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Abstract

In this paper, we consider optimization problems under probabilistic constraints which are
defined by two-sided inequalities for the underlying normally distributed random vector. As
a main step for an algorithmic solution of such problems, we derive a derivative formula for
(normal) probabilities of rectangles as functions of their lower or upper bounds. This formula
allows to reduce the calculus of such derivatives to the calculus of (normal) probabilities
of rectangles themselves thus generalizing a similar well-known statement for multivariate
normal distribution functions. As an application, we consider a problem from water reservoir
management. One of the outcomes of the problem solution is that the (still frequently
encountered) use of simple individual probabilistic can completely fail. In contrast, the
(more difficult) use of joint probabilistic constraints which heavily depends on the derivative
formula mentioned before yields very reasonable and robust solutions over the whole time
horizon considered.
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1 Introduction

Probabilistic constraints have turned out to be an important tool for modeling optimization
problems with uncertain data (see [7],[8]). Often they are induced from two-sided stochastic in-
equalities bounding a normally distributed random vector by some decision-dependent functions.
More precisely the probabilistic constraint may take the form

P(α(x) ≤ ξ ≤ β(x)) ≥ p

Here, ξ is a random vector having a regular multivariate normal distribution, P denotes the
probability measure, p ∈ (0, 1) is a probability level and x refers to a decision vector. In geometric

∗This work was supported by the OSIRIS Department of Electricité de France R&D and by the DFG Research

Center Matheon “Mathematics for key technologies” in Berlin

1



2 W. Van Ackooij, R. Henrion, A. Möller, R. Zorgati

terms it is required that the probability of some x-dependent rectangle be not smaller than p. In
order to determine an optimal decision x∗ in the context of an optimization problem, one has to
have access to values and derivatives of this probability function. As far as values are concerned,
one may employ numerical algorithms designed for the calculus of normal distribution functions
[9], of normal probabilities of general convex sets [2] or directly of rectangles [3]. However, none
of these algorithms provides gradients of the probability function with respect to changes of the
lower and upper limit of the rectangle. In case of one-sided constraints (i.e. α is missing so
that one is dealing with distribution functions), there is no problem to reduce the computation
of the gradient to that of a value of a distribution function (see Lemma 1 below). Formally,
one could also do so with gradients of two-sided constraints by exploiting a representation of
rectangle probabilities in terms of distribution functions (see (1)) and then taking derivatives
of the latter ones term by term. We note that such representation allowing for reduction of
derivatives to those of distribution functions is available even for general polyhedra [5]. This
approach, however, becomes impractical already in small dimension. For example in the case of
an n-dimensional rectangle, the number of terms in the representation equals 2n. For a general
but difficult to apply derivative formula for probability functions we refer to [10].

The aim of this paper is threefold: first we present a simple formula for the derivative of the
normal probability of rectangles with respect to their lower and upper limits. In particular, this
formula allows to reduce the problem to the same calculus of probabilities of rectangles (in one
dimension less). Consequently, the same algorithm in [3] can be used for computing values and
derivatives of the probability function introduced above. Second, we apply this formula in the
context of a problem from water reservoir management. This problem involves a 64-dimensional
random vector and its solution is based on their joint distribution. Doing so, we demonstrate
that joint probabilistic constraints with two-sided bounds can be successfully treated even in
rather large dimension. Third, it is shown that treating probabilistic constraints individually
- as it is still often done in water management problems in order to drastically simplify the
algorithmic solution - typically fails completely as far as robustness over the whole time horizon
is concerned.

2 A derivative formula for probabilities of rectangles under a

multivariate normal distribution

Let ξ be some n-dimensional random vector having a nondegenerate multivariate normal dis-
tribution with mean vector µ and covariance matrix Σ. We will write ξ ∼ N (µ,Σ) for short.
Denote by

Φξ(z) := P (ξ ≤ z) ∀z ∈ R
n

its cumulative distribution function (with P referring to the underlying probability measure).
We further introduce the rectangle probability function

Fξ(a, b) := P (a ≤ ξ ≤ b) ∀a, b ∈ R
n : a ≤ b.

