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Abstract

This paper studies the use of randomized Quasi-Monte Carlo methods (RQMC) in sam-
ple approximations of stochastic programs. In high dimensional numerical integration, RQMC
methods often substantially reduce the variance of sample approximations compared to MC. It
seems thus natural to use RQMC methods in sample approximations of stochastic programs. It
is shown, that RQMC methods produce epi-convergent approximations of the original problem.
RQMC and MC methods are compared numerically in five different portfolio management mod-
els. In the tests, RQMC methods outperform MC sampling substantially reducing the sample
variance and bias of optimal values in all the considered problems.

Keywords: Stochastic optimization, discretization, variance reduction techniques, random-
ized quasi-monte carlo methods, antithetic variates.

1 Introduction

Let Ξ be Borel subset of Rd, and Σ the Borel σ-algebra on Ξ. Let P be a probability measure on
(Ξ, Σ), and f an extended real-valued function on Rn×Ξ, such that f(x, ·) is measurable for every
x ∈ Rn. This paper studies numerical solution through discretization of stochastic programs of the
form

minimize
x∈Rn

EP f(x) :=
∫

Ξ
f(x, ξ)P (dξ), (SP )

where the integral is interpreted as +∞ when f(x, ·) /∈ L1(Ξ, Σ, P ). The decision variable x is
not a function of ξ, so (SP ) represents a static (one-stage) stochastic program. By allowing f
to take on the value +∞ we can incorporate constraints into the objective, which makes (SP ) a
very general model for optimal static decision making under uncertainty. Unlike most studies of
stochastic programs, we do not assume the feasible set

domEP f(x) = {x ∈ Rn | f(x, ·) ∈ L1(Ξ,Σ, P )}

to be known a priori. This is essential e.g. in stochastic programs without relatively complete
recourse and in certain financial applications, where the determination of the feasible set is part of
the problem rather than its statement; see Subsection 4.2.
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A common approach to solving (SP ), is to replace P by a finitely supported measure of the
form

P ν =
ν∑

i=1

pν
i δξν

i
,

where δξν
i

denotes the unit mass located at ξν
i . This yields

minimize
x∈Rn

EP ν
f(x) :=

ν∑

i=1

pν
i f(x, ξν

i ), (SP ν)

which, is often easier to solve than (SP ). In general, the aim is to choose P ν so that (SP ν) is a good
approximation of (SP ) and that the number ν of support points of P ν is small enough to allow for
numerical solution of (SP ν). The simplest and the best-known method for numerical approximation
of high-dimensional integrals is the Monte Carlo method (MC), i.e. random sampling. MC has also
become the most popular method for constructing sample approximations of stochastic programs.
However, in the literature of numerical integration there are many methods that usually perform
better than MC in high-dimensional integration; see e.g. (Boyle et al., 1997, Jäckel, 2002). Quasi-
Monte Carlo (QMC) methods can be seen as a deterministic counterpart to the MC method.
They are designed to produce point sets that cover the d-dimensional unit hypercube as uniformly
as possible. By suitable transformations QMC methods can be used to discretize many other
probability distributions as well. They are just as easy to use as MC but they often result in faster
convergence of the approximations thus allowing for smaller values of ν and cheaper computations.

L’Ecuyer and Lemieux (2002) review several QMC constructions and their randomizations that
have been proposed to provide unbiased estimators and for error estimation. Randomizing QMC
methods allows us to view them as variance reduction techniques. Randomized Quasi-Monte Carlo
(RQMC) methods can be used just like MC in estimating confidence intervals and variances for
sample approximations in numerical integration. RQMC often result in significant variance reduc-
tion with respect to MC. In this paper, we apply RQMC to stochastic optimization and obtain
similar results. RQMC methods can be viewed as an alternative to MC in computing statistical
bounds, as e.g. in Shapiro (2003). In our tests, the bounds for the optimal values obtained with
RQMC are consistently tighter than those obtained with MC.

Other variance reduction techniques, like antithetic variates, importance - and latin hypercube
sampling have been used in stochastic optimization e.g. in Kouwenberg (2001), Infanger (1992),
Higle (1998) and Linderoth et al. (2002). These studies show that variance reduction techniques can
significantly improve the accuracy of the sample approximations over MC. It was found in Linderoth
et al. (2002) that latin hypercube sampling provides tighter confidence intervals for optimal values
than MC. In our tests, the best performing RQMC methods consistently outperform latin hypercube
sampling.

Since we are dealing with minimization problems, a natural framework for analyzing approxi-
mations is epi-convergence; see Attouch (1984) or Rockafellar and Wets (1998) for introduction to
epi-convergence. Epi-convergence of the objectives is a minimal property that should be satisfied
by any approximation scheme for optimization problems in order to get asymptotic convergence of
optimal values and solutions. Epi-convergence for sample approximations of stochastic programs
have been proved in Artstein and Wets (1995) for MC, and in Pennanen and Koivu (2003) for
QMC. In MC {P ν}∞ν=1 is a sequence of empirical measures, whereas in QMC it is a weakly conver-
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gent non-random sequence. In this paper we will show that the epi-convergence result derived in
Pennanen and Koivu (2003) for QMC also applies to RQMC methods.

The rest of this paper is organized as follows. Section 2 gives a brief review of the epi-convergence
results that will be utilized in this paper. Section 3 reviews the used randomization technique for
QMC point sets. It is shown in Section 3 that RQMC methods produce weakly convergent prob-
ability measures, thus allowing us to utilize the epi-convergence results derived in Pennanen and
Koivu (2003). In Section 4 we use RQMC methods to construct epi-convergent sample approxima-
tions of stochastic programs in various test problems, and compare the behaviour of optimal values
numerically with MC.

2 Epi-convergence of sample approximations

Epi-convergence results for sample approximations of stochastic optimization problems have been
given in Artstein and Wets (1995) for MC, and in Pennanen and Koivu (2003) for QMC. In MC
{P ν}∞ν=1 is a sequence of empirical measures, whereas in QMC it is a weakly convergent non-random
sequence, that is

EP ν
ϕ → EP ϕ, (1)

for all bounded and continuous functions ϕ; see Billingsley (1999). Epi-convergence has many
important implications in studying approximations of minimization problems; see e.g. Rockafellar
and Wets (1998). The following is one of them; see (Attouch, 1984, Section 2.2).

Theorem 1 If a sequence of functions F ν epi-converges to F , then

lim sup
ν→∞

inf F ν ≤ inf F,

and if there is a convergent sequence xk → x such that xk ∈ argminF νk
for some subsequence

{νk}∞k=1, then x ∈ argminF and inf F νk → inf F . In particular, if there is a compact set C such
that argminF ν ∩ C 6= ∅ for all ν, then inf F ν → inf F .

Recall that a function g is called lower semicontinuous (lsc) if for every x

lim inf
y→x

g(y) ≥ g(x).

