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Abstract

Convex optimization provides a natural framework for pricing and hedging financial instruments in
incomplete market models. Duality theory of convex optimization has been shown to yield elementary
proofs of well-known martingale-expressions for prices of European contingent claims. This paper extends
the analysis to American contingent claims in incomplete markets. The pricing problems of the seller
and the buyer of an American contingent claim are first expressed as convex optimization problems,
after which martingale-expressions for the buyer’s and seller’s prices are obtained by inspecting the dual
optimization problems. Besides its simplicity, one of the main advantages of the present approach is that
it is computational. Indeed, many algorithms are available for pricing problems as soon as they are set up
as convex optimization problems. Also, portfolio constraints and transaction costs can be immediately
incorporated to the definitions of the buyer’s and seller’s prices and into computational approaches based
on optimization.

1 Introduction

An American contingent claim (ACC) associated with a real-valued stochastic process X = (X3)5&_,
is a security whose owner can at any stage £k = 0,...,K choose to take X} euros, after which the
security becomes worthless. ACCs cover a wide variety of financial options: an American call option on
a security S with strike K corresponds to X = S — K. American put is obtained by reversing the sign
of X. Bermudan call option is obtained from the corresponding American call by setting X = 0 for k
in a predetermined subset of {0,..., K}. Bermudan put is obtained similarly from the American put.
European call option with maturity &’ is a Bermudan option where X = 0 for k # k’'. European put is
obtained by reversing the sign of X. Defining X} = max;—o,...,x(S; — K) leads similarly to Russian and
look-back options etc. One could also define X as a given function of multiple underlyings.

In arbitrage pricing of financial options, one tries to find a price so that neither buying nor selling
the option at this price leads to arbitrage, i.e. a possibility to start a self-financing trading strategy with
zero initial investment and nonnegative terminal wealth that is positive with a positive probability. Here,
self-financing means that the only cash going into the investment portfolio during the trading horizon
is that coming from buying (selling) the option and receiving (paying out) the cash-flows the option
gives rights to. Arbitrage pricing of ACCs was initiated by Bensoussan [1] and Karatzas [5] for complete
market models in continuous time; see the survey of Myeni [9]. Arbitrage pricing of ACCs under portfolio
constraints have been studied by Karatzas and Kou [6] and by Buckdahn and Hu [2] who also considered
jump diffusion models for stock prices. To our knowledge, only Follmer and Schied [4, Chapters 6 and
7] have studied arbitrage pricing of ACCs in general incomplete market models in discrete time.



In this paper, we use techniques of convex optimization in arbitrage pricing of ACCs in incomplete
discrete time models. This yields elementary proofs of many of the sophisticated results in [4]. F6llmer
and Schied [4, Definition 6.31] defined a certain interval of prices (which they called “arbitrage-free
prices”) in terms of martingale measures and stopping times after which they showed, using upper Snell
envelopes and a uniform Doob decomposition, that these prices actually correspond to prices that do
not lead to arbitrage opportunities by buying or selling the ACC. We proceed in the opposite, more
natural order: we define arbitrage-free prices directly in terms of arbitrage opportunities, and then we
use convex duality to characterize these prices in terms of martingale measures and stopping times.
Besides the simplicity, our approach has certain advantages compared to the approach of [4]. First,
we need not assume positivity of the process X. Second, our definition of arbitrage-free prices can be
immediately adapted to more realistic market models where there may be transaction costs, portfolio
constraints or other market imperfections. Third, formulating the lower and upper bounds as optimal
values of convex optimization problems, allows for the use of efficient computational approaches developed
for such problems. This paper can be seen as a continuation of King [7], where European contingent
claims were covered and of King, Koivu and Pennanen [8], where the framework of [7] was extended by
incorporating market traded ECCs as hedging instruments.

The rest of this paper is organized as follows. Section 2 describes the market model and characterizes
the arbitrage-free prices of European contingent claims. In Section 3, we first express the lower end-point
of the interval of arbitrage-free prices of an ACC as an optimal value of a convex optimization problem.
We then use convex duality to express it also in terms of martingale measures and stopping times. In
Section 4, we do the same for the upper end-point. In Section 5, we characterize the set of arbitrage free
prices for ACCs.

