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Abstract

We propose extensions of traditional expectation-based stochastic integer programs to mean-risk
models. Risk is measured by expected deviations of suitable random variables from their means or
from preselected targets. We derive structural properties of the resulting stochastic programs and
present first algorithmic ideas to achieve problem decomposition.
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1 Introduction

This paper deals with mean-risk extensions of the following two-stage mixed-integer linear stochastic
program:

min{Qr(z,p) : z€ X} 1)
where
Qo) i= [ (ot 8~ To) u(d) @)
and ’
®(t):=min{q' y+¢"y : Wy+ W'y =t,ye ZT7, y € RT }. (3)

All ingredients above are assumed to have conformable dimensions. Moreover, W, W’ are rational ma-
trices, and X C IR™ is a nonempty polyhedron, possibly involving integer requirements to components
of z. The probability measure p belongs to P(IR®), the set of all Borel probability measures on IR®.
Dependence of Qr on both x and u is marked explicitly since, later on, @Qr and related objects will be
studied both as functions in = and jointly in (z, x). For the moment, let p € P(IR*®) be fixed.

The following assumptions ensure that the above model is well-defined in the sense that Qg(z,u) € R
for all z € IR™. For details see [22].

(Al)  (complete recourse) W (ZT)+ W'( RT') = Ir®,
(A2) (sufficiently expensive recourse) {u€ R* : W' u<gq, W ' u<q}+£0,
(A3) (finite first moment) [, [|z|lu(dz) < +ooc.

The model (1)-(3) arises from two-stage mixed-integer linear programs under uncertainty. Decision
variables fall into two categories. The first-stage decision x has to be taken in a here-and-now manner,
before knowing the outcome of the random data z = z(w). The second-stage decision (y,y’) is taken after
z has been fixed and z(w) has been observed. Assuming that (y,y’) is selected best possible, this two-stage
decision process leads to a random cost value that can be expressed as f(z, 2(w)) := ¢z + ®(2(w) — T'z).
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For further basic details of two-stage stochastic programming we refer to the books [5, 11, 18, 21].
The problem of finding a best here-and-now decision x in the above setting can be seen as finding a
best random variable in the family {f(z,2(w)) : z € X}. In (1) the traditional approach in two-stage
stochastic programming is reflected, namely, the random variables f(z, z) are ranked by their expectations
with respect to p. The present paper goes beyond this setting by ranking the above random variables
according to weighted sums of their means and suitable terms expressing risk. This leads to mean-risk
extensions

min{Qg(z, p) + o Qr(z,p) : v € X} (4)

of the model (1) with fixed weight factor o > 0 and risk term Qx.
We will study three versions of (4) which are given by the following specifications:

the central deviation, where
Qrlen) == Qo) = [ [f(@2) = Qo] ud) and 0<a<z  (9)
the semideviation, where
Qr(z,p) = Qp+(z,p) == /IRS max { f(z,z) — Qe(z,p1),0} p(dz) and 0<a <1, (6)
and the expected excess of a given target n € IR, where

Qr(z, 1) := Qpn(z, 1) := /Rs max { f(z,2z) — 1,0} p(dz) and o >0. (7)

We call the above quantities deviation measures since they are based on expected deviations of the random
variable from its mean or from some preselected target. Our emphasis on deviation measures determined
by piecewise linear operations (here, taking the absolute value or the maximum) is mainly motivated
algorithmically. We will see that, thanks to the piecewise linearity, problem (4) can be tackled successfully
by extensions of mixed-integer linear programming techniques provided the underlying measure y is
discrete.