Theorem 2 (Artstein and Wets (1995)) Let ξ1, ξ2, . . . be a sequence of i.i.d P -distributed draw-
ings from Ξ and let

P ν =
ν∑

i=1

1
ν

δξi .

If

1. f(x, ξ) : Rn × Ξ → (−∞,∞] is measurable on Rn × Ξ, and f(·, ξ) for ξ fixed is lsc in x,

2. for each x0 ∈ Rn there exists an open set N 3 x0 and an integrable function α(ξ) : Ξ →
(−∞,∞), such that for almost all ξ ∈ Ξ the inequality f(x, ξ) ≥ α(ξ) holds for all x ∈ N ,

then the functions EP ν
f almost surely epi-converge to EP f .
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The following is a simplified version of the epi-convergence result in Pennanen and Koivu (2003),
which is sufficient in the applications of this paper.

Theorem 3 (Pennanen and Koivu (2003)) Let P ν → P 0 and assume that f is lsc. If

1. for each x ∈ Rn, there is an open set N 3 x such that f is bounded from below on N × Ξ,

2. for each x ∈ domEP 0
f , f(x, ·) is P 0-a.s. continuous and bounded,

then the functions EP ν
f both pointwise and epi-converge to EP f .

Note that the conditions of Theorem 3 imply the conditions of Theorem 2.

3 Randomized quasi-monte carlo and weak convergence

A discrete approximation P ν of P is usually generated as follows: In the scalar case, approximate
the uniform distribution on [0, 1] and transform each point with the inverse of the distribution
function of the desired distribution. This is known as the method of inversion. The same idea
works whenever P = QG−1, where Q is the multivariate uniform distribution and G is Q-a.s.
continuous, in other words, whenever

ξ = G(u),

where u is uniformly distributed in the unit cube [0, 1]d, and G : [0, 1]d → Ξ is almost everywhere
continuous. This is based on the following very useful result from Billingsley (1999) where U is any
metric space with Borel algebra B.

Theorem 4 (Billingsley) Let G : (U,B) → (Ξ, Σ) be a measurable function and Q a probability
distribution on (U,B). Then QG−1(A) := Q(G−1A) defines a probability measure on (Ξ,Σ), and if
G is Q-a.s. continuous, then

Qν → Q =⇒ QνG−1 → QG−1.

Given a Q-a.s. continuous G and a discrete approximation Qν =
∑ν

i=1 pν
i δuν

i
of Q, Theorem 4

says that the discrete measures

P ν := QνG−1 =
ν∑

i=1

pν
i δG(uν

i )

converge weakly to P = QG−1 whenever Qν → Q. It is then natural to try to choose discrete
approximations Qν which are as close as possible to the uniform distribution Q. Quasi-monte carlo
methods are designed to do exactly this; see the books of Niederreiter (1992) and Sloan and Joe
(1994). Much of this theory has evolved around the following notion of distance from Q.

Definition 5 The star-discrepancy of a point set Uν = {u1, . . . , uν} ⊂ [0, 1]d is defined as

D∗(Uν) = sup
C∈C0

|Qν(C)−Q(C)|, (2)

where

Qν =
ν∑

i=1

1
ν

δui ,

and C0 is the set of rectangles C ⊂ [0, 1]d with 0 ∈ C.
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The following is a direct consequence of Corollary 11 in Lucchetti et al. (1994).

Proposition 6 For each ν, let Uν
ν = {uν

1 , . . . , u
ν
ν} be point sets in the unit cube. The measures

Qν =
ν∑

i=1

1
ν

δuν
i

converge weakly to the uniform distribution if and only if D∗(Uν
ν ) → 0.

Thus, if we can find point sets whose star-discrepancy approaches zero as ν↗∞, we obtain
weakly convergent discrete approximations of the uniform distribution. If P = QG−1, we can then
use the method of inversion to get weakly convergent discretizations of P .

In the literature of numerical integration, many methods have been developed for producing in-
finite sequences, which satisfy the property, that D∗(Uν) = O(ν−1(ln ν)d), for all ν. Such sequences
are called low-discrepancy sequences. The main constructions of low discrepancy sequences are due
to Halton (1960), Sobol’ (1967), Faure (1982) and Niederreiter (1988). The last three methods fall
in the general class of (t, s)-sequences; see Niederreiter (1992). If it is not required that ν points of
a (ν + 1)-point quadrature are the points of the ν-point quadrature, it is possible to obtain more
accurate quadratures called low discrepancy point sets, which satisfy D∗(Uν) = O(ν−1(ln ν)d−1).
Examples of low discrepancy point sets include Hammersley point sets (Hammersley, 1960), which
are easily obtained from the Halton sequence and so called (t, m, s)-nets, which are obtained by
using certain parts of the points in (t, s)-sequences; see (Niederreiter, 1992, Chapter 4). Another
general family of methods for generating point sets with low discrepancy are lattice rules, which
are designed to take advantage of additional regularity properties of integrands; see for example
Niederreiter (1992), Sloan and Joe (1994) and L’Ecuyer and Lemieux (2000).

To enable practical error estimation for QMC methods a number of randomization techniques
have been proposed in the literature; see L’Ecuyer and Lemieux (2002) for an excellent survey. An
easy way of randomizing any QMC point set without destroying its regular structure, suggested
by Cranley and Patterson (1976), is to shift it randomly, modulo 1, with respect to all of the
coordinates.

Let Uν = {u1, . . . , uν} ⊂ [0, 1)d be a low discrepancy point set in a d-dimensional unit hypercube.
Generate a point u uniformly distributed in [0, 1)d and replace every ui in Uν with ũi = (ui + u)
mod 1, where i = 1, . . . , ν. Now Ũν = {ũ1, . . . , ũν} is a randomized point set used to approximate
[0, 1)d uniform distribution. This can be repeated m times, independently, with the same Uν . We
thus obtain m i.i.d copies of the random variable EP ν

ϕ, which we denote by EP ν
1 ϕ, . . . , EP ν

mϕ. Let
σ̂2 =

∑m
j=1(E

P ν
j ϕ− µ̂)2/(m− 1), where µ̂ = (EP ν

1 ϕ + . . . + EP ν
mϕ)/m.

Proposition 7 (L’Ecuyer and Lemieux (2000))

E[EP ν
j ϕ] = EP ϕ and E[σ̂2] = V ar[EP ν

j ϕ].

Hence, EP ν
j ϕ is an unbiased estimator of EP f and σ̂2 is an unbiased estimator of its variance.

Proposition 7 holds for an arbitrary point set Uν ; see (L’Ecuyer and Lemieux, 2002, Tuffin, 1996).
In direct numerical integration, Monte Carlo methods achieve a convergence rate of ν−

1
2 ; more

precisely, in Monte Carlo, the standard deviation of the integration error is Std(ϕ)ν−
1
2 , where

Std(ϕ) is the standard deviation of ϕ. The following estimates the convergence speed for the
variance of a randomized QMC estimator obtained from a low discrepancy sequence.
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Theorem 8 (Tuffin (1996)) For any low discrepancy sequence Uν ⊂ [0, 1)d and almost every-
where continuous and bounded function ϕ over [0, 1)d, we have

V ar

(
1
ν

ν∑

i=1

ϕ(ũi)

)
= O(ν−2(ln ν)2d).

