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Abstract. Traditional stochastic programming is risk neutral in the sense that it is concerned
with the optimization of an expectation criterion. A common approach to addressing risk in
decision making problems is to consider a weighted mean-risk objective, where some dispersion
statistic is used as a measure of risk. We investigate the computational suitability of various
mean-risk objective functions in addressing risk in stochastic programming models. We prove
that the classical mean-variance criterion leads to computational intractability even in the
simplest stochastic programs. On the other hand, a number of alternative mean-risk functions
are shown to be computationally tractable using slight variants of existing stochastic program-
ming decomposition algorithms. We propose a parametric cutting plane algorithm to generate
the entire mean-risk efficient frontier for a particular mean-risk objective.

Key words. Stochastic programming, mean-risk objectives, computational complexity, cut-
ting plane algorithms.

1. Introduction

This paper is concerned with stochastic programming problems of the form

min{ E[f(x, ω)] : x ∈ X}, (1)

where x ∈ R
n is a vector of decision variables; X ⊂ R

n is a non-empty set
of feasible decisions; (Ω,F , P ) is a probability space with elements ω; and f :
R

n × Ω 7→ R is a cost function such that f(·, ω) is convex for all ω ∈ Ω, and
f(x, ·) is F-measurable and P -integrable for all x ∈ R

n. Of particular interest
are instances of (1) corresponding to two-stage stochastic linear programs (cf. [1,
13]), where X is a polyhedron and

f(x, ω) = cT x + Q(x, ξ(ω)) (2)

with

Q(x, ξ) = min{qT y : Wy = h + Tx, y ≥ 0}. (3)

Here ξ = (q,W, h, T ) represents a particular realization of the random data ξ(ω)
for the linear program in (3).

Formulation (1) is risk-neutral in the sense that it is concerned with the
optimization of an expectation objective. A common approach to addressing risk
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is to consider a weighted mean-risk criterion, where some dispersion statistic is
used as a proxy for risk, i.e.,

min{ E[f(x, ω)] + λD[f(x, ω)] : x ∈ X}, (4)

where D is a dispersion statistic, and λ is a non-negative weight to trade-off
expected cost with risk. The classical Markowitz [8] mean-variance portfolio
optimization model is an example of (4) where variance is used as the dispersion
statistic.

In this paper we investigate various alternative mean-risk objective functions
and their computational suitability in addressing risk in stochastic programming
models. We prove that the mean-variance criterion leads to computational in-
tractability even in the simplest stochastic programs. On the other hand, a
number of alternative mean-risk functions are shown to be computationally
tractable using slight variants of existing stochastic programming decomposi-
tion algorithms. We propose a parametric algorithm to generate the mean-risk
efficient frontier for a particular mean-risk objective in the context of stochastic
linear programs. Computational results involving standard stochastic program-
ming test problems are reported.

2. Complexity of mean-variance stochastic programming

In this section we show that mean-variance extensions of even very simple
stochastic linear programs lead to NP-hard optimization problems.

Consider the class of two-stage stochastic linear programs with simple re-
course (cf. [1]), i.e., problem (1) with

f(x, ω) =
n∑

j=1

cjxj +
n∑

j=1

Qj(xj , ξj(ω)) (5)

and

Qj(xj , ξj) = q+
j (xj − ξj)+ + q−j (ξj − xj)+, (6)

where (·)+ = max{·, 0}, and q+
j +q−j ≥ 0 for all j = 1, . . . , n. The following lemma

provides a closed-form formula for the variance of the simple recourse function (6)
when ξj(ω) has a discrete distribution. The proof follows from algebra and is
omitted.

Lemma 1. Consider the function Q(x, ξ) = q+(x − ξ)+ + q−(ξ − x)+, where
x, ξ ∈ R. Let ξ(ω) be a random variable with the discrete distribution ξ(ω) = ξk

w.p. pk for k = 1, . . . ,K. The variance of Q(x, ξ(ω)) is then given by

V[Q(x, ξ(ω))] =





a if x ≤ ξ1,
bkx2 + ckx + dk if ξk−1 ≤ x ≤ ξk k = 2, . . . ,K,
e if x ≥ ξK ,
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From the above lemma, it can be seen that the function V[Q(x, ξ(ω))] is piece-
wise convex quadratic (note that bk ≥ 0 for all k), but non-convex in general.
Consequently, we encounter computational complications in using the mean-
variance criterion in stochastic programs with simple recourse.

