Zur Kurzanzeige

2010-01-01Zeitschriftenartikel DOI: 10.1515/ADVGEOM.2009.036
Positivity in power series rings
dc.contributor.authorCimpri, Jaka
dc.contributor.authorKuhlmann, Salma
dc.contributor.authorMarshall, Murray
dc.date.accessioned2017-06-17T07:44:26Z
dc.date.available2017-06-17T07:44:26Z
dc.date.created2010-07-01
dc.date.issued2010-01-01none
dc.identifier.issn1615-715X, 1615-7168
dc.identifier.urihttp://edoc.hu-berlin.de/18452/12031
dc.description.abstractWe extend and generalize results of Scheiderer (2006) on the representation of polynomials nonnegative on two-dimensional basic closed semialgebraic sets. Our extension covers some situations where the defining polynomials do not satisfy the transversality condition. Such situations arise naturally when one considers semialgebraic sets invariant under finite group actions.eng
dc.language.isound
dc.publisherKooperation de Gruyter
dc.relation.ispartofseriesAdvances in Geometry, 10, 1, 2010, pp 135-143
dc.titlePositivity in power series rings
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-100142600
dc.identifier.doi10.1515/ADVGEOM.2009.036
dc.identifier.doihttp://dx.doi.org/10.18452/11379
local.edoc.container-titleAdvances in Geometry
local.edoc.container-issn1615-715X
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-namede Gruyter
local.edoc.container-volume10
local.edoc.container-issue1
local.edoc.container-year2010
local.edoc.container-firstpage135
local.edoc.container-lastpage143
dc.description.versionPeer Reviewed

Zur Kurzanzeige