topological vector spaces provided that
for any X ∈ Xi\{0} there exists µ ∈ Yi such that 〈µ,X〉 6= 0, and for any µ ∈ Yi\{0}
there exists X ∈ Xi such that 〈µ,X〉 6= 0.

A natural choice of Xi, i = 1, 2, is the space of all bounded Fi-measurable functions
X : Ω → R. In that case we can take Yi to be the space of all signed finite measures on
(Ω,Fi). Another possible choice is Xi := Lp(Ω,Fi, µ̄) for some positive (probability)
measure µ̄ on (Ω,F2) and p ∈ [1,+∞]. Note that since F1 ⊂ F2, µ̄ is also a positive
measure on (Ω,F1), and hence X1 ⊂ X2. We can take then Yi to be the linear space
of measures ν absolutely continuous with respect to µ̄ and with density (Radon–
Nikodym derivative) h = dν/dµ̄ belonging to the space Lq(Ω,Fi, µ̄), where q ≥ 1 is

1For a signed measure µ we denote by |µ| the corresponding total variation measure, i.e., |µ| =
µ+ + µ− where µ = µ+ − µ− is the Jordan decomposition of µ.
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such that 1/p+ 1/q = 1. In that case we identify Yi with Lq(Ω,Fi, µ̄). Note that an
element h ∈ Lp(Ω,Fi, µ̄) is a class of functions which are equal each other for almost
every (a.e.) ω ∈ Ω with respect to the measure µ̄. The space Xi := Lp(Ω,Fi, µ̄)
is a Banach space and, for p ∈ [1,+∞), Yi := Lq(Ω,Fi, µ̄) is its dual space of all
continuous linear functionals on Xi. When dealing with Banach spaces it is convenient
to equip Xi and Yi := X ∗

i with the strong (norm) and weak∗ topologies, respectively.
If Xi is a reflexive Banach space, i.e., X ∗∗

i = Xi, then Xi and X ∗
i , both equipped with

strong topologies, form paired spaces.
We assume throughout the paper that the space X2 is sufficiently large such that

the following assumption holds (recall that for X ∈ X2, the notation X � 0 means
that X(ω) ≥ 0 for all ω ∈ Ω).

(C) If µ ∈ Y2 is not nonnegative, then there exists X ∈ X2 such that X � 0 and
〈µ,X〉 < 0.

The above condition ensures that the cone of nonnegative valued functions in X2

and the cone of nonnegative measures in Y2 are dual to each other. We have that
a measure µ is not nonnegative if µ(A) < 0 for some A ∈ F2. Therefore, condition
(C) holds, for example, if the space X2 contains all functions 1lA(·), A ∈ F2, where
1lA(ω) = 1 for ω ∈ A and 1lA(ω) = 0 for ω 6∈ A. For technical reasons we assume that
this property holds also for the space X1.

(C′) For every B ∈ F1, the function 1lB belongs to the space X1.

We say that Y is an F1-step function if it can be represented in the form Y =∑K
k=1 αk1lBk

, where Bk ∈ F1 and Bk ∩ Bl = ∅, if k 6= l. Clearly, if αk ≥ 0, then
the step function Y is nonnegative. By the above assumption (C′) we have that X1

contains all F1-step functions, and in particular all constant functions.
It is said that the conditional risk mapping ρ is positively homogeneous if

ρ(tX) = tρ(X), for all X ∈ X2 and t > 0. (2.3)

In that case ρ(0) = 0, and for any Y ∈ X1, we have that

ρ(Y ) = ρ(0 + Y ) = ρ(0) + Y = Y,

and hence ρ[ρ(X)] = ρ(X) for any X ∈ X2.

3 Conjugate Duality of Conditional Risk Mappings

We say that the mapping ρ is lower semicontinuous if, for every ω ∈ Ω, the corre-
sponding function ρω : X2 → R is lower semicontinuous (in the considered topology
of X2). With ρω is associated its conjugate function

ρ∗ω(µ) := sup
X∈X2

{
〈µ,X〉 − ρω(X)

}
. (3.4)
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We also use the notation ρ∗(µ, ω) for the function ρ∗ω(µ) in order to emphasize that
it is a function of two variables, i.e., ρ∗ : Y2×Ω → R. It has the following properties:
for every ω ∈ Ω the function ρ∗(·, ω) is convex and lower semicontinuous, and for any
µ ∈ Y2 the function ρ∗(µ, ·) is F1-measurable. Note also that, since ρω is real valued,
it follows from (3.4) that ρ∗(µ, ω) > −∞ for any (µ, ω) ∈ Y2 × Ω.

Recall that by PY2 we denote the set of all probability measures on (Ω,F2) which
are in Y2. With each ω ∈ Ω we associate a set of probability measures PY2|F1(ω) ⊂ PY2

as the set of all ν ∈ PY2 such that for every B ∈ F1 it holds that

ν(B) =

{
1, if ω ∈ B,
0, if ω 6∈ B.

(3.5)

Note that ω is fixed here and B varies in F1. Condition (3.5) simply means that for
every ω and every B ∈ F1 we know whether B happened or not. In particular, if
F1 = {∅,Ω}, then PY2|F1(ω) = PY2 for all ω ∈ Ω.

We can now formulate the basic duality result for conditional risk mappings.

Theorem 1 Let ρ = ρX2|X1
be a lower semicontinuous conditional risk mapping sat-

isfying assumptions (A1)–(A3). Then

ρω(X) = sup
µ∈PY2|F1

(ω)

{
〈µ,X〉 − ρ∗(µ, ω)

}
, ω ∈ Ω, X ∈ X2, (3.6)

where PY2|F1(ω) is the set of probability measures defined in (3.5), and ρ∗(µ, ω) is
defined in (3.4). Conversely, suppose that a mapping ρ : X2 → X1 can be represented
in form (3.6) for some ρ∗ : Y2×Ω → R. Then ρ is lower semicontinuous and satisfies
conditions (A1)–(A3).

