Zur Kurzanzeige

2009-10-01Zeitschriftenartikel DOI: 10.1515/ADVGEOM.2009.029
Sous-espaces équi-isoclins de l’espace euclidien
dc.contributor.authorEt-Taoui, Boumediene
dc.contributor.authorFruchard, Augustin
dc.date.accessioned2017-06-17T05:44:25Z
dc.date.available2017-06-17T05:44:25Z
dc.date.created2010-07-01
dc.date.issued2009-10-01none
dc.identifier.issn1615-715X, 1615-7168
dc.identifier.urihttp://edoc.hu-berlin.de/18452/11494
dc.description.abstractA systematic study of equi-isoclinic n-tuples of the Grassmann manifold G(d, N) is initiated. After basic results in the general case, the article focuses on the case d = 2. In particular the lists of all regular equi-isoclinic n-tuples of G(2, 2n) and of all equi-isoclinic quadruples of G(2, 6) are established.eng
dc.language.isound
dc.publisherKooperation de Gruyter
dc.relation.ispartofseriesAdvances in Geometry, 9, 4, 2009, pp 471-515
dc.titleSous-espaces équi-isoclins de l’espace euclidien
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-100133651
dc.identifier.doi10.1515/ADVGEOM.2009.029
dc.identifier.doihttp://dx.doi.org/10.18452/10842
local.edoc.container-titleAdvances in Geometry
local.edoc.container-issn1615-715X
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-namede Gruyter
local.edoc.container-volume9
local.edoc.container-issue4
local.edoc.container-year2009
local.edoc.container-firstpage471
local.edoc.container-lastpage515
dc.description.versionPeer Reviewed

Zur Kurzanzeige