- edoc-Server Home
- Browsing by Author
Browsing by Author "Riedle, Markus"
Now showing items 1-8 of 8
-
2001-10-19BuchAffine Stochastic Differential Equations with Infinite Delay on Abstract Phase Spaces Riedle, Markus
-
2005-11-02BuchDelay differential equations driven by Lévy processes: stationarity and Feller properties Reiß, Markus; Riedle, Markus; Gaans, Onno vanWe consider a stochastic delay differential equation driven by a general Lévy process. Both, the drift and the noise term may depend on the past, but only the drift term is assumed to be linear. We show that the segment ...
-
2008-03-07BuchGeometric Brownian Motion with delay Riedle, Markus; Appleby, John A. D.; Mao, XuerongA geometric Brownian motion with delay is the solution of a stochastic differential equation where the drift and diffusion coefficient depend linearly on the past of the solution, i.e. a linear stochastic functional ...
-
2002-02-20BuchLyapunov Exponents for Linear Delay Equations in arbitrary Phase Spaces Riedle, Markus
-
2005-01-01BuchOn Émery's inequality and a variation-of-constants formula Riedle, Markus; Reiß, Markus; Gaans, Onno vanA generalization of Émery's inequality for stochastic integrals is shown for convolution integrals with respect to an arbitrary semimartingale. The inequality is used to prove existence and uniqueness of solutions of ...
-
2005-03-10BuchSolutions of affine stochastic functional differential equations in the state space Riedle, MarkusIn this article we consider solutions of affine stochastic functional differential equations. The drift of these equations is specified by a functional defined on a general function space B which is only described ...
-
2006-08-02BuchSolutions of stochastic delay equations in spaces of continuous functions Riedle, Markus; Neerven, Jan van
-
2003-07-02DissertationStochastische Differentialgleichungen mit unendlichem Gedächtnis Riedle, MarkusFür einen R^d-wertigen stochastischen Prozess X auf R bezeichne X_t den Segmentprozess X_t:={X(t+u): u = 0. Es wird folgende affine stochastische Differentialgleichung mit unendlichem Gedächtnis betrachtet: dX(t)=L(X_t)dt ...