Proof. We have that if assumptions (A1)–(A3) hold, then ρw is a convex risk
function. Since ρw is lower semicontinuous, it follows (by applying the Fenchel-Moreau
Theorem) that

ρω(X) = sup
µ∈PY2

{
〈µ,X〉 − ρ∗ω(µ)

}
, X ∈ X2. (3.7)

Conversely, if ρω can be represented in form (3.6) for some ρ∗ω, then ρ is lower semi-
continuous and satisfies conditions (A1)–(A2). All these facts can be established by
applying verbatim the proof of Theorem 2 in [13] to the function ρω. Therefore, the
only issue that needs to be clarified is the restriction of dom ρ∗ω to PY2|F1(ω).

Let ω ∈ Ω be fixed and let µω ∈ dom ρ∗ω, and hence ρ∗ω(µω) is finite. It follows
from (A3) that for any Y ∈ X1 we have

ρ∗ω(µω) = sup
X∈X2

{
〈µω, X + Y 〉 − ρω(X + Y )

}
= sup

X∈X2

{
〈µω, X〉+ 〈µω, Y 〉 − ρω(X)− Y (ω)

}
= ρ∗ω(µω) + 〈µω, Y 〉 − Y (ω).
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Therefore 〈µω, Y 〉 = Y (ω) for all Y ∈ X1. Setting Y := 1lB, where B ∈ F1, we
conclude that µω ∈ PY2|F1(ω). It follows that dom ρ∗ω ⊆ PY2|F1(ω).

To prove the converse we only need to verify assumption (A3). Suppose that (3.6)
holds true. Then every µω ∈ dom ρ∗ω is an element of PY2|F1(ω). Let Y :=

∑K
k=1 αk1lBk

,
be an F1-step function. By assumption (C′) we have that Y ∈ X1. Then

〈µω, Y 〉 =
K∑

k=1

αkµω(Bk) = Y (ω).

Passing to the limit, we obtain 〈µω, Y 〉 = Y (ω) for every F1-measurable Y . Therefore
(3.6) implies that for every Y ∈ X1 and all ω ∈ Ω we have

[ρ(X + Y )](ω) = sup
µ∈PY2|F1

(ω)

{
〈µ,X + Y 〉 − ρ∗(µ, ω)

}
= sup

µ∈PY2|F1
(ω)

{
〈µ,X〉 − ρ∗(µ, ω)

}
+ Y (ω).

This is identical to (A3).

Recall that the space X2 is said to be a lattice if for any X1, X2 ∈ X2 the element
X1 ∨X2, defined as[

X1 ∨X2

]
(ω) := max

{
X1(ω), X2(ω)

}
, ω ∈ Ω,

belongs to X2. For every X ∈ X2 we can then define |X| ∈ X2 in a natural way, i.e.,
|X|(ω) = |X(ω)|, ω ∈ Ω. The space X2 is a Banach lattice if it is a Banach space
and |X1| ≤ |X2| implies ‖X1‖ ≤ ‖X2‖. For example, every space X2 := Lp(Ω,F2, µ̄),
p ∈ [1,+∞], is a Banach lattice. We can remark here that the lower semicontinuity
of ρ follows from conditions (A1)–(A2), if X2 has the structure of a Banach lattice.
Note that [ρ(X)](·) is a finite valued function, and hence ρω(X) is finite for all ω ∈ Ω
and all X ∈ X2. Direct application of [13, Proposition 1] yields the following result.

Proposition 1 Suppose that X2 is a Banach lattice and ρ : X2 → X1 satisfies as-
sumptions (A1) and (A2). Then ρω(·) is continuous for all ω ∈ Ω.

Clearly, if ρ : X2 → X1 is positively homogeneous, then the corresponding function
ρω is also positively homogeneous. Therefore, if ρ = ρX2|X1

is a positively homoge-
neous, lower semicontinuous, conditional risk mapping, then ρ∗(·, ω) is the indicator
function of a closed convex set A(ω) ⊂ PY2|F1(ω), and hence

ρω(X) = sup
µ∈A(ω)

〈µ,X〉, ω ∈ Ω, X ∈ X2. (3.8)

We view ω 7→ A(ω) as a multifunction from Ω into the set PY2 of probability measures,
on (Ω,F2), which are included in Y2. Formula (3.8) extends to conditional risk
mappings the risk envelope representation derived in [1, 11, 13].

The property of positive homogeneity can be strengthened substantially.
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Proposition 2 Let ρ = ρX2|X1 be a positively homogeneous, lower semicontinuous
conditional risk mapping. Suppose that for any B ∈ F1 and X ∈ X2, it holds that
1lBX ∈ X2. Then for any nonnegative F1-step function Y and X ∈ X2, we have that
Y X ∈ X2 and

ρ(Y X) = Y ρ(X). (3.9)

Proof. Consider a set B ∈ F1 and any X ∈ X2. It follows from (3.8) that

ρω(X) = sup
µ∈A(ω)

{
〈µ, 1lBX〉+ 〈µ, 1lΩ\BX〉

}
, ω ∈ Ω. (3.10)

If ω ∈ B then (3.5) implies that µ(Ω \B) = 0 for all µ ∈ A(ω), and the second term
in the right hand side of (3.10) vanishes, and hence

ρω(X) = sup
µ∈A(ω)

〈µ, 1lBX〉 = ρω(1lBX). (3.11)

By a similar argument we also obtain that ρω(1lBX) = 0 for ω 6∈ B. Thus

ρ(1lBX) = 1lBρ(X). (3.12)

Consider now a nonnegative F1-step function Y :=
∑K

k=1 αk1lBk
. Then Y X =∑K

k=1 αk1lBk
X ∈ X2, and it follows from (3.12) that for ω ∈ Bk the following chain of

equations holds true:

ρω(Y X) = 1lBk
(ω)ρω(Y X) = ρω(1lBk

Y X) = ρω(αk1lBk
X).

Using positive homogeneity and (3.12) again, we obtain that

ρω(Y X) = αkρω(1lBk
X) = αkρω(X), if ω ∈ Bk.

This means that

ρω(Y X) =
K∑

k=1

αk1lBk
(ω)ρω(X) = Y (ω)ρω(X), ω ∈ Ω.

