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Abstract

Multi-period guarantees are often embedded in life insurance con-
tracts. In this paper we consider the problem of hedging these multi-
period guarantees in the presence of transaction costs. We derive the
hedging strategies for the cheapest hedge portfolio for a multi-period
guarantee that with certainty makes the insurance company able to
meet the obligations from the insurance policies it has issued. We find
that by imposing transaction costs, the insurance company reduces
the rebalancing of the hedge portfolio. The cost of establishing the
hedge portfolio also increases as the transaction cost increases. For
the multi-period guarantee there is a rather large rebalancing of the
hedge portfolio as we go from one period to the next. By introducing
transaction costs we find the size of this rebalancing to be reduced.
Transaction costs may therefore be one possible explanation for why
we do not see the insurance companies performing a large rebalancing
of their investment portfolio at the end of each year.

Keywords and phrases: multi-period guarantee, optimal hedging
strategies, transaction costs, stochastic programming.
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1 Introduction

A life insurance company is mainly exposed to two types of risks; mortality
risk and financial risk. Mortality risk is the risk that a policyholder lives
longer or dies earlier than what is expected. This is a risk that can, by the
law of large numbers, be diversified away by issuing many similar policies.
The premiums collected by a life insurance company are typically invested
in the financial market. A typical investment portfolio for an insurance
company consists of bonds, stocks, and in some cases also real estate. The
return on a life insurance policy is often a function of the return on the
insurer’s investment portfolio. Since many policies have a minimum guaran-
teed rate of return included, the uncertain return on the investment portfolio
exposes the insurers to financial risk. In contrast to mortality risk, financial
risk increases in the number of policies issued. Thus, the financial risk is
undiversifiable.

To reduce the probability of bankruptcy, the financial risk should be
integrated in the company’s overall risk management systems. In particular,
the company should have a solid knowledge about how to hedge the financial
risk inherent in the minimum rate of return guarantees.

Abstracting from mortality risk, a life insurance policy is basically a
financial derivative that is written (on the return) on the life insurance com-
pany’s investment portfolio. In a complete market, all financial derivatives
can be replicated by self-financing trading strategies, the market value of
the life insurance contract included. In the absence of arbitrage, it is clear
that the market value of the insurance policy has to equal the initial cost of
the replicating portfolio.

In this paper we focus on the hedging or replication of a policy with a
so-called multi-period guarantee embedded.1 In some countries the return
on a life insurance contract is subject to an annual minimum guaranteed rate
of return. For instance, if the annual minimum guaranteed rate of return is
4%, and the return on the insurance company’s investment portfolio in year
one and two are −10% and 15%, respectively, the return on and the cash
flow from the insurance policy develop as in Figure 1 (assuming one unit of
account is invested with the guarantee embedded):

The multi-period guarantee has a sort of “ratcheting-effect”, i.e., any
good return in earlier periods will not be lost in a period with a “low” return
on the investment portfolio. It turns out that this type of guarantee is rather
expensive and exposes the life insurance companies to a considerable amount
of financial risk. The “delta” of the guarantee can be rather large and can
be much larger than one. It is therefore important that the issuers of such
guarantees are aware of how to hedge them.

1Sometimes we refer to the insurance policy with a guarantee embedded as simply the
guarantee.
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Figure 1: The figure shows the return on and the cash flow from the insur-
ance policy when one unit of account is invested in the insurer’s investment
portfolio and a two-period guarantee is embedded.

The hedging strategy for the multi-period guarantee distinguishes it self
quite a bit from the hedging strategy for, say, a standard call option. From
the Black and Scholes (1973) analysis we know that the hedging strategy
for a call option is a portfolio of the underlying stock and the risk free
asset. The exact holdings of the two assets are given by Ito processes with
continuous trajectories over the life time of the option. This is not the case
for the strategy for the multi-period guarantee. This strategy experiences a
discontinuity, or jump, as one goes from one period to the next. I.e., there is
either a significant sell-off of the investment portfolio or the risk free asset,
this depending on whether the guarantee is binding or not. Of course, since
the replicating portfolio is self-financing, a sell-off of the risk free asset leads
to an increased holding of the investment portfolio, and vice versa.

