Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2008-01-01Zeitschriftenartikel DOI: 10.18452/9421
Constraint Based World Modeling
Göhring, Daniel
Mellmann, Heinrich
Gerasymova, Kataryna
Burkhard, Hans-Dieter
Mathematisch-Naturwissenschaftliche Fakultät II
Common approaches for robot navigation use Bayesian filters like particle filters, Kalman filters and their extended forms. We present an alternative and supplementing approach using con- straint techniques based on spatial constraints between object positions. This yields several advan- tages. The robot can choose from a variety of belief functions, and the computational complexity is decreased by efficient algorithms. The paper investigates constraint propagation techniques under the special requirements of navigation tasks. Sensor data are noisy, but a lot of redundancies can be exploited to improve the quality of the result. We introduce two quality measures: The ambiguity measure for constraint sets defines the precision, while inconsistencies are measured by the incon- sistency measure. The measures can be used for evaluating the available data and for computing best fitting hypothesis. A constraint propagation algorithm is presented.
Files in this item
Thumbnail
25rQZ5965GjWM.pdf — Adobe PDF — 304.3 Kb
MD5: 5bfd845b47610448bdc2cac16826ea10
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/9421
Permanent URL
https://doi.org/10.18452/9421
HTML
<a href="https://doi.org/10.18452/9421">https://doi.org/10.18452/9421</a>