In Monte Carlo, the convergence speed is independent of the dimension of the space, whereas
the above convergence speed depends on the dimension, so that the actual error estimates obtained
in practice with RQMC may be greater than Std(ϕ)ν−

1
2 . In many practical applications, however,

RQMC methods considerably improve the accuracy over MC. One explanation offered for the
success of QMC and RQMC methods on high dimensional problems is that the integrands may have
effective dimensions much smaller than d. Effective dimension is roughly the number of important
dimensions of the problem, which account for most of the variability of the estimator; see Caflisch
et al. (1997) and Wang and Fang (2002) for details. Asymptotically the variance reduction factor
obtained with RQMC over MC is proportional to ν. The same effect can be observed in the test
problems of Section 4, for sample variances of optimal values already with moderate values of ν.

It is well known, that for MC

inf
x∈Rn

E
[
EP ν

f(x)
] ≥ E

[
inf

x∈Rn
EP ν

f(x)
]

,

i.e. v∗ ≥ E[v̄∗] where v∗ denotes the optimal value of the true problem (SP ). That is, v̄∗ is a
biased estimator of v∗. This property also holds for RQMC methods. The value v̄∗ is called a valid
statistical lower bound of the true optimal value v∗ if v∗ ≥ E[v̄∗] and v̄∗ epi-converges to v∗ as
ν →∞; see e.g. Shapiro (2003).

For obtaining epi-converge of the sample approximations of stochastic programs generated via
RQMC methods we need to show that RQMC methods generate weakly convergent probability
measures.

Lemma 9 Let Uν and Ũν be low discrepancy and randomized low discrepancy point sets, respec-
tively. Discrepancy of a randomized low discrepancy point set D(Ũν) satisfies

D(Ũν) ≤ 22dD∗(Uν).

If D∗(Uν) → 0, the measures

Qν =
ν∑

i=1

1
ν

δũν
i

converge weakly to the uniform distribution.

Proof. From Niederreiter (1992) we get

D∗(Uν) ≤ D(Uν) ≤ 2dD∗(Uν),

where D(Uν) is a discrepancy measure. Tuffin (1996) showed that

D(Ũν) ≤ 2dD(Uν),
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which yields
D(Ũν) ≤ 22dD∗(Uν).

The weak convergence of the probability measures Qν =
∑ν

i=1
1
ν δũν

i
follows from Proposition 6 by

noting that D∗(Uν) → 0. ¤

Hence, we can use the results of Theorem 3 for obtaining epi-convergence of EP ν
f to EP f . In

sample approximations of stochastic programs a natural goal is to try to generate the samples so
that the bias v∗ −E[v̄∗] and the sample variance of the optimal values are as small as possible. In
the next Section we use RQMC methods as variance reduction techniques alone and in combination
with other variance reduction techniques to improve the accuracy of sample approximations with
respect to MC in various test problems.

4 Numerical tests

In the numerical tests we compare MC with variance reduction techniques: Antithetic Variates
(AV), Latin Hypercube sampling (LH), randomized Lattice Rules (LR), Sobol (SOB), Faure (FAU),
Hammersley (HAM), Niederreiter (NIE) and Halton (HAL) point sets in discretization of five
portfolio optimization problems. We will also test the efficiency of the best performing RQMC
methods in combination with AV, namely Sobol sequence (SOB+AV) and lattice rules (LR+AV).
For the MC method and randomization of the QMC point sets we use the Mersenne Twister
generator (MT19937) by Matsumoto and Nishimura (1998). The LIBSEQ1 library based on Friedel
and Keller (2002) is used for Latin Hypercube sampling. Rank-1 lattice rules are used to generate
the lattice point sets; see e.g. L’Ecuyer and Lemieux (2000) 2. Our implementation of the Sobol
sequence is based on the implementation in Press et al. (1992). For Niederreiter sequence the
routine in GSL (Gnu Scientific Library) is used. Routines by Fox (1986) are used for Faure and
Halton sequences and the Hammersley point sets are easily obtained from the Halton sequence; see
Hammersley (1960).

We consider one-stage problems with ν = 2i scenarios, where i = 5, . . . , 14. For every i we
generate 250 independent discretizations, solve the resulting problems and record the obtained
optimum value and other relevant statistics. The same procedure is repeated for each test problem,
except in Section 4.2.1, where the random variable is one-dimensional and i = 5, . . . , 9.

The test problems are divided into two categories. In Section 4.1 we consider problems without
implicit constraints, i.e. domEP f is known and does not depend on P . In Section 4.2 we consider
problems with implicit constraints, i.e. domEP f may not be known and may depend on P .

4.1 Problems without implicit constraints

4.1.1 Mean-variance portfolio optimization

We start the numerical tests with a model which can be solved exactly. Of course, sample approx-
imations are unnecessary in such cases but here we get to compare the approximate solutions with

1www.multires.caltech.edu/software/libseq
2The parameters required by the method were provided by Professor L’Ecuyer.
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the exact one. Consider the mean-variance model

minimize
x∈Rn

EP 0
(r · x− r̄ · x)2 (MP )

subject to r̄ · x ≥ w,
n∑

i=1

xi ≤ 1,

x ∈ C,

where x = (x1, . . . , xn) is a portfolio of assets, r = (r1, . . . , rn) is the vector of returns, r · x =∑n
j=1 rixi is the terminal wealth, w is the required level of expected wealth and C is the set

of feasible portfolios. The components of the return vector r are random variables with joint
distribution P 0 and expectation r̄. As is well-known, the expectation in (MP ) can be computed
explicitly as

EP 0
(r · x− r̄ · x)2 = EP 0

[(r − r̄) · x]2 = EP 0
[x · (r − r̄)(r − r̄)T x] = x · V x,

where V = EP 0
[(r − r̄)(r − r̄)T ] is the variance matrix of r. If V and r̄ are known, (MP ) can

then be solved without discretization with standard solvers yielding the optimal value and optimal
solution.

To test the performance of the proposed variance reduction techniques, we approximate problem
(MP ) by the discretizations

minimize
x∈Rn

ν∑

i=1

pν
i (r

ν
i · x− r̄ · x)2 (MP ν)

subject to r̄ · x ≥ w,
n∑

i=1

xi ≤ 1,

x ∈ C.

Under mild conditions, convergence of optimal values and solutions can be guaranteed. The proof
of the following Proposition can be found in Pennanen and Koivu (2003).

Proposition 10 (Pennanen and Koivu (2003)) Assume that suppP 0 is bounded, C is closed,
and that the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ suppP 0. If the feasible set is bounded, then the optimal
values of (MP ν) converge to that of (MP ) and the cluster points of the solutions of (MP ν) are
solutions of (MP ).