Theorem 1. The mean-variance stochastic programming problem

min{ E[f(x, ξ)] + λV[f(x, ξ)] : x ∈ X} (7)

corresponding to the simple recourse function (5) is NP-hard for any λ > 0.

Proof. Consider the Binary Integer Feasibility problem:

Given an integer matrix A ∈ Z
m×n, and integer vector b ∈ Z

m,

is there a vector x ∈ {−1, 1}nsuch that Ax ≤ b? (8)

The binary integer feasibility problem (8) is known to be NP-complete [2]. We
shall show that given any instance of (8) with n variables, we can construct a
polynomial (in n) sized instance of the mean-variance stochastic program (7) for
any λ > 0 such that (8) has an answer “yes” if and only if (7) has an optimal
objective value of (3 + 3

4λ + 3λ
2 )n.

An instance of (8) is given by the data pair (A, b). Given any such instance,
we can construct an instance of (7) for any λ > 0 as follows. Let X = {x ∈ R

n :
Ax ≤ b, − e ≤ x ≤ e}, e be a n-vector of ones, and q+

j = 1, q−j = 1, cj = 0 for
all j = 1, . . . , n. Let ξj(ω) for j = 1, . . . , n be i.i.d random variables, with the
distribution

ξj(ω) =





−3 − 1
λ w.p. 1

4 ,
0 w.p. 1

2 ,
3 + 1

λ w.p. 1
4 .
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Owing to the independence of ξj(ω), the mean-variance stochastic program (7)
corresponding to the above data reduces to

min{

n∑

j=1

(E[Qj(xj , ξj(ω))] + λV[Qj(xj , ξj(ω))]) : x ∈ X}. (9)

It follows from Lemma 1 that for all j = 1, . . . , n,

E[Qj(xj , ξj(ω))] + λV[Qj(xj , ξj(ω))] =

{
3
4λ (4λ + 1 + λ2x2

j + 2λ2xj + 3λ2) if −3 − 1
λ ≤ xj ≤ 0

3
4λ (4λ + 1 + λ2x2

j − 2λ2xj + 3λ2) if 0 ≤ xj ≤ 3 + 1
λ .

Note that for all j = 1, . . . , n, E[Qj(xj , ξj(ω))]+λV[Qj(xj , ξj(ω))] ≥ (3+ 3
4λ + 3λ

2 )
for any xj ∈ [−1, 1], with equality holding if and only if xj ∈ {−1, 1}. Thus (9)
has an optimal objective value of (3+ 3

4λ + 3λ
2 )n if and only if there exists x ∈ X

such that x ∈ {−1, 1}n, i.e., problem (8) has an affirmative answer. ut

In the classical setting of portfolio optimization, the function f(x, ω) =
−r(ω)T x where r(ω) ∈ R

n is a random vector of returns, and X ⊂ R
n is a

polyhedral set of feasible weights for the n assets in the portfolio. In this case,
V[f(x, ω)] = xT Cx where C is the covariance matrix of the random vector r(ω).
Consequently, (7) reduces to a deterministic (convex) quadratic program suit-
able for very efficient computation. For typical stochastic programs f(x, ω) is
nonlinear (although convex) in x. Furthermore, the variance operator, although
convex, is non-monotone. Consequently E[f(x, ω)] + λV[f(x, ω)] is not guaran-
teed to be convex in x, leading to the computational complication proven in
Theorem 1. In the following section, we investigate mean-risk objectives that
preserve convexity, hence computational tractability.

3. Tractable mean-risk objectives

Given a random variable Y : Ω 7→ R, representing cost, belonging to the linear
space Xp = Lp(Ω,F , P ) for p ≥ 1, a scalar λ ≥ 0, and an appropriate function
D : Xp 7→ R to measure the risk associated with Y , we define a mean-risk
function g

λ,D
: Xp 7→ R as

g
λ,D

[Y ] = E[Y ] + λD[Y ]. (10)

Using (10) to address risk in the context of the stochastic program (1), we arrive
at the formulation

min{φ(x) = g
λ,D

[f(x, ω)] : x ∈ X}. (11)

From a computational viewpoint, it is desirable that the objective function φ(·)
in (11) be convex. As discussed in Section 2, even though f(·, ω) is convex for
all ω ∈ Ω, the convexity of the composite function φ(x) = g