Another motivation for considering the above deviation measures rests in the consistency with stochastic
dominance they induce. Stochastic dominance is an established notion of partial order for random
variables, see [9, 13, 15, 16, 17] where different aspects of stochastic dominance as such or in relation with
stochastic programming are covered. As an example let us consider second degree stochastic dominance.
When preferring small outcomes to big ones, as we do in view of our minimization setting, a (real-valued)
random variable X is said to dominate a random variable Y to second degree (X >, Y) if IER(X) < IEA(Y)
for all nondecreasing convex functions h for which both expectations exist. The mean-risk model (4)
is said to be consistent with (second degree) stochastic dominance if the ranking its objective incurs
on the random variables f(z,z) inherits a ranking possibly already existing with respect to (second
degree) stochastic dominance, more precisely, if f(z1,2) >2 f(z2, 2) implies Qg (z1, 1) + aQr(z1, 1) <
QE(z2,n) + aQr(z2, ). The catch is that the specifications (5)-(7), with « restricted to the given
intervals, all make (4) consistent with second degree stochastic dominance. For details see [9, 14, 16].
The purpose of this paper is to study mathematical structures of (4) with the specifications (5)-(7), and
to present some first algorithmic ideas for the stochastic integer programs arising.

2 Prerequisites

A key prerequisite for analyzing mathematical structures in the objectives of (4) is the following propo-
sition about the mixed-integer value function (3). The proposition collects results dating back to [3, 6].

Proposition 2.1 Assume that (A1), (A2) hold. Then
(i) ® is real-valued and lower semicontinuous on IR*;

(i) there exists a countable partition IR®* = U2, T; such that the restrictions of ® to T; are piecewise
linear and Lipschitz continuous with a uniform constant not depending on i;



(iii) each of the sets T; has a representation T; = {t;+K} \ UL {t;;+K} where K denotes the polyhedral
cone W’ (Rf) and t;,t;; are suitable points from IR®, moreover, N does not depend on i;

(iv) there exist positive constants 3,7 such that |®(t1) — ®(t2)| < B||t1 — t2|| + v whenever t1,ts € IR®.

Our investigations will be directed to continuity of the objectives of (4), both as functions in  and jointly
in (z, ). The latter is motivated by stability analysis of (4) under perturbations of p. In real-life cases,
the probability measure that underlies a stochastic program often is subjective. Moreover, computing the
multivariate integrals in (2), (5)-(7) may require approximation of the underlying probability measure
by simpler ones. This motivates searching for sufficient conditions under which “small” perturbations
of p lead to only “small” perturbations of the solutions to (4). For the latter, joint continuity of the
objective of (4) in (z, u) is of crucial importance. For recent surveys on stability analysis in stochastic
programming see [20, 23].

For studying the outlined continuity a notion of convergence on the set of probability measures P(IR®) is
needed. The following notion of weak convergence of probability measures [4] is both sufficiently general
to cover important applications and sufficiently specific to enable substantial statements. A sequence
{un} in P(IR®) is said to converge weakly to u € P(IR®), written u, — u, if for any bounded continuous
function h : R® — IR it holds [, h(2)un(dz) — [g. h(z)u(dz) asn — oo. Let us also introduce the
notation A, g (IR®) := {v € P(IR®) : [g.|]z|[°Pv(dz) < K} wherep > 1and K > 0 are fixed constants.
The structure of the function Qg(z, u) of (2) was studied in [22] from where we quote the following.

Proposition 2.2
(i) Assume (A1)-(A8). Then Qm(., ) is real-valued and lower semicontinuous on IR™.

(i) Assume (A1)-(A3) and that u(E(z)) = 0 where E(z) = {z € IR® : ® is discontinuous at z — Tx}.
Then QmE(.,p) is continuous at x.

(iii) Assume (A1), (A2). Let p € Ap g (IR®) for some p > 1 and K > 0, and p(E(x)) = 0. Then
QE : R™ x Ap k(IR*) — IR is continuous at (z, ).

Note that the assumption u(E(z)) = 0, which might look rather implicit at first sight, is always fulfilled
if p has a density. Indeed, by Proposition 2.1(iii) discontinuities of @ can only occur in a countable union
of hyperplanes, and the latter has y-measure zero provided p has a density.