In our test, the number of assets n = 10 and

r = r̄ + 12L(u− 1
2
e),

8



where u is uniformly distributed in the 10-dimensional unit cube, L is a 10× 10 matrix and e is a
vector of ones. Then suppP 0 is bounded, r has mean r̄ and variance V = LLT . We chose C = Rn

+,
which means that “short selling” is prohibited. With our choices of r̄ and V , the optimal value in
the original problem (MP ) is 1.9221.

The numerical test results are displayed in Table 1, where µ̂ and σ̂ denote the sample mean and
standard deviation computed from 250 optimal values of (MP ν) for different values of ν. The value
vr = σ̂2

MC/σ̂2
q , denotes the variance reduction factors for optimal values obtained with sampling

method q with respect to the variance of MC, for all the considered methods and reported values
of ν. The best performing methods are LR and Sobol, Halton and Niederreiter sequences, with
variance reduction factors increasing with ν. These methods clearly outperform MC, AV and LH
sampling. The results with AV are presented to point out the fact, that the use of AV doubles the
variance with respect to MC because the objective function is quadratic and it is well known, that
AV reduces the variance compared to MC only when the integrand is a monotonically increasing
function of the random variables; see (Bratley et al., 1987). Figure 1 shows the sample mean and
90% confidence intervals for the optimal values obtained with LR and MC. Lattice rules produce
much tighter confidence intervals and reduces the sample bias for the optimal value, compared to
MC.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

32 64 128 256 512 1024 2048 4096 8192 16384
(a) Lattice rule.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

32 64 128 256 512 1024 2048 4096 8192 16384
(b) Monte carlo.

Figure 1: Mean and 90% confidence interval for the markowitz problem.
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Table 1: Statistics for MP ν as a function of ν.

ν MC AV LH LR SOB FAU HAM NIE HAL

µ̂ 1.609 1.413 1.668 1.639 1.662 1.461 1.567 1.708 1.704
32 σ̂ 5.00E-1 6.99E-1 4.06E-1 3.68E-1 3.83E-1 5.76E-1 4.92E-1 3.78E-1 3.31E-1

vr 1.0 0.5 1.5 1.8 1.7 0.8 1.0 1.7 2.3

µ̂ 1.758 1.689 1.752 1.837 1.855 1.742 1.796 1.840 1.818
64 σ̂ 3.38E-1 4.61E-1 2.98E-1 1.48E-1 2.05E-1 2.56E-1 2.20E-1 1.82E-1 1.72E-1

vr 1.0 0.5 1.3 5.2 2.7 1.7 2.4 3.4 3.9

µ̂ 1.839 1.803 1.846 1.905 1.875 1.888 1.890 1.883 1.889
128 σ̂ 2.08E-1 2.93E-1 1.74E-1 7.73E-2 1.20E-1 1.06E-1 1.22E-1 1.16E-1 9.43E-2

vr 1.0 0.5 1.4 7.3 3.0 3.9 2.9 3.2 4.9

µ̂ 1.876 1.820 1.887 1.911 1.906 1.904 1.909 1.916 1.913
256 σ̂ 1.53E-1 2.22E-1 1.15E-1 5.78E-2 6.93E-2 5.78E-2 6.33E-2 6.19E-2 5.52E-2

vr 1.0 0.5 1.8 7.1 4.9 7.1 5.9 6.1 7.7

µ̂ 1.908 1.877 1.899 1.921 1.920 1.909 1.916 1.914 1.914
512 σ̂ 1.04E-1 1.38E-1 8.48E-2 2.15E-2 3.45E-2 4.48E-2 3.75E-2 3.53E-2 2.84E-2

vr 1.0 0.6 1.5 23.5 9.1 5.4 7.8 8.7 13.5

µ̂ 1.911 1.902 1.917 1.920 1.920 1.920 1.921 1.923 1.922
1024 σ̂ 7.09E-2 1.02E-1 5.87E-2 1.24E-2 1.81E-2 2.10E-2 1.97E-2 1.89E-2 1.67E-2

vr 1.0 0.5 1.5 32.7 15.3 11.4 12.9 14.0 18.1

µ̂ 1.920 1.906 1.920 1.922 1.921 1.921 1.923 1.922 1.922
2048 σ̂ 4.98E-2 7.02E-2 4.15E-2 8.17E-3 8.87E-3 1.32E-2 1.01E-2 1.02E-2 9.34E-3

vr 1.0 0.5 1.4 37.1 31.5 14.2 24.1 23.8 28.4

µ̂ 1.914 1.917 1.920 1.922 1.922 1.922 1.922 1.922 1.922
4096 σ̂ 3.29E-2 5.25E-2 2.89E-2 3.65E-3 4.69E-3 6.97E-3 5.29E-3 6.43E-3 5.90E-3

vr 1.0 0.4 1.3 80.9 49.0 22.2 38.6 26.1 31.1

µ̂ 1.919 1.921 1.923 1.922 1.922 1.922 1.922 1.922 1.922
8192 σ̂ 2.61E-2 3.57E-2 2.02E-2 3.33E-3 3.32E-3 3.55E-3 2.83E-3 3.59E-3 2.94E-3

vr 1.0 0.5 1.7 61.4 61.7 54.1 85.3 52.8 78.8

µ̂ 1.922 1.920 1.923 1.922 1.922 1.922 1.922 1.922 1.922
16384 σ̂ 1.79E-2 2.46E-2 1.42E-2 1.49E-3 1.37E-3 1.84E-3 1.53E-3 1.18E-3 1.78E-3

vr 1.0 0.5 1.6 145 170 94.5 137 229 101

4.1.2 Utility maximization

Consider the problem

maximize
x∈Rn

EP 0
u (r · x) (UP )

subject to
n∑

i=1

xi ≤ 1,

x ∈ C.

Here x and C are as in the previous example, u measures the utility from terminal wealth, and the
components of the return vector r are nonnegative random variables with joint distribution P 0.
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In general, (UP ) cannot be solved analytically, so we consider the discretizations

maximize
x∈Rn

ν∑

i=1

pν
i u(rν

i · x) (UP ν)

subject to
n∑

i=1

xi ≤ 1,

x ∈ C.

The same type of problem was analyzed in Pennanen and Koivu (2003), so we can use their
Proposition to show the epi-convergence of (UP ν) to (UP ).

Proposition 11 (Pennanen and Koivu (2003)) Assume suppP 0 ⊂ Rn
+, u is continuous and

bounded on R+, C is closed and contained in Rn
+ (short selling is not allowed) and that the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ Rn
+. Then the optimal values of (UP ν) converge to

that of (UP ) and the cluster points of the solutions of (UP ν) are solutions of (UP ).

