Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2007-01-01Zeitschriftenartikel DOI: 10.18452/9473
Analytical Solutions for Convection-Diffusion-Dispersion-Reaction-Equations with Different Retardation-Factors and Applications in 2d and 3d
Geiser, Jürgen
Institut für Mathematik
Our motivation to this paper came from a model simulating a wastedisposal embedded in an overlying rock. The main problem for our model are the large scales that occurred due the coupled reaction terms of our underlying system of convection-diffusion-dispersion-reactionequations. The developed methods allowed a computation over a large simulation period of more than 10000 years. Therefore we construct discretization methods of higher order, which allow large-time-steps without loss of accuracy. Based on operator-splitting methods we decouple the complex equations in simpler equations and use adequate methods to solve each equation separately. For the explicit parts that are the convection-reaction-equations we use finite-volume methods based on flux-methods with embedded analytical solutions. Whereas for the implicit parts that are the diffusion-dispersion-equations we use finitevolume methods with central discretizations. We analyze the splittingerror and the discretization error for our methods. The main part of the paper consists of the applications of our methods done with our underlying program-tool R3T. We introduced the main concepts of the program-tool that is based on the software-toolbox UG. The testexamples and benchmark problems for verifying our discretization- and solver-methods with respect to the physical behavior are presented. The benchmark-problems are the test for different material-parameters and confirm the valuation of the methods. Based on the verification of our test-problem we present the realistic model-problem of a waste-disposal in 2d with large decay-chains reacted and transported in a porous media with an underlying flowing groundwater. For the prediction of possible waste-disposals a computation with different located waste-locations is discussed. The parallel resources for the computations are presented in the case of the forced simulation-times.
Files in this item
Thumbnail
28kDq0YVAb0vQ.pdf — Adobe PDF — 320.8 Kb
MD5: 433db1c6177fefdb45c77f68a073d5ff
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/9473
Permanent URL
https://doi.org/10.18452/9473
HTML
<a href="https://doi.org/10.18452/9473">https://doi.org/10.18452/9473</a>