This completes the proof.

Remark 1 In order to pass in (3.9) from step functions to general functions Y ∈
X1 we need some additional assumptions about the spaces involved. For example,
consider Xi := Lp(Ω,Fi, µ̄), i = 1, 2, where µ̄ is a probability measure on (Ω,F2) and
p ∈ [1,+∞). Then for any F1-step function Y and X ∈ X2, we have that Y X ∈ X2.
Moreover, the set of F1-step functions is dense in X1. Hence by “passing to the limit
operation” and using Proposition 1 we obtain that (3.9) holds for any Y ∈ X1 and
X ∈ X2, provided that Y X ∈ X2.
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4 Conditional Expectation Representation

In this section we discuss relations between conditional risk mappings and conditional
expectations.

Definition 2 We say that a multifunction M : Ω ⇒ PY2 is weakly∗ F1-measurable
if for every X ∈ X2 the multifunction MX : Ω ⇒ R, defined as

MX(ω) :=
{
〈µ,X〉 : µ ∈M(ω)

}
,

is F1-measurable. We say that a selection µω ∈ M(ω) is weakly∗ F1-measurable if
for every X ∈ X2 the function ω 7→ 〈µω, X〉 is F1-measurable.

The multifunction ω 7→ A(ω), associated with representation (3.8), is weakly∗

F1-measurable. Indeed,

AX(ω) =
[
− ρω(−X), ρω(X)

]
,

and hence F1-measurability of AX(·) follows from the fact that ρ(X) ∈ X1. In the
sequel, whenever speaking about measurability of multifunctions and their selections,
we shall mean weak∗ measurability.

By Theorem 1 we have that, for every ω ∈ Ω, any measure ν ∈ A(ω) satisfies
condition (3.5). Therefore, if µω = µ(ω) is a selection of A(ω), then

[µ(·)](A) = 1lA(·), for all A ∈ F1. (4.1)

Moreover, if µ(ω) is weakly∗ F1-measurable, then [µ(·)](A) is F1-measurable.

Example 1 Consider ρ(X) := E[X|F1], X ∈ X2, where the conditional expectation
is taken with respect to a probability measure µ̄ on (Ω,F2). It is assumed here that
this conditional expectation is well defined for every X ∈ X2, and the space X1 is
large enough such that it contains E[X|F1] for all X ∈ X2. Note that the function
E[X|F1](·) is defined up to a set of µ̄-measure zero, i.e., two versions of E[X|F1](·)
can be different on a set of µ̄-measure zero. The conditional expectation mapping ρ
satisfies assumptions (A1)–(A3) and is a linear mapping. Representation (3.8) holds
with A(ω) = {µ(ω)} being a singleton and µω = µ(ω) being a probability measure
on (Ω,F2). By the definition of the conditional expectation we have that E[X|F1]
is F1-measurable, and hence µω is weakly∗ F1-measurable. Considering X = 1lA for
A ∈ F2, we see that

µω(A) = E[1lA|F1](ω) =
[
µ̄(A|F1)

]
(ω), (4.2)

that is, µ(·) is the conditional probability of µ̄ with respect to F1 (see, e.g., Billingsley
[3, pp. 430–431]). Clearly it satisfies (3.5).
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Let us note that the family of conditional risk mappings is closed under the oper-
ation of taking maximum. That is, let ρν = ρν

X2|X1
, ν ∈ I, be a family of conditional

risk mappings satisfying assumptions (A1)–(A3). Suppose, further, that for every
X ∈ X2 the function

[ρ(X)](·) := sup
ν∈I

[ρν(X)](·) (4.3)

belongs to the space X1, and hence ρ maps X2 into X1. It is then straightforward to
verify that the max-function ρ also satisfies assumptions (A1)–(A3). Moreover, if ρν ,
ν ∈ I, are lower semicontinuous, then ρ is also lower semicontinuous. In particular,
let ρν(X) := Eν [X|F1], ν ∈ I, where I is a family of probability measures on (Ω,F2).
Suppose that the corresponding max-function ρ is well defined, i.e., ρmaps X2 into X1.
Then ρ is a lower semicontinuous positively homogeneous conditional risk mapping.
We show now that, under certain regularity conditions, the converse is also true, i.e.,
a positively homogeneous conditional risk mapping can be represented as maximum
of a family of conditional expectations.

Let µω ∈ A(ω) be a weakly∗ F1-measurable selection. We associate with µ(ω) =
µω the following operator:

[Qµ(ν)](A) :=

∫
Ω

µω(A) dν(ω), ν ∈ Y2, A ∈ F2. (4.4)

It is not difficult to verify that, for every ν ∈ Y2, the right hand side of (4.4) defines a
finite signed measure on (Ω,F2). In particular, if A1, A2, ..., is a sequence of disjoint
F2-measurable sets and A := A1 ∪ A2 ∪ ..., then by the Lebesgue Theorem,∫

Ω

µω(A) dν(ω) =
∫
Ω

∑
i µω(Ai) dν(ω) =

∑
i

∫
Ω

µω(Ai) dν(ω).

We make the following assumption for a considered, weakly∗ F1-measurable, selection
µω ∈ A(ω): (i) if ν ∈ Y2, then Qµ(ν) ∈ Y2. The above assumption is not implied by
the definition (4.4) and should be verified in a particular application. It is straight-
forward to verify that if ν is a probability measure, then Qµ(ν) is also a probability
measure. Therefore, under the above assumption (i), the operator Qµ maps PY2 into
itself.