2 Preliminaries

The market consists of J + 1 tradable securities that are traded in a finite number of decision stages k =
0,..., K. The price of security j at stage k will be denoted by Si. The price process S = (S, ..., S )i—o
will be modeled as a random variable in a probability space (2, F, P), and it is assumed that investors
have no influence on the prices. The information available to investors at each stage k = 0,..., K will
be modeled by a sequence Fy C --- C Fk of subfields of . By this it is meant that, at stage k, the
investors do not know which element £ € E will be realized, but only in which element of F;, it belongs
to. In particular, the price process S is adapted to (Fr)r_o, which means that, for each k =0,..., K, Sk
only depends on which element of 7}, has been realized at stage k. It is helpful to think of the samples
& as scenarios £ = (o,...,Ex) of random data where the value of £ is observed just before trading at
stage k. The process £ could be taken to contain any information that is regarded relevant for a given
decision problem. We assume that &g is known to the investors, so that Fo is the trivial o-field.

Throughout this paper, we assume that the sample space Z is finite. This considerably simplifies the
analysis and it allows a natural description of the market model in terms of a scenario tree: atoms of Fy,
denoted by N, are the nodes of the scenario tree at stage k. The set Ny consists of a single node, the
root of the tree, which will be labeled 0. The collection of all nodes will be denoted by N = [Jr_ Ni.
Since (Fr)i, is a filtration, we have that for k = 1,..., K, each n € N} is contained in a unique element
a(n) € Ng—1. This is where the tree-structure comes from. For k¥ = 0,..., K — 1, we denote the set of
child nodes of a node n € Ny by C(n) = {m € Ni41 | a(m) = n}. The value of the price vector Sy in a
node n € N; will be denoted by S,. Note that we do not assume that the tree of prices is recombining.
This is essential in incomplete markets where trading strategies are in general path dependent; see the
discussion in [3, Section IITA].

The probability measure P attaches a weight p, > 0 to each n € Nk so that Y one Ny Pn =1 The
probability of each n € N\ Nk is determined recursively by p, = > mec(n)Pm- The expected value



under P of S} is given by the finite sum
EYS, = Z PrSn.

neNy
A probability measure Q = {gn }nenk is called a martingale measure for a process Y if
E°Yiu1 | Fi] =Y Q-as. k=0,...,K—1
In our setting, this can be written as

dn
meC(n)

A measure ( is said to be equivalent to P if g, > 0 exactly when p,, > 0.

A trading strategy is an R’ ™' -valued (Fy)ir_,-adapted process 8 = (62,...,8])%_,, where the value
of Gi is interpreted as the number of units of security j held during period (k,k + 1]. The value of a
portfolio 8, = (62, ...,60{) at stage k is simply the scalar product

J
Sk -6 =Y _ S161.
i=0
An arbitrage opportunity is the possibility to find a self-financing trading strategy which starts from
zero initial wealth and produces terminal wealth which is almost surely nonnegative and positive with
a nonzero probability. In mathematical terms, this means that there exists a trading strategy 6 that
satisfies

So - 60 =0,
Sk (0r —0k—1)=0 P-as. k=1,...,K,
Sk -0k >0 P-as.,
E"Sk -6k > 0.

We will assume throughout that the price of one of the securities, say S°, is always strictly positive,
so that we can define the discount process Bx = SO/So. Then, by the fundamental theorem of asset
pricing, (FTAP) the absence of arbitrage is equivalent to the existence of a martingale measure @ for the
discounted price process B Sk, such that @Q is equivalent to P; see [7] for a simple proof in the present
market model.

A European contingent claim (ECC) is a security that gives its owner a stochastic (F)i_o-adapted
cash-flow F = (F)F_,. The ECC is called a derivative of S if Fy is a function of Sp,...,Sk. This
definition extends [4, Definition 5.19], where a ECC has nonnegative payouts that are nonzero only at
stage K. In addition to the examples in [4] (which include put and call versions of European, Asian,
barrier and look-back options) our definition covers futures contracts and fixed income instruments
like government bonds. Note that both definitions cover derivatives of multiple underlyings and of
nontradable instruments.

A number V is said to be an arbitrage-free price of F' if buying or selling F' at this price does not
lead to arbitrage opportunities. Any number below the optimum value of the optimization problem

mazximize 14
subject to So-00=Fo—7V,
Sk-(ek—ek_1)=Fk, P-as. k=1,...,K, (B)
Sk -0k >0, P-as.