The following relation is well known to hold true whenever a ≤ b:

Fξ(a, b) =
∑

i1,...,in∈{0,1}

(−1)[n+
∑n

j=1
ij] Φξ(yi1 , . . . , yin), (1)

where

yij :=

{

aj if ij = 0
bj if ij = 1

.
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For instance, if n = 2, the probability of the rectangle [a, b] calculates via the distribution
function as

Fξ(a, b) = Φξ(a1, a2) − Φξ(a1, b2) − Φξ(b1, a2) + Φξ(b1, b2).

The following lemma can be found (in its equivalent form for standard normal distributions) in
[7]. It shows how the derivative of a multivariate normal distribution can be reduced to values
of a different multivariate normal distribution (in one dimension less):

Lemma 1 Assume that ξ ∼ N (µ,Σ) with some positive definite covariance matrix Σ = (σij).
Then, Φξ is continuously differentiable and

∂Φξ

∂zi

(z) = fξi
(zi) · Φξ̃(zi)

(z1, . . . , zi−1, zi+1 . . . , zs) (i = 1, . . . , n) .

Here, fξi
denotes the one-dimensional probability density of the component ξi, ξ̃(zi) is an n− 1-

dimensional random vector distributed according to ξ̃(zi) ∼ N (µ̂, Σ̂), µ̂ results from the vector
µ + σ−1

ii (zi − µi) σi by deleting component i and Σ̂ results from the matrix Σ − σ−1
ii σiσ

T
i by

deleting row i and column i, where σi refers to column i of Σ.

In the next theorem, we generalize the reduction of Lemma 1 to the case of probability func-
tions Fξ defined by rectangles. In particular, the presented formula allows to again reduce the
derivative of Fξ to the calculus of values of a similar function induced by a different normally
distributed random vector.

Theorem 1 Assume that ξ ∼ N (µ,Σ) with some positive definite covariance matrix Σ. Then,
for i = 1, . . . , n,

∂

∂bi

Fξ(a, b) = fξi
(bi) F

ξ̃(bi)
(ã, b̃) (2)

∂

∂ai

Fξ(a, b) = −fξi
(ai)F

ξ̃(ai)
(ã, b̃). (3)

Here, fξi
is as in Lemma 1, ξ̃(bi), ξ̃(ai), are n−1-dimensional random vectors distributed accord-

ing to ξ̃(bi), ξ̃(ai) ∼ N (µ̂, Σ̂) such that µ̂ results from the vector µ + σ−1
ii (bi − µi) σi (in case of

bi) or from the vector µ+σ−1
ii (ai − µi)σi (in case of ai) by deleting component i and Σ̂ is defined

as in Lemma 1. Moreover ã and b̃ result from a and b by deleting the respective component i.

Proof It suffices to prove (2), the proof of (3) running along the same lines. In order to show (2),
we may assunme without loss of generality and for notational convenience that i = 1. According
to (1), we have

∂

∂b1
Fξ(a, b) =

∑

i1,...,in∈{0,1}

(−1)[n+
∑n

j=1
ij] ∂

∂b1
Φξ(yi1, . . . , yin).

If, in the sum on the right hand side, i1 = 0 then b1 /∈ {yi1, . . . , yin}, whence

∂

∂b1
Φξ(yi1 , . . . , yin) = 0.