3 Structural Properties

Straightforward calculations provide the following identities

QE(za :u’) + aQD(wvu)

Ef(:c,z)+a1E’|f(:c,z) —Ef($,z)|

Ef(z,z2) —i—a(Emax{f(m,z) — Ef(z,z),0} + Emax {Ef(z,2) — f(x,z),O})

Ef(z,z2) —i—a(Emax{f(z,z),Ef(z,z)} — Ef(z,z) + E(max{Ef(z,z), f(z,2)} — f(z, z)))
(1-2a)Ef(z,2) + 2aFEmax{f(z,z), Ef(z,z)}, (8)

QE(‘T’ :U’) + aQp+ (m,,u)
= Ef(z,2)+ alE max {f(m,z) — Ef(af;,z),O}

= (1—a)Ef($,z) + aEmaX{f(xaz),Ef(xaz)}a (9)

QE(‘T’ :U’) + aQ’D" (LL', /‘)
= Ef(z,2) + aFEmax{f(z,z) — n,0}
= Ef(z,z) + aEmax{f(z,2),n} — an. (10)



Hence, for a in the intervals of (5)-(7), the resulting objective functions of (4) all essentially are nonneg-
ative linear combinations of Qg (x, 1) and the function

Qasl )= [ max{f(2.2), Qu(z. 10} u(d2), )

or its close, and simpler to analyze, relative

Qmam,n (:1"7 l") = / max{f(‘za Z), 77} /”(dz) (12)
RS
Our structural investigations, hence, will focus on Qmaz(z, 1), and then, in view of Proposition 2.2, the
desired results for the objectives in (4) will follow immediately.

Proposition 3.1 Assume (A1)-(A3). Then Qmaz(-, 1) s real-valued and lower semicontinuous on IR™.

Proof: The lower semicontinuity of @ (Proposition 2.1(i)) implies that for each z € IR™ the integrand
in (11) is a measurable function in z. Finiteness of the integral then follows from (A3) and the estimate

| max{f(z, 2), Qm(z, u)}| |/(,2)| + |Qm(z, 1)
(2 — Tz) = @(0)| + |e"z| + |Qm(z, )|
Blizll + BTl + v+ le"z| + |QE (=, p)l.

INIA IA

In this estimate we have used that (A2) implies ®(0) = 0, and we have employed Proposition 2.1(iv).
To show lower semicontinuity let x € IR™ and x,, — x. Our aim is to apply Fatou’s Lemma to the
functions hy,(z) := max{f(zn, 2), QE(Zn, #)}. Using the above arguments again we obtain an integrable
minorant for these functions:

max{f(zn, 2), QE(Tn, 1)} > flan,2) > ~(Blzll + BlITanll + 7+ e znl) > —Bllzl| + 5

where & is a lower bound for the (convergent) sequence {—(B||Tx,| + v + |c" z,|)}. Now the following
holds

im inf Qg (ny ) > /]R lim inf max{ f (zn, ), Q(n, 1)} p(d2)

Tp—T s Tnpn—oT

> [ max {liminf f(en, 2), lim inf Qs (zn, 1) } p(dz)
> / max{f(z, z),QE(x,,u)}u(dz) = Qmaz("l", :U')’
Re

establishing the desired lower semicontinuity. In the first estimate above we have used Fatou’s Lemma,
and in the third that ® as well as Qg (., 1) are lower semicontinuous (Propositions 2.1(i) and 2.2(i)). O

Proposition 3.2 Assume (A1)-(A3) and that p(E(z)) = 0 where E(z) = {z € IR® : ® is discontinuous
atz —Tz}. Then Qmaz(., 1) is continuous at x.

Proof: Let x € IR™ and z, — x. We apply Lebesgue’s Dominated Convergence Theorem to the
functions hy,(z) := max{f(zn, 2), QE(Zn,x)}. As in the previous proof we obtain

|max{f(zn, 2), QE(zn, 1)} < Bllzll + BITanll + 7+ lc" @n| + |QE(zn, w)].

