Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
Browsing by Author 
  • edoc-Server Home
  • Browsing by Author
  • edoc-Server Home
  • Browsing by Author
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubject
PublishLoginRegisterHelp
All of edoc-ServerCommunity & CollectionTitleAuthorSubject
PublishLoginRegisterHelp
Browsing by Author 
  • edoc-Server Home
  • Browsing by Author
  • edoc-Server Home
  • Browsing by Author

Browsing by Author "Ou, Yangguoyi"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z

Sort by:

Order:

Results:

Now showing items 1-2 of 2

  • title
  • issue date
  • submit date
  • ascending
  • descending
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
    • 2008-10-01Diskussionspapier
      Discrete-Time Stochastic Volatility Models and MCMC-Based Statistical Inference 
      Hautsch, Nikolaus; Ou, Yangguoyi
      In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. ...
    • 2008-07-31Diskussionspapier
      Yield Curve Factors, Term Structure Volatility, and Bond Risk Premia 
      Hautsch, Nikolaus; Ou, Yangguoyi
      We introduce a Nelson-Siegel type interest rate term structure model with the underlying yield factors following autoregressive processes revealing time-varying stochastic volatility. The factor volatilities capture risk ...
      DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
      Imprint Policy Contact Data Privacy Statement
      A service of University Library and Computer and Media Service
      © Humboldt-Universität zu Berlin