Otherwise, if i1 = 1, then

∂

∂b1
Φξ(yi1 , . . . , yin) =

∂

∂b1
Φξ(b1, yi2, . . . , yin) = fξ1 (b1)Φ

ξ̃(b1)(yi2 , . . . , yin)
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by Lemma 1 with the notation used there. It follows that

∂

∂b1
Fξ(a, b) =

∑

i2,...,in∈{0,1}

(−1)[n+
∑n

j=1
ij] fξ1 (b1) Φ

ξ̃(b1)(yi2 , . . . , yin)

= fξ1 (b1)
∑

i2,...,in∈{0,1}

(−1)[n+1+
∑n

j=2
ij] Φ

ξ̃(b1)(yi2 , . . . , yin)

= fξ1 (b1)
∑

i2,...,in∈{0,1}

(−1)[n−1+
∑n

j=2
ij] Φ

ξ̃(b1)(yi2 , . . . , yin)

= fξ1 (b1) F
ξ̃(b1)(a2, . . . , an, b2, . . . , bn),

with the last equality resulting once more from (1) but in one dimension less. Now, the asserted
formula (2) (for i = 1) follows from the respective definitions.

In order to demonstrate the impact of the derived formula, we consider an optimization problem

min{cT x | P(Ax + a ≤ Lξ ≤ Bx + b) ≥ p}, (4)

where A,B,L and a, b, c are matrices and vectors, respectively, of appropriate orders. Given that
ξ (and so Lξ too) has a multivariate normal distribution, we know from [7] that the function

x 7→ log P(Ax ≤ Lξ ≤ Bx) (5)

is concave. This allows to rewrite the optimization problem as a convex one:

min{cT x | − log P(Ax + a ≤ Lξ ≤ Bx + b) ≤ − log p}

Now one can apply, for instance, a supporting hyperplane type method as described in [7] in order
to solve this problem. This requires, apart from functional values, also to calculate gradients
of the function (5) which amounts to determine partial derivatives of the function Fξ(Ax,Bx)
introduced above. The latter task can efficiently be realized with the aid of our formula proved
in Theorem 1 by relying on the same algorithm as used for determining values of such functions.

3 Application to a problem of hydro power management

In this section, we are going to illustrate the application of probabilistic programming described
above to a problem of hydro power management involving two connected reservoirs each of them
supplied with independent random inflow. The aim is to find optimal (in the sense of energy
production) release policies for the two reservoirs over a given future time horizon. Optimal
release is mainly driven by different efficiencies and production levels of the turbines involved,
by some time-dependent price for selling energy as well as by filling levels for the reservoirs which
have to be satisfied with high probability.

There are two different turbines producing energy from the release out of the first reservoir
and one turbine producing energy from the release out of the second reservoir. Each turbine has
some maximum operating level and they all are different in efficiency. Both of the reservoirs have
upper and lower levels to be respected during operation. Initial levels in the reservoirs define
the starting conditions. The situation is sketched in Figure 1. As the realizations of the future
inflows to the reservoirs are not known, satisfaction of reservoir levels is modeled by means of
probabilistic constraints. The important point is that we insist on joint probabilistic constraints
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G1 G2

G3

ξ1

ξ2

x1 x2

x3

Average inflow: 15 m2/s

l
(1)
∗ = 0 m3

l∗(1) = 95000 m3

l
(1)
0 = 120 m3

plant 1:
2 groups

G1: 30 MW at 47 m3/s max: 55 m3/s
G2: 43 MW at 58 m3/s max: 65 m3/s

Average inflow: 12 m2/s

l
(2)
∗ = 0 m3

l∗(2) = 11000 m3

l
(2)
0 = 130 m3

plant 2:
1 group

G3: 50 MW at 72 m3/s max: 80 m3/s

Figure 1: Sketch of a problem in hydro power management (for details see text)

which means that keeping the levels with high probability is required for the whole time horizon.
We shall see later that the still frequently applied model with individual probabilistic constraints
while being much simpler and therefore more appealing from the algorithmic point of view only
guarantees keeping the levels with high probability at each time step separately whereas violation
at least once in the whole interval can also occur with high probability. We are assuming here
a static decision process, i.e., the release policies are determined in the very beginning without
future reactions on previously observed inflows. For a recent study of a dynamic model with
joint probabilistic constraints in this context, we refer to [1]. This model, however, is too
demanding for the purposes of this paper because it allows only for a small number of time steps
at the present level of knowledge whereas we are going to consider two inflow processes with a
subdivision of the time horizon into 32 intervals. This leads to joint probabilistic constraints
based on a 64-dimensional random vector. One may of course imbed the solution approach
presented here into a pseudo-dynamic context by considering a moving window technique.