λ,D
[f(x, ω)] may not

be preserved, for example, if variance is used as the measure of risk in g
λ,D

.
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3.1. Sufficient conditions for preserving convexity

We shall say that a function g : Xp 7→ R is convexity-preserving, if the composite
function φ(x) = g[f(x, ω)] is convex for any function f(x, ω) such that f(·, ω)
is convex for all ω ∈ Ω and f(x, ·) ∈ Xp for all x ∈ R

n. Recall that a function
g : Xp 7→ R is convex if g[λY1 + (1 − λ)Y2] ≤ λg[Y1] + (1 − λ)g[Y2], for all
Y1, Y2 ∈ Xp and λ ∈ [0, 1]; is non-decreasing if g[Y1] ≥ g[Y2] for all Y1, Y2 ∈ Xp

such that Y1 ≥ Y2; and is positively homogenous if g[λY ] = λg[Y ] for all Y ∈ Xp

and λ ≥ 0.
The following result is well-known (cf. [14]).

Proposition 1. If g : Xp 7→ R is convex and non-decreasing, then g is convexity-
preserving.

Lemma 2. A convex and positively homogenous function g : Xp 7→ R is non-
decreasing if and only if it satisfies g[Y ] ≤ 0 for all Y ≤ 0.

Proof. Suppose g satisfies g[Y ] ≤ 0 for all Y ≤ 0. Let Y1 ≥ Y2, i.e., Y2 = Y1 + ∆
for some ∆ ≤ 0. Then

1
2g[Y2] = 1

2g[Y1 + ∆]
= g[ 12Y1 + 1

2∆]
≤ 1

2g[Y1] + 1
2g[∆]

≤ 1
2g[Y1],

where the second line follows from positive-homogeneity, the third line follows
from convexity, and the fourth line follows from the fact that g[∆] ≤ 0 (since
∆ ≤ 0). Thus g[·] is non-decreasing. Conversely, if g[·] is non-decreasing, then
g[Y ] ≤ g[0] = 0 for all Y ≤ 0. ut

The following result immediately follows from Lemma 2 and Proposition 1.

Proposition 2. If g : Xp 7→ R is convex, positively homogenous, and satisfies
g[Y ] ≤ 0 for all Y ≤ 0, then g is convexity-preserving.

3.2. Examples

Here we show that a number of common mean-risk objectives are convexity
preserving, and hence suitable for optimization.

Semideviation from a target [11]. For Y ∈ Xp and a fixed target T ∈ R, the p-th
Semideviation from T is defined as

ST,p[Y ] = (E[(Y − T )p
+])1/p.

Proposition 3. The mean-risk objective

g
λ,uT,p

[Y ] = E[Y ] + λST,p[Y ]

is convexity preserving for all p ≥ 1 and λ ≥ 0.

Proof. Since ST,p[Y ] convex and non-decreasing in Y for all p ≥ 1, the result
follows from Proposition 1. ut
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Conditional value-at-risk [12]. For Y ∈ X1 and α ∈ (0, 1) the α-Conditional
value at risk is defined as

CVaRα[Y ] = min
ξ

{ξ +
1

1 − α
E[(Y − ξ)+]}.

Proposition 4. The mean-CVaR objective

g
λ,CVaRα

[Y ] = E[Y ] + λCVaRα[Y ]

is convexity preserving for all λ ≥ 0.

Proof. Since CVaRα[·] convex and non-decreasing in Y [12], the result follows
from Proposition 1. ut

Central semideviation [9]. For Y ∈ Xp, the p-th central semideviation is defined
as

δp[Y ] =
(
E[(Y − EY )p

+]
) 1

p .

Proposition 5. The mean-semideviation objective

g
λ,δp

[Y ] = E[Y ] + λδp[Y ]

is convexity-preserving for all p ≥ 1 and λ ∈ [0, 1].