A probability measure ν̄ ∈ PY2 is called a fixed point of Qµ, if Qµ(ν̄) = ν̄. This
means that ∫

Ω

µω(A) dν̄(ω) = ν̄(A) for any A ∈ F2. (4.5)

Proposition 3 Let µω ∈ A(ω) be a weakly∗ F1-measurable selection and ν̄ ∈ PY2

be a fixed point of the operator Qµ, defined in (4.4). Then µ(·) is the conditional
probability of ν̄ with respect to F1.
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Proof. Let A ∈ F2. By the weak∗ F1-measurability of µ(·), we have that [µ(·)](A)
is F1-measurable. Therefore, we only need to verify that the following equation holds
(see, e.g., Billingsley [3, p. 430]):∫

S

µω(A) dν̄(ω) = ν̄(A ∩ S), for all S ∈ F1 and A ∈ F2. (4.6)

We have that µω(A) = µw(A ∩ S) + µw(A \ S) and µw(A \ S) ≤ µw(Ω \ S). Since
Ω\S ∈ F1, it follows by (4.1) that µw(Ω\S) = 0 for all ω ∈ S. Hence µw(A\S) = 0,
for any ω ∈ S. Consequently,∫

S

µω(A) dν̄(ω) =

∫
Ω

µω(A ∩ S) dν̄(ω).

Substituting this to (4.5) we obtain (4.6).

There are classical results ensuring existence of a fixed point. For example, we
can use Kakutani’s Fixed Point Theorem. Recall that X2 and Y2 are paired locally
convex topological vector spaces. We have that the set PY2 is convex. Let us make
the following assumption related to the operator Qµ, defined in (4.4), associated with
a weakly∗ F1-measurable selection µω ∈ A(ω).

(K) The set PY2 is compact and, for every weakly∗ F1-measurable selection µω ∈
A(ω), the operator Qµ maps PY2 into itself and is continuous (or, more generally,
has a closed graph) in the considered topology of the space Y2.

By Kakutani’s Theorem we have that, under the above assumption (K), the
operator Qµ has a fixed point ν̄ ∈ PY2 . Assumption (K) holds, for example, if
X2 = Lp(Ω,F2, µ̄) and Y2 = Lq(Ω,F2, µ̄), with p ∈ (1,+∞), and X2, Y2 are equipped
with their respective weak topologies. Another case where assumption (K) holds, by
Prohorov’s Theorem, if Ω is a compact metric space, F2 is its Borel sigma algebra
and Y2 is equipped with the corresponding weak topology. Note that although as-
sumption (K) ensures the existence of a fixed point, it does not imply that such a
fixed point is unique.

Corollary 1 Suppose that representation (3.8) holds, A(ω) = {µω} is a singleton for
every ω ∈ Ω, and assumption (K) is satisfied. Then there exists ν̄ ∈ PY2, satisfying
equation (4.5), such that µω is the conditional probability of ν̄ with respect to F1, and
ρ(·) = Eν̄ [·|F1].

Recall that Xi and Yi are assumed to be paired locally convex topological vector
spaces. It is said that Xi is separable if it has a countable dense subset.
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Lemma 1 Suppose that the space X2 is separable and the representation (3.8) holds.
Then there exists a countable family µi

ω, i ∈ N, of weakly∗ F1-measurable selections
of A(ω) such that

[ρ(X)](ω) = sup
i∈N

〈µi
ω, X〉 (4.7)

for all X ∈ X2 and ω ∈ Ω.

Proof. Let εk ↓ 0 be a sequence of positive numbers and and {Xn}n∈N be a dense
subset of X2. For every k, n ∈ N consider the multifunction

Mk,n(ω) :=
{
ν ∈ A(ω) : 〈ν,Xn〉 ≥

[
ρ(Xn)

]
(ω)− εk

}
.

This multifunction is weakly∗ F1-measurable and nonempty valued. Since X2 is sepa-
rable, the multifunction Mk,n(·) admits a weakly∗ F1-measurable selection µk,n(·) (see
[5]). By the definition of Mk,n we have then that

〈µk,n(ω), Xn〉 ≥
[
ρ(Xn)

]
(ω)− εk

for all k, n ∈ N and ω ∈ Ω. Since ρω(·) is lower semicontinuous for every ω ∈ Ω, it
follows that

sup
k,n
〈µk,n(ω), X〉 ≥ [ρ(X)](ω), ω ∈ Ω.

Because of (3.8) we also have that

[ρ(X)](ω) ≥ sup
k,n
〈µk,n(ω), X〉, ω ∈ Ω.

Thus representation (4.7) follows with µi
ω := µk,n(ω), i = (k, n) ∈ N× N.

Remark 2 Under the assumptions of Lemma 1, we can also write the following
representation

[ρ(X)](ω) = sup
µ(·)∈A(·)

〈µ(ω), X〉, (4.8)

where the supremum is taken over all weakly∗ F1-measurable selections µ(ω) ∈ A(ω).

Theorem 2 Let ρ = ρX2|X1 be a positively homogeneous, lower semicontinuous, con-
ditional risk mapping. Suppose that the space X2 is separable and assumption (K) is
satisfied. Then there exists a countable family νi ∈ PY2, i ∈ N, of probability measures
such that

ρω(·) = sup
i∈N

Eνi

[
· |F1

]
(ω), ω ∈ Ω. (4.9)

Proof. By Theorem 1 we have here that representation (3.8) holds. The assertion
then follows by Lemma 1 together with Proposition 3 and Kakutani’s Fixed Point
Theorem.
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Remark 3 Assuming that the representation (4.9) holds, we have that for any Y ∈
X1, Y � 0, and X ∈ X2 such that Y X ∈ X2,

ρω(Y X) = sup
i∈N

Eνi

[
Y X|F1

]
(ω) = Y (ω) sup

i∈N
Eνi

[
X|F1

]
(ω) = Y (ω)ρω(X), ω ∈ Ω.

That is, under the assumptions of Theorem 2, the result of Proposition 2 (i.e., equation
(3.9)) holds for a general function Y ∈ X1 (compare with Remark 1).