3.1 Description of the model

In order to provide a model of the problem, we introduce the following notation:

l
(i)
∗ , l∗(i) = lower and upper level to be respected in reservoir i (i = 1, 2).

l
(i)
0 = initial water level in reservoir i (i = 1, 2).

ξ
(i)
t = random inflow to reservoir i during time interval t (i = 1, 2; t = 1, . . . , T ).

m(j) = upper operating level of turbine j (j = 1, 2, 3).

x
(j)
t = water release used for turbine j during time interval t

(j = 1, 2, 3; t = 1, . . . , T ).
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λ(j) = efficiency for turbine j (j = 1, 2, 3)

πt = price for one unit of water released during time interval t t = 1, . . . , T ).

ωi = evaluation coefficient for end level of reservoir i (i = 1, 2)

p = probability required for keeping reservoir levels.

The objective function of the problem is to maximize the profit obtained from selling energy
produced by water release and at the same time to keep a possibly high water level in both
reservoirs at the end of the time horizon. In other words, one wishes to maximize the quantity

3
∑

j=1

T
∑

t=1

λ(j)πtx
(j)
t + ω1l

(1)
T + ω2l

(2)
T , (6)

where l
(i)
T refers to the water level in reservoir i after the last time interval T .

3.2 The optimization problem under joint probabilistic constraints

The filling level l
(1)
t of reservoir 1 at the end of time interval t is given by

l
(1)
t = l

(1)
0 +

t
∑

τ=1

ξ(1)
τ −

t
∑

τ=1

x(1)
τ −

t
∑

τ=1

x(2)
τ (7)

whereas the filling level l
(2)
t of reservoir 2 calculates as

l
(2)
t = l

(2)
0 +

t
∑

τ=1

ξ(2)
τ +

t
∑

τ=1

x(1)
τ +

t
∑

τ=1

x(2)
τ −

t
∑

τ=1

x(3)
τ . (8)

The filling level constraints are given by

l
(i)
∗ ≤ l

(i)
t ≤ l∗(i) (i = 1, 2; t = 1, . . . , T ). (9)

Using the lower triangular matrix

∆ :=











1 0 · · · 0
...

. . .
. . .

...
1 · · · 1 0
1 · · · 1 1











,

and putting

ξ(i) :=
(

ξ
(i)
1 , . . . , ξ

(i)
T

)

, x(j) :=
(

x
(j)
1 , . . . , x

(j)
T

)

(i = 1, 2; j = 1, 2, 3) ,

one can rewrite the the whole system (9) of level constraints for the two reservoirs using (7) and
(8) in the more compact forms

l
(1)
∗ 1 ≤ l

(1)
0 1 + ∆ξ(1) − ∆x(1) − ∆x(2) ≤ l∗(1)1

and
l
(2)
∗ 1 ≤ l

(2)
0 1 + ∆ξ(2) + ∆x(1) + ∆x(2) − ∆x(3) ≤ l∗(2)1,
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where 1 refers to the vector with all entries equal to 1. Rewriting this and combining the two
systems to a single one, we arrive at

l
(1)
∗ 1− l

(1)
0 1 + ∆x(1) + ∆x(2) ≤ ∆ξ(1) ≤ l∗(1)1− l

(1)
0 1 + ∆x(1) + ∆x(2)

l
(2)
∗ 1− l

(2)
0 1 − ∆x(1) − ∆x(2) + ∆x(3) ≤ ∆ξ(2) ≤ l∗(1)1− l

(2)
0 1 − ∆x(1) − ∆x(2) + ∆x(3).