Proof. Ogryczak and Ruszczyński [9] have shown that δp is convex for all p ≥ 1.
Furthermore, it can be verified that δp is positively-homogenous. Thus g

λ,δp
[Y ]

is convex and positively homogenous for all λ ≥ 0. Moreover, if Y ≤ 0, then
(Y − EY )+ ≤ −EY . Thus g

λ,δp
[Y ] ≤ (1 − λ)EY ≤ 0 for all λ ≤ 1. The result

then follows from Proposition 2. ut

Quantile-deviation [10]. Given α ∈ (0, 1) and Y ∈ X1, let

hα[Y ] = E [max{(1 − α)(Y − κp[Y ]), α(κα[Y ] − Y )}] ,

where κα[Y ] is the α-th quantile of Y , i.e., Pr(Y < κα[Y ]) ≤ α ≤ Pr(Y ≤ κα[Y ]).

Proposition 6. The mean-quantile deviation objective

g
λ,hα

[Y ] = E[Y ] + λhα[Y ]

is convexity preserving for all λ ∈ [0, 1/α].

Proof. Ogryczak and Ruszczyński [10] have shown that hα[Y ] is convex and
positively homogenous. Thus g

λ,hα
[Y ] is convex and positively homogenous for

all λ ≥ 0. Moreover, For any Y ≤ 0, we have κα[Y ] ≤ 0. Thus κα[Y ]− Y ≤ −Y ,
and hα[Y ] ≤ αE[(κα[Y ]−Y )] ≤ −αE[Y ]. Therefore, g

λ,hα
[Y ] ≤ (1−λα)E[Y ] ≤ 0,

since λ ≤ 1/α. The result then follows from Proposition 2. ut
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Gini mean difference [16]. For Y ∈ X1 with distribution function FY , the Gini
mean difference is defined as

Γ [Y ] =

∫
E[(ξ − Y )+]dFY (ξ).

Proposition 7. The mean-Gini mean difference objective

g
λ,Γ

[Y ] = E[Y ] + λΓ [Y ]

is convexity preserving for all λ ∈ [0, 1].

Proof. Ogryczak and Ruszczyński [10] have shown that Γ [·] is convex and positively-
homogenous. Thus g

λ,Γ
[·] is convex and positively-homogenous for all λ ≥ 0.

Moreover, if Y ≤ 0 then

∫
E[(ξ − Y )+]dFY (ξ) ≤

∫
−E[Y ]dFY (ξ) = −E[Y ].

Thus g
λ,Γ

[Y ] ≤ (1 − λ)E[Y ] ≤ 0 for all λ ≤ 1. The result then follows from
Proposition 2. ut

Remark 1. Note that the non-decreasing, hence convexity preserving, property of
g

λ,δp
, g

λ,hα
, and g

λ,Γ
may not hold for λ > 1, λ > 1/α, and λ > 1, respectively.

However, as shown in [9,10], these mean-risk objectives are guaranteed to be
consistent with standard stochastic ordering rules only if λ ∈ (0, 1), λ ∈ (0, 1/a)
and λ ∈ (0, 1), respectively.

4. Solving mean-risk stochastic programs

In this section, we discuss methods for solving stochastic programs with convex-
ity preserving mean-risk objectives. We provide specific details for a particular
class of mean-risk stochastic programs, those that involve the semideviation risk
measure δp with p = 1, i.e.,

δ1[Y ] = E[(Y − EY )+]

which is referred to as the absolute semideviation (ASD).

4.1. Deterministic equivalent formulation

Consider the stochastic program (1) where f(x, ω) is given as the value function
of a second-stage optimization problem

f(x, ω) = min{F0(x, y, ω) : Fi(x, y, ω) ≤ 0 i = 1, . . . ,m, y ∈ Y }.
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For example, the two-stage stochastic linear programming objective function
(2)-(3) is a special case. If the mean-risk objective is non-decreasing, then the
corresponding mean-risk stochastic program (11) can be written as:

min
x,y(ω)

g
λ,D

[F0(x, y(ω), ω)]

s.t. x ∈ X
Fi(x, y(ω), ω) ≤ 0 i = 1, . . . ,m
y(ω) ∈ Y

}
∀ ω ∈ Ω.

(12)

When Ω is finite, problem (12) is a large-scale deterministic optimization prob-
lem which may be solved by standard methods.