0 is (Fi)-adapted



is clearly not an arbitrage-free price of F. On the other hand, buying the option for a price which is above
the optimum value does not lead to arbitrage opportunity. Similarly, any number above the optimum
value of

min‘%mize |4
subject to So - 6o =V — Fy,
Sk - (6 — Ox_1) = —Fx, Pas. k=1,... K, (S)
Sk -0k >0, P-a.s.

0 is (Fx)-adapted

is not an arbitrage-free price of F', while selling the option for a price which is below the optimum value
does not lead to an arbitrage opportunity. The set of arbitrage-free prices of F' (if any) is thus an interval
whose end points are the optimum values of (B) and (S). These optimum values will be called buyer’s
and seller’s prices, respectively, of F'.

The following shows, in particular, that in an arbitrage-free market, the buyer’s price is less than or
equal to the seller’s price. A simple proof based on LP-duality can be found in King [7, Section 3].

Theorem 1 In an arbitrage-free market, the buyer’s and seller’s prices can be expressed as

K K
inf E@ F, and sup E° F;

respectively, where M denotes the set of martingale measures for the discounted price process BS.

By the FTAP, the set M is nonempty whenever the market is arbitrage-free. In fact, in an arbitrage-
free market, the set of equivalent martingale measures is exactly the relative interior ri M of M; see [10,
Theorem 6.5].

It is not a priori clear whether the buyer’s and seller’s prices themselves are arbitrage-free prices or
not. Indeed, it may happen, for example, that buying the option at buyer’s price and following the
buyer’s trading strategy leads to a strictly positive terminal wealth with a positive probability. The
following clarifies the situation. We will say that a ECC is replicable if there exists a trading strategy 6
which together with some V satisfies the constraints of (S) and Sk - §x = 0 holds P-almost surely.
Theorem 2 In an arbitrage free market, the following are equivalent.

1. F 1s replicable;

2. the buyer’s and seller’s prices of F' are equal;
8. the buyer’s price is arbitrage-free;

4. the seller’s price is arbitrage-free.

Proof. Assume first that F is replicable and let 6 be the associated trading strategy. If § is any optimal
solution to (S), then the strategy 6 := 6 — 8 satisfies

So 00 <0,
Sk (0r —0k—1)=0 P-as. k=1,...,K,
Sk -0k >0 P-as..
Since there is no arbitrage, it must hold that So - 6o = So - Go. Similarly, if 8 is optimal for the buyer,

then the strategy 6 := 6 + 8 satisfies the above system and we must have that So - 6o = So - fp. Thus, 2
holds.



If 2 holds, then one can implement both the buyer’s and seller’s strategies with zero initial investment.
Because both these strategies guarantee nonnegative terminal wealth and since the market is arbitrage-
free, both strategies must end up with zero terminal wealth P-almost surely. So 3 and 4 hold.

If 4 holds, every solution of (S) must end up with zero terminal wealth P-almost surely. This means
that every solution of (S) replicates F', so 1 holds. If 3 holds, the same argument applies to the negative
of the buyer’s strategy. O

The market model will be said to be complete if every ECC is replicable. The above theorems imply
that, in an arbitrage-free market, completeness is equivalent to M being a singleton, in which case

riM =M.
3 Buyer’s price
Throughout, we will assume that X = (X3)X ; is a real-valued (Fy)E_,-adapted stochastic process. We

will characterize the lower end-point of the interval of arbitrage-free prices of the ACC associated with
X through the optimization problem

mazximize 14
V,0,e
subject to So - 6o = Xoeo -V,
Sk-(6k—9k_1):Xkek P-a.s. k‘Zl,...,K,
Sk -0k >0 P-a.s.,
KO = (BP)
K
Zek <1 P-as.,
k=0

er € {0,1} P-as. k=0,...,K,
8, e are (Fi)-adapted,

where e, denotes the amount of the ACC exercised at stage k. The constraints on e mean that the option
is exercised in at most one stage. It is clear that any number below the optimum value of (BP) is not an
arbitrage-free price of X. On the other hand, buying the ACC for a price which is above the optimum
value does not lead to arbitrage opportunity. The optimum value will be called the buyer’s price of X.
Instead of the variables e above, it is more common to describe exercise strategies for an ACC through
stopping times which are functions 7 : & — {0,...,K} U {400} such that {{ € 2 | 7(§) = k} € Fu,

for each £ = 0,..., K. The relation e, =1 <= 7 = k defines a one-to-one correspondence between
stopping times and processes e = (eo, ...,ex) € E, where
K
. K
E = {e| e is (Fr)r=o-adapted, Zek <1 and e € {0,1} P-as.}.
k=0