In practice, one does not observe the insurance companies performing
such a major rebalancing of their balance sheet at the end of each year.
There can be several reasons for this. One is that the policies they have
issued are more complex than the one described above; another is that they
do not create a perfect hedge for the guarantees they have issued. A third
explanation, which is the one we investigate in this paper, is the presence
of transaction costs. It is reasonable to expect that the volume of trading
will diminish as the cost of trading increases. In particular, the focus in this
paper is on the impact transaction costs have on the large rebalancing that
is undertaken as we go from one period to the next.

The paper is organized as follows: In section 2 we present assumptions
underlying our economic model and the insurance policy. In section 3 we
review results regarding the hedging of the multi-period guarantee in the
absence of transaction costs. In section 4 we analyze the hedging strategies
in the presence of transaction costs. Section 5 concludes.
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2 The Economic Model and the Insurance Policy

As argued in section 1, mortality risk can be diversified by issuing many
similar policies. We therefore abstract from this type of risk and instead
concentrate on financial risk.

We assume a very simple model for the financial market. Only two
“assets” are considered; the insurance company’s investment portfolio and a
risk free asset. We assume that a binomial process gives the portfolio value.
The market value of the investment portfolio is Si in node i. In node i + 1,
the portfolio value has either increased to

Si+1 = Siu (1)

or decreased to

Si+1 = Sid, (2)

where

d =
1
u

, (3)

see e.g., Cox, Ross, and Rubinstein (1979). This is also illustrated in Figure 2
(here S0 is abbreviated to S). Let σ be the instantaneous standard deviation
of the return on the investment portfolio in a continuous time model and let
∆t be the time interval between node i and i + 1. We then define the factor
u as

u = eσ
√

∆t.

The risk free asset is a bank account accruing the constant short term
interest rate r = ln R, from one node to the next, thus

Bi+1 = BiR, (4)

where B0 = 1.
For simplicity we assume the company only has issued one contract. The

contract lasts for two periods (each will typically be of one year). Let I be
an even number. We divide each period into I/2 time steps, i.e., node I/2
is the end of the first period (also the beginning of the second period), while
node I is the last node in the second period. Let i be the number of up-
moves in the first period and j the number of up-moves in the second period.
The return on the investment portfolio in the first period is then defined as

δ1 = uidI/2−i − 1 (5)

and for the second period

δ2 = ujdI/2−j − 1. (6)
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Figure 2: Illustration of the development in the value of the investment
portfolio for four time steps.

In each period the policyholder is guaranteed a minimum rate of return
equal to g. This is known as a multi-period guarantee, or in this case
a two-period guarantee. There are several interpretations of this type of
guarantee, but we choose the same interpretation as in e.g., Miltersen and
Persson (1999), i.e., the contract with the two-period guarantee embedded
has a terminal cash-flow at the end of the second period of (i.e., in node I)

π2 = max(∆1, G) ·max(∆2, G), (7)

where ∆i = 1 + δi, i ∈ {1, 2}, and G = 1 + g. To emphasize the fact that
the policy has a guarantee embedded, we will throughout denote the policy
the guarantee.

As is evident from (7), the multi-period guarantee is a path dependent
derivative asset. The terminal payoff is dependent on the return on the
investment portfolio in the different periods. This is illustrated in Figure
3 for the two-period guarantee when the investment portfolio evolves as in
Figure 2 and each period is of two time steps.

In a real world financial market, the trading of financial assets comes at a
cost. Stockbrokers and other financial intermediaries charge their customers
a fee when selling and buying financial assets. For simplicity we assume
that there is only a cost associated with trading the investment portfolio,
not the risk free asset. As will become clear later, to hedge the guarantee,
the company has to construct a hedge portfolio consisting of the investment
portfolio and the risk free asset. The proceedings from a sale of part of the
investment portfolio, net of transaction costs, will be invested in the risk free
asset and cash needed to increase the holding in the investment portfolio will
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Figure 3: Illustration of the gross return on the two-period guarantee given
the development in the value of the investment portfolio in Figure 2. (a∨b) =
max(a, b).

have to be raised by a reduction in the holding of the risk free asset. No
infusion or withdrawal of cash from the hedge portfolio is allowed for.

Let ai−1 be the number of units of the investment portfolio in the hedge
portfolio that we “arrive” in node i with, and ai the number we “leave”
with. The corresponding quantities for the risk free asset are given by bi−1

and bi, respectively. Total transaction cost in node i is given by

Ci = |ai − ai−1|Sic,

for some parameter 0 ≤ c < 1. Here c represents a proportional transaction
cost. Thus, there are no fixed costs associated with rebalancing the hedge
portfolio.