5 Iterated Risk Mappings

Let F1 ⊂ F2 ⊂ F3 be sigma algebras, X1 ⊂ X2 ⊂ X3 be respective spaces of mea-
surable functions, with dual spaces Y1 ⊂ Y2 ⊂ Y3, and let ρX3|X2

: X3 → X2 and
ρX2|X1

: X2 → X1 be conditional risk mappings. (For any inclusion like X2 ⊂ X3, we
assume that the topology of X2 is induced by the topology of X3.) Then it can be
easily verified that the composite mapping ρX3|X1

: X3 → X1, defined by

ρX3|X1
:= ρX2|X1

◦ ρX3|X2
, (5.1)

is also a conditional risk mapping.
Suppose that both conditional risk mappings at the right hand side of (5.1) are

positively homogeneous and lower semicontinuous. We have then[
ρX3|X2

(X)
]
(ω̃) = sup

µ2∈A2(ω̃)

〈µ2, X〉, X ∈ X3, ω̃ ∈ Ω, (5.2)[
ρX2|X1

(Y )
]
(ω) = sup

µ1∈A1(ω)

〈µ1, Y 〉, Y ∈ X2, ω ∈ Ω, (5.3)

with the multifunctions A2 : Ω ⇒ PY3 and A1 : Ω ⇒ PY2 having closed convex values
and weakly∗ measurable with respect to F2 and F1, correspondingly. In order to
analyze composition (5.1) it is convenient to consider weakly∗ measurable selections
µi(·) of the multifunctions Ai(·), i = 1, 2.

Proposition 4 Suppose that the space X3 is separable, and ρX2|X1
and ρX3|X2

are pos-
itively homogeneous, lower semicontinuous and satisfy conditions (A1)–(A3). Then
the conditional risk mapping ρX3|X1

can be represented in the form

[
ρX3|X1

(X)
]
(ω) = sup

µ1∈A1(ω)

sup
µ2(·)∈A2(·)

∫
Ω

〈µ2(ω̃), X〉 dµ1(ω̃), (5.4)

where the second sup operation at the right hand side of (5.4) is taken with respect to
weakly∗ F2-measurable selections µ2(ω̃) ∈ A2(ω̃).
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Proof. By (5.2) and (5.3) we have that, for every ω ∈ Ω,

[
ρX3|X1

(X)
]
(ω) = sup

µ1∈A1(ω)

∫
Ω

sup
µ2∈A2(ω̃)

〈µ2, X〉 dµ1(ω̃).

By Lemma 1 (see Remark 2), we also have that

sup
µ2∈A2(ω̃)

〈µ2, X〉 = sup
µ2(·)∈A2(·)

〈µ2(ω̃), X〉, (5.5)

where the supremum in the right hand side of (5.5) is taken over all weakly∗ F2-
measurable selections µ2(ω̃) ∈ A2(ω̃). Consequently

[
ρX3|X1

(X)
]
(ω) = sup

µ1∈A1(ω)

∫
Ω

sup
µ2(·)∈A2(·)

〈µ2(ω̃), X〉 dµ1(ω̃). (5.6)

Similarly to the proof of Lemma 1, we can now interchange the integral and ‘sup’
operators at the right hand side of (5.6), and hence (5.4) follows.

Remark 4 By Lemma 1 we have that actually it suffices to take the second supre-
mum at the right hand side of (5.4) with respect to a countable number of weakly∗

F2-measurable selections µ2(ω̃) ∈ A2(ω̃).

Representation (5.4) means that ρX3|X1
can be written in form (3.8) with the set

A(ω) is formed by all measures µ ∈ Y3 representable in the form

µ(S) =
∫
Ω

[
µ2(ω̃)

]
(S) dµ1(ω̃), S ∈ F3, (5.7)

where µ2(·) ∈ A2(·) is a weakly∗ F2-measurable selection and µ1 ∈ A1(ω). We denote
the multifunction A by A1 ◦ A2.

Consider now a sequence of sigma algebras (a filtration) F1 ⊂ F2 ⊂ · · · ⊂ FT ,
with F1 = {∅,Ω} and FT = F . We define linear (locally convex topological vector)
spaces X1 ⊂ · · · ⊂ XT of real valued functions on Ω such that all functions in Xt are
Ft-measurable. We also introduce the corresponding paired spaces Y1 ⊂ ... ⊂ YT of
measures, t = 1, . . . , T . Let ρXt|Xt−1

, t = 2, . . . , T , be conditional risk mappings. Note

that since F1 = {∅,Ω}, the space X1 is formed by constant over Ω functions and can
be identified with R, and hence ρX2|X1

is an (unconditional) risk function.
With the above sequence of conditional risk mappings we associate the following

(unconditional) risk functions

ρt := ρX2|X1
◦ · · · ◦ ρXt−1|Xt−2

◦ ρXt|Xt−1
, t = 2, . . . , T. (5.8)

The recursive application of Proposition 4 renders the following result.
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Theorem 3 Let ρXt+1|Xt
, t = 1, . . . , T − 1, be positively homogeneous, lower semi-

continuous, conditional risk mappings. Suppose that the spaces Xt, t = 2, ..., T , are
separable. Then for every X ∈ Xt, t = 2, . . . , T ,

ρt(X) = sup
µ∈A1◦···◦At−1

〈µ,X〉, (5.9)

where each Aτ : Ω ⇒ PYτ+1 is weakly∗ Fτ -measurable and such that[
ρXτ+1|Xτ

(X)
]
(ω) = sup

µ∈Aτ (ω)

〈µ,X〉. (5.10)

Note that we always have (A1 ◦ A2) ◦ A3 = A1 ◦ (A2 ◦ A3) and therefore there is no
ambiguity in the notation A1 ◦ · · · ◦ At−1.

6 Examples of Conditional Risk Mappings

In this section we discuss some examples of conditional risk mappings which can be
considered as natural extensions of the corresponding examples of (real valued) risk
functions (see [13]). We use the framework and notation of section 2, and take µ̄ to
be a probability measure on (Ω,F2). Unless stated otherwise, all expectations and
probability statements in this section are made with respect to µ̄.

Example 2 Let Xi := Lp(Ω,Fi, µ̄) and Yi := Lq(Ω,Fi, µ̄), i = 1, 2, for some p ∈
[1,+∞). Consider

ρ(X) := E[X|F1] + c σp(X|F1), X ∈ X2, (6.1)

where c ≥ 0 and σp(·|F1) is the conditional upper semi-deviation:

σp(X|F1) :=
(
E

[(
X − E[X|F1]

)p

+

∣∣F1

])1/p

. (6.2)

If the sigma algebra F1 is trivial, then E[·|F1] = E[·] and σp(X|F1) becomes the
upper semi-deviation of X of order p. Thus ρ is the conditional counterpart of the
mean–semideviation models of [6, 7].