The advantage of the above formulation is that (BP) is not far from being a convex optimization problem.
Indeed, if we replace the second last constraint by e > 0, the problem becomes convex. We will refer
to this relaxed problem as (BPR). Problem (BPR) can be interpreted as a pricing problem for a batch
of ACCs when one can exercise only some of the claims and keep the rest for a possible later exercise.
This corresponds to the standard of treating positions in the underlying assets as continuous rather
than discrete variables. The following result shows that relaxing the integrality requirement is not really
interesting to the holder of the option, in the sense that, if one owns more than one option, the possibility
of exercising them at different stages is not worth a positive initial endowment.

Theorem 3 The set of solutions to (BPR) always contains a solution with ex(§) € {0,1} P-a.s. for all
k=0,...,K. In particular, the optimum value of (BPR) equals that of (BP).



Proof. Problem (BPR) can be written in the tree-notation as

mazimize 14
V,0,e
subject to So - 6o = Xoeo -V,
Sn (O — Oo(n)) = Xnen neMNg, k=1,...,K,
Z em <1 n € Nk,
meA(n)

en >0 nenN,

where A(n) denotes the path history of a node n € A including n itself. Defining the set of descendant
nodes of a node n € N by D(n) = {m € N' | n € A(m)}, the Lagrangian can be written as

K
l(0,e,£,y, Z) =V - yO[SO : 60 — Xoeo + V] - Z Z yn[Sn : (en - ea(n)) - Xnen]

k=1neNy
+ z TnSn - 0 — Z zn| Z em —1]
neNkg neNy meA(n)
K-1
neENg k=0 neN} mec(n)
neN meD(N)NNK neNy

Since at least one of the assets is always nonnegative, it follows that the supremum of ! with respect to
0, equals +oco unless z,, = y,. We thus get the dual problem

mznyz,rzmze Z Zn
neNg
subject to Yo =1,
Z ymSm:ynSn neNk, k':O,...,K—l,
meC(n)
YnXn — Z z2m <0 TLEN, (2)
meD(n) NNk

Now, if at an optimal solution, e,,; > 0 in a node n' € N, complementary slackness implies that constraint
(2) must hold as an equality for n’. It follows that we can remove constraint (2) for n € D(n')\n’ without
affecting the optimum value, and then, by complementary slackness again, (BPR) must have a solution
with e, = 0 for all n € D(n’) \ n’. It is also clear that we can set e, = 1 (if not already so) without
reducing the objective value. Thus, (BPR) has an optimal solution with e € {0,1}V. O

The main implication of the above result is that we can express the buyer’s price of X as the optimum
value of a conver minimization problem, in fact, a linear program. Besides the wide range of computa-
tional possibilities opened up by this, one can now use convex duality to get expressions for the buyer’s
price in terms of martingale measures, stopping times. The set of stopping times will be denoted by 7.
We also define the set

K
E = {e| e is (Fi)r—o-adapted, Zek <1lande >0 P-as.}.
k=0



Theorem 4 In an arbitrage-free market, the buyer’s price of X can be expressed as

: Q _ : Q
max min F X; = min max F X
€T QeM Br X QEM TET B

Proof. Keeping e fixed in (BP) and minimizing with respect to 6, gives the buyer’s price of a ECC with
payoff (Xier)r_,. According to Theorem 1, this equals

m1n E° Z,Bkaek,

so the buyer’s price can be written as

K
in B¢ Xrex.
max min kzzoﬂk ke (3)

The correspondence between stopping times and the processes e € E gives now the first expression. By
Theorem 3, we can replace E by E without changing the value of (3), and then, since E and M are
bounded convex sets, [10, Corollary 37.6.1] guarantees that the order of max and min can be reversed
without affecting the value in (3). But then, for each fixed @ € M, the objective is linear in e, so the
max over ¢ € E is achieved at an extreme point of E. It is not hard to verify that e is integer at these
points, which yields the second expression. O

4 Seller’s price

Consider the optimization problem

min&"?zzize 14
subject to So-00 =V,
Sk (6 —Or—1) =0 P-as., k=1,...,K, (SP)
Sk -0k >0 P-as.,
Sk - 0 > Xi P-as., k=0,...,K,

0 is (Fi)-adapted.

