O(p + 1) × O(q + 1)-invariant (r – 1)-minimal hypersurfaces in Euclidean space
dc.contributor.author | Sousa, Paulo | |
dc.date.accessioned | 2017-06-17T07:45:06Z | |
dc.date.available | 2017-06-17T07:45:06Z | |
dc.date.created | 2010-07-01 | |
dc.date.issued | 2010-01-01 | |
dc.identifier.issn | 1615-7168 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/12034 | |
dc.description.abstract | The aim of the paper is to present a classification of nonextendable immersed O(p+1) × O(q + 1)-invariant (r – 1)-minimal hypersurfaces in the Euclidean space , with p, q > 1 and 2 ≤ r ≤ 1 min{p, q}, by analyzing embeddedness as well as (r – 1)-stability. The case r = 1 and r = 2 were treated in [Alencar, Trans. Amer. Math. Soc. 337: 129–141, 1993] and [Sato, de Souza Neto, Ann. Global Anal. Geom. 29: 221–240, 2006], respectively. Generalizing the seminal work of Bombieri et al. we also present a (r – 1)-stable complete embedded hypersurface of with Hr = 0 and O(p + 1) × O(q + 1)-invariant, where p + q ≥ r + 5, that is not homeomorphic to . | eng |
dc.language.iso | und | |
dc.publisher | Kooperation de Gruyter | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | O(p + 1) × O(q + 1)-invariant (r – 1)-minimal hypersurfaces in Euclidean space | |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-100142630 | |
dc.identifier.doi | 10.1515/ADVGEOM.2010.002 | |
dc.identifier.doi | http://dx.doi.org/10.18452/11382 | |
local.edoc.container-title | Advances in Geometry | |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
local.edoc.container-publisher-name | de Gruyter | |
local.edoc.container-volume | 10 | |
local.edoc.container-issue | 1 | |
local.edoc.container-year | 2010 | |
local.edoc.container-firstpage | 111 | |
local.edoc.container-lastpage | 134 | |
dc.description.version | Peer Reviewed |