Let us show that for c ∈ [0, 1], the above mapping ρ satisfies assumptions (A1)–
(A3). Assumption (A3) can be verified directly. That is, if Y ∈ X1 and X ∈ X2,
then

ρ(X + Y ) = E[X + Y |F1] + c
(
E

[(
X + Y − E[X + Y |F1]

)p

+

∣∣F1

])1/p

= E[X|F1] + Y + c
(
E

[(
X − E[X|F1]

)p

+

∣∣F1

])1/p

= ρ(X) + Y.

In order to verify assumptions (A1) and (A2) consider function ρω defined in (2.1).
For ω ∈ Ω we can write

E[·|F1](ω) = Eµω [·], (6.3)
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where µ(ω) = µω is the conditional probability of µ̄ with respect to F1 (see Exam-
ple 1). Therefore, for any X ∈ X2 and ω ∈ Ω,

ρω(X) = Eµω [X] + c
(
Eµω

[(
X − Eµω [X]

)p

+

])1/p

. (6.4)

We have that µω ∈ PY2|F1(ω) and its (conditional probability) density fω = dµω/dµ̄
has the following properties: fω ∈ Y2, fω ≥ 0, for any A ∈ F2, the function ω 7→∫

A
fωdµ̄ is F1-measurable and, moreover, for any B ∈ F1, the following equality holds∫

B

∫
A

fω(ω̃) dµ̄(ω̃) dµ̄(ω) = µ̄(A ∩B).

We see that for a fixed ω the function ρω(X) is identical with the risk function
analyzed in [13, Example 2]; the conditional measure µω plays the role of the prob-
ability measure. It follows from the analysis in [13] that, for c ∈ [0, 1], the function
ρω(·) satisfies assumptions (A1) and (A2). Moreover, the representation

ρω(X) = supγ∈A∗
∫

Ω
γXdµω

holds with

A∗ =
{
γ = 1 + h−

∫
Ω

h dµω :
∫
Ω

hq dµω ≤ cq, h � 0
}
.

Since dµω = fωdµ̄, we conclude that the representation (3.8) follows with

A(ω) =
{
g ∈ Y2 : g = fω

(
1 + h− E[fωh]

)
, h ∈ cBq(ω), h � 0

}
, (6.5)

where
Bq(ω) :=

{
h ∈ Y2 : E[hqfω] ≤ 1

}
.

Example 3 Let Xi := L1(Ω,Fi, µ̄) and Yi := L∞(Ω,Fi, µ̄), i = 1, 2. For constants
ε1 > 0 and ε2 > 0, consider

ρ(X) := E[X|F1] + Φ(X|F1), X ∈ X2, (6.6)

where [
Φ(X|F1)

]
(ω) := inf

Z∈X1

E
{
ε1[Z −X]+ + ε2[X − Z]+

∣∣F1

}
(ω). (6.7)

It is straightforward to verify that assumption (A3) holds here. Indeed, for X ∈ X2

and Y ∈ X1 we have[
Φ(X + Y |F1)

]
(ω) = inf

Z∈X1

E
{
ε1[(Z − Y )−X]+ + ε2[X − (Z − Y )]+

∣∣F1

}
(ω).

By making change of variables Z 7→ Z−Y , we obtain that Φ(X+Y |F1) = Φ(X|F1),
and hence assumption (A3) follows.
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Because of (6.3), we can write, as in the previous example, that

ρω(X) = Eµω [X] + inf
Z∈X1

Eµω

{
ε1[Z −X]+ + ε2[X − Z]+

}
(6.8)

= E[fωX] + inf
Z∈X1

E
{
ε1[fωZ − fωX]+ + ε2[fωX − fωZ]+

}
, (6.9)

where fω = dµω/dµ̄ is the conditional density. We can continue now in a way similar
to the analysis of Example 3 in [13]. We have that

E
{
ε1[fωZ − fωX]+ + ε2[fωX − fωZ]+

}
= sup

h∈M
E

[
h(fωX − fωZ)

]
, (6.10)

where
M :=

{
h ∈ Y2 : −ε1 ≤ h(ω) ≤ ε2, a.e. ω ∈ Ω

}
. (6.11)

By substituting the right hand side of (6.10) into (6.9), we obtain

ρω(X) = E[fωX] + inf
Z∈X1

sup
h∈M

E
[
h(fωX − fωZ)

]
.

Since the set M is compact in the weak∗ topology of Y2, we can interchange the ‘inf’
and ‘sup’ operators in the right hand side of the above equation. Also we have that

inf
Z∈X1

E
[
hfωZ

]
= inf

Z∈X1

E
[
Z E[hfω|F1]

]
=

{
0, if E[hfω|F1] = 0,
−∞, otherwise.

We obtain that

ρω(X) = E[fωX] + sup
{
E[hfωX] : h ∈M, E[hfω|F1] = 0

}
.

It follows that for ε1 ∈ (0, 1] and ε2 > 0, assumptions (A1) and (A2) are satisfied,
and representation (3.8) holds with

A(ω) =
{
g ∈ Y2 : g = (1 + h)fω, h ∈M, E

[
hfω|F1

]
= 0

}
, (6.12)

where M is defined in (6.11).
Since

ε1[Z −X]+ + ε2[X − Z]+ = ε1

(
Z + (1− p)−1[X − Z]+ −X

)
,

where p := ε2/(ε1 + ε2), we have that

ρ(X) = (1− ε1)E[X|F1] + ε1CV@RX2|X1 [X], (6.13)

where

CV@RX2|X1 [X](ω) := inf
Z∈X1

E
{
Z + (1− p)−1[X − Z]+ | F1

}
(ω). (6.14)

Clearly, for ε1 = 1 we have that ρ(·) = CV@RX2|X1 [ · ]. By the above analysis we
obtain that for p ∈ (0, 1), CV@RX2|X1 [ · ] is a positively homogeneous, continuous risk
mapping. If F1 = {∅,Ω}, then CV@RX2|X1 [ · ] becomes the Conditional Value at Risk
function analyzed in [10, 11, 14]. For a nontrivial F1, the measure CV@RX2|X1 was
analyzed in [9].
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7 Multistage risk optimization problems

In order to construct risk models for multistage decision problems, we first introduce
recursive risk models for sequences.