In the test, the number of assets n = 10, r is log-normally distributed, u(w) = − exp(−w) and
C = Rn

+. Table 2 summarizes the test results. AV reduces the bias and variance of the optimal
values significantly compared to MC. Among the RQMC methods LR perform the best, with all the
other quadratures, except Faure sequence, performing almost as well. Since the use of AV reduced
the variance of optimal values considerably, we tested them in combination with LR and Sobol
sequence, see Table 3. The combination of these methods produce the most significant variance
reduction factors compared to MC. Figure 2 displays the sample mean and 90% confidence interval
for the optimal values obtained with LR and MC. Again the variance reduction factors with RQMC
methods increase almost linearly with ν.
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Table 2: Statistics UP ν as a function of ν.

ν MC AV LH LR SOB FAU HAM HAL NIE

µ̂ -298.543 -312.304 -312.014 -312.372 -310.990 -306.122 -308.435 -306.970 -310.261
32 σ̂ 1.94E+1 3.84E+0 7.10E+0 5.18E+0 6.90E+0 1.20E+1 5.89E+0 5.82E+0 5.85E+0

vr 1.0 25.6 7.5 14.0 7.9 2.6 10.8 11.1 11.0

µ̂ -304.718 -313.774 -313.855 -314.307 -313.418 -311.252 -312.172 -311.824 -313.258
64 σ̂ 1.26E+1 2.67E+0 3.55E+0 2.77E+0 3.78E+0 7.26E+0 3.56E+0 3.33E+0 3.13E+0

vr 1.0 22.3 12.6 20.8 11.2 3.0 12.6 14.4 16.3

µ̂ -309.980 -314.782 -314.865 -314.945 -314.853 -314.599 -314.174 -313.945 -314.681
128 σ̂ 9.07E+0 1.72E+0 1.92E+0 1.38E+0 2.02E+0 2.88E+0 1.81E+0 1.69E+0 1.54E+0

vr 1.0 27.7 22.4 43.1 20.2 9.9 25.2 29.0 34.8

µ̂ -312.546 -315.173 -315.171 -315.303 -315.201 -315.295 -315.136 -314.915 -315.236
256 σ̂ 6.78E+0 1.09E+0 1.04E+0 7.66E-1 9.55E-1 1.86E+0 9.40E-1 8.99E-1 8.28E-1

vr 1.0 38.9 42.4 78.4 50.4 13.2 52.0 56.9 67.1

µ̂ -313.600 -315.151 -315.368 -315.448 -315.475 -315.289 -315.350 -315.357 -315.389
512 σ̂ 4.40E+0 9.27E-1 5.33E-1 4.17E-1 4.77E-1 1.23E+0 4.78E-1 4.79E-1 4.07E-1

vr 1.0 22.5 68.1 111 84.9 12.8 84.6 84.2 116

µ̂ -314.658 -315.443 -315.414 -315.489 -315.502 -315.411 -315.440 -315.471 -315.457
1024 σ̂ 3.07E+0 6.18E-1 3.06E-1 2.02E-1 2.60E-1 5.66E-1 2.68E-1 2.44E-1 2.11E-1

vr 1.0 24.7 100 232 139 29.4 131 158 211

µ̂ -314.858 -315.440 -315.465 -315.505 -315.512 -315.473 -315.492 -315.486 -315.498
2048 σ̂ 2.15E+0 4.58E-1 1.74E-1 1.07E-1 1.37E-1 3.07E-1 1.32E-1 1.40E-1 1.10E-1

vr 1.0 22.1 153 404 245 49.0 264 235 381

µ̂ -315.270 -315.475 -315.481 -315.506 -315.506 -315.482 -315.509 -315.498 -315.496
4096 σ̂ 1.70E+0 2.94E-1 1.16E-1 5.89E-2 7.61E-2 1.57E-1 7.60E-2 7.01E-2 6.13E-2

vr 1.0 33.3 216 832 498 118 500 587 767

µ̂ -315.421 -315.483 -315.495 -315.505 -315.502 -315.493 -315.508 -315.503 -315.504
8192 σ̂ 1.23E+0 2.02E-1 6.62E-2 3.16E-2 3.78E-2 9.33E-2 4.05E-2 4.25E-2 3.20E-2

vr 1.0 37.5 348 1527 1062 175 926 844 1482

µ̂ -315.381 -315.495 -315.495 -315.504 -315.505 -315.511 -315.503 -315.506 -315.504
16384 σ̂ 8.07E-1 1.58E-1 4.89E-2 2.00E-2 1.91E-2 4.66E-2 2.08E-2 2.11E-2 1.90E-2

vr 1.0 25.9 272 1630 1791 299 1510 1462 1804

Table 3: Statistics for UP ν as a function of ν, Lattice rule and Sobol with AV.

ν LR+AV SOB+AV ν LR+AV SOB+AV

µ̂ -313.078 -312.744 µ̂ -315.485 -315.488
32 σ̂ 1.61E+0 2.26E+0 1024 σ̂ 1.13E-1 1.33E-1

vr 145 74 vr 737 528

µ̂ -314.278 -314.295 µ̂ -315.498 -315.496
64 σ̂ 1.15E+0 1.31E+0 2048 σ̂ 5.94E-2 7.43E-2

vr 121 93 vr 1312 837

µ̂ -314.962 -315.040 µ̂ -315.499 -315.503
128 σ̂ 5.79E-1 6.35E-1 4096 σ̂ 3.91E-2 4.71E-2

vr 246 204 vr 1886 1304

µ̂ -315.324 -315.317 µ̂ -315.505 -315.507
256 σ̂ 3.16E-1 3.75E-1 8192 σ̂ 2.75E-2 2.45E-2

vr 460 327 vr 2007 2532

µ̂ -315.415 -315.429 µ̂ -315.504 -315.505
512 σ̂ 2.37E-1 2.16E-1 16384 σ̂ 1.41E-2 1.50E-2

vr 343 416 vr 3295 2889
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Figure 2: Mean and 90% confidence interval for the utility maximization problem.

4.1.3 Hedging with contingent claims

Assume that a company’s operating revenue at time t = 0, . . . , T can be expressed as a function
πt(ξ), where ξ = (ξ0, . . . , ξT ) is a stochastic process with joint distribution P 0. The company
wishes to hedge its operating revenue against unfavorable outcomes of ξ using contingent claims
with pay-outs Ft(ξ). Let θ+ = (θ1, . . . , θJ) and θ− = (θ1, . . . , θJ) denote the amounts of contingent
claims bought and sold with prices Pa and Pb, respectively, at time t = 0. The company faces the
hedging problem

maximize
θ+,θ−

EP 0

[
u (π0(ξ0)− tca · θ+ − tcb · θ−) +

T∑

t=1

u (πt(ξ) + Ft(ξ) · (θ+ − θ−))

]
(HP )

subject to Pa · θ+ − Pb · θ− ≤ π0(ξ0)
θ+, θ− ≥ 0,

where u is a utility function, π0(ξ0) is fixed and tca and tcb denote the transaction costs of bought
and sold assets, respectively. Since (HP ) is impossible to solve analytically we consider the dis-
cretizations

maximize
θ+,θ−

ν∑

i=1

pν
i

[
u (π0(ξ0)− tca · θ+ − tcb · θ−) +

T∑

t=1

u (πt(ξν
i ) + Ft(ξν

i ) · (θ+ − θ−))

]
(HP ν)

subject to Pa · θ+ − Pb · θ− ≤ π0(ξ0)
θ+, θ− ≥ 0.
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Proposition 12 Assume that u is continuous and concave, the first moments of the random vari-
ables πt(ξ) and Ft(ξ) exist and

P ν =
ν∑

i=1

pν
i δ(ξν

t,i)
T

t=1

is a sequence of empirical measures. Then with probability one the optimal values of (HP ν) converge
to that of (HP ) and the cluster points of the solutions of (HP ν) are solutions of (HP ).

