Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2008-04-17Zeitschriftenartikel DOI: 10.18452/9451
Fourth-Order Splitting Methods for Time-DependantDifferential Equations
Geiser, Jürgen
Mathematisch-Naturwissenschaftliche Fakultät II
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes, e.g., wave-propagation or heat-transfer, that are modeled by wave equations or heat equations. Here, we study both parabolic and hyperbolic equations. We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods, which are standard splitting methods of lower order, e.g. second-order. Our aim is to develop higher-order ADI methods, which are performed by Richardson extrapolation, Crank-Nicolson methods and higher-order LOD methods, based on locally higher-order methods. We discuss the new theoretical results of the stability and consistency of the ADI methods. The main idea is to apply a higherorder time discretization and combine it with the ADI methods. We also discuss the discretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives. The higher-order methods are unconditionally stable. Some numerical experiments verify our results.
Files in this item
Thumbnail
29Svn1UUnPY.pdf — Adobe PDF — 194.1 Kb
MD5: 0c19cc8f5d4e9ee6b832fdda5653a886
Cite
BibTeX
EndNote
RIS
InCopyright
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2011-09-27Buch
    Splitting Method of Convection-Diffusion Methods with Disentanglement methods 
    Disentanglement Methods
    Geiser, Jürgen; Elbiomy, Mahmoud
    In this paper, we discuss higher-order operator-splitting methods done by disentanglement methods. The idea is based on computing best fitted exponents to an exponential splitting scheme with more than two operators. We ...
  • 1995-01-01Zeitschriftenartikel
    Performance of a Direct, Immunoseparation Based LDL-Cholesterol Method Compared to Friedewald Calculation and a Polyvinyl Sulphate Precipitation Method 
    Cobbaert, Christa; Broodman, Ingrid; Swart, G. Roel; Hoogerbrugge, Nicoline
  • 1983-01-01Zeitschriftenartikel
    A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods. Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part I 
    Passing, H.; Bablok, W.
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/9451
Permanent URL
https://doi.org/10.18452/9451
HTML
<a href="https://doi.org/10.18452/9451">https://doi.org/10.18452/9451</a>