As in section 5, consider a sequence of sigma algebras F1 ⊂ F2 ⊂ · · · ⊂ FT , with
F1 = {∅,Ω} and FT = F , and let X1 ⊂ · · · ⊂ XT be a corresponding sequence of
linear spaces of Ft-measurable functions, t = 1, ..., T . Let ρXt|Xt−1 : Xt → Xt−1 be
conditional risk mappings. Denote X := X1×X2×· · ·×XT andX := (X1, X2, . . . , XT ),
where Xt ∈ Xt, t = 1, . . . , T , and define a function ρ : X → R as follows:

ρ(X) = X1 + ρX2|X1

[
X2 + ρX3|X2

(
X3 + . . .

· · ·+ ρXT−1|XT−2

[
XT−1 + ρXT |XT−1

(
XT

)])]
.

(7.1)

Note that since F1 = {∅,Ω}, the space X1 can be identified with R, and hence ρ(X)
is real valued. Note also that by assumption (A3), we have

XT−1 + ρXT |XT−1
(XT ) = ρXT |XT−1

(XT−1 +XT ).

Applying this formula for t = T, T − 1, . . . , 2 we obtain the equation:

ρ(X) = ρT (X1 + ...+XT ), (7.2)

where, similarly to (5.8),

ρt := ρX2|X1
◦ · · · ◦ ρXt|Xt−1

, t = 2, ..., T.

Since each conditional risk mapping ρXt|Xt−1 satisfies (A1)–(A3), it follows that the
function ρT satisfies (A1)–(A3) as well. Moreover, if conditional risk mappings ρXt|Xt−1

are positively homogeneous, then ρ is positively homogeneous. Assuming further
that the spaces Xt are separable and ρXt|Xt−1 are lower semicontinuous, we obtain by
Theorem 3 that the following representation holds true

ρ(X) = sup
µ∈A

Eµ[X1 + ...+XT ], (7.3)

where the set A := A1 ◦ ... ◦ AT−1 is given by the composition of the multifunctions
Aτ : Ω ⇒ PYτ+1 , τ = 1, . . . , T − 1, defined in equation (5.10) of Theorem 3.

It may be of interest to discuss the difference between our approach and a construc-
tion in Artzner et al [2]. In [2] an adapted sequence {Xt}, t = 1, . . . , T , is viewed as
a measurable function on a new measurable space (Ω′,F ′), with Ω′ = Ω×{1, . . . , T},
and with the sigma-field F ′ generated by sets of form Bt × {t}, for all Bt ∈ Ft and
t = 1, . . . , T . Then representation (7.3), for some set A, can be derived from axioms
of coherent risk measures of [1]. In our setting these axioms correspond to the as-
sumptions (A1)–(A3) for the trivial sigma algebra F1 = {Ω′, ∅}, and to the positive
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homogeneity of the (unconditional) risk function ρ(X). Our approach is via axioms
of conditional risk mappings, which allows for a specific analysis of the structure of
the set A.

In applications, we frequently deal with random outcomes Xt ∈ Xt resulting from
decisions zt in some stochastic system. In order to model this situation, we introduce
linear spaces Zt of Ft-measurable functions2 Zt : Ω → Rnt and consider functions
ft : Rnt ×Ω → R, t = 1, ..., T . With functions ft we associate mappings Ft : Zt → Xt

defined as follows [
Ft(Zt)

]
(ω) := ft(Zt(ω), ω), Zt ∈ Zt, ω ∈ Ω.

We assume that the functions ft(zt, ω) are random lower semicontinuous3, and that
the mappings Ft are well defined, i.e., for every Zt ∈ Zt the function ft(Zt(·), ·)
belongs to the space Xt, t = 1, ..., T . We say that the mapping Ft is convex if[
Ft(·)

]
(ω) is convex for all ω ∈ Ω. Then for every conditional risk mapping ρXt|Xt−1 ,

satisfying (A1)–(A3), we have that ρXt|Xt−1(Ft(·)) is convex in the sense that the
function

[
ρXt|Xt−1(Ft(·))

]
(ω) is convex for every ω ∈ Ω. This follows by assumptions

(A1) and (A2) and can be shown in the same way as in [13, Proposition 2].
Let Z = Z1 ×Z2 × · · · × ZT , and let F : Z → X be defined as

F (Z) := (F1(Z1), . . . , FT (ZT )).

With the risk function ρ, defined in (7.1), and the mapping F we can associate the
function

ψ(Z) := ρ(F (Z)) = F1(Z1) + ρX2|X1

[
F2(Z2) + ρX3|X2

(
F3(Z3) + · · ·

· · ·+ ρXT−1|XT−2

[
FT−1(ZT−1) + ρXT |XT−1

(
FT (ZT )

)])]
.

As discussed above, by the recursive application of [13, Proposition 2], it can be easily
shown that ψ(·) is a convex function. Also by using (7.2) and (7.3) we can write

ψ(Z) = ρT

(
F1(Z1) + F2(Z2) + · · ·+ FT (ZT )

)
= sup

µ∈A

∫
Ω

[
f1(Z1) + f2(Z2(ω), ω)...+ fT (ZT (ω), ω)

]
dµ(ω).

Suppose that we are given Ft-measurable multifunctions Gt : Rn1+...+nt−1 × Ω ⇒
Rnt . We define the set

S :=
{
Z ∈ Z : Zt(ω) ∈ Gt(Z1(ω), . . . , Zt−1(ω), ω), ω ∈ Ω, t = 1, . . . , T

}
,

2Note that since F1 is trivial, the space Z1 coincides with Rn1 and elements Z1 ∈ Z1 are n1-
dimensional vectors.