In particular, consider the mean-ASD objective function g
λ,δ1

. It can be ver-
ified that

g
λ,δ1

[Y ] = (1 − λ)µ[Y ] + λν[Y ], (13)

where µ[Y ] = E[Y ] and ν[Y ] = E[max{Y, EY }]. The deterministic equivalent
(12) of the mean-ASD stochastic program is then (cf. [15]):

min
x,y(ω),ν(ω)

(1 − λ)
∫

F0(x, y(ω), ω)dP (ω) + λ
∫

ν(ω)dP (ω)

s.t. x ∈ X
Fi(x, y(ω), ω) ≤ 0 i = 1, . . . ,m
ν(ω) ≥ F0(x, y(ω), ω)
ν(ω) ≥

∫
F0(x, y(ξ), ξ)dP (ξ)

y(ω) ∈ Y





∀ ω ∈ Ω.

(14)

In case of two-stage stochastic linear programs, the functions Fi for i = 0, . . . ,m
are linear and the sets X and Y are polyhedral. Then, in case of a finite set Ω of
scenarios, the mean-ASD problem (14) is a large-scale linear program. Unfortu-
nately, this linear program does not posses the dual-block angular structure that
is natural in the deterministic equivalents of standard two-stage stochastic linear
programs [15]. Consequently, decomposition methods (such as the Benders or L-
shaped algorithm) (cf. Chapter 3 of [13]) used for solving standard two-stage
stochastic linear programs cannot be directly applied. In the next section, we
show that problem decomposition can be achieved by using slight variations of
these methods.

4.2. Cutting plane methods

When f(·, ω) is convex for all ω ∈ Ω and the mean-risk function g
λ,D

[·] is
convexity-preserving, the mean-risk stochastic program (11) involves minimizing
a convex (often non-smooth) objective function φ(x) = g

λ,D
[f(x, ω)]. Effective

solution schemes for such problems are subgradient-based methods, such as var-
ious cutting plane algorithms, bundle methods, or level methods [3,4]. Given a
candidate solution x ∈ R

n, these methods require the calculation of a subgra-
dient s of the composite function φ(·) = g

λ,D
[f(·, ω)] at x, i.e., s ∈ ∂φ(x). Such

a subgradient can be calculated as follows. Let Y (ω) = f(x, ω) and π(ω) ∈ R
n
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be a subgradient of f(·, ω) at x, i.e., π(ω) ∈ ∂f(x, ω), for all ω ∈ Ω. Note that
γ : X ∗

p 7→ R (here X ∗
p is the dual space of Xp, and in this case X ∗

p = Xp) is a
subgradient of g

λ,D
at Y ∈ Xp , i.e., γ ∈ ∂g

λ,D
[Y ] if

g
λ,D

[Y ′] ≥ g
λ,D

[Y ] + γ[Y ′ − Y ] ∀ Y ′ ∈ Xp, (15)

and such a subgradient always exists if g
λ,D

is real-valued, convex, and continu-
ous. Given a γ ∈ ∂g

λ,D
[Y ], it is easily verified that

s = (γ[π1], γ[π2], . . . , γ[πn])T ∈ ∂φ(x). (16)

In fact, it can be shown that ∂φ(x) is given by the convex hull of all such
s (cf. [14]). The above subgradient can now be used for the optimization of the
mean-risk stochastic program (11) using, for example, a generic cutting plane
algorithm, such as Algorithm 1, or some variant of it.

Algorithm 1 A cutting plane algorithm for the mean-risk stochastic program
(11).
1: let ε ≥ 0 be a pre-specified tolerance; set i = 1, LB = −∞ and UB = +∞.

2: while UB−LB
LB

≥ ε do
3: solve the following master problem

LB = min
x,θ

{θ : x ∈ X, θ ≥ φ(xj) + (sj)T (x − xj) j = 1, . . . , i − 1};

and let xi be its optimal solution (or any feasible solution if an optimal does not exist).
4: for ω ∈ Ω do
5: compute Y i(ω) = f(xi, ω) and πi(ω) ∈ ∂f(xi, ω).
6: end for
7: compute φ(xi) = g

λ,D
[Y i] and si = (γi[πi

1], . . . , γi[πi
n])T , where γi ∈ ∂g

λ,D
[Y i].

8: set UB = min{UB, φ(xi)}.
9: end while

In case of the Mean-ASD objective, a subgradient γ ∈ ∂g
λ,δ1

[Ŷ ] can be
calculated as follows.

Proposition 8. Given Ŷ ∈ X1 with probability distribution P , the function

γ[Y ] = EY + λ

∫

Ŷ ≥EŶ

(Y − EY )dP

is a subgradient of g
λ,δ1

[Y ] at Ŷ .