3 Hedging with zero Transaction Costs

The motivation for this paper is partially an observation in Lindset (2003).
It is there observed, although in a continuous time setting, that there is a
large rebalancing of the hedge portfolio as we go from one period to the
next. This discontinuity is illustrated in Figure 4.

In the case of zero transaction costs, it is straightforward to create a
perfect hedge of the guarantee. Let f(u) be the value of the guarantee in
case the investment portfolio has had an up-move from node i to i + 1 and
f(d) for a down-move. We then need a hedging strategy satisfying equations
(8) and (9)

aiSiu + biBiR = f(u) (8)
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Figure 4: Illustration of the discontinuity in the replicating portfolio (for a
continuous time model) as we go from the first to the second period.

and

aiSid + biBiR = f(d). (9)

The solution to these two equations is

ai =
f(u)− f(d)
Si(u− d)

(10)

and

bi =
f(d)− (f(u)−f(d))d

u−d

BiR
. (11)

Consider the situation where the investment portfolio has been perform-
ing badly in most of the first period, and any up-movements cannot prohibit
the guarantee from becoming binding in the first period. This implies that2

f(u)− f(d) = 0, thus,

ai = 0 and bi =
f(d)
BiR

.

Similarly, if the investment portfolio has been performing well and any
down-movements cannot make the guarantee become binding in the first
period, we have that f(u)− f(d) = Si(u− d)θ, thus,

ai = θ and bi = 0.

2This follows since the terminal payoff at time t2 (i.e., in node I) is the same both if
the investment portfolio moves up or down.
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Here θ is the time 1 market value of a guarantee with time 2 payoff πm
2 =

max(∆2, G). This basically follows since ∆1 and ∆2 are statistically inde-
pendent.

However, in the beginning of the second period, both ai and bi will be
strictly positive if we exclude contract specifications where G > uI/2 (the
guarantee is always binding) or G < dI/2 (the guarantee is never binding).
We therefore conclude that there will also be a “large” change in the hedge
portfolio as we go from the last node in the first period to the beginning of
the second period.

4 Hedging with Transaction Costs

In this section we want to analyze the situation where we have a propor-
tional transaction cost. It is reasonable to assume that it is more costly to
rebalance the investment portfolio than it is to buy or sell the risk free asset.
The costs may be both direct and indirect. The direct costs are such as com-
mission fees to brokers and so on. For an insurance company with a large
investment portfolio, the rebalancing of the investment portfolio may also
have an influence on the liquidity in the market and represent an indirect
cost. The total transaction cost may therefore be rather large.

That no transaction costs are imposed on selling or buying the risk free
asset can also be justified by the fact that, for instance, any proceedings from
selling parts of the investment portfolio, net of transaction costs, is used to
buy the risk free asset. Therefore, c can be interpreted as also incorporating
the costs associated with buying or selling the risk free asset. Also, as
pointed out by Boyle and Vorst (1992), including transaction costs on the
trading of the risk-free asset, “...the model becomes much more complicated
without providing new insight.”

By imposing this transaction cost on the rebalancing of the hedge port-
folio, we expect that less trading will take place than with zero transaction
costs. In particular, what we would like to investigate in this paper is if the
heavy rebalancing of the hedge portfolio at the end of the first period is still
present when such a rebalancing is costly. And if so, does an increase in
the cost of trading affect the hedge portfolio, and in particular, the size of
the rebalancing at the end of the first period. When the management of the
insurance company is trying to maximize the profit of the company, the cost
of this rebalancing should be taken into account in their risk management
routines.

From standard corporate finance literature we know that the only goal
that should be pursued by the management is to maximize the value of
the shareholders’ stocks. Insurance companies are also subject to rather
strict regulations. Here we assume that the insurer has to be able to meet
the obligations imposed by the guarantee in every state of the world. The
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insurer does therefore have to create a hedge portfolio that will prevent it
from defaulting on its obligations with certainty.3 To maximize the market
value of the share holders stocks, the management has to minimize the costs
of establishing the hedge portfolio.4

Let H be the set of all possible trading strategies. We take a and b to
be the trading strategy for the investment portfolio and the risk free asset,
respectively.