3Random lower semicontinuous functions are also called normal integrands (see Definition 14.27
in [12, p.676]).
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and consider the problem
Min
Z∈S

ψ(Z). (7.4)

We shall derive a dynamic programming equation for this problem.
In order to accomplish that, we need some mild technical assumptions. We assume

that the spaces Xt are solid in the sense that for every two elements X,X ∈ Xt and
every Ft-measurable function Xt satisfying X(·) ≤ Xt(·) ≤ X(·), the function Xt

is an element of Xt. For example, the spaces Lp(Ω,Ft, µ̄), p ∈ [1,+∞] are solid.
Furthermore, we assume that there exist elements X t ∈ Xt such that for all Z ∈ S
we have Ft(Zt) � X t, t = 1, . . . , T .

We introduce the notation

Z[1,t] := (Z1, . . . , Zt), t = 1, ..., T.

If Zt(·) ≡ zt is a constant function, we write (Z[1,t−1], zt) for Z[1,t]. Problem (7.4) can
be written in a more explicit form as follows:

Min
Z1∈G1

Min
Z2(·)∈G2(Z1,·)

. . . Min
ZT (·)∈GT (Z[1,T−1](·),·)

ρT

[
F1(Z1) + F2(Z2) + · · ·+ FT (ZT )

]
. (7.5)

Consider the minimization with respect to ZT in the above problem. Since the func-
tion ρT is monotone in the sense of (A2), and ZT is required to be only FT -measurable,
we can carry out this minimization inside the argument. We obtain the following for-
mulation

Min
Z1∈G1

Min
Z2(·)∈G2(Z1,·)

. . . Min
ZT−1(·)∈GT−1(Z[1,T−2](·),·)

ρT

[
F1(Z1) + F2(Z2) + · · ·

· · ·+ FT−1(ZT−1) + inf
zT∈GT (Z[1,T−1](·),·)

fT (zT , ·)
]
.

Note that because of Ft-measurability of GT and random lower semicontinuity of
fT (·, ·), the pointwise infimum infzT∈GT (Z[1,T−1](ω),ω) fT (zT , ω) is FT -measurable (e.g.,
Rockafellar and Wets [12, Theorem 14.37]), and bounded because of the assumption
that XT is solid. Consequently this infimum (as a function of ω) is an element of XT .

Using the fact that

ρt := ρt−1 ◦ ρXt|Xt−1
, t = 2, ..., T,

we can re-write the last problem as follows:

Min
Z1∈G1

Min
Z2(·)∈G2(Z1,·)

. . . Min
ZT−1(·)∈GT−1(Z[1,T−2](·),·)

ρT−1

[
F1(Z1) + F2(Z2) + · · ·

· · ·+ FT−1(ZT−1) + ρXT |XT−1

(
inf

zT∈GT (Z[1,T−1](·),·)
fT (zT , ·)

)]
.

(7.6)

Define
ψT (Z[1,T−1]) := ρXT |XT−1

[
inf

zT∈GT (Z[1,T−1](·),·)
fT (zT , ·)

]
. (7.7)
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Note that, as it was discussed above, the pointwise infimum in the right hand side of
(7.7) is an element of XT . Therefore we can evaluate ρXT |XT−1

at this element. Thus
ψT (Z[1,T−1]) ∈ XT−1 and it can appear in the argument of ρT−1 in (7.6). We obtain
the formulation

Min
Z1∈G1

Min
Z2(·)∈G2(Z1,·)

. . . Min
ZT−1(·)∈GT−1(Z[1,T−2](·),·)

ρT−1

[
F1(Z1) + F2(Z2) + · · ·

· · ·+ FT−1(ZT−1) + ψT (Z[1,T−1])
]
.

Formally setting ψT+1(Z[1,T ]) ≡ 0, and proceeding in this way for T − 1, T − 2, . . . , 1
we can recursively define the sequence of functions

[ψt(Z[1,t−1])](·) := ρXt|Xt−1

[
inf

zt∈Gt(Z[1,t−1](·),·)

{
ft(zt, ·) + [ψt+1(Z[1,t−1], zt)](·)

}]
, (7.8)

t = T, T − 1, . . . , 1. We always have that the infima above are elements of the
spaces Xt, because the spaces Xt are solid. Consequently, ψt(Z[1,t−1]) ∈ Xt−1 and the
recursion can continue. Obviously, ψ1 is the optimal value of problem (7.4).

We can interpret functions ψt as cost-to-go functions and equations (7.8) as dy-
namic programming equations, for the risk optimization problem (7.4). We can also
write these functions in the form:

ψt(Z[1,t−1]) = inf
Zt(·)∈Gt(Z[1,t−1](·),·)

. . . inf
ZT (·)∈GT (Z[1,T−1](·),·)(
ρXt|Xt−1

◦ · · · ◦ ρXT |XT−1

)[
Ft(Zt) + · · ·+ FT (ZT )

]
.

Suppose now that the conditional risk mappings ρXt|Xt−1 are lower semicontinuous
and positively homogeneous. Then it follows from (3.8) that there exists convex closed
sets At(ω) ⊂ PYt|Ft−1(ω) such that[

ρXt|Xt−1(Xt)
]
(ω) = sup

µt∈At(ω)

Eµt

[
Xt

]
, ω ∈ Ω, Xt ∈ Xt.

Substitution into (7.8) yields, for t = T, T − 1, . . . , 1,

[
ψt(Z[1,t−1])

]
(ω) = sup

µt∈At(ω)

Eµt

[
inf

zt∈Gt(Z[1,t−1](ω),ω)

{
ft(zt, ω) + [ψt+1(Z[1,t−1], zt)](ω)

}]
.

(7.9)
The dynamic programming equation (7.9) provides a framework for extending the
theory of multistage stochastic optimization problems to risk functions.

In the special case when Xt = Lp(Ω,Ft, µ̄), p ∈ [1,+∞), we can identify the
measures µt with their densities ht ∈ Lq(Ω,Ft, µ̄). We can observe that they form a
process adapted to the filtration {Ft}.
Acknowledgement. The authors are indebted to Darinka Dentcheva for helpful
discussions regarding weakly measurable selections of multifunctions.
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