On a more abstract level, this system is of the form

Ax + a ≤ Lξ ≤ Bx + b (10)

with

x =
(

x(1), x(2), x(3)
)

, ξ =
(

ξ(1), ξ(2)
)

A = B =

(

∆ ∆ 0
−∆ −∆ ∆

)

L =

(

∆ 0
0 ∆

)

a =

(

l
(1)
∗ 1 − l

(1)
0 1

l
(2)
∗ 1 − l

(2)
0 1

)

, b =

(

l∗(1)1 − l
(1)
0 1

l∗(1)1 − l
(2)
0 1

)

.

Consequently, turning (10) into probabilistic reservoir level constraints, one arrives exactly at
the probabilistic constraint considered in problem (4). Given the fact that the components of
the inequality system (10) refer to time steps, the interpretation of the associated probabilistic
constraint in (4) is as follows: a release policy x for feeding the three turbines is declared to
be feasible if it leads to a satisfaction of upper and lower levels in the two reservoirs over the

whole time interval at least with probability p.
In addition to the probabilistic constraint we also have the determinstic constraints

0 ≤ x
(j)
t ≤ m(j) (j = 1, 2, 3; t = 1, . . . , T ) .

Concerning the objective in (6), we must take into account that the end levels l
(1)
T , l

(2)
T of the

two reservoirs are random variables, so we take their expected values. By (7) and (8) one gets
that

El
(1)
T = l

(1)
0 +

T
∑

t=1

Eξ
(1)
t −

T
∑

t=1

x
(1)
t −

T
∑

t=1

x
(2)
t

El
(2)
T = l

(2)
0 +

T
∑

t=1

Eξ
(2)
t +

T
∑

t=1

x
(1)
t +

T
∑

t=1

x
(2)
t −

T
∑

t=1

x
(3)
t .

Consequently, according to (6), we wish to maximize the quantity

3
∑

j=1

T
∑

t=1

λ(j)πtx
(j)
t − ω1

(

T
∑

t=1

x
(1)
t +

T
∑

t=1

x
(2)
t

)

+ ω2

(

T
∑

t=1

x
(1)
t +

T
∑

t=1

x
(2)
t −

T
∑

t=1

x
(3)
t

)

,

where we left out, without loss of generality, terms not depending on the decision vector x. This
profit function is linear in x, so the coefficient vector c in the optimization problem (4) is easily
found as c =

(

c(1), c(2), c(3)
)

, where

c
(1)
t = ω1 − ω2 − λ(1)πt, c

(2)
t = ω1 − ω2 − λ(2)πt, c

(3)
t = ω2 − λ(3)πt (t = 1, . . . , T )

and where the reversed signs are due to minimizing 〈−c, x〉 rather than maximizing 〈c, x〉.
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3.3 Numerical case study

In this section, we are going to provide a numerical case study, where we solve for the purpose
of comparison four different optimization problems, namely

• The expected-value problem

min{cT x | Ax + a ≤ LEξ ≤ Bx + b)},

where the random vector is simply replaced by its expectation

• The problem with individual probabilistic constraints

min{cT x | P(Aix + ai ≤ Liξ) ≥ p, P(Liξ ≤ Bix + bi) ≥ p (i = 1, . . . , 2T )},

where the reservoir level constraints are required to hold with probability p at each time

step and for each reservoir level separately.

• The problem (4) with joint probabilistic constraints according to the specifications in the
previous section.

• The robust ’max p’-problem

max{p | P(Ax + a ≤ Lξ ≤ Bx + b) ≥ p},

where the objective is to maximize the probability level under which level satisfaction can
still be guaranteed.