Proof. This can be written as (SP ) with x = (θ+, θ−) and

f(x, ξ) = −u (π0(ξ0)− tca · θ+ − tcb · θ−)−
T∑

t=1

u (πt(ξ) + Ft(ξ) · (θ+ − θ−)) + δC′(θ+, θ−),

where C ′ =
{
(θ+, θ−) ∈ Rn

+ | Pa · θ+ − Pb · θ− ≤ π0(ξ0)
}
. By Theorem 1 it suffices to verify the

conditions of Theorem 2. Since u is continuous and πt(ξ) and Ft(ξ) are measurable f is measurable
and lsc in x. To verify condition 2 let (x0, ξ0) be such that f(x0, ξ0) < ∞. By convexity of −u we
have

f(x, ξ) ≥ f(x0, ξ0) + γ0
0

(
tca · (θ0

+ − θ+) + tcb · (θ0
− − θ−)

)
+

T∑

t=1

γ0
t (πt(ξ) + Ft(ξ) · (θ+ − θ−)−

π(ξ0)− Ft(ξ0) · (θ0
+ − θ0

−)),

where γ0
t denote subgradients of −u. Using the Cauchy-Schwarz inequality we get that for any

bounded N 3 x0

f(x, ξ) ≥ ψ0 − γ0
0 (tca · θ+ + tcb · θ−) +

T∑

t=1

γ0
t (πt(ξ) + Ft(ξ) · (θ+ − θ−)) ≥

a +
T∑

t=1

γ0
t πt(ξ) + b

T∑

t=1

|Ft(ξ)|,∀x ∈ N,

where a and b are constants. Since it was assumed that the first moments of the random variables
πt(ξ) and Ft(ξ) exist condition 2 is satisfied. ¤

By assuming that πt(ξ) and Ft(ξ) are almost everywhere continuous and bounded, the conditions
of Theorem 3 would be satisfied and we would obtain epi-convergence for RQMC methods. However,
it is interesting to study the behavior of RQMC methods in this problem numerically. In the
test u(w) = − exp(−w), T = 12, ξ0 is deterministic and ξt is a three dimensional log-normally
distributed random variable, which means that the dimension of the probability space, d = 36.
The stochastic factors affecting the company’s operating revenue are the Euro-U.S. dollar (USD),
Norwegian krone-USD exchange rates and the USD price of zinc. The set of contingent claims
consists of zero coupon bonds and futures contracts for the underlying stochastic factors, with
maturities 1, 2, . . . , T months.

The results are displayed in Table 4. The use of AV increased the variance of optimal values
compared to MC, because the profit function πt(ξ) is not a monotonically increasing function of the
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random variables, these results are not reported. The results for Niederreiter sequence are missing,
because in our implementation of the sequence the maximum dimension for the probability space
is 12. Again RQMC methods, except Faure sequence, clearly beat MC and LR seem to perform
slightly better than the other RQMC methods. In this problem Faure sequence performs poorly
and even loses to MC for low values of ν. Latin hypercube sampling substantially improves the
performance over MC. Compared to LH, LR and Sobol sequence produce more accurate estimates
for optimal values, for all values of ν. Figure 3 displays the sample mean and 90% confidence interval
for the optimal values obtained with LR and MC, which also shows that LR clearly outperform
MC. The sample means of optimal values seem to converge toward a common value with all the
methods, even though we were able to proof the epi-convergence only for MC.

Table 4: Statistics for HP as a function of ν.

ν MC LH LR SOB FAU HAM HAL

µ̂ -210.165 -214.596 -216.088 -215.000 -202.903 -205.388 -203.808
32 σ̂ 1.77E+1 8.87E+0 6.69E+0 8.17E+0 2.09E+1 1.26E+1 1.31E+1

vr 1.0 4.0 7.0 4.7 0.7 2.0 1.8

µ̂ -213.241 -216.771 -217.430 -217.106 -207.698 -215.237 -215.076
64 σ̂ 1.22E+1 4.69E+0 3.87E+0 3.82E+0 1.71E+1 5.11E+0 5.04E+0

vr 1.0 6.8 10.0 10.2 0.5 5.7 5.9

µ̂ -216.275 -217.842 -218.051 -217.945 -211.040 -217.492 -217.844
128 σ̂ 7.35E+0 3.04E+0 2.38E+0 2.57E+0 1.42E+1 2.52E+0 3.10E+0

vr 1.0 5.8 9.6 8.2 0.3 8.5 5.6

µ̂ -217.459 -218.298 -218.332 -218.198 -211.715 -218.202 -218.196
256 σ̂ 5.28E+0 1.90E+0 1.19E+0 1.43E+0 1.16E+1 1.53E+0 1.47E+0

vr 1.0 7.8 19.7 13.6 0.2 11.8 12.9

µ̂ -218.143 -218.461 -218.482 -218.433 -215.089 -218.372 -218.398
512 σ̂ 4.06E+0 1.15E+0 8.14E-1 7.79E-1 7.46E+0 8.59E-1 9.04E-1

vr 1.0 12.5 25 27.2 0.3 22.4 20.2

µ̂ -218.101 -218.402 -218.496 -218.455 -218.264 -218.455 -218.423
1024 σ̂ 2.60E+0 7.59E-1 4.42E-1 5.01E-1 2.19E+0 4.79E-1 5.77E-1

vr 1.0 11.8 35 27 1.4 30 20

µ̂ -218.272 -218.484 -218.505 -218.494 -218.212 -218.490 -218.501
2048 σ̂ 1.76E+0 4.81E-1 2.79E-1 2.82E-1 1.51E+0 2.98E-1 3.06E-1

vr 1.0 13.4 40 39 1.4 35 33

µ̂ -218.535 -218.484 -218.513 -218.496 -218.419 -218.512 -218.516
4096 σ̂ 1.41E+0 3.80E-1 1.26E-1 1.59E-1 6.31E-1 1.70E-1 1.86E-1

vr 1.0 13.8 125 79 5 69 58

µ̂ -218.553 -218.504 -218.508 -218.507 -218.450 -218.507 -218.509
8192 σ̂ 9.54E-1 2.46E-1 8.34E-2 8.79E-2 5.60E-1 8.89E-2 1.01E-1

vr 1.0 15.1 131 118 3 115 90

µ̂ -218.455 -218.505 -218.514 -218.510 -218.489 -218.508 -218.511
16384 σ̂ 6.72E-1 1.70E-1 6.63E-2 5.29E-2 4.84E-1 5.26E-2 6.27E-2

vr 1.0 15.6 103 161 2 164 115

4.2 Problems with implicit constraints

In the remaining examples, the feasible regions depend on the probability measure. These problems
do not fit the frameworks of Lucchetti and Wets (1993), Artstein and Wets (1994), Zervos (1999)
or Shapiro (2000).
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Figure 3: Mean and 90% confidence interval for the hedging problem.