The solution of (SP) can be used to hedge against all possible exercise strategies the holder of the option
might choose (not just the rational ones). Indeed, if the seller receives an initial wealth V and then
follows the optimal 6 until the exercise occurs at some stage k, she can draw the amount X;, from her
portfolio and still be left with a nonnegative wealth that allows her to guarantee nonnegative terminal
wealth (by investing everything in S°, for example). Thus, if X could be sold for more than the optimal
value of (SP) there would be arbitrage. On the other hand, selling X for a price less than the optimum
value does not lead to arbitrage opportunities. The optimum value of (SP) will be called the seller’s
price of X.

Problem (SP) is a linear program, so it is amenable to numerical solution by standard solvers. More-
over, convex duality yields the following expression for the seller’s price.

Theorem 5 In an arbitrage-free market, the seller’s price of the ACC can be expressed as

max max E® B X, = max ma.xEQﬂT
T€T QEM QEM T€T



Proof. In the tree-notation, (SP) reads

mim’?;zize 14
subject to So-60 =1V,
Sn(an_ea(n))zo neNk,kZI,,K, (4)

Sn -6, >0 neN,
Sp0,>X, ne€N, k=0,...,K,

for which the Lagrangian can be written as

K
l(e)e)gyy: Z) =V+ yO[SO . 00 - V] + Z Z ynSn . (971 - ea(n))

k=1n€eNy
K
nENg k=0 ‘I’LE./\/‘k
K-1
=[1—-yV+ Z Z [(yn — 2n)Sn — Z YmSm] - On
k=0 neN} meC(n)
K
neNy k=0 n€eNy
so we get the dual
K
mazximize Z z ZnXn
v# k=0 neN}
subject to 1o =1,
Z ymsm:(yn_zn)sn neNk,kZO,...,K—l,
meC(n)
Yn — Zn Z 0 n e NK,

z > 0.

By the FTAP, there exists a strictly positive vector g such that ngC(n) qmSm = qnSrn. This can be
used to construct a feasible dual solution which satisfies the inequality constraints as strict inequalities,
and then by [10, Theorem 6.5], the relative interior of the feasible set is obtained simply by replacing
the inequalities by strict inequalities. The positivity of So and the second constraint then imply that
Yn — 2n, > 0 for all n € N for every y and z in the relative interior. It follows that the seller’s price equals
the optimum value of

K
maa;ignize Z Z 2 Xn
k=0neNy
subject to Yo =1,
> S, =8. neN, k=0,... K1,
Yn — Zn

mec(n)
y>z>0.



The second constraint means that there exists a @ € ri M such that

Ym _ 9m Bm Ym Yn Zn

Making the change of variables

Yn Zn
= and e, = ——,
fn Gnfn "7 gnBn
we can express the seller’s price as
K
mazimize Z Z GnBrnenXn
fre.Q k=0 n€EN}
subject to fo=1,
fﬂzfa(n)_ea(n) nENkakzlv---7K7
f>e>0,
Q €EriM.

The constraints on f and e just mean that e > 0 and EmeA(n) en < 1 for all n € Ng. Thus, we can
write the seller’s price as

K K

sup sup EQZ,Bkaek = sup supEQZ/J’kaek.
ccBQEM =5 QeMeci 1o

Since the objective is linear in e, the optimum value is attained in at an extreme point of F at which e
is integer. This yields the desired expressions. O

5 The arbitrage-free interval

Theorems 4 and 5 imply that, in an arbitrage-free market, buyer’s price is at most the seller’s price, and
in a complete market, the prices are equal. We also know that any value outside the interval given by the
two prices leads to arbitrage while any value strictly inside does not. Whether the buyer’s and seller’s
prices themselves are arbitrage-free is still an open question. Like in the case of ECCs, this is related
to “replicability” of the claim. We will say that X is replicable if there exists a trading strategy 6 and
a stopping time 7 such that 6 together with some V satisfies the constraints of (SP) and S; -8, = X,
holds P-almost surely.
Theorem 6 In an arbitrage free market, the following are equivalent.
1. X is replicable;
2. the buyer’s and seller’s prices of X are equal;
3. the buyer’s and seller’s prices are both arbitrage-free;
4. the seller’s price is arbitrage-free.
Proof. Assume first that X is replicable and let 6 and 7 be the associated trading strategy and stopping
time. If § is any optimal solution to (SP), then the strategy 0 := 6 — 6 satisfies
So 600 <0,
Sk 0k —Ok—1) =0 P-as. k=1,...,K,
S—T— . 97-— Z 0 P-a.s..