The insurer’s hedging strategy is the solution to the following optimiza-
tion problem:

min
a,b∈H

(a0S + b0)

subject to

aI−1SI + bI−1BI ≥ fI

aiSi + biBi = ai−1Si + bi−1Bi − Ci, 0 < i < I,

where fI is the final payoff from the guarantee in node I.
Note that it is the portfolio we “arrive” in node I with, i.e., the port-

folio constructed in node I − 1, that has to have a value greater or equal
to the payoff from the guarantee (i.e., the insurance policy). There is no
point in rebalancing this portfolio in node I, since this only would impose
unnecessary transaction costs. The value of the portfolio we “leave” with
in node i must be the same as the value of the portfolio we “arrive” with,
subtracted the cost of rebalancing the hedge portfolio. Also, we have not
included any transaction costs on the creation of the hedge portfolio at time
0 since we assume that the insurance company already is in possession of
the investment portfolio.

4.1 A Strictly Dominating Strategy

If there is a strategy dominating the dynamic hedge portfolio in the sense
that the end value of the strategy is always greater or equal to the payoff
from the guarantee, we say that this is a dominating strategy. If, in addition,
the initial cost of the strategy is less than the cost of the dynamic hedge
portfolio, we say that this strategy is a strictly dominating strategy. For
instance, for a call option with terminal payoff max(ST − X, 0), buying
the stock at the time the option is written is a dominating strategy since
it always gives a greater payoff than the call option (cf. Soner, Shreve,
and Cvitanic (1995)). For a maturity guarantee with payoff max(ST , X), a

3A buffer capital in form of equity would reduce the need for hedging. We do not take
this into account.

4We assume that no funds are added or subtracted from the hedge portfolio between
time zero and the end time (except for the transaction costs), i.e., we assume a “quasi”
self-financing hedge portfolio.
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portfolio consisting of the stock and the present value of X is a dominating
portfolio.

For the two-period guarantee we have that the time 2 payoff is given by

π2 = max(
SI/2

S0
, G) ·max(

SI

SI/2
, G). (12)

This yields the possibility of four different payoffs (these are also illustrated
in Figure 5).

Payoff 1 SI
S0

: This payoff can be replicated by buying 1
S0

units of the
underlying asset at time 0 and holding on to the position until time 2. This
situation corresponds to the case where the guarantee is not binding in any
of the two periods.

Payoff 2 G2: This payoff can be replicated by depositing G2

R2 in the bank
(i.e., buying the risk free asset) at time 0 and holding on to the position
until time 2. This corresponds to the case where the guarantees are binding
in both periods.

Payoff 3 G SI
SI/2

: This payoff can be replicated by depositing G
R in the bank

at time 0 and holding on to the position until time 1. The amount has grown
to G at time 1. We use this money to buy G 1

SI/2
units of the underlying

asset and hold on to the position until time 2. This corresponds to the case
where the guarantee is binding in the first period.

Payoff 4
SI/2

S0
G: This payoff can be replicated by buying 1

S0

G
R units of the

underlying asset at time 0 and holding on to the position until time 1. The
position has grown to SI/2

S0

G
R at time 1. We sell the underlying asset and

deposit the money in the bank and hold on to this position until time 2.
This corresponds to the case where the guarantee is binding in the second
period.

The cost of this strategy for S0 = 1 is (without including transaction
costs for the rebalancing at time 1 for payoff 3 and 4)

πD
0 = 1 +

G2

R2
+

G

R
+

G

R

= (1 +
G

R
)2 ≈ 4. (13)

As we can see, this is a rather expensive strategy. The ratio G
R will typically

not be very far from 1, thus πD
0 ≈ 4. By including transaction costs for the

rebalancing at time 1 for payoff 3 and 4, the strategy becomes even more
expensive.
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Figure 5: The figure illustrates the four different parts of the dominating
hedging strategy for a two-period guarantee. The first two parts are buy-
and-hold strategies, while the last two require a reinvestment after the first
period.

If we find this strategy to be strictly dominating, we would prefer this
strategy over the dynamic hedge since it is cheaper to establish and secures
that the insurer is able to cover the liabilities imposed by the guarantee with
certainty.

4.2 Example of two Replicating Strategies

In Figure 6, 7, 8, and 9 we have illustrated the optimal hedging strategies
for two given realizations of the development in the investment portfolio.
The following parameters are used: r = 0.05, g = e0.04 − 1, σ = 0.20,
and ∆t = 1/30, i.e., each year is divided into 30 time steps. The initial
investment to be subject to the guaranteed return is normalized to one.
Figure 6 and 8 show how the holdings of the investment portfolio changes as
time passes by and the value of the investment portfolio changes. Figure 7
and 9 show the corresponding holdings in the risk free asset. Although not
easy to see from the figures, it appears that less trading takes place when
the transaction cost increases. We can also see that there is a significant
rebalancing in the middle of the figure (i.e., when we go from the first to
the second period).