Proof. Note that

δ1[Y ] = E[(Y − EY )+] =

∫

Y ≥EY

(Y − EY )dP.

Let Ω̂+ = {ω ∈ Ω : Ŷ ≥ EŶ } and Ω+ = {ω ∈ Ω : Y ≥ EY }. Then

∫
Ω̂+

(Y − EY )dP =

∫

Ω̂+\(Ω+∩Ω̂+)

(Y − EY )dP

︸ ︷︷ ︸
≤0

+

∫

Ω+∩Ω̂+

(Y − EY )dP

︸ ︷︷ ︸
≤
∫

Ω+
(Y −EY )dP

≤
∫

Ω+
(Y − EY )dP.
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Thus
g

λ,δ1
[Ŷ ] + γ[Y − Ŷ ] = EY + λ

∫
Ŷ ≥EŶ

(Y − EY )dP

≤ EY + λ
∫

Y ≥EY
(Y − EY )dP

= g
λ,δ1

[Y ],

and the result follows from the definition (15) of a subgradient. ut

From the above result and (16), a subgradient s ∈ ∂φ(x), where φ(x) = g
λ,δ1

[f(x, ω)],
is given by

s = E[π] + λ

∫

f(x,ω)≥E[f(x,ω)]

(π(ω) − E[π])dP,

where π(ω) ∈ ∂f(x, ω) for all ω ∈ Ω.
In case of two-stage stochastic linear programs of the form (2)-(3), a sub-

gradient π(ω) ∈ ∂f(x, ω) is given by c + T T ϑ(ω) where ϑ(ω) is a dual optimal
solution to the second-stage linear program (3) for given x and realization ω.
When Ω is finite, the second-stage subproblems corresponding to a given x can
be solved independently for each realization ω ∈ Ω allowing for a computa-
tionally convenient decomposition. The optimal objective values and the dual
solutions for the subproblems can then be used compute the function value and
its subgradient (see Algorithm 1 for details). This scheme is a slight variation of
the well-known L-shaped (or Benders) decomposition method for solving stan-
dard two-stage stochastic linear programs involving an expected value objective.
If the mean-risk function is polyhedral (as in case of the Mean-ASD objective),
then Algorithm 1 is guaranteed to terminate in a finite number of iterations with
an ε-optimal solution for any ε ≥ 0.

4.3. A parametric cutting plane algorithm for mean-ASD stochastic linear
programs

Often, it is necessary to solve the mean-risk stochastic program (11) for many
different values of the mean-risk tradeoff parameter λ so as to trace out the
mean-risk efficient frontier. This can, of course, be accomplished by repeatedly
solving the problem for different values of λ. However, a more efficient parametric
optimization scheme is possible. Note that in Algorithm 1, the tradeoff parameter
λ is embedded within the cut coefficients, and as such, this algorithm is not
suitable for an efficient parametric analysis of the mean-risk model with respect
to λ. Fortunately, in case of mean-ASD, this issue can be resolved. Recall from
(13), that the mean-ASD stochastic program is

min{g
λ,δ1

[f(x, ω)] = (1 − λ)µ[f(x, ω)] + λν[f(x, ω)] : x ∈ X}, (17)

where µ[Y ] = EY and ν[Y ] = E[max{Y, EY }]. Note that both µ and ν are
convex non-decreasing functions, and so the composite functions µ[f(x, ω)] and
ν[f(x, ω)] are convex in x that can be approximated by supporting hyperplanes
(cuts) within a cutting plane scheme. A subgradient for ν is given as follows.
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Proposition 9. Given Ŷ ∈ X1 with probability distribution P , the function

v[Y ] =

∫

ω:Ŷ (ω)>EŶ

Y dP + EY

∫

ω:Ŷ (ω)≤EŶ

dP

is a subgradient of ν[Y ] = E[max{Y, EY }].