According to Proposition 2.2(ii), Qg(., ) is continuous at z. Hence there exists an upper bound & for
the sequence {B||Tz,|| +7+|c" Zn| + |QE(Tn, 1)}, yielding the integrable majorant 3||z|| + & for |h,(2)|.
Again by the continuity of Qg(., 1) at z, and by u(E(z)) = 0, the pointwise convergence hy,(z) —
h(z) := max{f(z,2), Qm(z, 1)} fails at most on a set with y-measure zero. Lebesgue’s Theorem now
provides

Tp—T s Tpn—T

lim Qmae (-'L'na /1,) = A% lim max{f(xn, z)a Qe (-'L'na ,U/)} /J’(dz)

= /Smax{f(w’z)aQE(xvﬂ)}“(dz) = Qmaz (T, 1),

and the proof is complete. O



Proposition 3.3 Assume (A1), (A2). Let p € Ap x(IR®) for somep > 1 and K > 0, and pu(E(z)) = 0.
Then Qmagz : R™ x Ap k (IR?) — IR is continuous at (z, ).

Proof: Let z,z, € R™, z, — = as well as y, n € Ap g (IR®), ttn — p. We introduce the functions
hn(2) := max{f(zn,2), QE(Zn, pn)} and h(z) := max{f(z,2),QEr(z,u)}. Let E := {z € R® : 3z, —
z such that h,(z,) 7 h(z)}. Then it holds E C E(z). Indeed, if z ¢ E(z) then f(z,,2,) — f(z, 2), and
moreover, by Proposition 2.2(iii), Q& (Zn, tn) = Q&(z, #). This implies z ¢ E. In view of u(E(z)) =0
we now have p(E) = 0. Rubin’s theorem on weak convergence of image measures ([4]) then implies
pno bt % poh~1. The proof is completed by Theorem 5.4 in [4] stating that u,oh,' -2 poh~! and
the uniform integrability

fim sup [ a2 pnld2) = O (13)
a=% n Jih, (z)|>a
together imply limp oo [. An(2) pn(dz) = [ h(z) p(dz) which is just the assertion. To show (13)
notice first that
| @ pn(a) > @ /| ICCIIED (14)

and, in addition,

ha(2)|P = |max{c' @, + ®(z — Tzp), QE(Tn, tn)}P
< max{le @] + |2(z — Ten) — 2(0)], [Qm(@n, n)[}”
< (Bll2l] + Bl Tznll + v + ¢ zn| + |QE (@n, £n)])"-

The continuity of Qg at (x, ), see Proposition 2.2(iii), now implies that there is an upper bound & for
the sequence {B||Tz,|| + 7 + |¢"%n| + |QE(Zn, tn)|}. The above estimate thus can be continued:

hn(2)[7 < (B2l + £)" < (28)P[|2]|P + (2)". (15)
Recall that p > 1 and that u, € A, x(IR°). By (14) and (15) we obtain

[ @l < o [P () < o (G8PK + (26),
|hn(2)|>a a R a

with the rightmost term tending to zero if @ — oco. This verifies (13) and completes the proof. a

Remark 3.4 Propositions 3.1-3.8 carry over in a one-to-one manner to the function Qmazn defined
in (12). The proofs actually remain the same with the constant n replacing the entities Qg (x,,p) and
Qm(zn, 1n), respectively.

Altogether we obtain the following corollary on basic structural properties of the objectives in (4).

Corollary 3.5 Let Q(z,p) := Qm(z, 1) + aQr(z, p) with Qr and o following one of the specifications
in (5)-(7). Then all statements about Quqr made in Propositions 3.1-3.3 are also valid for Q.

To illustrate possible consequences of the joint continuity of @ in (z, p) for stability analysis let us consider
(4) as the following parametric optimization problem with parameter u.

P(u) min{Q(z,p) : =z € X}

Non-convexity of Q(., ) and the resulting relevance of local solutions lead to considering the following
localized optimal values and solution sets

ev(p) = inf{Q(z,p) : z€ XNV},
Ty(p) = {zeXndV : Qz,p) =ev(n}

where V. C R™. Given p € P(IR®), a nonempty set Z C IR™ is called a complete local minimizing set
(CLM set) of P(u) with respect to V if V' is open and Z = ¥y (p) C V. Roughly speaking, a set of local
minimizers has the CLM property if it contains all “nearby” local minimizers. Without this property
pathologies under perturbations of y may occur. Isolated local minimizers and the set of global minimizers
are examples for CLM sets, while strict local minimizers not necessarily obey the CLM property, see [19]
for details.