4.2.1 Super-replication of contingent claims

Consider the problem

minimize
V,θ

V (PP )

subject to S0 · θ ≤ V,

S · θ ≥ F, P 0-a.s.

θ ∈ C,

where V is the wealth invested in a portfolio θ = (θ1, . . . , θJ) of assets that have prices S0 =
(S1

0 , . . . , SJ
0 ) at the beginning and S = (S1, . . . , SJ) at the end of a holding period and F is a cash-

flow at the end of the holding period. S and F are random variables with joint distribution P 0.
(PP ) is a semi-infinite linear programming problem and, in general, impossible to solve analytically.
Replacing P 0 by a discrete measure P ν =

∑ν
i=1 pν

i δ(Sν
i ,F ν

i ) with pν
i > 0, for all i = 1, . . . ν yields

minimize
V,θ

V (PP ν)

subject to S0 · θ ≤ V,

Sν
i · θ ≥ F ν

i , i = 1, . . . , ν,

θ ∈ C,

which is an LP problem for which many solvers are available.

Proposition 13 (Pennanen and Koivu (2003)) Assume that the points {(Sν
i , F ν

i )}ν
i=1 are all

contained in suppP 0 and that for some {pν
i }ν

i=1, ν = 0, 1, 2, . . ., with pν
i > 0, for all i = 1, . . . ν, the

measures

P ν =
ν∑

i=1

pν
i δ(Sν

i ,F ν
i )

converge weakly to P 0. If the feasible set is bounded, then the optimal values of (PP ν) converge to
that of (PP ) and the cluster points of the solutions of (PP ν) are solutions of (PP ).
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In our test, the set of assets consists of cash, SP500 index and 28 European call and put options
on the index with maturity of 17 calendar days. The value of S is fully determined by the value
of the index at the maturity which is assumed to be log-normally distributed. The cash-flow F is
taken to be that of a call option with the same maturity but different strike than any other call
included in S.

Since the random variable in this problem is one dimensional all the QMC methods produce
identical discretizations. As a result we consider discretizations only with LR, AV and MC. Table
5 displays the test results. The use of AV does not improve the performance over MC. Lattice
rules reduce the variance of optimal values considerably and with 256 scenarios the optimal values
have converged. Figure 4 displays the average and 90% confidence interval for optimum values of
(PP ν) obtained with LR and MC, for each value of ν = 2i, i = 5, 6, . . . , 9. With LR the confidence
interval is much tighter and the optimal value converges faster than with MC.

Table 5: Statistics for PP as a function of ν.

ν MC AV LR

µ̂ 19,598 17,320 28,417
32 σ̂ 1,71E+1 2,37E+1 2,25E+0

vr 1,0 0,5 57,4

µ̂ 27,072 26,739 29,682
64 σ̂ 6,27E+0 6,87E+0 1,74E+0

vr 1,0 0,8 13,0

µ̂ 29,844 30,261 31,287
128 σ̂ 3,18E+0 2,12E+0 9,05E-1

vr 1,0 2,2 12,3

µ̂ 31,194 31,177 32,004
256 σ̂ 1,39E+0 1,37E+0 0,00E+0

vr 1,0 1,0 ∞
µ̂ 31,786 31,841 32,004

512 σ̂ 7,44E-1 6,00E-1 0,00E+0
vr 1,0 1,5 ∞
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Figure 4: Mean and 90% confidence interval for the hedging problem.
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4.2.2 Utility maximization with wealth constraint

Consider the following problem

maximize
x∈Rn

EP 0
u (r · x) (WP )

subject to

n∑

i=1

xi ≤ 1,

x ∈ C

r · x ≥ 0, P 0-a.s.

This problem is a modification of the utility maximization problem of Section 4.1.2. Here C ⊂ Rn,
so short selling is allowed but we have added a constraint, which requires the final wealth to be
almost surely non-negative. Here we are interested in studying how the short selling affects the
behavior of the optimal values and solutions. The function u measures the utility from terminal
wealth and the components of the return vector r are random variables with joint distribution P 0.
Discretization of (WP ) yields

maximize
x∈Rn

ν∑

i=1

pν
i u(rν

i · x) (WP ν)

subject to

n∑

i=1

xi ≤ 1,

x ∈ C,

rν
i · x ≥ 0, i = 1, . . . , ν.

Proposition 14 Assume u is continuous, nondecreasing and bounded on R+, C is closed and that
the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ suppP 0. Then the optimal values of (WP ν) converge
to that of (WP ) and the cluster points of the solutions of (WP ν) are solutions of (WP ).

Proof. This fits the format of (SP ) with Ξ = suppP 0, ξ = r, and

f(x, r) = −u(r · x) + δC1(x) + δC2(x, r),

where

C1 =

{
x ∈ C

∣∣∣∣∣
n∑

i=1

xi ≤ 1

}

and
C2 = {(x, r) | r · x ≥ 0} .
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We need to verify the conditions of Theorem 3. Since u is continuous, C1 and C2 are closed, f
is lsc. Condition 1 follows from the fact that u is nondecreasing and bounded on R+. To verify
condition 2 note that for each x ∈ domEP f by continuity of the inner product the requirement
r · x ≥ 0, P 0-a.s. is equivalent to r · x ≥ 0, ∀ r ∈ suppP 0. Since suppP ν ⊂ suppP 0 Condition 2
follows from the boundedness and continuity of u on R+. ¤

In the test supp r = Rn
+, which together with the wealth constraint implies that, domEP f is

Rn
+, so this problem differs from the utility maximization problem of Section 4.1.2 only in finite

samples. The numerical test results are presented in Tables 6 and 7. The results are similar to those
of Section 4.1.2. The use of antithetic variates reduces the variance considerably. When no other
variance reduction technique is used, LR, Sobol and Niederreiter sequences perform the best and
they reduce the variance by a factor as large as 2000. The combination of AV with LR and Sobol
sequence are again the most efficient techniques; see Table 7. As expected, the sample average of
optimal values converges to the same value as in the utility maximization problem of Section 4.1.2.
Expected value and 90% confidence interval for the optimal values obtained with LR and MC are
shown in Figure 5. In this problem, LR reduce the sample bias by a large factor and produce very
thight confidence intervals for the optimal value. We characterize the infeasibility of the optimal
solutions with implicit constraints by the amount of short selling in each discretized problem. The
sample mean and 90% confidence interval for the maximum amount of short selling in the optimal
portfolios for LR and MC are shown in Figure 6. With LR the minimum investment proportion
converges towards zero much faster than with MC.
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Table 6: Statistics for (WP ν) as a function of ν.