4.3 Is the “turn-over” in the Hedge Portfolio Reduced when
the Cost Increases?

To what extent is the total rebalancing of the hedge portfolio influenced by
the transaction costs, and do the costs really have an influence on the major
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Figure 6: The number of units of the investment portfolio to include in the
hedge portfolio for a given scenario for different levels of the proportional
transaction cost c.

rebalancing at the end of the first year?
To answer this, we should take into account that some of the paths for

the realization of the value of the investment portfolio may lead to more
rebalancing than other paths. As a proxy for the probability of a given
path or the probability for ending up in a particular node in the tree, we
propose to use the risk neutral up and down probabilities derived in Cox
et al. (1979). They show that the up probability is given by

q =
u−R

u− d
,

and the down probability by 1− q. We use these probabilities to calculate
the expected rebalancing for a given level of the proportional transaction
cost, c. Although this does not represent the real world probabilities, we
think they suffice as a reasonable good approximation when calculating the
effects on the hedge portfolio when introducing transaction costs.

From Table 1 we see that the expected rebalancing of the investment
portfolio decreases when increasing the proportional transaction cost (line
7)). The major rebalancing from period one to two is also expected to
decrease. However, it is not decreasing monotonically; for small transaction
costs, there is actually an increase in the expected rebalancing (line 2)). It
is interesting to notice that for large transaction costs, the expected jump
between period one and two is significantly smaller, as a fraction of the
total expected rebalancing (line 8)), than for lower transaction costs. This
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Figure 7: The number of units of the risk-free asset to include in the hedge
portfolio for a given scenario for different levels of the proportional transac-
tion cost c.

indicates that the hedge portfolio is constructed so as to reduce the expensive
jump. For reasonable transaction costs for a life insurance company, say,
less than 6%, the jump represents a greater fraction of the total expected
rebalancing than for the case with zero transaction costs. For both c = 0.01,
c = 0.02, and c = 0.03, the expected jump is in fact greater than for c =
0.00. This is somewhat surprising and may be an indication that transaction
costs are not the most likely explanation for why insurance companies are
not performing a major rebalancing of their investment portfolio at the
end/beginning of each year.
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Figure 8: The number of units of the investment portfolio to include in the
hedge portfolio for a given scenario for different levels of the proportional
transaction cost c.
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Figure 9: The number of units of the risk-free asset to include in the hedge
portfolio for a given scenario for different levels of the proportional transac-
tion cost c.
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4.4 More Advanced Price Processes

Returns on financial assets in real world financial markets often have heav-
ier tails than normally distributed returns and volatilities are typically not
constant over time. Kozubowski and Rachev (1994) find that the geometric
stable distribution fits empirical returns well. This distribution typically has
heavier tails than the normal distribution. There are also empirical evidence
that volatilites follow stochastic processes (see e.g., Eraker, Johannes, and
Polson (2003)) and that there are periods with high and low volatilities, of-
ten referred to as volatility clustering. Our analysis of the hedging strategy
for the guarantee relies heavily on the assumed stochastic process for the
investment portfolio. With more realistic price processes, e.g. exhibiting
heavy tails and volatility clustering, there are no generally accepted ways
of discretizing the processes into scenario trees. One possible approach is
to use Monte Carlo simulation, and subsequently construct a scenario tree
as in Heitsch and Römisch (2005). We leave the analysis of the hedging
strategies using more advanced price processes for future research.

5 Conclusions

We have in this paper derived optimal hedging strategies for multi-period
guarantees in the presence of transaction costs. We found the cost of estab-
lishing the hedge portfolio to increase as transaction costs increased. We
also found the large rebalancing at the end of a period to decrease as a
function of the transaction cost. Total rebalancing performed over the life-
time of the guarantee was also found to decrease when the transaction cost
increases. However, for very small transaction cost, we actually found the
total rebalancing to increase. This may be an indication that the presence
of transaction costs does not explain, or is not the only explanation, for why
life insurance companies are not performing a major rebalancing of their
investment portfolio at the end of each year.
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