Proposition 3.6 Assume (A1), (A2). Let p € Ap x(IR®), for some p > 1 and K > 0, have a density.
Suppose further that there exists a subset Z C IR™ which is a CLM set for P(u) with respect to some
bounded open set V. C IR™. Then it holds

(i) the function oy : Ap k(IR®*) — IR is continuous at u, where Ay, k(IR®) is equipped with weak
convergence of probability measures,

(i) the multifunction Wy : Ay x (IR®) — 27" is Berge upper semicontinuous at u, i.e., for any open
set O in R™ with O D Wy (u) there exists a neighborhood N of p in A, k(IR®), again equipped
with the topology of weak convergence of probability measures, such that ¥y (v) C O for allv € N,

(iii) there exists a neighborhood N of p in A, x(IR*) such that for all v € N' the set ¥y (v) is a CLM
set for P(v) with respect to V.

Joint continuity of @ in (z, u) established, the proof of the above proposition follows the lines of Berge’s
theory as, for instance, in the proof of Proposition 4.2.2 in [2]. It is essential that the unperturbed CLM
set is compact which is hidden in the boundedness assumption on V. In (iii), nonemptiness of ¥y (v)
then is immediate. Here, the point is that ¥y (v) is a CLM set and hence a set of local minimizers.
Proposition 3.6 gives rise to conclusions involving specific modes of weak convergence such as discretiza-
tions via conditional expectations, pointwise almost surely converging densities, or empirical measures.
In this way, known stability results for the expectation model (1), cf. [20, 23], extend to the mean-risk
models in the present paper.

4 Algorithmic Issues
Assume that the probability measure p is discrete with realizations z; and probabilities 7;,j = 1,...,J.

By (8)-(10) the specifications (5)-(7) of (4) then turn into equivalent mixed-integer linear programs.
The central-deviation model

1
min{Qgr(z,p) + a-Qp(z,p) : z€ X}, with0<a< 2 (16)
is equivalent to
J J
min{(1 —2a)c'z + (1 —20) Z?Tj(quj + q'Ty;-) +2a- Z Tjv; :
j=1 j=1
Tx+Wy; + W'y, = zj,
clz+qTy+q Ty < v
J
T+ milg vi+d Ty < v,
i=1
ceX,y; € ZT, yi e R, v;e R, j=1,...,J}. (17)
The semideviation model
min{Qg(z,p) + a-Qp+(z,p) : € X}, with0<a<1, (18)
is equivalent to
J J
min{(1 —a)c'z + (1—a) Zﬁj(q—ryj + q'Ty;.) +a- Zﬂ'jl}j :
j=1 j=1
Tx+Wy; + W'y; = zj,
cle+qTy+4dy; < v,
J
cle+ Y milg vi+d Ty < v
i=1
.’EEX,ijZ_T,y;ERT,UjGR,jZI,---,J}- (19)



The expected-excess model

min{Qg(z,u) + a-Qpr(z,u) : € X}, witha>0and g€ R, (20)
is equivalent to
J
min{c’z + Y milg'y;+dTy)) +a- Zﬂava :
j=1
Tz + Wy; + W'y, = 2,
c'z+q'yi+d yj—n < v
xEX,ijZ_l_,ijRT,vj€R+,j:1,...,J}. (21)

Algorithmically, it will be beneficial that in the constraints of (21) there is no explicit linkage between
(y,y')-variables for different realizations j € {1,...,J}. These variables are linked only implicitly via the
first-stage variable z. In (17) and (19) explicit linkage occurs due to the conditions

CT$+Z7ri(quz+qlTy:) < Vs j=1...,J (22)

In principle, problems (17), (19), and (21) could be tackled with general mixed-integer linear programming
solvers. With growing number J of scenarios however, such solvers typically come to their limits. This
motivates approaches benefitting in one or another way from decomposition effects in the above models.
Our point of departure is to see (16), (18), and (20) as non-convex global optimization problems and to
tackle them with traditional branch-and-bound. This means to partition X by linear inequalities stepwise
with increasing granularity, to find upper and lower bounds of the optimal objective values on current
elements of the partition, and to apply coordination rules for guiding the branching and for pruning due
to infeasibility, inferiority, or optimality.