ν MC AV LH LR SOB FAU HAM HAL NIE

µ̂ -249.881 -305.066 -306.359 -308.130 -305.050 -283.060 -290.676 -289.656 -302.463
32 σ̂ 4.64E+1 8.81E+0 9.47E+0 7.56E+0 9.20E+0 2.55E+1 2.05E+1 1.97E+1 1.01E+1

vr 1.0 27.7 24.0 37.6 25.5 3.3 5.1 5.6 21.1

µ̂ -289.891 -312.191 -312.484 -313.656 -312.167 -306.806 -308.114 -307.586 -311.766
64 σ̂ 1.84E+1 3.63E+0 4.08E+0 2.99E+0 4.10E+0 8.74E+0 5.80E+0 5.23E+0 3.74E+0

vr 1.0 25.7 20.3 37.8 20.1 4.4 10.0 12.3 24.1

µ̂ -304.675 -314.157 -314.529 -314.818 -314.600 -314.295 -312.871 -312.464 -314.280
128 σ̂ 1.13E+1 2.03E+0 2.05E+0 1.60E+0 2.09E+0 2.95E+0 2.50E+0 2.46E+0 1.68E+0

vr 1.0 31.1 30.2 50.0 29.1 14.6 20.4 21.1 45.0

µ̂ -310.518 -314.955 -315.057 -315.253 -315.143 -315.198 -314.895 -314.597 -315.161
256 σ̂ 7.25E+0 1.20E+0 1.08E+0 7.77E-1 9.65E-1 1.88E+0 1.03E+0 1.03E+0 8.51E-1

vr 1.0 36.7 44.8 86.9 56.4 14.8 49.6 49.2 72.5

µ̂ -312.667 -315.069 -315.333 -315.435 -315.462 -315.238 -315.311 -315.278 -315.373
512 σ̂ 4.62E+0 9.56E-1 5.44E-1 4.20E-1 4.80E-1 1.23E+0 4.93E-1 5.06E-1 4.12E-1

vr 1.0 23.4 72.2 121 92.6 14.1 87.7 83.5 126

µ̂ -314.353 -315.408 -315.401 -315.486 -315.498 -315.400 -315.425 -315.455 -315.452
1024 σ̂ 3.13E+0 6.34E-1 3.12E-1 2.02E-1 2.60E-1 5.67E-1 2.74E-1 2.53E-1 2.12E-1

vr 1.0 24.3 101 239 144 30.4 130 153 217

µ̂ -314.729 -315.424 -315.459 -315.504 -315.511 -315.470 -315.489 -315.480 -315.496
2048 σ̂ 2.18E+0 4.66E-1 1.77E-1 1.07E-1 1.38E-1 3.07E-1 1.34E-1 1.43E-1 1.11E-1

vr 1.0 21.9 152 412 250 50.4 266 233 389

µ̂ -315.208 -315.469 -315.479 -315.505 -315.505 -315.481 -315.508 -315.497 -315.502
4096 σ̂ 1.71E+0 2.96E-1 1.17E-1 5.93E-2 7.62E-2 1.57E-1 7.65E-2 7.08E-2 5.69E-2

vr 1.0 33.5 214 835 505 119 500 584 905

µ̂ -315.394 -315.480 -315.494 -315.502 -315.501 -315.492 -315.507 -315.502 -315.503
8192 σ̂ 1.23E+0 2.02E-1 6.66E-2 3.17E-2 3.80E-2 9.34E-2 4.09E-2 4.28E-2 3.24E-2

vr 1.0 37.3 344 1512 1057 175 912 833 1454

µ̂ -315.492 -315.494 -315.495 -315.506 -315.505 -315.511 -315.503 -315.506 -315.506
16384 σ̂ 8.68E-1 1.59E-1 4.93E-2 1.95E-2 1.91E-2 4.67E-2 2.09E-2 2.12E-2 1.89E-2

vr 1.0 29.9 310 1991 2066 346 1733 1673 2103

Table 7: Statistics for (WP ν) as a function of ν, Lattice rule and Sobol with AV.

ν LR+AV SOB+AV ν LR+AV SOB+AV

µ̂ -305.578 -306.069 µ̂ -315.452 -315.482
32 σ̂ 8.92E+0 7.35E+0 1024 σ̂ 1.39E-1 1.37E-1

vr 27 40 vr 510 518

µ̂ -312.915 -313.070 µ̂ -315.496 -315.494
64 σ̂ 2.82E+0 2.12E+0 2048 σ̂ 5.46E-2 7.54E-2

vr 42 75 vr 1597 837

µ̂ -314.719 -314.737 µ̂ -315.498 -315.502
128 σ̂ 7.23E-1 7.99E-1 4096 σ̂ 3.95E-2 4.78E-2

vr 244 200 vr 1876 1285

µ̂ -315.192 -315.211 µ̂ -315.505 -315.506
256 σ̂ 4.17E-1 4.50E-1 8192 σ̂ 2.66E-2 2.47E-2

vr 302 259 vr 2156 2489

µ̂ -315.366 -315.405 µ̂ -315.505 -315.504
512 σ̂ 2.49E-1 2.30E-1 16384 σ̂ 1.36E-2 1.67E-2

vr 344 404 vr 4096 2719
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Figure 5: Mean and 90% confidence interval for the optimal value in utility maximization problem
with implicit constraints.
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Figure 6: Mean and 90% confidence interval for infeasibility min
i

xi.
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H. Faure. Discrépance de suites associées à un système de numération (en dimension s). Acta
Arith., 41(4):337–351, 1982.

B. L. Fox. Algorithm 647: Implementation and relative efficiency of quasirandom sequence gener-
ators. ACM Transactions on Mathematical Software, 12(4):362–376, 1986.

I. Friedel and A. Keller. Fast generation of randomized low discrepancy point sets. In K.-T. Fang,
F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 257–273. Springer Verlag, 2002.

J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numer. Math., 2:84–90, 1960.

J. M. Hammersley. Monte Carlo methods for solving multivariable problems. Ann. New York Acad.
Sci., 86:844–874 (1960), 1960.

J. L. Higle. Variance reduction and objective function evaluation in stochastic linear programs.
Journal on Computing, 10:236–247, 1998.

G. Infanger. Monte Carlo (importance) sampling within a Benders decomposition algorithm for
stochastic linear programs. Ann. Oper. Res., 39:69–95, 1992.
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