The reason to include the first two problems into the study is that they are simple alternatives to
overcome algorithmic difficulties with probabilistic constraints. Both models allow a reduction of
the original stochastic inequality system to a linear one. Hence, linear programming is all what
is needed to a solution of the respective problems. At the same time, the release policies found
in both models lack robustness with respect to the uncertain inflow process. While this is well
known for the expected-value problem, it seems to be less recognized for the case of individual
constraints. The consideration of the ’max-p’-problem is useful for two reasons. Its optimal
solution (x∗, p∗) provides us at the same time with a Slater point x∗ needed for the cutting
plane algorithm in the solution of (4) and with the maximum possible probability level p which
would still allow for a nonempty set of feasible release policies. This information is important for
the decision maker for fixing an appropriate (not too large) level p in his/her original problem
(4).

We shall consider a time horizon of T = 32 intervals with 15 minutes each. For the discrete
random inflow processes to the two reservoirs we rely on the quantities indicated in Figure 1 as
expected values. We assume that all components of the whole random process

(

ξ(1), ξ(2)
)

are
normally distributed with the indicated expected values and with a relative standard deviation
of 2.5% for the first and 2% for the second reservoir. Within each reservoir, inflows are assumed
to be correlated over time by a band structure. They are assumed to be independent between the
two reservoirs. Hence, we are considering a 64-dimensional random vector having a multivariate
normal distribution with non-diagonal correlation matrix. We fix the probability level as p = 0.9.
For the efficiencies of the turbines, we rely on the ratios between values for the three turbines
as indicated in Fig. 1:

λ(1) = 0.638, λ(2) = 0.741, λ(3) = 0.694.
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Moreover, the time-dependent price vector π was determined as

π = (2.5, 2.5, 3.75, 6.25, 5.0, 3.75, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.0, 2.0, 2.0,

2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5, 2.5, 5.0, 5.0, 6.25, 7.5, 6.25, 5.0, 3.75, 2.5).

Finally, for the evaluation of end levels, we have chosen the coefficients

ω1 = 20.0, ω2 = 15.0.

Figure 2 shows the optimal release policies for the three turbines for all four problems solved.
It can be seen that in the first three problems the second and third turbine have their peaks
at high prices as a result of profit maximization. Additional peaks guarantee the feasibility of
the level constraints. The first turbine remains allmost inactive because it is less efficient and
so the second one can do a better job unless it reaches its operational limit. The profiles of the
first two problems are very similar. A more detailed inspection reveals that different operational
levels can be afforded e.g. in the intervals 5, 20, 21, 24, 25, 26 and 32. The release policy
under joint probabilistic constraints exhibits some differences: the peaks are a bit smaller (recall
different scales in the figures), while there is an additional peak in intervals 12 an 13 and the base
level for the third turbine is higher than in the previous two cases. Not surprisingly, the most
robust release policy looks completely different, because it does not aim at maximizing profit
and, hence, does not follow the pattern of the price vector. On the other hand, its maximum
probability level was found as p∗ = 0.95, a value that cannot be exceeded by any release policy.

In order to validate our results and, in particular, to check the probabilities of keeping
the reservoir levels, we generated a set of 100 inflow scenarios for both reservoirs according
to the chosen distribution parameters of the two inflow processes (see above). Now, given
these simulated inflow profiles and the calculated optimal release policies, one can visualize the
resulting corresponding filling levels in the two reservoirs. Figure 3 shows the results for the
upper reservoir for the four different problems. As one can see, the filling levels are very well
respected in the problem with joint probabilistic constraints and in the ’max-p’ problem. In
contrast, there are several violations in the problem with individual probabilistic constraints (at
time intervals 4–13,20,24,26,27,32) and even many more violations in the expected-value problem
(at time intervals 4–13,20,23,24,26,27,32). This is not surprising because in the latter problem
constraint satisfaction is required in expectation only. Things become a lot more significant for
the second (much smaller) reservoir (see Figure 4). The filling levels are violated in all intervals
by the problem with individual probabilistic constraints as well as by the expected-value problem.
It is obvious that the expected-value solution cannot be used in practice. The problem under
individual probabilistic constraints seems to lead to reasonable level satisfaction consistent with
the chosen probability p = 0.9. However, this holds true only if time intervals and reservoir
levels are considered separately. It is hard to visually detect from Figures 3 and 4 how many
of these 100 scenarios really pass through the feasible range during the whole time horizon in
case of individual probabilistic constraints. There is no doubt about that in the remaining two
cases (joint probabilistic constraints and ’max-p’) only very few trajectories ever violate a level
constraint during the whole time horizon. More insight about the probability of level constraint
violation can be gained by plotting the numbers of scenarios violating any of the four constraints
(first reservoir - upper level, first reservoir - lower level, second reservoir - upper level, second
reservoir - lower level) as functions of time. This corresponds to an empirical probability of
constraint violation. The resulting plots are provided in Figure 5, where different plot styles
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Figure 2: Illustration of the optimal release policies for the three turbines
(dashed=1,dotted=2,solid=3) in case of the expected-value problem (top left), the prob-
lem with individual probabilistic constraints (top right), the problem with joint probabilistic
constraints (bottom left) and the ’max-p’ problem (bottom right). The gray line represents the
profile of the price vector but with a large offset cut off for graphical reasons.