In what follows, emphasis will be on bounding, in fact on lower bounds, since this is where decomposition
becomes relevant. It will pay to pass from the compound problems (16), (18), and (20) to their expanded
equivalents (17), (19), and (21). We will drop details about coordination where we have employed
established rules or their analogues.

Let us first consider the expected-excess model (21). We replace = by copies z;,j = 1,...,J, according
to the number of scenarios and add the constraints x; = ... = s which we assume to be represented
as Z]"I:1 Hjz; with suitable I x m matrices H;. Except for ; = ... = z;, the constraints in (21) now
are fully separable with respect to 7 = 1,...,J. The objective being separable anyhow, this suggests
Lagrangian relaxation of z; = ... = x; leading to the following Lagrangian function and Lagrangian dual

J
L(z, v, 9,0, A) ZLJ wg,yg,y],vg,A)
Jj=1

with
Li(zj, v, Y0, N) = mi(c zj+q y; + 4Ty +avy) + N Hjzy, j=1,...,J,
and
J
max{» D;(\) : A€ R'} (23)
with
DJ()\) = min{Lj(:vj,yj,y;-,vj,/\) : T.T:j+Wyj W’ '. = zj,
c'zj+gq yﬂrq’Ty; n < v
zje X, y; € LY, y]- € RY , v; € R}, (24)

During the branch-and-bound procedure sketched above these formulas apply at each node of the branch-
ing tree, with X in (24) replaced by the corresponding element of the partition. Integer programming



theory says that the optimal value of (23) provides a lower bound to the optimal objective value that is
never worse than the bound obtainable by relaxing integrality. The non-smooth concave maximization
(or convex minimization) problem (23) can be solved by subgradient methods ([10, 12]) that require one
function value and one subgradient per iteration. By the additive nature of Z;.Izl D; () these entities
are computable by solving scenario-wise the mixed-integer linear programs (24), which is the announced
decomposition effect.

For solving problems (17), (19), the principal bounding approach to introduce copies of z and continue
with Lagrangian relaxation of z; = ... = z; is working, too. However, the constraints (22) then prevent
the observed decoupling in the Lagrangian dual which is the key benefit above. This motivates to derive
separable lower bounds for the objectives in (16), (18). A straightforward such bound clearly is Qg (z, u).
The following lemma identifies separable lower bounds strengthening this straightforward bound.

Lemma 4.1 Assume (A1)-(A3), fit x € X, and let n < QE(z, 1). Then the following is valid

RQe(z,u) < (1-20)QE(z, k) +20Qpn(z,u) +2an < Qp(zr,p)+ aQp(z,p), (25)
QE(‘Tv :u’) (1 - OZ)QE(:E,,U,) +aQ’D"(x’ :u’) +an < QE(xv.u) +aQp+ (:E,p,), (26)

for0< a< % in (25) and 0 < a <1 in (26), respectively.

<
<

Proof: Without restriction on 7 it holds that max{f(z, 2),n} > f(z, z), implying IE max{f(z,z),n} >
Ef(x,z). With (10) this extends into the estimate

20Qpn (&, 1) +20m = 20Bmax{f(z,2),1} > 20FEf(z,2),
yielding the first inequality in (25). Now let n < Qg(z, u). Employing (8) and (10) we obtain

QE(z,p) +aQop(z,p) = (1-20)Ef(z,2)+ 20l max{f(z,2), Ef(z,2)}
> (1 - 20)Ef(z, 2) + 2aEmax{f(z,2),m} = (1 20)Qm(z, u) + 20Q@pn(z, 1) + 2am

which is the second inequality in (25). The proof of (26) is analogous. m

The lemma leaves room for studying different specifications of 7 together with their computational
impacts. In particular, it is desirable to find specifications where the first inequalities in (25), (26)
have potential to hold strictly. A candidate for the selection of 7 is the so-called wait-and-see solution
([5, 11, 18, 21]). It is given as the expected value of

Pws(z) = min{c'z+q'y+q"y : Te+Wy+W'y' =2,2€ X,y Z, y € RT’}.