Since there is no arbitrage, it must hold that So - 6o = So - fo. As for the buyer, let e be the exercise
strategy corresponding to 7, and define the trading strategy 6 by 6, = —6,ift<7and§, =0ift>r.
This gives a feasible solution to (BP) with objective value Sy - 6y. Thus, the buyer’s and seller’s prices
must be equal.

If the buyer’s and seller’s prices are equal, then one can implement both the buyer’s and seller’s
strategies with zero initial investment. Because both these strategies guarantee nonnegative terminal
wealth and since the market is arbitrage-free, both strategies must end up with zero terminal wealth
P-almost surely. So the buyer’s and seller’s prices are both arbitrage free.

If the seller’s price is arbitrage-free, there must exist, for every seller’s trading strategy 6, a stopping
time 7 so that Sr - 8 = X, holds P-almost surely, since otherwise, there would be arbitrage. Thus, X
is replicable. O

By the equivalence of 2 and 4, the seller’s price is not arbitrage-free when buyer’s and seller’s prices
are not equal. The following example shows that the same cannot be said about the buyer’s price.

Example 7 Consider the one-period model (K = 1) where N1 = {1,2}, S, = 1 for every n € N and
Xo =c¢, X1 =0, Xo = 1. The buyer’s and seller’s problems are then easily solved by inspection. The
buyer’s price equals max{c,0} whereas the seller’s price is max{c, 1}.

For ¢ > 1, the buyer’s and seller’s prices are both arbitrage free by Theorem 6.

For ¢ € (0,1), buyer has the unique optimal strategy e = 1, e1 =0, e2 = 0 and 6y = —c, 61 = 0,
0o = 0. Here the terminal wealth is P-a.s. zero, so the buyer’s price is arbitrage-free.

For ¢ <0, the buyer has e.g. the following optimal strategy eo =0, e1 =0, e2 =1 and 8o =0, 61 =0,
0o = 1. Here the terminal wealth is not P-a.s. zero, so the buyer’s price is not arbitrage-free.

6 More realistic market models

In real markets, there hardly exist any securities that can be traded in unbounded amounts or without
transaction costs. Having defined the arbitrage interval in terms of real world concepts, instead of such
imaginary concepts as martingale measures, immediately suggests how to adapt the definition to more
complicated situations. As an example, consider a situation where portfolios of the traders are required
to lie in a set C C R+, Short selling restrictions etc. can be expressed in the form of such restrictions;
see e.g. [6]. In such a situation, the buyer’s and sellers prices are naturally defined as optimum values of

ma‘a/:,%'r,rezize \%4
subject to So - 0o = Xoeo — V,
Sk (Or — Ok—1) = Xrex P-as. k=1,... K,
Sk -0k >0 P-as.,
0, € C P-as. k=0,...,K, (BP¢)
K
Zek <1 P-as.,
k=0
er € {0,1} P-as. k=0,...,K,

8, e are (Fi)-adapted,
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and

mim',%nize 14
subject to So 60 =V,
Sk (0r —0k—1) =0 P-as., k=1,... K,
Sk 0k >0 P-as., (SPo)
0, €C P-as. k=0,...,K,
Sk - O > Xp P-as., k=0,...,K,

0 is (Fr)-adapted,

respectively. Adding constraints to an optimization problem makes the optimum value worse if anything,
so portfolio constraints typically lower the buyer’s price and increase the seller’s price, thus making the
arbitrage-free interval wider.

One could also add transaction constraints of the form 6y — 6x—1 € D. Through introduction of
purchase and sales variables, it is also easy to model transaction costs; see e.g. [3]. In these more
complex models, it is no longer possible, in general, to write the buyer’s and seller’s prices in terms
of martingale measures and stopping times. From practical point of view, however, this doesn’t really
matter since the martingale expressions are not very useful for computation of the actual values of the
buyer’s and seller’s prices. Indeed, it is more natural to base computational procedures on the original,
primal, formulations of the buyer’s and seller’s prices; see [3] for the case of ECCs.
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