are used for different level constraints. The already observed uselessness of the expected-value
solution is clearly demonstrated by the large number of time intervals at which violations of the
level constraints occur with (empirical) probability of up to 60%. In contrast, the solution based
on individual probabilistic constraints keeps what it promises: at each time interval, any of the
level constraints is violated at most in approximately 10% of the scenarios which fits very well
the chosen probability level p = 0.9. The remaining two solutions (joint probabilistic constraints
and ’max-p’) are almost at zero level.

However, at this point one might get curious to know how many of the scenarios really pass
through the whole time horizon without violating any of the level constraints. These results
are summerized in Table 1 which also contains the strictly calculated probability of satisfying
the joint probabilistic constraints and the corresponding value of the objective. The resulting
failure numbers are: 100 (!) in case of expected values, 68 in case of individual probabilistic
constraints, 10 in case of joint probabilistic constraints and 6 in case of the robust solution
provided by the ’max-p’ problem. This means that almost surely (in the litteral and probabilistic
sense) at least one of the filling level constraints will be violated at least once during the time
horizon when using the release policies under expected-value constraints. More interestingly,
release policies based on individual probabilistic constraints are not much better. While for each
time interval separately, the probability of satisfying level constraints fits well the chosen level
p = 0.9, the probability of satisfying them simultaneously over the whole time horizon reduces
to approximately 0.32 which is highly undesirable and explains, why individual probabilistic
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Figure 3: Illustration of 100 filling level scenarios for the first reservoir with the arrangement of
figures corresponding as in Figure 2 to the 4 problems investigated
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Figure 4: Illustration of 100 filling level scenarios for the second reservoir with the arrangement
of figures corresponding as in Figure 2 to the 4 problems investigated
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Figure 5: Plot of the empirical probabilities for level constraint violation as a function of time
(solid=lower limit of upper reservoir , dotdashed=upper limit of upper reservoir, dashed=lower
limit of lower reservoir, dotted=upper limit of lower reservoir). The arrangement of figures
corresponds as in Figure 2 to the 4 problems investigated

Table 1: Probability levels and optimal values

Problem #violating scenarios Probability level Optimal value

max p 6 0.95 3135163
joint constr. 10 0.90 4803072
individual constr. 68 0.32 4954845
expected value 100 0.00 5118385

constraints are not the right model in our application though they are appealing due to their
easy to obtain solution. The number of 10 violating scenarios in the model with joint probabilistic
constraints corresponds well now to the chosen probability level p = 0.9. The same is true in
case of the ’max-p’ problem, where the maximum possible probability level p∗ was calculated as
0.95.

Finally, the optimal values recorded in Table 1 allow the following two important observa-
tions: first, a robust release policy with a probability level as high as 0.9 can be guaranteed
by accepting a negligible loss of profit as compared to the two simplified models which are not
robust at all. Second, insisting on maximum robustness (0.95 here) may come at the price of a
significant loss of profit.
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