Proof. Let Ω̂+ = {ω ∈ Ω : Ŷ ≥ EŶ }, Ω+ = {ω ∈ Ω : Y ≥ EY }, Ω̂c
+ = Ω \ Ω̂+

and Ωc
+ = Ω \ Ω+. Note that, for any Y ∈ X1,

ν[Ŷ ] − v[Y − Ŷ ]
= v[Y ]
=
∫

Ω̂+
Y dP +

∫
Ω̂c

+

EY dP

=
∫

Ω̂+∩Ω+
Y dP +

∫

Ω̂+∩Ωc
+

Y dP

︸ ︷︷ ︸
≤
∫

Ω̂+∩Ωc
+

EY dP

+

∫

Ω̂c
+
∩Ω+

EY dP

︸ ︷︷ ︸
≤
∫

Ω̂c
+

∩Ω+
Y dP

+
∫

Ω̂c
+
∩Ωc

+

EY dP

≤
∫

Ω+
Y dP +

∫
Ωc

+

EY dP

= ν[Y ],

and the result follows from the definition (15) of a subgradient. ut

If we use a cutting plane scheme for (17) where separate cuts are used to ap-
proximate the functions µ and ν, then the cut coefficients are independent of
the tradeoff weight λ which only appears in the objective function of the master
problem. Thus the cuts are valid for any λ ∈ [0, 1]. If X is polyhedral, then the
master problem is a linear program for which a parametric analysis with respect
to the objective coefficient λ can be easily carried out to detect the range of λ
for which the current master problem basis remains optimal. We can then chose
a λ outside this range and reoptimize. In this way we can construct the efficient
frontier for the entire range of λ ∈ [0, 1]. This parametric modification of the
cutting plane Algorithm 1 is summarized in Algorithm 2.

We implemented an enhanced version of Alogrithm 2 and applied it to gener-
ate the mean-ASD frontier for five standard stochastic linear programming test
problems. Our implementation extends the basic scheme of Algorithm 2 with
an `∞–trust-region based regularization as described in [6]. We used the GNU
Linear Programming Kit (GLPK) [7] library routines to solve linear program-
ming subproblems. All computations were carried out on a Linux workstation
with dual 2.4 GHz Intel Xeon processors and 2 GB RAM. The stochastic linear
programming test problems in our experiments are derived from those used in
[5]. We consider the problems LandS, gbd, 20term, storm and ssn. Data for
these instances are available from the website:

http://www.cs.wisc.edu/∼swright/stochastic/sampling

These problems involve extremely large number of scenarios (joint realizations
of the uncertain problem parameters). Consequently, we consider instances with
500, 100, 50, 50, and 25 equi-probable sampled scenario for the problems LandS,
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Algorithm 2 A parametric cutting plane algorithm for the mean-ASD stochas-
tic program (17) (the set X is polyhedral).
1: let ε ≥ 0 be a pre-specified tolerance; set λ = 0, i = 1, LB = −∞ and UB = +∞.

2: while UB−LB
LB

≥ ε do
3: solve the following master linear program

LB = min
x,θ,η

{(1 − λ)θ + λη : x ∈ X, θ ≥ µ(xj) + (uj)T (x − xj) j = 1, . . . , i − 1,

η ≥ ν(xj) + (vj)T (x − xj) j = 1, . . . , i − 1};

and let xi be its optimal solution (or any feasible solution if an optimal does not exist).
4: for ω ∈ Ω do
5: compute Y i(ω) = f(xi, ω) and πi(ω) ∈ ∂f(xi, ω).
6: end for
7: compute µ(xi) = E[Y i] and ui = E[πi].
8: compute ν(xi) = E[max{Y i, µ(xi)}]

and vi =
∫

ω:Y i(ω)>µ(xi) πi(ω)dP (ω) +
∫

w:Y i(ω)≤µ(xi) uidP (ω) (cf. Proposition 9).

9: set UB = min{UB, (1 − λ)µ(xi) + λν(xi)}.
10: end while
11: use parametric analysis on the master problem to find the range [λ, λ∗] for which the

current master problem basis remain optimal.
12: if λ∗ < 1, set λ = min{1, λ∗ + ε} (where ε > 0 is very small), LB = −∞ and UB = +∞

and return to step 2.

gbd, 20term, storm and ssn, respectively. Figures 1-5 shows the mean-ASD effi-
cient frontier obtained by the parametric cutting plane algorithm (Algorithm 2)
for the five problems. In each case, the parametric strategy was significantly
more efficient than resolving the problem for scratch for different values of λ.
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Fig. 1. Mean-ASD frontier for the LandS problem
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Fig. 2. Mean-ASD frontier for the gbd problem
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Fig. 3. Mean-ASD frontier for the 20term problem
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Fig. 4. Mean-ASD frontier for the storm problem
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