Clearly, ®ws(z) < f(z,z) such that n := E®ys(z) < Qg(z,p) for arbitrary z € X, showing that the
wait-and-see solution is a feasible choice in Lemma 4.1. With this selection of 7, and for fixed z € X, a
sufficient condition for the first inequalities in (25), (26) to be strict is that the set {z € R®* : E®ws(z) >
f(z, 2)} has positive y-measure.

Let us return to the branch-and-bound approach for solving (16), (18), (20) and have a quick look at
upper bounds of optimal objective values on the elements of the partition. The basic idea is to find
promising feasible points. When applying lower bounding via the Lagrangian dual (23), either directly to
(21) or induced by Lemma 4.1 to (17), (19), the results of the dual optimization provide starting points
for upper bounding heuristics. Consider x;-parts (j = 1,...,J) of optimal solutions to the MILPs in
(24) for values of A that are optimal or nearly optimal in (23). See these z;-parts as proposals for a
nonanticipative first-stage solution « that is behind the relaxed requirement z; = ... = z;. Heuristically
reestablish z; = ... = z; (primal feasibility) on the basis of the proposals, for instance, by deciding for
the most frequent one arising or by averaging and rounding to integers if necessary.

We conclude with some preliminary computational experiences with an implementation of the sketched
branch-and-bound scheme to solve expected-excess models. Lower bounding follows (23), (24). For upper
bounding a heuristic combining selection by frequency and rounding was used. Note that Lemma 4.1
enables solution of central- and semideviation models by expected-excess methodology. The main aim of
our experiments was to study performance improvement of the algorithm when replacing the trivial lower
bound of Qg (z, 1) by the bound proposed in Lemma 4.1, with 7 selected as the wait-and-see solution.
Experiments were carried out with a semideviation model that is a mean-risk extension of a two-stage



linear mixed-integer stochastic program originating from a chemical engineering application. The latter is
described in detail in [8]. The model has m=24 first-stage variables, all integer or binary, and 3 first-stage
constraints. In the second stage there are m=108 integer or binary and m’=224 continuous variables,
together with 311 constraints. Each test instance has J=10 scenarios.

For 10 test instances Table 1 displays relative gaps in % after 4 hours of cpu time on a Sun V880 with a
880 MHz processor and 4 GB of main memory. The gaps were calculated from the differences between
the least upper and biggest lower bounds to the problems’ optimal values that were obtained by the dif-
ferent methods. The CPLEX column reports direct application of the ILOG-CPLEX 8.1 mixed-integer
linear programming solver to the equivalent given by (19). The B&B/ENH and B&B/EXP columns show
the gaps for our branch-and-bound algorithm with lower bounding enhanced by Lemma 4.1 and with
lower bounding by Qg(z, 1), respectively. The table indicates positive impact of both decomposition in
principle and of the enhanced bounds from Lemma 4.1. We have observed (see instances 2, 5, 9) that
the enhancement is particularly efficient if there is substantial dispersion among f(z,2;),7 =1,..., J, for
relevant z.

The above algorithmic ideas contribute to the literature on decomposition of stochastic integer programs,
see for instance [1, 7]. In particular, they extend techniques for expectation models from [7] to the mean-
risk models in the present paper.

Instance | CPLEX B&B/ENH B&B/EXP
1 86.40 3.01 5.05
2 94.30 16.16 47.41
3 57.80 4.02 6.94
4 10.99 4.31 4.43
5 89.26 7.49 20.86
6 8.73 4.46 7.54
7 6.06 3.62 7.41
8 5.31 5.34 8.64
9 5.34 1.18 5.45
10 97.03 3.87 6.79

Table 1: Gaps in %, semideviation model, cpu time: 4h
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